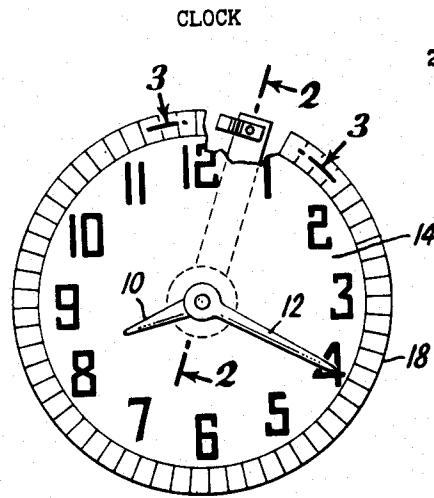
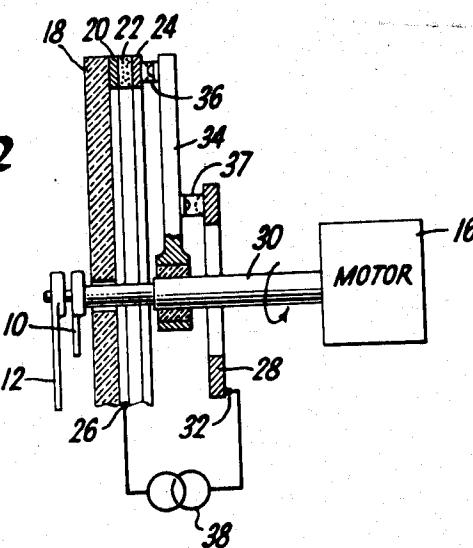


Oct. 10, 1961


I. GOLDMAN

3,003,305


Filed July 10, 1958

2 Sheets-Sheet 1

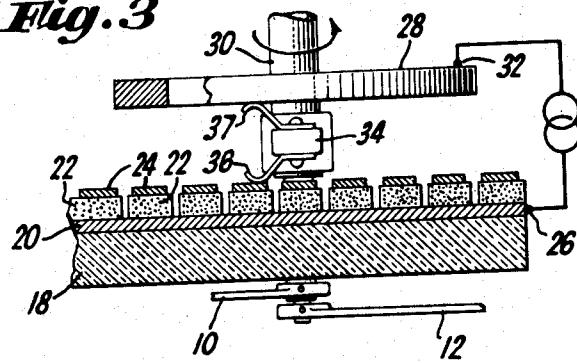
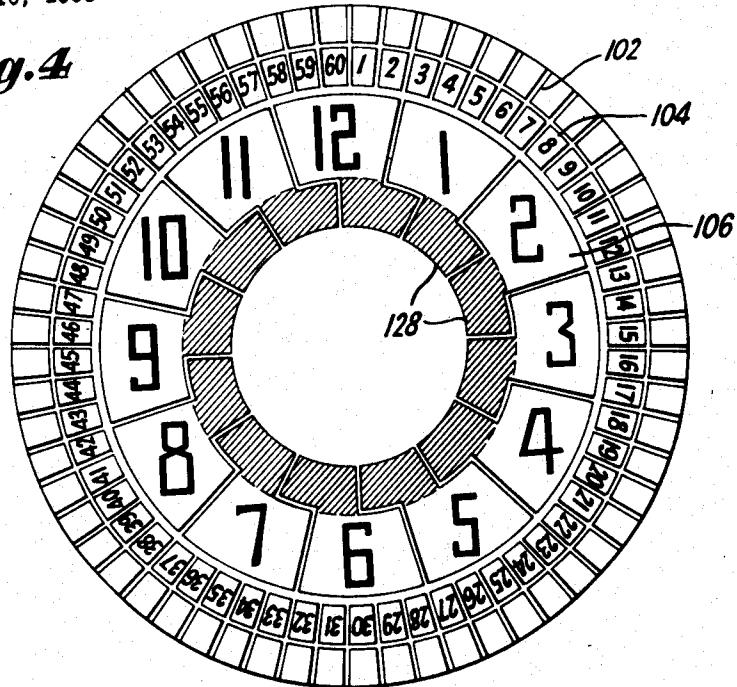

Fig. 1

Fig. 2

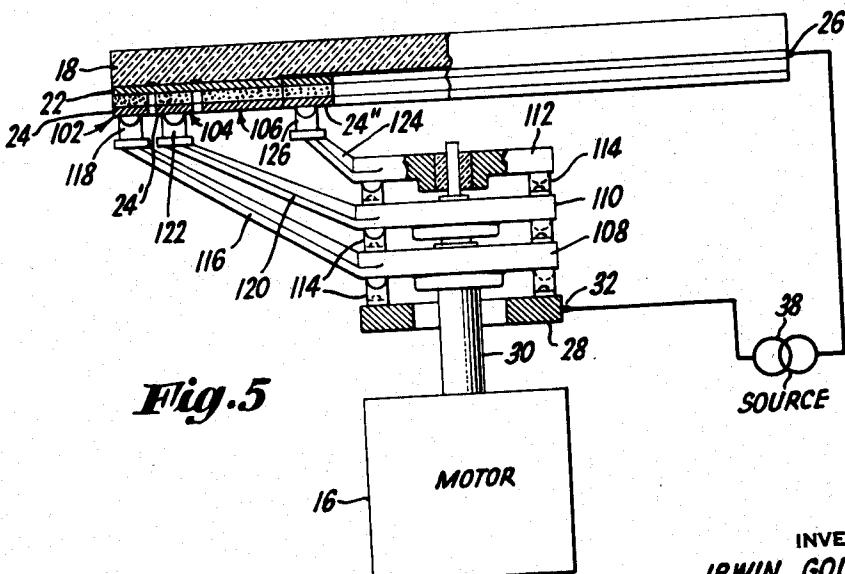
Fig. 3

INVENTOR
IRWIN GOLDMAN
BY *Theodore Jay Jr.*
ATTORNEY

Oct. 10, 1961


L. GOLDMAN

3,003,305


Filed July 10, 1958

2 Sheets-Sheet 2

Fig. 4

Fig. 5

INVENTOR
IRWIN GOLDMAN
BY *Leander J. R.*
ATTORNEY

United States Patent Office

3,003,305

Patented Oct. 10, 1961

1

3,003,305

CLOCK

Irwin Goldman, Malverne, N.Y., assignor, by mesne assignments, to Sylvania Electric Products Inc., Wilmington, Del., a corporation of Delaware

Filed July 10, 1958, Ser. No. 747,668

3 Claims. (Cl. 58—50)

My invention is directed toward timepieces and more particularly is directed toward clocks.

It is an object of my invention to provide a new type of clock employing a plurality of electroluminescent lamps.

Another object is to provide a new type of clock wherein the passage of time is displayed as flashes of light.

Still another object is to provide a new direct reading numerical clock.

An electroluminescent lamp comprises first and second spaced apart electrodes and an electroluminescent layer interposed between and electrically connected to the electrodes. The first electrode (or both electrodes) permits the passage of light therethrough. The lamp is energized by applying a voltage between the electrodes, the light thus produced passing through the appropriate electrode or electrodes.

In accordance with my invention, I provide a clock face having at least one annular section. A plurality of electroluminescent lamps are secured to the clock face at corresponding discrete equidistantly spaced positions along the annular section. The first electrodes of all the lamps are connected together to a first terminal. A commutator rotating at a predetermined speed about an axis perpendicular to the clock face successively connects each second electrode in turn to a second terminal. A voltage is applied between the first and second terminals. Consequently, as the commutator rotates, each electroluminescent lamp in turn is successively lit and extinguished.

By using an appropriate number of lamps and appropriately adjusting the speed of rotation, the passage of time at fixed intervals can be indicated as flashes of light. For example, when sixty lamps are used and the commutator speed is adjusted to one revolution per minute or hour, the corresponding time intervals will be one second or one minute respectively. Further, when twelve lamps are used and the commutator speed is adjusted to one revolution per twelve hour period, the time interval will be one hour.

Consequently, by employing a clock face with first, second, and third concentric annular sections having respectively sixty, sixty and twelve equidistantly spaced electroluminescent lamps, and further by employing first, second and third commutators rotating at corresponding speeds of one revolution per minute, one revolution per hour and one twelfth revolution per hour respectively, the passage of time can be indicated in seconds, minutes and hours simultaneously.

Further, the lamps can be so constructed that the patterns of the light emitted will define the numbers, thus producing a direct reading numerical clock.

Illustrative embodiments of my invention will now be described with reference to the accompanying drawings wherein

FIG. 1 is a front view of one embodiment of my invention;

FIG. 2 is a sectional view taken along 2—2 in FIG. 1;

FIG. 3 is another sectional view taken along 3—3 in FIG. 1;

FIG. 4 is a front view of a second embodiment of my invention; and

2

FIG. 5 is a cross sectional view of the embodiment of FIG. 4.

Referring now to FIGS. 1, 2 and 3, there is shown an electric clock wherein an hour hand 10 and a minute hand 12 are rotated with respect to the clock face 14 in conventional manner by a 110 volt, 60 cycle synchronous motor 16.

The clock face 14 includes an annular section comprising a glass ring 18; a transparent electrically conductive ring shaped coating 20; an electroluminescent phosphor layer, which can be continuous but, in this example, is constituted by sixty discretely spaced layer elements 22 defining a circle; and sixty discretely spaced electrodes 24, each electrode being placed over a corresponding layer element 22. The structure consisting of electrodes 24, layer elements 22 and coating 20 (which constitutes a common electrode) thus forms a plurality of electroluminescent lamps, in this example sixty lamps.

The purpose of these lamps is to indicate the passage 20 of time at one second intervals as flashes of light. To this end, coating 20 is connected to a first terminal 26. An electrically conductive ring 28 is insulatedly mounted about the shaft 30 of motor 16 and further is electrically connected to a second terminal 32. An electrically conductive arm 34 insulatedly secured to shaft 30 and driven thereby as a "second" hand, rotates brush 36 in a circular path at a rate of one revolution per minute. Brush 36 through arm 34 and brush 37 is in continuous contact with ring 28 and further successively contacts each electrode 24 in turn.

Hence, when a suitable voltage is applied between terminals 26 and 32 by source 38, each lamp will be lit momentarily and then extinguished in the manner previously described.

Referring now to FIGS. 4 and 5, there is shown a direct reading numerical clock. The clock face 100 includes a first annular section 102 substantially identical to that shown in FIGS. 1-2 and adapted to indicate the passage of time in one second intervals. However, the 40 clock face 100 also includes second and third separate annular sections 104 and 106 concentric with the first section.

These second and third sections are adapted to indicate the passage of time in minutes and hours, respectively. Thus, the clock of FIGS. 4 and 5 indicates the 45 passage of time in hours, minutes and seconds simultaneously.

The second or middle annular section 104 is substantially the same as the first section and contains sixty 50 separate electroluminescent lamps. The transparent coating 22 of this middle section, however, is suitably masked with opaque paint so that each lamp in this section, when lit, displays a different corresponding number from 1 to 60.

The third or inner annular section contains twelve 55 separate electroluminescent lamps. The transparent coating 22 of this inner section is masked so that each lamp in this section, when lit, displays a different corresponding number from 1 to 12.

Coating 22 forms a ring electrode common to all three sections and is connected to a first terminal 26. A first electrically conductive ring 28 is insulatedly mounted about shaft 30 of motor 16 and further is electrically connected to a second terminal 32. A voltage source 38 is connected across terminals 26 and 32. Second, third and fourth electrically conductive rings 108, 110 and 112, insulatedly secured to the shaft 30, make electrical contact with each other and with ring 28 by means of brushes 114.

A first electrically conductive arm 116 attached to the 70 second ring 108 rotates brush 118 in a circular path at a rate of one revolution per minute. Brush 118 suc-

sively contacts each lamp electrode 24 of the first annular section 102 in turn and is therefore analogous to a "second" hand.

A second electrically conductive arm 120 attached to the third ring 110 rotates brush 122 in a circular path at a rate of one revolution per hour. Brush 122 successively contacts each lamp electrode 24' of the second annular section 104 in turn and is therefore analogous to a "minute" hand.

A third electrically conductive arm 124 attached to the fourth ring 112 rotates brush 126 in a circular path at a rate of $\frac{1}{12}$ revolution per hour. Hence, brush 126 is analogous to an "hour" hand.

However, brush 126 does not contact each lamp electrode 24" directly, but rather contacts corresponding offset inward extension 128 of each electrode 24". If these extensions were not used, each lamp would be successively lit and extinguished at improper times. More particularly, for example, the lamp numbered 12 would be lit at about 11:30 and extinguished at about 12:30. Use of the offset inward extensions 128 corrects the timing so that, for example, the lamp numbered 12 will be lit at 12:00 and extinguished at 1:00.

It will be apparent that the voltage source 38 can be used to energize the clock motor 16. Alternatively, motor 16 can be spring driven and source 38 can be a battery.

It will be further apparent that the operation of my clocks can be reversed so as to selectively extinguish lamps rather than selectively energizing lamps as herein shown. For example, the brush 36 of FIG. 1 can be shaped into a circular arc of almost 360° such that brush 36 is in continuous contact with 59 lamps and energizes same while the 1 lamp not in contact with brush 36 is extinguished.

What is claimed is:

1. In a clock, a clock face having an annular section, said section comprising an annular transparent electrically conductive electrode, an annular electroluminescent layer, one surface of which is in contact with said annular electrode, and a plurality of separate electrodes in

contact with the opposite surface of said electroluminescent layer at equidistantly spaced positions, each of said separate electrodes having an offset inward extension.

2. In a clock, a clock face having an annular section, said section comprising an annular transparent electrically conductive electrode, an annular electroluminescent layer, one surface of which is in contact with said annular electrode, and a plurality of separate electrodes in contact with the opposite surface of said electroluminescent layer at equidistantly spaced positions, each of said separate electrodes having an offset inward extension, said annular electrode being connected to a first terminal; and a commutator for sequentially connecting each of said offset extensions in turn to a second terminal, said first and second terminals being adapted for connection to a voltage source.

3. In a clock, a clock face having an annular section, said section comprising an annular transparent electrically conductive electrode, an annular electroluminescent layer, one surface of which is in contact with said annular electrode, and twelve separate electrodes in contact with the opposite surface of said electroluminescent layer at equidistantly spaced positions, each of said separate electrodes having an offset inward extension.

References Cited in the file of this patent

UNITED STATES PATENTS

30	618,646	Crane	-----	Jan. 31, 1899
	1,096,778	Clement	-----	May 12, 1914
	2,363,763	Werts	-----	Nov. 28, 1944
	2,809,316	Jeges	-----	Oct. 8, 1957

OTHER REFERENCES

35 Publication: "Illuminating Engineering," November 1950, article entitled "Electroluminescence," appearing on pages 688-692.

40 Publication: "Electrical Construction and Maintenance," February 1952, article entitled "New Light Source," appearing on pages 82, 83 and 182.