

MINISTERO DELLO SVILUPPO ECONOMICO DIREZIONE GENERALE PER LA LOTTA ALLA CONTRAFFAZIONE UFFICIO ITALIANO BREVETTI E MARCHI

DOMANDA DI INVENZIONE NUMERO	102009901735612
Data Deposito	26/05/2009
Data Pubblicazione	26/11/2010

Classifiche IPC

Titolo

METODO PER PRODURRE UN DISPOSITIVO APPLICABILE A TESSUTI BIOLOGICI, IN PARTICOLARE UN PATCH PER TRATTARE TESSUTI DANNEGGIATI, E DISPOSITIVO OTTENUTO CON TALE METODO

Descrizione dell'invenzione industriale dal titolo "METODO PER PRODURRE UN DISPOSITIVO APPLICABILE A TESSUTI BIOLOGICI, IN PARTICOLARE UN PATCH PER TRATTARE TESSUTI DANNEGGIATI, E DISPOSITIVO OTTENUTO CON TALE METODO" a nome del Consiglio Nazionale delle Ricerche e della Regione Toscana.

DESCRIZIONE

Ambito dell'invenzione

5

15

20

25

30

La presente invenzione riguarda un dispositivo per 10 trattare tessuti necrotizzati o danneggiati mediante somministrazione locale di fattori di crescita, in particolare fattori di crescita in grado di indurre rivascolarizzazione.

Brevi cenni alla tecnica nota

È sentita in campo medico la necessità di trattare tessuti danneggiati, ad esempio tessuti lesi da ulcere di origine diabetica, o pareti cardiache danneggiate da infarto, inducendone la ricrescita tissutale.

A questo scopo, sono efficaci materiali in grado di fornire matrici extracellulari adatte per la crescita e la migrazione di elementi cellulari, consentendo la formazione di tessuti biologici. Particolare interesse hanno, in particolare, polimeri di origine naturale che possano essere riassorbiti dall'ambiente biologico in cui sono inseriti, come ad esempio la fibrina, proteina coinvolta in processi biologici come la coagulazione del sangue, e soggetta ad un processo di degradazione naturale noto come fibrinolisi, che ne consente il riassorbimento.

Il recupero funzionale di tali tessuti danneggiati è inoltre favorito dalla somministrazione di principi attivi di vario tipo, ad esempio antibiotici, antinfiammatori, o particolari molecole bioattive, note come fattori di

crescita. Particolare rilievo hanno i fattori di crescita pro-angiogenetici, in grado di contribuire alla di tessuti molli inducendone rigenerazione rivascolarizzazione. Tra tali fattori sono noti il VEGF (Vascular Endothelial Growth Factors), il bFGF fibroblast growth factors) e la proadrenomedullina (PAMP), e sono adatti per trattare esiti di ischemie cardiache ed ulcere croniche di origine diabetica.

Altri fattori di crescita sono in grado di contribuire al recupero di tessuti specifici, ad esempio il $TGF-\beta 1$ (transforming growth factor- $\beta 1$) ed ancora il bFGF contribuiscono a rigenerare la cartilagine articolare in quanto promuovono la proliferazione di condrociti e la formazione di matrice extracellulare.

10

15

20

25

30

fattori di crescita possono di per sé somministrati localmente in forma di soluzione, ma in tal facilmente allontanati dal vengono tessuto, rapidamente degradati, con drastica diminuzione terapeutica, dell'efficacia che presuppone una somministrazione secondo cinetiche controllabili.

Una matrice nanofibrillare, come quella offerta dalla fibrina, costituisce un ideale mezzo in grado stabilizzare, ossia di trattenere e rilasciare in modo di differito, fattori crescita, nonché altri terapeutici come agenti antibatterici e antinfiammatorî. La fibrina si presenta tuttavia naturalmente come una massa molle, gelatinosa ed amorfa. Essa non ha cioè caratteristiche meccanico-strutturali, come ad esempio che modulo elastico е resistenza alla trazione, facile maneggiabilità е alle garantiscano resistenza sollecitazioni dinamiche di molti ambienti fisiologici.

Per il recupero funzionale di tessuti danneggiati da affezioni di vario tipo, è quindi sentita l'esigenza di mezzi biocompatibili per mantenere in contatto con tali

tessuti matrici nanofibrillari in grado di favorire processi cellulari utili alla rigenerazione, vantaggiosamente nella forma di patch applicabili su tali tessuti. È altresì sentita l'esigenza di patch in grado di trattenere agenti terapeutici utili per la rigenerazione, ed a rilasciarli gradualmente nei tessuti trattati.

Attualmente, sono note strutture come quelle descritte in US 6,762,336 o in WO2008/019128, il cui impiego è limitato al trattamento emostatico di ferite. Alcune delle strutture descritte in tali documenti comprendono uno strato di fibrina o di fibrinogeno da porre in contatto con il tessuto leso, ed uno strato polimerico avente funzione di supporto. In alcune forme realizzative delle strutture descritte, è prevista l'interposizione di uno strato di un materiale legante biocompatibile. Oltre a non assicurare un'adesione tale da mantenere insieme la struttura per il tempo di applicazione prevedibile, e da garantirne stabilità in un contesto dinamico come ad esempio quello di una parete cardiaca, in cui hanno luogo cicli intensivi di sforzo/deformazione, tale modo di procedere per unire i due strati complica sensibilmente il processo di produzione della struttura.

Sintesi dell'invenzione

10

15

20

25

30

È quindi scopo della presente invenzione fornire un metodo per produrre una struttura biocompatibile, che permetta di applicare in modo stabile su un tessuto biologico una matrice extracellulare atta a favorire la crescita e migrazione di elementi cellulari, con effetti terapeutici per tale tessuto.

È inoltre scopo della presente invenzione fornire una siffatta struttura, in particolare una struttura che sia in grado di rilasciare principi attivi in tale tessuto con una cinetica predeterminata.

È scopo particolare della presente invenzione fornire una siffatta struttura, che permetta di rilasciare fattori di crescita, in particolare fattori di crescita pro-angiogenetici, in un tessuto danneggiato con una velocità di rilascio controllata, allo scopo di promuovere il recupero di tali tessuti, ad esempio, mediante un processo di rivascolarizzazione o angiogenesi terapeutica.

5

10

15

20

25

30

È inoltre scopo della presente invenzione fornire una struttura di patch adatta alla chirurgia ricostruttiva di tessuti di organi, in particolare una struttura adatta per la chirurgia ricostruttiva cardiaca, o comunque adatta al recupero di tessuti sottoposti a notevoli deformazioni.

È altresì scopo della presente invenzione fornire un metodo per produrre siffatta struttura biocompatibile con tempi e costi ridotti.

Questi ed altri scopi sono raggiunti da un metodo per produrre una struttura di patch atta ad essere applicata su un tessuto biologico, la struttura di patch comprendendo:

- uno strato di supporto comprendente un materiale polimerico biocompatibile;
- uno strato di interazione biologica comprendente un reticolo di nanofibre, in particolare di nanofibre reciprocamente connesse da un legame chimico, il reticolo di nanofibre essendo realizzato a partire da un precursore; tale metodo prevedendo le fasi di:
- predisposizione di una superficie di appoggio per lo strato di supporto;
- preparazione di soluzione contenente una prima il materiale polimerico biocompatibile e di una seconda soluzione favorire contenente un agente atto а la formazione dello strato di interazione biologica a partire dal precursore, in particolare l'agente essendo un enzima;
- distribuzione simultanea della prima soluzione e della seconda soluzione sulla superficie di appoggio, la

distribuzione simultanea formando in situ di una miscela della prima soluzione con la seconda soluzione in modo che lo strato di supporto sia realizzato direttamente sulla superficie di appoggio, e che lo strato di materiale polimerico biocompatibile comprenda il e, incorporato in esso, l'agente atto a favorire la formazione strato di interazione biologica nel materiale polimerico biocompatibile;

5

10

15

20

25

30

— applicazione del precursore sullo strato di supporto, il precursore essendo modificato dall'agente presente nello strato di supporto in modo da formare lo strato di interazione biologica saldamente legato allo strato di supporto.

In altre parole, il materiale polimerico biocompatibile forma lo strato di supporto e contiene, soprattutto in prossimità della superficie esposta, dalla parte opposta della superficie di appoggio, una dispersione di un agente che favorisce la formazione del reticolo di nanofibre. Quando il precursore del reticolo di nanofibre viene a contatto con tale agente, il reticolo di nanofibre comincia a formarsi, saldamente ancorato con il materiale polimerico dello strato di supporto. Disperdendo l'agente nello strato di supporto, si creano quindi le condizioni per consolidare il reticolo di nanofibre con il supporto stesso, ottenendo come risultato, alla fine del processo, uno strato di interazione biologica saldamente legato allo strato di supporto.

Vantaggiosamente, la seconda soluzione comprende un liquido non solvente per il materiale polimerico biocompatibile, ed il materiale polimerico biocompatibile si deposita sulla superficie di appoggio per effetto di tale liquido non solvente durante la miscelazione in situ della prima soluzione con la seconda soluzione. Tale tecnica, preferibilmente realizzata mediante miscelazione

in situ delle due soluzioni su una superficie di appoggio fornita da un mandrino rotante e scorrevole lungo l'asse di rotazione, consente una rapida realizzazione dello strato di supporto intriso dell'agente atto a favorire la formazione del reticolo di nanofibre.

5

10

15

20

25

30

Preferibilmente, lo strato di interazione biologica comprende un polimero di origine naturale; in particolare, il polimero di origine naturale è fibrina, e:

- il precursore della fibrina è una soluzione acquosa contenente fibrinogeno;
- l'agente atto a favorire la formazione del reticolo di nanofibre è trombina. La fibrina è un polimero di origine naturale che interviene in numerosi processi biologici riparativi, in particolare nella coagulazione del sangue, e mediante riassorbito viene un processo noto fibrinolisi. La fibrina si organizza in una struttura nanofibrillare reticolata che fornisce una extracellulare adatta per la crescita e la migrazione di elementi cellulari, consentendo la formazione di tessuti biologici. Essa fornisce quindi un substrato adatto per trattamenti rigenerativi di tessuti danneggiati.

Grazie alla propria struttura nanofibrillare, la fibrina è inoltre adatta a trattenere sostanze come principi attivi, in particolare fattori di crescita, ed a rilasciarli in modo controllato nei tessuti trattati.

La struttura nanofibrillare reticolata viene consequita condizioni di processo specifiche, ossia trattamento del fibrinogeno con uno specifico enzima, la trombina, in specifiche condizioni di temperatura (37°C) e predeterminato. Ciò tempo consente pieno un un controllo delle condizioni che portano alla formazione della fibrina a partire da fibrinogeno. Le reticolazioni tra le macromolecole di fibrina sono rese possibili da un particolare enzima naturalmente adsorbito al fibrinogeno,

chiamato fattore XIII o fattore stabilizzante la fibrina.

Preferibilmente, la seconda soluzione contiene assieme al fibrinogeno, una quantità di fattore XIII secondo una concentrazione compresa tra 5 e 60 Unità Internazionali, preferibilmente tra 5 e 30 Unità Internazionali.

Il fibrinogeno e la trombina sono preferibilmente di origine umana, o posono derivare da altri mammiferi.

Preferibilmente, la trombina ha nella seconda soluzione una concentrazione compresa tra e 10 e 500 unità internazionali per millilitro, in particolare tra 15 e 50 unità internazionali per millilitro.

10

15

25

30

Vantaggiosamente, la fase di applicazione del precursore sullo strato di supporto è effettuata portando lo strato di supporto in contatto con il precursore, e mantenendo tale contatto per un tempo predeterminato e ad una temperatura predeterminata.

Tale fase di applicazione può essere condotta con una modalità scelta tra:

- irrorazione dello strato di supporto con una soluzione 20 contenente il precursore;
 - rimozione dello strato di supporto consolidato dalla superficie di appoggio, ed immersione dello strato di supporto nel precursore, mantenuto alla temperatura predeterminata. In particolare, nel caso della fibrina la tecnica per immersione, condotta preferibilmente ad una temperatura prossima a 37°C, permette di ottenere strati di interazione biologica particolarmente uniformi.

Vantaggiosamente, il fibrinogeno ha nella soluzione acquosa una concentrazione compresa tra 10~mg/ml e 50~mg/ml, in particolare ha una concentrazione compresa tra 15~mg/ml e 25~mg/ml.

Vantaggiosamente, durante la fase di distribuzione simultanea, è prevista una fase di variazione di concentrazione di una sostanza scelta tra:

- il materiale polimerico biocompatibile nella prima soluzione;
- l'agente atto a favorire la formazione dello strato di interazione biologica a partire dal precursore;
- 5 ambedue le precedenti sostanze,

10

15

- particolare la concentrazione dell'agente favorire la formazione del reticolo di nanofibre cresce da un valore minimo ad un valore massimo durante la fase di distribuzione simultanea della prima soluzione e seconda soluzione. In questo modo, l'agente concentrata nelle zone più vicine alla superficie dello supporto, dove avviene l'interazione con il strato di fibrinogeno. Ciò permette di contenere la quantità di tale agente impiegata. A questo collabora la scelta di materiale sintetico, per realizzare lo strato di supporto, attraverso cui l'agente mostra una scarsa tendenza alla diffusione molecolare. Tale è ad esempio il caso della trombina nei confronti di materiali a base di poliuretani aromatici e siliconi.
- particolare, attraverso i 1 20 In metodo secondo l'invenzione è possibile produrre una struttura di patch per somministrare un principio attivo in un tessuto, ad esempio per somministrare in un tessuto danneggiato fattore di crescita atto a favorirne il recupero: in tal 25 caso, nella realizzazione dello strato di interazione biologica, il precursore viene impiegato in miscela od in soluzione assieme al principio attivo, ovvero contiene il principio attivo.
- Il fattore di crescita può essere un fattore di 30 crescita di tipo pro-angiogenetico, in particolare
 - VEGF (Vascular Endothelial Growth Factors);
 - bFGF, (basic fibroblast growth factors);
 - PAMP (proadrenomedullina);
 - una combinazione di tali fattori di crescita.

In alternativa, il fattore di crescita può essere una relaxina, oppure uno o più principi attivi derivati da un lisato piastrinico (PDGF), o una combinazione di relaxina e di tali principi attivi.

La prima soluzione può comprendere una quota del liquido non-solvente, in particolare tale quota di liquido non-solvente varia crescendo da un valore minimo ed un valore massimo durante la fase di distribuzione simultanea della prima soluzione e della seconda soluzione.

Oltre ad un fattore di crescita, il principio attivo può essere una sostanza con proprietà antimicrobiche, e/o antibiotiche, e/o antisettiche e/o antivirali e/o analgesiche e/o antinfiammatorie, nonché vitamine.

10

15

20

25

30

In particolare, il fibrinogeno quale precursore della fibrina può essere impiegato in miscela con un inibitore della fibrinolisi, in modo da prolungare la vita utile del patch ed in particolate prolungare il tempo di somministrazione dei principi attivi.

Secondo una forma realizzativa particolare dell'invenzione, la struttura di patch può comprendere nanoparticelle, in particolare nanoparticelle polimeriche caricate con un principio attivo, ed atte a rilasciare tale principio attivo nel tessuto, in un tempo predeterminato. Ciò permette di prolungare il tempo di somministrazione controllata del principio attivo oltre il limite imposto degradazione della dalla struttura della patch nell'ambiente biologico.

Le nanoparticelle possono essere disperse nel polimero biodegradabile dello strato di supporto e/o nel reticolo di nanofibre dello strato di interazione biologica. Nel primo caso, esse vengono aggiunte alla prima soluzione contenente il materiale polimerico biocompatibile; nel secondo caso esse vengono aggiunte alla terza soluzione, contenente il precursore del reticolo di nanofibre.

Tali nanoparticelle possono essere scelte tra:

- poliesteri biodegradabili, in particolare:
 - acido polilattico(PLA);

15

20

25

30

- acido poliglicolico (PGA);
- 5 copolimeri a base di acido polilattico e acido poliglicolico (PLGA);
 - policaprolattone (PCL) lineare o ramificato e/o suoi copolimeri.

Gli scopi sopra elencati, ed altri, sono altresì 10 raggiunti da una struttura di patch per un tessuto biologico comprendente:

— uno strato di supporto comprendente un materiale polimerico biocompatibile;

uno strato di interazione biologica comprendente un reticolo di nanofibre, lo strato di interazione biologica essendo adeso al primo strato, ed essendo disposto in uso a contatto con il tessuto,

la caratteristica principale della struttura essendo che di l'adesione del reticolo nanofibre al materiale biocompatibile polimerico è ottenuta applicando Sul materiale polimerico biocompatibile un precursore del reticolo di nanofibre e preventivamente disperdendo nel materiale polimerico biocompatibile un agente atto la formazione dello di favorire strato interazione biologica a partire dal precursore.

Vantaggiosamente, il reticolo di nanofibre comprende un polimero di origine naturale, in particolare, fibrina; in tal caso il precursore della fibrina può essere una soluzione acquosa contenente fibrinogeno.

Vantaggiosamente, nello strato di interazione biologica è disperso un principio attivo, in particolare un fattore di crescita per trattare un tessuto danneggiato da una lesione, lo strato di interazione biologica essendo atto a trattenere il principio attivo ed a rilasciare il principio

Ing. Marco Celestino ABM Agenzia Brevetti & Marchi Iscritto all'albo N. 544 attivo nel tessuto.

15

20

30

Preferibilmente, le nanofibre hanno una dimensione trasversale compresa tra 50 nanometri e 300 nanometri, in particolare compresa tra 100 nanometri e 200 nanometri. Oltre a fornire una matrice extracellulare ideale favorire processi cellulari utili alla rigenerazione del tessuto, la struttura nanofibrillare permette di inglobare crescita e di fattori di limitarne la mobilità all'interno dello strato di interazione biologica, in modo che la loro diffusione o migrazione e poi il rilascio nel tessuto da rigenerare avvenga gradualmente, con cinetiche più lente e quindi controllabili in base alla dimensione, in particolare al diametro, delle nanofibre.

Oltre ad un fattore di crescita, il principio attivo può essere una sostanza con proprietà antimicrobiche, e/o antibiotiche, e/o antisettiche e/o antivirali e/o analgesiche e/o antinfiammatorie, nonché vitamine.

In particolare, lo strato di interazione biologica costituito da fibrina può contenere una quantità predeterminata di un inibitore della fibrinolisi, in modo da prolungare la vita utile del patch ed in particolate prolungare il tempo di somministrazione dei principi attivi.

Preferibilmente, il reticolo comprende nanofibre 25 reciprocamente connesse da un legame chimico, in particolare nanofibre reticolate.

In particolare, il principio attivo è un fattore di crescita pro-angiogenetico atto a produrre rivascolarizzazione nel tessuto danneggiato, ad esempio il fattore di crescita pro-angiogenetico è scelto tra:

- VEGF (Vascular Endothelial Growth Factors);
- bFGF, (basic fibroblast growth factors);
- PAMP (proadrenomedullina);
- una combinazione di tali fattori di crescita.

In alternativa, il fattore di crescita può essere una relaxina, oppure uno o più principi attivi derivati da un lisato piastrinico o una combinazione di relaxina e di tali principi attivi.

In alternativa, il fattore di crescita può essere un fattore crescita insulino-simile IGF-1 o IGF-2, o il fattore di crescita epidermico (EGF), o un fattore di crescita trasformante TGF- β , osteogenina, HBGF-1, HBGF-2.

5

10

20

25

30

Inoltre, la struttura secondo l'invenzione può comprendere una combinazione dei fattori di crescita scelti tra tutti quelli elencati, nonché loro derivati biologicamente attivi, in miscela tra di loro e/o con tali fattori di crescita.

Il materiale polimerico biocompatibile può comprendere un polimero sintetico, ad esempio un polimero sintetico scelto tra:

- un poliuretano (PU), in particolare un poli(etere)uretano aromatico (PEtU);
- un silicone, in particolare polidimetilsilossano (PDMS) diacetossi silil terminato;
- una combinazione di tali polimeri, in particolare un quest'ultimo caso, copolimero. In il componente poliuretanico conferisce alla struttura secondo l'invenzione le caratteristiche di resistenza meccanica e di elasticità necessarie per le applicazioni destinata. Con tale scelta del materiale dello strato di supporto, si ottengono infatti strutture con modulo elasticità vicino a quello di una gran parte di tessuti biologici, in particolare il modulo elastico è compreso tra 0,3 MPa e 1,5 MPa, che sono valori prossimi a quelli caratteristici del miocardio umano.

Inoltre, molti poliuretani si distinguono per elevata biodegradabilità: tale proprietà può essere mitigata mediante copolimerizzazione con siliconi, ottenendo

Ing. Marco Celestino ABM Agenzia Brevetti & Marchi Iscritto all'albo N. 544 copolimeri ancora degradabili in vivo, ma con una cinetica più lenta in modo da prolungare la permanenza del patch nel tessuto.

In particolare, tale combinazione di poliuretano e di silicone comprende da 15 a 40 parti in peso di silicone, in particolare da 25 a 35 parti in peso di silicone.

Una quota del principio attivo può essere associata a nanoparticelle, in particolare nanoparticelle polimeriche caricate con il principio attivo ed atte a rilasciarlo nel tessuto in un tempo predeterminato.

Le nanoparticelle possono essere scelte tra:

- poliesteri biodegradabili, in particolare:
 - acido polilattico(PLA);

10

- acido poliglicolico (PGA);
- 15 copolimeri a base di acido polilattico e acido poliglicolico (PLGA);
 - policaprolattone (PCL) lineare o ramificato e/o suoi copolimeri.

Breve descrizione dei disegni

- 20 Ulteriori caratteristiche della presente invenzione saranno più chiare con la descrizione che segue di sue forme realizzative, fatta a titolo esemplificativo, con riferimento ai disegni annessi, in cui:
- la figura 1 mostra schematicamente gli strati del 25 dispositivo secondo l'invenzione;
 - la figura 2 mostra schematicamente una "spray-machine" utilizzabile in una fase del processo di produzione del dispositivo secondo l'invenzione;
- la figura 3 mostra schematicamente lo strato di 30 supporto della struttura secondo l'invenzione, con un'agente promotore di consolidamento del materiale dello strato di interazione biologica;
 - la figura 4 mostra lo strato di supporto di figura 3,

confrontato con uno strato di supporto privo dell'agente che favorisce la formazione dello strato di interazione biologica;

- la figura 5 mostra un test qualitativo di adesione 5 della fibrina sullo strato di supporto secondo l'invenzione;
 - le figura 6 e 7 sono due immagini SEM di uno strato di fibrina depositato su uno strato di supporto secondo l'invenzione, realizzate secondo due diversi ingrandimenti;
- 10 la figura 8 mostra diagrammi di rilascio di fattori di crescita VEGF e bFGF da due strutture di patch secondo l'invenzione, ottenute con due diverse concentrazioni di fibrinogeno.
- la figura 9 è una rappresentazione schematica di un 15 dispositivo secondo l'invenzione, in cui sono introdotte nanoparticelle.

Descrizione di forme realizzative preferite

20

Con riferimento alla figura 1, viene descritto un dispositivo secondo l'invenzione, costituito da una patch 10, nella cui struttura sono riconoscibili:

- uno strato di supporto 11 realizzato con un polimero sintetico, in particolare con una combinazione di polieteruretano (PEtU) e polidimetilsilossano diacetossisililterminato (tetraacetossi funzionale) (PDMS),
- 25 uno strato di interazione biologica 12, comprendente un reticolo tridimensionale nanofibrillare, cioè costituto da fibre aventi diametro inferiore al micron, in particolare fibre dell'ordine dei 100 nanometri. Tale reticolo è adatto per trattenere e rilasciare gradualmente fattori di 30 crescita ed altri agenti terapeutici.

Lo strato 11 della patch 10 costituisce un supporto per la matrice nanofibrillare dello strato 12, e può essere ottenuto, mediante una tecnica di inversione di fase, o di precipitazione del polimero sintetico da una sua soluzione in un solvente organico mediante miscelazione con liquido non-solvente per il polimero, tipicamente, acqua. Tale tecnica può essere esequita utilizzando ad esempio la "spray-machine" 20 rappresentata schematicamente in figura 2 e descritta in PCT WO2004/054775. Essa comprende un mandrino 21 che fornisce una superficie di appoggio per lo strato di supporto; il mandrino 21 può ruotare attorno ad un asse 22 e scorrere secondo la direzione indicata dalla freccia 37. La "spray-machine" 20 comprende inoltre due "spray-gun" o pistole nebulizzatrici 23 e 24, connesse idraulicamente mediante rispettivi condotti 25 e 26 a due pompe di alimentazione 27 e 28 rispettivamente di una prima e di una seconda soluzione. Mediante rispettivi ulteriori condotti 29 e 30, le pistole 23 e 24 possono ricevere aria da un compressore 31, in modo da rispettivi flussi 32 e 33 di liquido nebulizzato verso il mandrino 21.

10

15

20

25

30

La pistola 23 viene alimentata con soluzioni contenenti un polimero biocompatibile, nel caso specifico un sistema PEtU-PMDS, in un solvente organico, ad esempio una miscela in volume di tetraidrofurano e 1,4-diossano. La concentrazione del polimero biocompatibile viene vantaggiosamente fatta variare al decorrere del processo, quanto specificato nel seguito. Ιl biocompatibile è ottenibile per reazione di PEtU aromatico, medicale, (ad esempio, Estane® 5714, Lubrizol Advanced Materials, Inc., Cleveland, OH, USA) diacetossi silil terminato (tetraacetossi funzionale) esempio, United Chemical Technologies, Inc, Bristol, USA); la proporzione di PMDS è preferibilmente prossima al 30% peso/volume totale di polimero.

La pistola 24 viene alimentata con acqua distillata e, successivamente con soluzioni acquose contenenti trombina,

Ing. Marco Celestino ABM Agenzia Brevetti & Marchi Iscritto all'albo N. 544 l'alimentazione essendo prelevata, in sequenza dai serbatoi 36, ciascuno dei quali contiene una soluzione con un diversa concentrazione di trombina.

La formazione dello strato di supporto 11 della patch viene condotta ponendo il mandrino 21 in rotazione attorno all'asse 20 ed imponendo ad esso un traslatorio alternativo secondo la direzione 37, azionando contemporaneamente le pistole 23 e 24, con i liquidi sopra indicati, e secondo le fasi descritte in tabella 1.

5

10

15

20

La durata delle fasi di spruzzatura delle singole soluzioni è espressa in termini di numero di cicli di andata e ritorno del mandrino 21 nel moto traslatorio alternativo secondo la direzione 37. La presenza nel flusso 33 di una sostanza non-solvente per il polimero contenuto nel flusso 32 comporta la precipitazione del polimero sulla superficie rotante del mandrino 21, su cui si forma lo strato di supporto 11. Per favorire tale precipitazione, o inversione di fase, la soluzione 32 verso la dell'applicazione può nell'esempio contenere acqua, oggetto nella fase III, come mostra la figura 2; un'unità di aspirazione 35 provvede ad asportare i solventi in eccesso durante la spruzzatura.

Tabella 1

Fase	Durata,	pistola 23	pistola 24	Portata
	n. cicli			ml/min
I	800	2,5% PU-PDMS	acqua dist.	1,5
II	250	1% PU-PDMS	acqua dist.	1,5
III	400	1% PU-PDMS acqua	trombina	1,5
		dist. + 17% acqua	sol acquosa	
IV	200	_	trombina	1
			sol acquosa	

La tabella 1 riporta anche le portate complessive dei due flussi 32 e 33 adottate in una macchina sperimentale.

Come mostra schematicamente la figura 3, la presenza della trombina nelle fasi III e IV fa sì che lo strato di supporto 11 abbia una zona 13, prossima alla superficie esposta, impregnato di trombina. Essa è quindi disponibile per interagire con il fibrinogeno presente nella soluzione acquosa con cui lo strato 11 viene messo in contatto, asportazione dalla preferibilmente dopo superficie ridotto mandrino 21, eventualmente in pezzature convenienti. La concentrazione di fibrinogeno preferibilmente compresa tra 10 mg/ml е 30 mg/ml, in particolare è prossima a 20 mg/ml. Tale concentrazione garantisce i vantaggi che saranno descritti nel seguito, confronto patch ottenute di con da soluzione fibrinogeno 10 mg/ml.

10

15

20

25

30

La soluzione acquosa può inoltre contenere principi attivi da inglobare nella matrice fibrillare dello strato di interazione biologica 12. In particolare, per trattare richiedono rivascolarizzazione, tessuti lesi che tessuti affetti da ulcere e pareti cardiache con esiti di ischemie, nello strato 12 possono essere inglobati principi attivi come VEGF e bFGF, tipicamente con una concentrazione di 200 ng/ml, ed eventualmente PAMP (proadrenomedullina)e/o relaxina. Il fibrinogeno polimerizza formando fibrina, in condizioni normali completando la reazione dopo incubazione di alcune ore a 37°C. Una fase di stabilizzazione della struttura 10 così ottenuta, può essere effettuata mediante immersione in una soluzione fisiologica, in attesa dell'uso terapeutico.

La tabella 2 riassume alcune concentrazioni esemplari dei componenti della soluzione acquosa utilizzata per formare lo strato di fibrina 12 legato allo strato di supporto 11. In particolare si distinguono i gruppi a) e b) di esemplari di patch secondo l'invenzione, ottenuti da con concentrazioni di fibrinogeno pari a 10 mg/ml e 20 mg/ml, le altre condizioni rimanendo invariate.

La trombina presente nella zona superficiale 13 dello strato di supporto 11 permette un'adesione stabile della fibrina formata in situ per interazione del fibrinogeno con la trombina di cui è intriso la zona superficiale 13 dello supporto 11. Ciò è confermato da di analisi morfologiche su campioni di manufatti ottenuti procedura sopra descritta, impiegando la "spray-machine" 20. La figura 4 è un'immagine della patch 10 in cui è visibile la superficie esposta dello strato di interazione biologica 12 costituito da fibrina. Tale superficie espone colorazione uniforme, una intensa ed dovuta ad un trattamento con colorante rosso di Ponceau, verso cui la fibrina ha particolare affinità. Lo strato di supporto 11, privo di fibrina, utilizzato come riferimento, bianco, in quanto non è in grado di trattenere colorante.

Tabella 2

10

15

20

25

Gruppo	Fibrinogeno	Trombina	Eparina	VEGF	bFGF
	mg/ml	UI/ml	μg/ml	ng/ml	ng/ml
a)	10	25	5	200	200
b)	20	25	5	200	200

Con riferimento alla figura 5, l'integrazione dello strato di fibrina 12 sulla superficie dello strato di supporto 11 è confermata anche da un "peeling test" manuale: sotto lo strato di fibrina 12, sollevato con l'aiuto della pinza 42, si osserva la presenza di materiale sintetico 41, a dimostrazione che nelle condizioni operative adottate per produrre la patch 10 la coesione tra la fibrina ed il polimero sintetico è paragonabile o

addirittura maggiore alla coesione interna dello strato 11 di PEtU/PMDS.

Le figure 6 e 7 sono immagini della superficie nano fibrillare dello strato di interazione biologica 12 della patch 10, prodotte mediante un microscopio elettronico a 5600, scansione (SEM, Jeol Jeol Italia), metallizzazione con oro-palladio mediante un dispositivo di sputtering (Sputter coater S150B, Edwards). Le micrografie SEM corrispondono a 1.000 e 10.000 ingrandimenti. Tali immagini, sottoposte ad un sistema computerizzato analisi, permettono di determinare il diametro medio delle fibre 51 del reticolo di fibrina. Si osserva la struttura a reticolo tridimensionale della fibrina dello strato di biologica 12, costituita 51 interazione da nanofibre orientate in modo casuale. In particolare, Le nanofibre 51 realizzate nelle condizioni del gruppo a) di tabella 2 hanno un diametro medio di 165 nanometri, mentre quelle condizioni del realizzate nelle gruppo b), con concentrazione doppia di fibrinogeno nella soluzione un diametro medio inferiore, acquosa, hanno ossia 131 nanometri.

10

15

20

25

30

Come mostra il diagramma di figura 8, la struttura secondo l'invenzione, nella forma realizzativa b) ottenuta impiegando una concentrazione di 20 mg/ml di fibrinogeno, completa il rilascio dei fattori di crescita bFGF e VEGF in settimana. Si tratta di una tempo somministrazione molto superiore a quello ottenibile con la fibrina naturale, in cui il rilascio del bFGF si compie in circa tre giorni. Ciò è probabilmente da attribuire ad un più elevato grado di reticolazione della fibrina prodotta con il metodo secondo l'invenzione, tale da rallentare la diffusione dei fattori di crescita dall'interno verso l'esterno della matrice.

La velocità di rilascio V dei fattori di crescita di

Ing. Marco Celestino

ABM Agenzia Brevetti & Marchi

Iscritto all'albo N. 544

poi ambedue i tipi dipende dalla concentrazione di fibrinogeno F, in particolare essa diminuisce quando la concentrazione passa da 10 mg/ml a 20 mg/ml. Nel primo caso la quasi totalità di VEGF e bFGF viene rilasciata entro quattro giorni, mentre nel secondo caso le percentuali dei due fattori rilasciate nello stesso tempo si riducono, nell'ordine all'80% ed al 70%. L'osservazione mediante microscopio elettronico a scansione mostra che il diametro delle nanofibre 51 diminuisce in modo sensibile aumentando la concentrazione di fibrinogeno da 10 mg/ml a 20 mg/ml. Ciò si può spiegare in termini di aumento della velocità di scissione dei fibrinopeptidi, favorita dall'elevata concentrazione di fibrinogeno, cosa che accelera la produzione di monomeri della fibrina.

5

10

15

20

25

30

Inoltre, come si deduce confrontando le curve 71,73 con le curve 72,74, il bFGF viene rilasciato con una cinetica più lenta rispetto al VEGF. Ciò conferma quanto mostrato da precedenti studi condotti sulla fibrina; la minore velocità di rilascio del bFGF si può spiegare con un legame più stabile del bFGF con il reticolo di fibrina, rispetto al VEGF. I due fattori di crescita svolgono ruoli distinti e complementari nell'induzione dell'angiogenesi: il VFGF agisce infatti come iniziatore del processo di formazione di vasi sanguigni, mentre il bFGF contribuisce alla loro evoluzione, richiedendo tempi di applicazione più lunghi. Una velocità di rilascio differenziata come da figura 8 è quindi una condizione favorevole alla sinergia dei due fattori di crescita.

La velocità di rilascio dei fattori di crescita è determinabile eseguendo a intervalli di tempo regolari il saggio noto come "enzyme-linked immunosorbed assay" (ELISA, Quantikine®, &D Systems Europe, Abingdon, UK) in un mezzo di coltura appositamente preparato.

L'attività biologica dei fattori di crescita rilasciati
Ing. Marco Celestino
ABM Agenzia Brevetti & Marchi
Iscritto all'albo N. 544

dal patch secondo l'invenzione è indicata dai dati proliferazione in vitro di HUVEC, ossia di cellule endoteliali ottenute dalla ombelicale vena umana, confrontando i risultati ottenuti introducendo il bFGF in un mezzo di coltura mediante una patch secondo l'invenzione con quanto ottenuto introducendo i fattori di crescita allo stato libero. Le osservazioni hanno mostrato una attività biologica invariata nel tempo.

Prove meccaniche eseguite secondo ASTM D412-98a su provini rettangolari aventi la struttura della patch 10 permettono di esprimere i valori di proprietà meccaniche come riportati in tabella 3. Tali risultati si riferiscono ad un incrementato costante del carico fino a rottura, ed a provini mantenuti umidi per tutta la durata delle prove per simulare le condizioni di impiego.

In primo luogo, non si rilevano sostanziali differenze misurando le proprietà meccaniche secondo diverse direzioni di sollecitazione, ossia i materiali hanno un comportamento sostanzialmente isotropo.

20 Tabella 3

10

15

25

	E (MPa)	σ _Y (MPa)	ε _γ (%)	σ _{max} (MPa)	ε _{max} (%)
0°	0,6177±0,07	0.3544±0.01	145,533±24.1	0.5547±0.14	299.3±51.59
		2			
45	0,653±0,04	0.365	145,33±26.3	0.46±0.19	231.866±55.
٥		±0.077			7
90	0,5947±0,1	0.3743±0.05	159,067±18.6	0.6623±0.09	338.4±31.4
٥			7		

Inoltre, la struttura si distingue per la propria capacità a tollerare elevate deformazioni senza deteriorarsi. Il modulo elastico E, prossimo a 0.6 MPa, il carico di snervamento σ_Y ed il corrispondente allungamento, sono prossimi, nell'ordine, a 0.36 MPa ed al 150%. Le

misure sono state condotte con la strumentazione riassunta in tabella 4.

Tabella 4

Grandezza	Tipo di strumento	Modello strumento
Spessore	Micrometro	serie 293 - IP65, ε ±0.001
		mm, RS components S.p.A.
Lunghezza e	Calibro di precis.	RS components S.p.A.
larghezza	ε ±0.03 mm	
Proprietà	Macchina per prove	H10kT, Tinius Olsen, R&D
tensili(1)	di trazione	Srl, celle di carico da
		100N.

(1) Modulo elastico di Young E, carico di snervamento σ_Y , allungamento percentuale allo snervamento ϵ_Y , carico di rottura σ_{max} , allungamento percentuale a rottura ϵ_{max}

5

10

15

Test di risposta immunitaria indotta dal patch secondo l'invenzione, non hanno evidenziato espressione significativa di geni markers della risposta infiammatoria in monociti sottoposti a periodi di incubazione di varia durata, in confronto con quanto accade con materiali di riferimento quali il polietilene a bassa densità (LDPE).

Con riferimento alla figura 9, il patch 90 secondo l'invenzione può ospitare nanoparticelle 91, in particolare nanosfere, realizzate esempio con ad poliesteri biodegradabili, come acido polilattico(PLA), poliglicolico (PGA) e copolimeri a base di tali due acidi; policaprolattone (PCL) lineare o ramificato nanoparticelle sono Tali associabili principi attivi, in particolare possono essere caricate con i fattori di crescita citati, in modo da prolungare il tempo di somministrazione controllata di tali principi oltre il limite dettato dalla degradazione struttura del patch nell'ambiente biologico in cui è stato introdotto.

La descrizione di cui sopra di una forma esecutiva specifica è in grado di mostrare l'invenzione dal punto di vista concettuale in modo che altri, utilizzando la tecnica modificare e/o adattare nota, potranno in varie applicazioni tale forma esecutiva specifica senza ulteriori ricerche e senza allontanarsi dal concetto inventivo, e, quindi, si intende che tali adattamenti e modifiche saranno equivalenti considerabili come della forma esecutiva esemplificata. I mezzi e i materiali per realizzare le varie funzioni descritte potranno essere di varia natura senza per questo uscire dall'ambito dell'invenzione. Si intende che le espressioni o la terminologia utilizzate hanno scopo puramente descrittivo e per questo non limitativo.

10

RIVENDICAZIONI

- 1. Un metodo per produrre una struttura di patch (10) atta ad essere applicata su un tessuto biologico, detta struttura di patch (10) comprendendo:
- 5 uno strato di supporto (11) comprendente un materiale polimerico biocompatibile;
 - (12)uno strato di interazione biologica comprendente reticolo di nanofibre (51),un particolare di nanofibre (51) reciprocamente connesse, detto reticolo di nanofibre essendo realizzato a
 - detto reticolo di nanofibre essendo realizzato a partire da un precursore;

detto metodo prevedendo le fasi di:

10

25

30

- predisposizione di una superficie di appoggio (21)
 per detto strato di supporto (11);
- preparazione di una prima soluzione contenente detto materiale polimerico biocompatibile e di una seconda soluzione contenente un agente atto a favorire la formazione di detto strato di interazione biologica (12) a partire da detto precursore, in particolare detto agente essendo un enzima;
 - distribuzione simultanea di detta prima soluzione (32) e di detta seconda soluzione (33) su detta superficie di appoggio (21), detta distribuzione formando una miscela di detta prima soluzione (32) con detta seconda soluzione (33) in modo che detto strato di supporto (11) sia realizzato direttamente su detta superficie di appoggio (21), e che detto strato di supporto (11) comprenda detto materiale polimerico biocompatibile e detto agente, incorporato in detto materiale polimerico biocompatibile;
 - applicazione su detto strato di supporto (11) di detto precursore, detto precursore essendo modificato da detto agente presente in detto strato di supporto

- (11) in modo da formare detto strato di interazione biologica (12) saldamente legato a detto strato di supporto (11).
- 2. Un metodo secondo la rivendicazione 1, in cui detto strato di interazione biologica (12) comprende un polimero di origine naturale, in particolare detto polimero di origine naturale è fibrina, e:

10

15

- detto precursore di detta fibrina è una soluzione acquosa contenente fibrinogeno, in particolare detto fibrinogeno ha in detta soluzione acquosa una concentrazione compresa tra 10 mg/ml e 50 mg/ml, in particolare compresa tra 15 mg/ml e 25 mg/ml;
- detto agente atto a favorire la formazione di detto reticolo di nanofibre (51) è trombina, in particolare detta trombina avendo una concentrazione in detta seconda soluzione (33) compresa tra e 10 e 500 unità internazionali per millilitro, in particolare tra 15 e 50 unità internazionali per millilitro.
- 20 3. Un metodo secondo la rivendicazione 1, in cui detta fase di applicazione è effettuata portando detto strato di supporto (11) in contatto con detto precursore e mantenendo detto contatto per un tempo predeterminato e ad una temperatura predeterminata, in particolare detta fase di applicazione viene condotta con una modalità scelta tra:
 - irrorazione di detto strato di supporto (11) con una soluzione con detto precursore;
- rimozione di detto strato di supporto consolidato 30 superficie di (11)da detta appoggio (21)immersione di detto strato di supporto (11) in detto precursore, mantenuto detta temperatura а predeterminata.
 - **4.** Un metodo secondo la rivendicazione 1, in cui è

 **Ing. Marco Celestino

 ABM Agenzia Brevetti & Marchi

Iscritto all'albo N. 544

prevista, durante detta fase di distribuzione simultanea, una fase di variazione di concentrazione di una sostanza scelta tra:

- detto materiale polimerico biocompatibile in detta prima soluzione (32);
- detto agente atto a favorire la formazione di detto strato di interazione biologica (12) a partire da detto precursore;
- ambedue le precedenti sostanze,

5

25

30

- in particolare detta concentrazione di detto agente crescendo da un valore minimo ad un valore massimo durante detta fase di distribuzione simultanea di detta prima soluzione (32) e di detta seconda soluzione (33).
- 15 5. Un metodo secondo la rivendicazione 1, in cui detto precursore contiene un ingrediente attivo in una concentrazione predeterminata, tale che detta struttura di patch (10) è adatta a rilasciare un principio attivo in detto tessuto, in particolare detto principio attivo è un fattore di crescita atto a favorire il recupero di detto tessuto danneggiato.
 - **6.** Una struttura di patch (10) per un tessuto biologico comprendente:
 - uno strato di supporto (11) comprendente un materiale polimerico biocompatibile;
 - uno strato di interazione biologica (12) comprendente un reticolo di nanofibre (51), detto strato di interazione biologica (12) essendo adeso a detto strato di supporto (11), ed essendo disposto in uso a contatto con detto tessuto,

caratterizzata dal fatto che

l'adesione di detto reticolo di nanofibre (51) a detto materiale polimerico biocompatibile è ottenuta applicando su detto materiale polimerico

Ing. Marco Celestino ABM Agenzia Brevetti & Marchi Iscritto all'albo N. 544 biocompatibile un precursore di detto reticolo di nanofibre (51) e preventivamente disperdendo in detto materiale polimerico biocompatibile un agente atto a favorire la formazione di detto strato di interazione biologica (12) a partire da detto precursore.

- 7. Una struttura di patch (10) secondo la rivendicazione 6, in cui detto reticolo di nanofibre comprende un polimero di origine naturale, in particolare, fibrina.
- 8. Una struttura di patch (10) secondo la rivendicazione
 10 6, in cui in cui in detto strato di interazione
 biologica (12) è disperso un principio attivo, in
 particolare detto principio attivo è scelto tra:
 - un fattore di crescita pro-angiogenetico atto a produrre rivascolarizzazione in detto tessuto danneggiato;
 - VEGF (Vascular Endothelial Growth Factors);
 - bFGF (basic fibroblast growth factors);
 - PAMP (proadrenomedullina);
 - una relaxina;

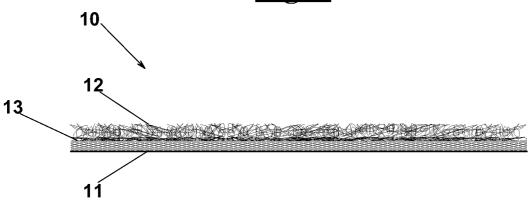
5

15

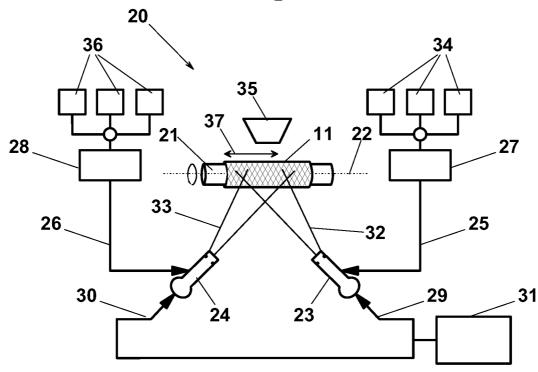
- 20 un fattore di crescita derivato da un lisato piastrinico;
 - un fattore di crescita insulino-simile, in particolare IGF1 e/o IGF2;
 - EGF, fattore di crescita epidermico;
- un fattore di crescita trasformante, TGF-β;
 - osteogenine;
 - un fattore di crescita di tessuti ossei;
 - un fattore di crescita del collagene;
 - una citochina;
- 30 un interferone;
 - un ormone;
 - un fattore di crescita legante l'eparina HBGF-1 e/o HBGF-2;
 - un derivato biologicamente attivo di uno o più dei

fattori di crescita elencati

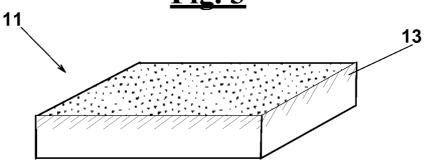
5

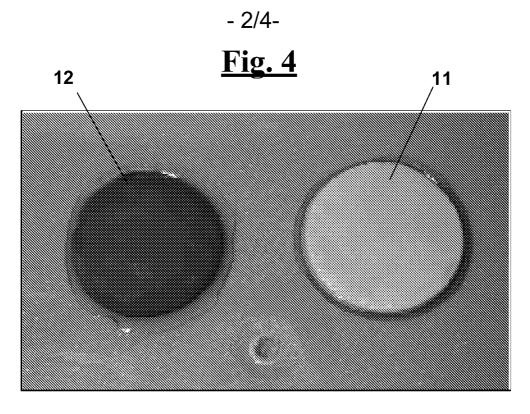

15

20


25

- una qualsiasi combinazione di tali fattori di crescita e/o di tali derivati.
- 9. Una struttura di patch (10) secondo la rivendicazione 6, in cui detto materiale polimerico biocompatibile comprende un polimero sintetico, in particolare un polimero sintetico scelto tra:
 - un poliuretano (PU), in particolare un poli(etere)uretano aromatico (PEtU);
- un silicone, in particolare polidimetilsilossano (PDMS) diacetossi silil terminato;
 - una combinazione di tali polimeri, in particolare un copolimero, detta combinazione comprende da 15 a 40 parti in peso di silicone, in particolare da 25 a 35 parti in peso di silicone.
 - 10. Una struttura di patch (90) secondo la rivendicazione 8, in cui una quota di detto principio attivo è associata a nanoparticelle (91), in particolare nanoparticelle polimeriche caricate con attivo ed atte a rilasciarlo in principio detto tessuto in tempo predeterminato, un dette nanoparticelle polimeriche essendo scelte in particolare tra:
 - poliesteri biodegradabili, in particolare:
 - acido polilattico(PLA);
 - acido poliglicolico (PGA);
 - copolimeri a base di acido polilattico e acido poliglicolico (PLGA);
- policaprolattone (PCL) lineare o ramificato e suoi
 30 copolimeri.


Fig. 1


Fig. 2

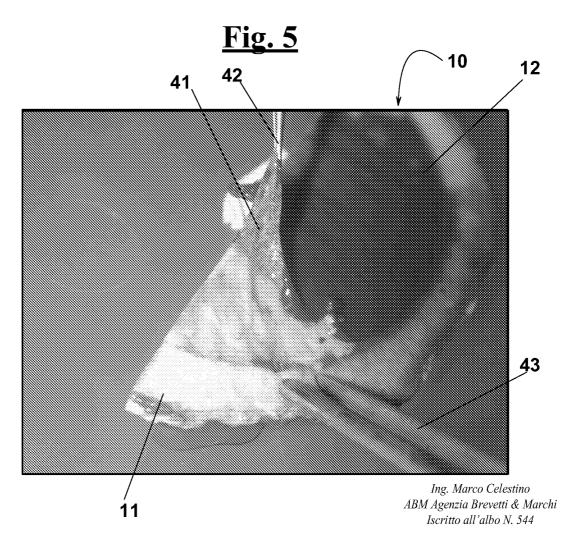
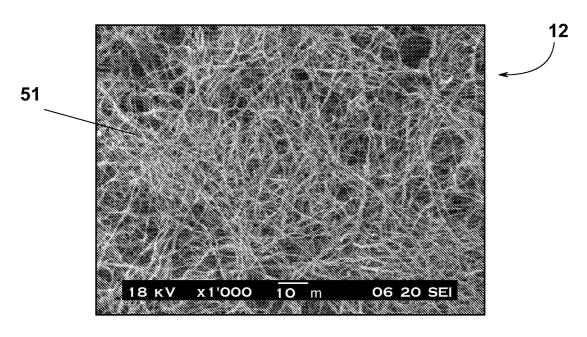
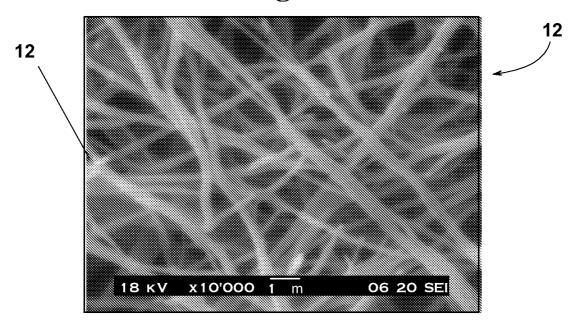
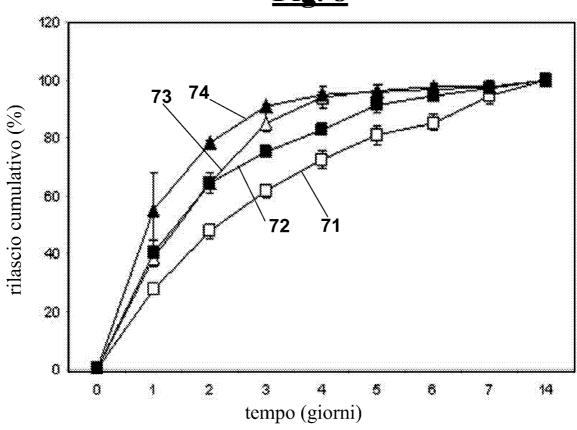


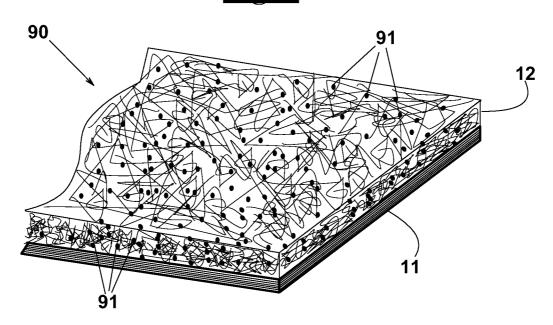
Fig. 3



Ing. Marco Celestino ABM Agenzia Brevetti & Marchi Iscritto all'albo N. 544




Fig. 6


<u>Fig. 7</u>

- 4/4-**Fig. 8**

Fig. 9

Ing. Marco Celestino ABM Agenzia Brevetti & Marchi Iscritto all'albo N. 544