ELECTROACOUSTIC TONE MODIFYING SYSTEMS FOR STRINGED MUSICAL INSTRUMENTS

Chancey Richard Evans, Salt Lake City, Utah, assignor, by means assignments, to Attik Corporation, Salt Lake City, Utah, a corporation of Utah
Filed Aug. 25, 1958, Ser. No. 756,950
1 Claim. (Cl. 84—1.16)

This invention relates to electroacoustic systems and more particularly to systems for modifying the output of an electromechanical energy transducer is modified in various ways to produce certain predetermined acoustic effects which are deemed pleasing and desirable.

Musical instruments of the string family have long been noted for the tonal beauty and intimate quality of their string vibrations in these instruments are produced by an acoustic resonator or sounding box which is energized by the vibrations of strings activated by the performer. The quality or characteristics of the music thus produced is determined by the design of the acoustic resonator which forms the tone, and consequently, this element of the instrument is usually regarded as being the most critical in design. Master craftsmen such as Stradivari, Amati, and Guarneri produced instruments of such rare tonal beauty as to become famous throughout the world.

With the present day advent of electronics, various attempts have been made to produce stringed instruments having improved tonal characteristics and higher levels of sound intensity. A conventional electromechanical or electromagnetic sound transducer, used in conjunction with a vacuum tube amplifier and loudspeaker, is capable of giving any level of sound intensity desired, but the tonal quality of such instruments cannot compare with those of the old world craftsmen. This is undoubtedly due to the fact that a faithful reproduction of the vibratory frequencies of the strings will not necessarily produce musical sounds having the desired characteristics.

The beautiful tones which emanate from the acoustic instruments made by these master craftsmen are the result of the string vibrations plus the modulation and added overtones introduced by the acoustic resonator. With this fact in mind, it is readily seen that, in order to duplicate or improve upon these acoustic instruments in an electroacoustic device, it is necessary either to provide a system capable of modifying and introducing certain desired characteristics into the electrical output from the vibrating strings, or capable of modifying, in a predetermined manner, the acoustic energy produced by the loudspeaker, or capable of doing both.

Accordingly, it is an object of this invention to provide an improved electroacoustic system for producing music from stringed instruments.

Another object of this invention is to provide an electroacoustic system in which the musical tones produced from vibrating strings are modified in such fashion as to enhance their aesthetic effect.

Another object of the invention is to provide a novel electromechanical transducer for stringed instruments.

Another object of the invention is to provide a composite electromechanical transducer having variable frequency characteristics.

Another object of the invention is to provide an improved loudspeaker system for stringed instruments.

A further object of the invention is to provide a loudspeaker system for stringed instruments in which the acoustic energy produced by the loudspeaker is enhanced by virtue of modifying the harmonic and overtone content of such energy.

A further object of the invention is to provide an improved formant circuit for modifying the waveform of an electrical signal.

A further object of the invention is to provide a portable self-contained electroacoustic system of the stringed variety.

A still further object of the invention is to provide a self-contained electroacoustic arrangement capable of receiving radio broadcasts and enabling the instrument to be played in conjunction with such radio broadcasts.

A still further object of the invention is to provide an electroacoustic instrument requiring no physical connection with its associated loudspeaker system.

In accordance with these objects, the system of this invention comprises an electromechanical transducer of piezoelectric material which is used as the bridge element for any conventional stringed instrument. The mechanical vibrations of the strings are translated into electrical energy which in turn may be either (1) modified by appropriate formant circuits and reproduced through a conventional loudspeaker system, or (2) amplified in a conventional manner and reproduced through a specifically loudspeaker system to add the desired tone coloration.

This preferred embodiment of the invention, together with certain modifications thereof, is illustrated in the accompanying drawings in which:

FIG. 1 is a block diagram of the basic system of the invention;

FIG. 2 is a plan view of a classic guitar body showing the bridge element of the instant invention together with the controls therefor;

FIG. 3 is a cross section taken along the line 3—3 of FIG. 2;

FIG. 4 is a side elevation of the guitar body;

FIG. 5 is a diagrammatic view showing the electrical connections to the bridge element;

FIG. 6 is a horizontal cross sectional view of the loudspeaker system of the present invention taken just below the top of the cabinet;

FIG. 7 is a cross section view in elevation taken along line 7—7 of FIG. 6;

FIG. 8 is a vertical cross section with parts in side elevation of the loudspeaker system;

FIG. 9 is a cross section view in elevation taken along line 9—9 of FIG. 6;

FIG. 10 is a block diagram of a formant circuit in accordance with the instant invention;

FIG. 11 is a block diagram of a self-contained musical instrument; and

FIG. 12 is a block diagram of a music system having no interconnecting wires between the instrument and loudspeaker.

The operation of the basic system of the invention may be easily understood by making reference to FIG. 1 of the drawings which is a block diagram of the system. The pickup transducer 1, which has three separate outputs, feeds into a switcher-mixer 2 which provides the functions of selectively switching in and out all three of the pickup transducer outputs and electronically mixing the selected outputs.

The output from the switcher-mixer is fed through a preamplifier stage 3 and an amplifier stage 4 to provide the necessary increase in level, and the resulting amplified signal is fed to a loudspeaker transducer 5 which, in addition to reproducing the electrical signal, adds certain desired tonal colorations by means of a unique buffing structure hereinafter described.

While the invention is adaptable to any form of string instrument, the classic guitar, a plan view of which is shown in FIG. 2, has been selected for the purpose of this description. The neck 6 of this guitar extends far enough into the body portion to enable the player to properly finger the fretboard (not shown) even at its ex-
treme end where it is joined to the main body portion 7 of the guitar. A projection 8 on the guitar body provides a convenient recess 9 for support of the guitar on the player's knee and yet does not interfere with the fingering of the free strings.

The guitar strings generally designated by the letter S extend over bridge member 10, as is more clearly seen from FIGS. 3 and 4.

The bridge member 10 is constructed in three tiers or layers of piezoelectric material, preferably of a ceramic titinate such as barium titinate. The bottom transducer layer consists of a single ceramic barium titanate element 17. Placed on top of element 17 and providing a zone of separation is a layer 18 of resilient material having a high degree of compliance, such as neoprene. The second transducer layer comprises two ceramic titinate members 19 and 20, and on top of these members is located a second layer of high compliance material such as neoprene.

The top layer of the transducer is comprised of six individual ceramic titinate elements 11 through 16, each of which has a string of the instrument mounted thereon.

The individual transducer elements of the various layers, as well as the members that are all similar in construction. Each element is constructed of the same material, barium titinate, and has its top and bottom faces metalized with a suitable plating to provide means for making electrical contact therewith.

FIG. 5 is a diagrammatic view of the electrical connections to the bridge member, showing the polarity observed in connecting to the individual transducer members. A separate output is taken from each transducer layer and each transducer layer is designed to have a different frequency response characteristic so that by selective switching and mixing in the switcher-mixer 2, an endless variety can be obtained in the response characteristics of the bridge output.

In contrast to the conventional acoustic instrument which requires a carefully designed resonator body, the body 7 of the classical guitar shown in FIG. 2 serves no purpose other than the conventional one of providing support for the strings, etc., and in no way contributes to the tone quality. The output of the instrument is derived solely from the bridge transducer 10. For this reason, it is possible to fabricate the guitar body by such simple techniques as molding, and the body itself may be made of inexpensive plastic material. Using such techniques greatly reduces the cost of the instrument, without in any way affecting its performance.

The molded body 7, here illustrated, is conveniently made hollow and contains the switcher-mixer 2 which is controlled by individual adjusting knobs 22, 23, 24, which switch in and out the three separate layers of the bridge transducer 10 and also control the amplitude of the individual outputs.

The switcher-mixer 2, preamplifier 3, and power amplifier 4, may be of any conventional design well known in the art, which is adapted for the particular requirements of the instrument used.

The construction of the loudspeaker system of the instant invention is seen by making reference to FIGS. 6 through 9 of the drawings. The enclosure 25 which is generally rectangular through any cross section contains three loudspeakers, 26, 27, 28, securely mounted on baffleboard 29 which divides the enclosure into two compartments, 36 and 31. As seen from FIG. 9, the only openings in baffleboard 29 are the three cut-outs for the speakers 26, 27, and 28.

Mounted in compartment 31, on a second baffleboard 32, which is rectangular in shape as shown in FIG. 7, is a diaphragm assembly generally designated by the numeral 33. This diaphragm assembly is of a construction similar to conventional drumheads and consists of a flexible diaphragm 34 held in taut condition by conventional mounting rings and tightening assembly. Since such struc-
frequencies, and middle frequencies, respectively. The middle frequencies are amplified by amplifier 48 and further amplified by amplifier 49, and reproduced by the loudspeaker system without having their waveform electrically modified in any fashion. The high and low frequencies are fed into modulator 50, where the high overtones are modulated by the fundamental frequencies, and the resulting signal is amplified by amplifier 51 and fed to a series of shock-excited oscillators 52 through 57. These oscillators are tuned to separate frequencies in the high and low bands and adjusted in such manner that when shocked, the oscillator produces a damped oscillation at the frequency to which it is tuned. The duration of this damped oscillation may be varied to produce the result desired. The outputs of each of these shock-excited oscillations, together with the unaltered middle frequency band, is fed to the loudspeaker system, and the result produced is most pleasant.

To create additional effects, an artificial overtone generator 58 may be provided to mix with the high frequencies from filter 46 in mixer 59 before modulating with the low frequencies in modulator 50.

FIG. 11 is a block diagram of a musical instrument incorporating a broadcast tuner such that the transducer bridge output may be mixed with the broadcast signal and the resultant acoustic effect be that of actually performing with the regular broadcast. This embodiment is made possible by the use of transistors and other miniaturized components. An additional input is added to the mixer switcher to mix the broadcast signal and instrument signal, and the output of the mixer switcher is amplified and reproduced by a transistor amplifier and a loudspeaker which are also contained in the instrument. The same principle explained in connection with the loudspeaker embodiment of FIGS. 6 to 9 may be employed in the self-contained instrument, although on a much reduced scale.

FIG. 12 is a block diagram of a wireless embodiment of the invention in which the musical instrument contains a transmitting oscillator, thus requiring no interconnecting cables between the instrument and the reproducing system.

The signal generated by the transmitting oscillator located in the musical instrument is received and amplified at a remote point and reproduced through the loudspeaker system of the invention.

It will be appreciated from the above description that by means of the instant invention it is possible to achieve, in an inexpensive instrument, tonal qualities which formerly have been realized only in the expensive instruments made by master craftsmen. By using a larger or smaller number of the diaphragm assemblies, it is possible to increase or decrease the variety of tonal effects available, and such variation is controlled only by the limitations of cost and space.

While the invention has been illustrated and described in certain embodiments, it is recognized that variations and changes may be made therein without departing from the invention set forth in the claim.

I claim:

In a stringed musical instrument, the combination comprising piezoelectric transducer means for converting the energy of the vibrating strings into electrical energy; amplifier means operatively connected to said transducer means for amplifying the electrical energy; and a loudspeaker system operatively connected to said amplifier means for converting the electrical energy into acoustic energy, said loudspeaker system including an enclosure having a top wall, a bottom wall, opposed side walls, and a front end wall, a vertical baffleboard mounted within said enclosure to divide the enclosure into two separate compartments, said baffleboard having three ports therein, three loudspeakers mounted on said baffleboard in covering relationship with respect to said ports, said front wall of said enclosure having two ports therein, a pair of separate auxiliary diaphragms mounted on said front wall within the enclosure and adjacent said ports in said front wall, and a third auxiliary diaphragm in said enclosure rearwardly of said loudspeakers.

References Cited in the file of this patent

UNITED STATES PATENTS

1,258,491 Sprinkle ------------------ Mar. 5, 1918
1,750,069 Truett et al. -------------- Mar. 11, 1930
1,841,658 Lindenberg ----------------- Jan. 19, 1932
1,856,749 Desbriere ------------------ May 3, 1932
1,945,858 Miesner ------------------ June 27, 1934
1,922,870 Krassmann ------------------ Aug. 22, 1933
2,059,929 Bobb ---------------------- Nov. 3, 1936
2,073,071 Nernst ---------------------- Mar. 9, 1937
2,287,105 Kannenberg ----------------- June 23, 1942
2,476,572 Wenzel --------------------- July 19, 1949
2,485,751 Larsen --------------------- Oct. 25, 1949
2,491,982 Kincart --------------------- Dec. 20, 1949
2,550,176 Vitovsky ------------------ Apr. 24, 1951
2,571,899 Kroft et al. -------------- Oct. 16, 1951