A dispenser for disposable hygienic articles such as wipes or towels in stacks or rolls, or soap, includes a clamp suitable for securing the dispenser to a supporting structure such as the edge of a shelf or a table. The clamp includes a stationary clamping part for engaging one side of the supporting structure, a movable clamping part for engaging an opposite side of the supporting structure, and a device for urging the clamping parts towards each other so as to tighten the clamp about the supporting structure. The stationary and the movable clamping part each have a clamping face. Spacing between the clamping faces of the stationary clamping part and the movable clamping part is variable so as to adapt the clamp to supporting structures of different thicknesses.
DISPENSER WITH TABLE CLAMP

CROSS-REFERENCE TO PRIOR APPLICATION

[0001] This application is a §371 National Stage Application of PCT International Application No. PCT/EP2011/056833 filed Apr. 29, 2011, which is incorporated herein in its entirety.

TECHNICAL FIELD

[0002] The present disclosure is directed to a dispenser for disposable hygienic articles such as wipes or towels, soap, or the like.

[0003] The hygienic articles may form a stack inside the dispenser and be grasped by a user from the lower end of the stack through a dispensing aperture. Some hygienic articles may be provided on a roll, e.g., paper which at a free end may protrude from a dispenser. Others may be provided in liquid form, e.g., soaps or disinfectants.

BACKGROUND

[0004] Such dispensers for hygienic articles are, for example, mounted in restrooms or close to hand washbasins or sinks in public establishments, industrial or kitchen premises. They may be arranged standing on a horizontal surface such as a tabletop. In general, however, they are mounted to a vertical fastening surface such as a wall. Conventionally, the dispensers are fastened to the wall by means of screws or bolts, and they are provided with attachment holes in their rear walls to this extent. WO-A1-2007/035139 discloses an example.

[0005] In order to fasten the screws or bolts to the wall, corresponding bore holes have to be prepared, which is cumbersome and time consuming. Furthermore, in washrooms or other areas exposed to high moisture, the fastening surfaces are often covered with tiles or other water-tight layers. Forming bore holes in this kind of surface is particularly difficult and could, moreover, result in moisture intruding into the holes. The bore holes also leave visible marks if the screws or bolts are removed, e.g., because it is desired to mount the dispenser at another location.

[0006] Furthermore, dispensers of the above mentioned kind are also used in industry, for example in fabrication halls, where they dispense paper for cleaning at workbenches or wiping spills of any kind. In this case, difficulties have occurred in practice when the dispensers are only provided at a few locations in a large fabrication hall, because the workmen have to walk a relatively long distance every time they wish to use an article from the dispenser. The workmen tend to get a supply of paper and stack it on their workbenches, so that it often gets dirty or moist before it is even used. Where the dispensers are in the form of floor stands, they also stand in the way, when the floor is to be cleaned.

[0007] On the other hand, there have been attempts to install such dispensers where they are actually needed, e.g. on or close to the workbenches as such. For example, magnets have been used in order to fasten the dispensers to table tops or table legs made from metal.

SUMMARY

[0008] It is desired to provide a dispenser which can be firmly but reversibly fastened to a supporting structure such as the edge of a table or shelf. The dispenser should remain securely attached when the articles are grasped from the dispenser. The relatively large weight of the dispensers, which may be in the order of several kg, can also be taken into account.

[0009] The present disclosure provides a dispenser for hygienic articles. The dispenser includes a clamp suitable for securing the dispenser to a supporting structure such as the edge of a shelf or a table. The clamp includes a stationary clamping part for engaging one side of the supporting structure, a movable clamping part for engaging an opposite side of the supporting structure, and means for urging the clamping parts towards each other so as to tighten the clamp about the supporting structure. Both the stationary and the movable clamping parts each have a clamping face, and a spacing between the clamping faces of the stationary clamping part and the movable clamping part is variable so as to adapt the clamp to supporting structures of different thicknesses.

[0010] By means of its table clamp, the dispenser can be firmly but reversibly fastened to the supporting structure, which can be the edge of a table or shelf or any other supporting structure which may be gripped between the clamping faces. The dispenser may be quickly affixed and also easily detached from the supporting structure and relocated if needed.

[0011] When the dispenser has been attached to the supporting structure by means of the table clamp, it remains securely attached. In this regard it is to be noted that there may be rather considerable forces acting onto the dispenser, these forces originating from the weight of the dispenser and the articles contained therein on the one hand, and from the actions carried out by the user on the other hand. For example, the user may pull tissues out of the dispenser or press an operating lever or the like in order to release a portion of soap from the dispenser. The dispenser must be attached so that it is not loosened also in the presence of these considerable forces.

[0012] Optional features are recited in the dependent claims.

[0013] In particular embodiments, the clamping faces of the stationary clamping part on the one hand and of the movable clamping part on the other hand are arranged in a spaced parallel relationship, and the spacing between the clamping faces of the stationary clamping part and the movable clamping part is variable in a direction which is essentially perpendicular to the clamping faces. The spacing between the clamping faces of the stationary clamping part and the movable clamping part may then easily be varied so as to adapt the clamp to supporting structures of different thicknesses.

[0014] The clamping faces may at least partly covered by protective layers. These protective layers may for example be made from a thermoplastic elastomer (TPE). They may be made as extra parts which are then attached, e.g. glued, to the clamping faces. The clamping faces and the protective layers could, however, also be produced in a single process step, e.g. if a 2K injection molding process is employed.

[0015] With regards to the table clamp as such, there are several possibilities of how the clamp is designed. On the one hand, the clamp may be a so-called C-G-clamp, i.e. it may be essentially C- or G-shaped and include a slot for being disposed about the supporting structure. In this case, one leg of the slot constitutes the stationary clamping part, and the movable clamping part is supported on the opposite leg of the slot so as to face the stationary clamping part.
In one embodiment, the movable clamping part is a threaded rod having a head, and a rotation of the threaded rod results in a translation of the head for tightening the clamp.

As an alternative, the movable clamping part includes a cam surface and a lever, and the clamp is tightened by pivoting the cam surface by means of the lever.

Furthermore, in one embodiment, the position of the movable clamping part is also adjustable in the direction parallel to the clamping faces, providing an additional degree of freedom to the movable clamping part.

On the other hand, the table clamp could also be constructed so that the movable clamping part is slidably supported relative to the stationary clamping part by means of a rod, and the spacing between the clamping parts is variable in the longitudinal direction of the rod. In this case, at least a part of the rod extends essentially at right angles with respect to the clamping faces of the clamping parts. A first end of the rod is attached to one of the clamping parts, a second end of the rod extends through the other one of the clamping parts, and a nut is in threaded engagement with the second end of the rod and operable for urging the clamping parts towards each other.

An alternative means of urging the clamping parts towards each other may include a spring biasing the movable clamping part towards the stationary clamping part. The spring biased table clamp would then correspond to a clamp commonly known as a “quick clamp”.

The movable clamping part of the table clamp could, for example, provide access to the access opening in the housing. Either the stationary clamping part or the movable clamping part is then formed integral with the bracket, and the respective other clamping part is movably supported relative thereto.

The solution including the bracket provides the further advantage that a single bracket may be used together with different kinds of dispenser housings, i.e., the bracket may be so arranged and constructed that dispenser housings of different types and/or sizes can be releasably secured thereto.

One single bracket may then be able to carry different types of dispensers (soap, washing cream, paper sticks, paper rolls) and/or different sizes of one and the same type of dispenser. Even a double-sided bracket is considered which has, for example, a smaller fixture for a soap/washing cream dispenser and a bigger one for a paper dispenser in a back-to-back arrangement.

BRIEF DESCRIPTION OF THE FIGURES

The various aspects and embodiments of the invention, including its particular features and advantages, will be readily understood from the following detailed description and the accompanying drawings, in which:

FIG. 1 illustrates a dispenser according to a first embodiment,

FIGS. 2a and 2b are perspective views of the dispenser,

FIG. 3 is a perspective view of a clamping block of the dispenser, and

FIGS. 4 to 6 show three alternative embodiments of the bracket and table clamp.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

FIG. 1 illustrates a dispenser 1 according to a first embodiment. In this embodiment, the dispenser 1 is adapted to contain a roll of paper towels. The dispenser 1 includes a dispenser housing 2 in which the paper roll is to be accommodated. The dispenser housing 2 is releasably fastened to a bracket 3 in a manner described further below.

In order to firmly but reversibly attach the dispenser 1 to a supporting structure such as the edge of a table, the dispenser 1 includes a table clamp. In the present embodiment, the table clamp includes a stationary clamping part 6 which is formed integral with the bracket 3 and includes a clamping face 18, and a movable clamping part which is provided in the form of a clamping block 4 and includes a clamping face 14. The clamping block 4 is movable insofar as it can be slid towards and away from the stationary clamping face 18. To this extent a rod 6 is provided which connects the clamping block 4 with the bracket 3. The clamping faces 18, 14 are arranged in a spaced parallel relationship.

A cover 7 for closing the dispenser housing 2 is also illustrated. The cover 7 may be pivoted about an essentially vertical axis from the illustrated closed position to an open position, in which an access opening provides access to an interior of the housing 2. The cover 7 has a function of protecting the paper roll inside the dispenser housing 2 from humidity and dirt, and it may also be provided with a locking mechanism. If desired, the locking mechanism may include a removable key so that the cover 7 may be locked to the housing 2 to prevent access to the access opening.

From FIG. 1 it becomes also clear how a screw nut 5 is provided in threaded engagement with the rod 6 so that by
turning the screw nut 5, the clamping block 4 may be urged towards the stationary clamping face 18 of the bracket 3. In order to fasten the dispenser 1 to a table edge, the stationary clamping face 18 of the bracket 3 is engaged with one side of the table plate, the movable clamping face 14 of the block 4 is engaged with the opposite side of the table plate, and the screw nut 5 is operated for urging the clamping block 4 towards the stationary clamping face 18 of the bracket 3 so as to tighten the table clamp about the table edge.

Due to the sliding connection of the clamping block 4 via the rod 6, the spacing between the clamping faces 18, 14 of the bracket 3 and the clamping block 4 is easily variable in a direction which is essentially perpendicular to the clamping faces 18, 14, and in the longitudinal direction of the rod 6, so as to adapt the table clamp to table plates of different thicknesses. The dispenser 1 of the present embodiment is mainly intended to be used with workbenches or worktables, and therefore, the spacing between the clamping faces is adjustable between 15 and 60 mm, which corresponds to the table thicknesses commonly encountered in workbenches or worktables.

The rod 6 in and of itself is essentially L-shaped. The longer part thereof extends essentially at right angles with respect to the clamping faces 18, 14 of the clamping parts. The shorter part extends parallel with the clamping face 18 of the stationary clamping part or bracket 3, respectively.

Turning now to FIGS. 2a and 2b, the structure of the bracket 3 will be explained in more detail. Note that FIG. 2a shows the bracket 3 only, whereas FIG. 2b also illustrates the movable clamping block 4, screw nut 5 and rod 6.

The bracket 3 has a generally longitudinal shape and is mainly constituted by a plate structure 12. Furthermore, as already explained, the bracket 3 includes the stationary clamping part 8 as an integral part thereof, which in the present embodiment is constituted by a wall extending at a right angle from the rear side of the plate structure 12, i.e. the side opposite the front side to which the dispenser housing 2 is attached.

On both sides of the plate structure 12 there are stiffening side walls 16 which are perpendicular to both the plate structure 12 and the stationary clamping part 8. In the present embodiment, the stiffening side walls 16 have a slightly curved shape: the upper ends of the stiffening side walls 16 at the very top of the plate structure 12 are rather narrow, and the side walls 16 gradually become wider towards the bottom ends thereof at which they are connected with the stationary clamping part 8.

The stationary clamping part 8 is not provided at the very bottom end of the plate structure 12, but the plate structure further extends beyond the stationary clamping part 8; the extension is designated 19 in FIG. 2b. The extension 19 is also formed with a guiding structure for guiding the movable clamping block 4 in its movement towards and away from the stationary clamping part 8. A shallow groove 9 is formed in the extension 19 which is slightly wider than the clamping block 4.

In the first embodiment, the entire bracket 3 is injection moulded from acrylonitrile butadiene styrene (ABS). The plate structure 12 as such is a rigid element, whereas the stationary clamping part 8 as well as the stiffening side walls 16 are double walled, hollow structures. Consequently, the double-walled stationary clamping part 8 has a bottom wall 81 and a top wall 82, and the stiffening side walls 16 each have an inner wall 161 and an outer wall 162 (see FIG. 2b).

In order to accommodate the shorter end of the L-shaped rod 6, the bracket 3 is further provided with an accommodating channel 20. The channel 20 extends with the double walled stationary clamping part 8 and has an open end at the front side of the bracket 3 and a closed end at the rear side of the bracket 3. The channel 20 is delimited by the bottom wall 81 of the double walled stationary clamping part 8, by two side walls extending at right angles thereto, and by a top wall. As shown in FIG. 2a, the side walls and the top wall of the rod accommodating channel 20 protrude from the top wall 82 of the stationary clamping part so as to form a protrusion 90.

The shorter end of the L-shaped rod 6 is inserted into the rod accommodating channel 20 from the front side of the bracket 3. The longer end of the L-shaped rod 6 extends through an opening within the bottom wall 82 of the double walled stationary clamping part 8. In the present embodiment, this opening has the form of a slit 22 which extends not only in the bottom wall 82 of the stationary clamping part 8 but further into the extension 19 of the plate structure 12. In any event the longer end of the L-shaped rod 6 co-extends with the extension 19 on the rear side thereof, so that the clamping block 4 can be supported on the rod 6 in a manner to be described below.

For attaching the dispenser housing to the bracket, four knobs 17 are provided protruding from the front face of the bracket. Adjacent to two of these knobs 17 there are also release tabs 10 provided which can be operated from the rear side of the bracket 3 so as to release the dispenser housing 2 from the bracket 3. The dispenser housing 2 may alternatively be attached to the bracket 3 by other means.

The movable clamping block 4 is further illustrated in FIG. 3. The block 4 is also an injection moulded structure and may be made from glass fibre reinforced material, e.g. polyamide or polyoxymethylene (POM), so as to provide the required strength and stiffness. It has a flat front face 41 which, in the mounted state, faces the guiding groove 9 formed in the extension 19 of the bracket 3. The bottom face 42 is also flat and extends at right angles with the front face 41. The side faces 44 are slightly curved, similar to the stiffening side faces 16 of the bracket 3, and they are narrow at their bottom ends adjacent the bottom face 42 and wider at their top ends adjacent the top surface of the block, which forms the clamping face 14 of the movable clamping block 4. The block 4 as such is essentially hollow, but stiffening walls 24 are provided therein which extend parallel with the side walls 44 of the block 4. In the present embodiment, there are three such stiffening walls 24 inside block 4, and they are equally spaced, but of course other numbers and arrangements are possible.

Adjacent its front surface 41, the block 4 further includes a through hole 26 for accommodating the longer end of L-shaped rod 6. In the mounted state, the longer end of the rod 6 extends through this through hole 26, and the screw nut 5 (see for example FIG. 1) is screwed onto the free end of the rod 6. The screw nut 5 is in threaded engagement with the longer end of the rod 6 and operable for urging the stationary clamping part 8 of the bracket 3 and the movable clamping block 4 towards each other. To this extent, at least that part of the rod 6 which is to be in engagement with the nut 5 is provided with an external thread. Although not shown, a stop may be provided at the very end of the rod 66, e.g. in the form of a rubber cap, so as to prevent the screw nut 5 from becoming disengaged from the rod 6.
[0050] Connecting the movable clamping block 4 with the stationary clamping part 8 via the L-shaped rod 6 in this manner results in a proper distribution of the clamping forces about the clamping faces 18, 14 of the bracket 3 on the one hand and the block 4 on the other hand. The force distribution is important in order to provide a reliable clamping force, in particular also in view of the considerable weight of the dispenser 1.

[0051] Although not shown, at least one of the stationary clamping face 18 and the movable clamping face 14 may be partly or entirely covered by a protective layer, so as to protect both the clamping face 18, 14 and the surface of the supporting structure to which the table clamp is attached. The protective layer can, for example, be made from a TPE.

[0052] In the embodiment described above, the bracket 3 includes the plate structure 12, the stationary clamping part 8 and the extension 19 for guiding the movable clamping block 4. This is, however, only one possible embodiment of a dispenser according to the present invention. Various alternative embodiments are shown in FIGS. 4 to 6 and will be described in the following.

[0053] Turning first to FIGS. 4a and 4b, these Figures show an embodiment in which the bracket 3 is constituted by a framework rather than a plate structure. In the embodiment, the framework is constituted by tubes 11 and also includes tube ends 11' forming the stationary clamping part 8 which consequently is integrated with the bracket 3 also in this embodiment. Round tubes 11 are used in the embodiment, but the tubes could also be oval or square. Beams having, for example, an L or H type profile could also be used to form the framework, as long as the necessary stiffness is provided.

[0054] The movable clamping part 4 is in this case constituted by a threaded rod 13 which is in threaded engagement with an extension 15 of the framework. During use, the extension 15 extends on the side of the support structure or table plate T opposite the stationary clamping part 8. The stationary clamping part 8 and the extension 15 form the two legs of a slot into which the support structure T is inserted. For fastening the table clamp to the support structure T, the distance between the stationary clamping part 8 and a head 17 of the threaded rod 13 is first adjusted to a spacing slightly larger than the thickness of the support structure T, and the threaded rod 13 is then tightened towards the support structure T.

[0055] As the threaded rod 13 is engaged near the free end of the extension 15, the head of the rod 13 is located at a certain distance d (see FIG. 4a) from the edge of the table plate T. This provides, on the one hand, for a favourable application and distribution of the clamping forces provided by the movable clamping part 4 and the stationary clamping part 8. On the other hand, as the head of the threaded rod is tightened against the table plate T at a point spaced from the table edge, the head may also be located behind a steel frame F which may possibly be provided about the edge of the table plate T. The possible location of such a steel frame F is indicated in dotted lines in FIG. 4a.

[0056] The distance d is suitably chosen depending on the dimensions of the dispenser to be clamped to the table edge. In particular, the distance d may be chosen depending on the width w of the dispenser housing 2, the width w being measured along the table edge and between the farthest contact points between the dispenser housing 2 and the table edge (see FIG. 4b), so that the distance d equals at least one third of the width w. Other parameters such as the height of the dispenser housing 2 may also be taken into account when determining the distance d.

[0057] The dispenser housing 2 in and of itself remains unchanged if compared with the first embodiment shown in FIGS. 1 to 3, apart from the fact that the means for connecting the dispenser housing 2 to the bracket 3 will of course differ dependent on the structure of the bracket 3.

[0058] As another alternative to the embodiments described above, the bracket and table clamp could also be constituted as shown in FIG. 5. In this case, the bracket 3 includes a plate structure 12 similar to the first embodiment of FIGS. 1 to 3. This time, however, the stationary clamping part 8 is present in the form of two tube ends 31 attached to the plate structure. The plate structure further includes, as an integral part, an extension 32 which extends on the side of the support structure T opposite the stationary clamping part 31 during use. The extension 32 is perpendicular to the actual plate structure 12, and a threaded rod 33 is in threaded engagement with the extension 32. The threaded rod 33 has a head (not visible) which is tightened against the support structure T and provides the movable clamping part 4, in a manner similar to the embodiment of FIG. 4.

[0059] In the case of FIG. 5, the movable clamping part 4 is also adjustable in a direction parallel to the clamping faces. The threaded rod 33 can be offset along a slot 37 formed in the extension 32 so as to be located nearer to or further away from the dispenser housing 2. This provides an additional degree of freedom to the movable clamping part 4, by means of which the table clamp could also be adjusted so that the threaded rod is tightened against a table plate T at a point located at a distance from the table edge, e.g. also at a point located behind a frame, e.g. a steel frame, which may possibly be provided about the edge of the table plate (as indicated in dotted lines in FIG. 4a). Depending on the dimensions and location of the steel frame in individual cases, the table clamp may then be fixed on either side of the steel frame by suitably adjusting the location of the movable clamping part 4 or threaded rod 33, respectively.

[0060] Finally, in the embodiment of FIG. 6, the bracket 3 is constituted by a continuation of the dispenser housing 2 in the rear direction, wherein this continuation has essentially the shape of a triangular prism. The stationary clamping part 8 of the table clamp is provided by the bottom surface of this triangular prism. For providing the movable clamping part 4, a first rod 23 extends from the dispenser housing in the longitudinal direction thereof, and a second rod 25 is attached thereto essentially at right angles and so as to be slidable in the longitudinal direction of the first rod 23. In the embodiment, both rods 23, 25 are square rods, but any other shape is possible as long as rod 25 cannot rotate about rod 23. Consequently, rod 23 could be square, rectangular, oval, or triangular, etc., and rod 25 could have an arbitrary cross section. In any event, by sliding the second rod 25 relative to the first one 23, the spacing between the clamping faces can be adjusted also in this case. The actual clamping force is provided by a camshaft and lever action. To the free end of the second rod 25, a cam 27 is fixed so as to be pivotable about an axis perpendicular to both the first 23 and the second rod 25. The cam 27 is eccentric and can be operated or pivoted, respectively, by means of a lever 29. In the rotational position of the lever 29 shown in FIG. 6, the table clamp is fixed. By actuat-
ing the lever 29 in the counter clockwise direction, the cam 27 would be pivoted so as to loosen the table clamp from the support structure T.

[0061] Note that also in the embodiment of FIG. 6, the movable clamping part is located at a distance d from the edge of the table plate T. In fact, in all the embodiments of FIGS. 4 to 6, the clamping face of the movable clamping part is tightened against a point of the support structure which is offset from the edge of the table plate. This provides for a more favourable application and distribution of the clamping forces.

[0062] It is to be noted that the above embodiments use particular combinations of brackets and table clamps. It would, however, as well be possible to use further combinations of any of the brackets disclosed above with an arbitrary table clamp, or any of the table clamps disclosed above with an arbitrary bracket. For example, a bracket as shown in FIG. 4, using a framework, could also be used together with a table clamp as shown in FIG. 6, employing the cam and lever principle.

[0063] Dispensers according to all the embodiments described above can be firmly but reversibly fastened to workbenches as they are commonly used in larger heavy industries, or to worktables as they are more commonly used in other types of industries such as electronic packaging. The dispensers according to the above embodiments can be firmly but reversibly attached to various locations of such workbenches or worktables, in particular to the edge of the respective table top but also to the legs of the tables. Using the table clamp described above, the dispenser can be mounted upside down, or mounted sideways to a table leg.

[0064] Even though the invention has been described with reference to exemplary embodiments, many different alterations, modifications and the like will become apparent for those skilled in the art.

[0065] Firstly, although the embodiments described above all refer to a dispenser for dispensing rolled paper towels, the contents of the dispenser is not important for the invention, and the invention can be used for many other types of dispensers for disposable hygienic articles.

[0066] Secondly, although the brackets 3 of the dispensers of the above embodiments are for use with a single type of dispenser housing 2, the bracket 3 could also be so arranged and constructed that dispenser housings of different sizes and/or different types can be releasably secured thereon. This can be achieved by providing the bracket 3 with suitable fastening means, without having to modify the dispenser housings as such. For example, the knobs 17 and release tabs 10 provided in the first embodiment would have to be suitably modified or replaced by more versatile means for attaching the dispenser housing 2.

[0067] Furthermore, in order to mount the dispenser to supporting structures which are not plate-shaped, e.g. round legs of a table or chair, the clamping faces 18, 14 could be modified or supplemented with suitable clamping inserts.

[0068] Although the above discussed embodiments use the mounting bracket 3 to which the dispenser housing 2 is releasably attached, and the stationary clamping part 8 is integral with the bracket 3, dispensers not having a separate mounting bracket are also contemplated. Such dispensers could have either the stationary clamping part or the movable clamping part formed integral with the dispenser housing as such.

[0069] Finally, although the bracket 3 is releasably attached to the rear of the dispenser housing 2 in the above embodiments, it could generally also be attached to any other side of the dispenser housing 2.

1. A dispenser for disposable hygienic articles comprising a dispenser housing for accommodating the hygienic articles, and a clamp suitable for securing the dispenser to a supporting structure,

 the clamp including a stationary clamping part that engages one side of the supporting structure, and a movable clamping part that engages an opposite side of the supporting structure,

 wherein the movable clamping part is urged towards the stationary clamping part so as to tighten the clamp about the supporting structure,

 wherein the stationary and the movable clamping part each have a clamping face,

 wherein spacing between the clamping faces of the stationary clamping part and the movable clamping part is variable so as to adapt the clamp to supporting structures of different thicknesses, and

 wherein either the stationary clamping part or the movable clamping part is formed integral with the dispenser housing.

2. The dispenser of claim 1, wherein the clamping faces are arranged in a spaced parallel relationship.

3. The dispenser of claim 1, wherein the spacing between the clamping faces of the stationary clamping part and the movable clamping part is variable in a direction which is essentially perpendicular to the clamping faces.

4. The dispenser of claim 1, wherein each of the clamping faces is at least partly covered by a protective layer.

5. The dispenser of claim 1, wherein the clamp is essentially C- or G-shaped and includes a slot for being disposed about the supporting structure, and wherein one leg of the slot constitutes the stationary clamping part, and the movable clamping part is supported on the opposite leg of the slot so as to face the stationary clamping part.

6. The dispenser of claim 1, wherein the movable clamping part is a threaded rod having a head, and a rotation of the threaded rod results in a translation of the head for tightening the clamp.

7. The dispenser of claim 1, wherein the movable clamping part includes a cam surface and a lever, and the clamp is tightened by pivoting the cam surface with the lever.

8. The dispenser of claim 1, wherein the position of the movable clamping part is also adjustable in the direction parallel to the clamping faces.

9. The dispenser of claim 1, wherein the movable clamping part is slidably supported relative to the stationary clamping part by a rod, and the spacing between the stationary and movable clamping parts is variable in the longitudinal direction of the rod.

10. The dispenser of claim 9, wherein at least a part of the rod extends essentially at right angles with respect to the clamping faces of the stationary and movable clamping parts.

11. The dispenser of claim 9, wherein a first end of the rod is attached to one of the stationary or movable clamping parts, a second end of the rod extends through the other of the stationary or movable clamping parts, and a nut is in threaded engagement with the second end of the rod and operable for urging the movable clamping part towards the stationary clamping part.
12. The dispenser of claim 1, wherein the clamp further comprises a spring that urges the movable clamping part towards the stationary clamping part.

13. The dispenser of claim 1, wherein the movable clamping part is provided in the form of a clamping block.

14. The dispenser of claim 13, further comprising a guide that guides the movable clamping block in its sliding movement towards and away from the stationary clamping part.

15. The dispenser of claim 1, wherein the movable clamping part is so arranged and constructed as to be located at a certain distance from the edge of the supporting structure, when the clamp is mounted to the supporting structure, wherein the distance is at least one third of a width of the dispenser housing, measured along the said edge and between the farthest contact points between the dispenser housing and the edge.

16. (canceled)

17. The dispenser of claim 1, wherein the dispenser further comprises a bracket for being releasably secured to the dispenser housing.

18. (canceled)

19. The dispenser of claim 17, wherein the bracket includes a plate structure for being releasably secured to the dispenser housing.

20. The dispenser of claim 17, wherein the bracket includes a framework for being releasably secured to the dispenser housing.

21. The dispenser of claim 17, wherein the bracket is integral with either the stationary clamping part or the movable clamping part, and the respective other clamping part is movably supported relative thereto.

22. The dispenser of claim 17, wherein the bracket is so arranged and constructed that dispenser housings of different types and/or sizes can be releasably secured thereto.

23. The dispenser of claim 15, wherein the distance is at least half of the width of the dispenser housing.

* * * * *