Reaktionsbedingungen eingestellt, die die Ausgangsstoffe zu einer Synthesereaktion veranlassen.
Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.
Beschreibung

Verfahren zur Erzeugung einer Information, Trägerkörper, in dem die Information erzeugt wird, sowie Verwendung eines derartigen Trägerkörpers

Die Erfindung bezieht sich auf ein Verfahren zur Erzeugung einer Information. Sie betrifft weiter einen Trägerkörper, in dem die Information erzeugt wird, sowie eine Verwendung eines derartigen Trägerkörpers.


Um bei den oben genannten Verfahren eine vergleichsweise hohe Ortsauflösung und damit auch eine höhere Daten- und Informationsdichte zu erzielen, werden in der Regel Laser eingesetzt. Übliche Laserbeschriftungsmethoden finden bei der Herstellung von Ausweisen, Führerscheinen, Bankkarten, Kreditkarten oder dergleichen aus Kunststoff ein großes Anwendungsfeld.

BESTÄTIGUNGSKOPIE
Aus der DE 29 07 004 C2 ist bekannt, visuell lesbare Informationen auf Ausweiskarten mittels Laserstrahlung aufzubringen. Dabei wird die Information durch eine Verkohlung und/oder Carbonisierung des Kunststoffmaterials sichtbar, wobei die Information sich schwarz oder grau vor einem anders farbigen Hintergrund, z.B. opak oder transparent, abhebt. Andere Farben lassen sich damit nicht erzeugen. Dabei ist die Laserbeschriftung gegenüber anderen Beschriftungsverfahren gegenüber Fälschungen oder Manipulationen sicherer, weil sie nachträglich auch in innen liegenden Schichten durchgeführt werden kann.


Auch in der DE 100 11 486 A1 wird ein kartenförmiger Datenträger und ein Verfahren zur Herstellung desselben beschrieben, der das Aufbringen von farbigen Informationen mittels der Laserbearbeitung ermöglicht, ohne die Oberfläche des Datenträgers zu beschädigen. Dabei wird eine Schicht durch die Laserstrahlung lokal vollständig ausgebleicht, so dass die Schicht für sich allein im Laserschreifpfeck zumindest nahezu transparent ist. Auf diese Art und Weise kann ein ursprünglich schwarzer, grau oder dunkel brauner Fleck rot, blau oder grün eingestellt werden, je nachdem, welche der lasersensitiven Schichten in dem Sandwich-Aufbau gebleicht werden.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Erzeugung einer Information in und/oder auf einem Trägerkörp anzugeben, die mit einfachen Mitteln eine besonders gegenüber Licht und Feuchtigkeit besonders hohe Langzeitbeständigkeit aufweist. Des Weiteren soll ein für dieses Verfahren besonders geeigneter Trägerkörper bereitgestellt sowie eine Verwendung eines derartigen Trägerkörpers angegeben werden.

Bezüglich des Verfahrens wird diese Aufgabe erfindungsgemäß gelöst, indem für eine Anzahl von im und/oder auf dem Trägerkörper vorgehaltenen Ausgangsstoffen in einem lokalisierten Teilbereich des Trägerkörpers durch Laserbestrahlung diejenigen Reaktionsbedingungen eingestellt werden, die die Ausgangsstoffe zu einer Synthesereaktion veranlassen.

Die Erfindung geht dabei von der Überlegung aus, dass in bisherigen Systemen die Langzeitstabilität der Information unter anderem dadurch begrenzt ist, dass Farbansetzungsreaktionen auch ohne gezielte und gewollte Aktivierung, z.B. durch eingestrahltes Sonnenlicht, ungesteuert fortgesetzt werden. Diese Aktivierung kann durch statistische Anregungen einer üblicherweise eingesetzten Dissoziationsreaktion geschehen, da bei

Mit diesen synthetischen Vorgängen werden vergleichsweise anspruchsvolle oder komplexe Anforderungen an die Reaktionsbedingungen und an die Reaktanden und gestellt.

Als Reaktionsbedingungen haben insbesondere eine ausreichend hohe Reaktionstemperatur, eine Freisetzung reaktiver Ausgangsstoffe oder aktivierter Molekülspezies in für die Reaktion ausreichender Anzahl und/oder eine ausreichend hohe Teilchenbeweglichkeit der Reaktionspartner eine besondere Bedeutung. Diese Reaktionsbedingungen können dadurch vollzogen werden, dass durch Laserlicht ortsaufgelöst eine thermische Energie eingebracht wird, die die Aktivierungsenergie des Prozesses bereitstellt. Durch die thermische Energie wird die Mobilität der Ausgangsstoffe im oder auf dem Trägerkörper verbessert und damit die Reaktionswahrscheinlichkeit so stark erhöht, dass ein ausreichender Reaktionsumsatz erreicht wird. Außerdem ermöglicht die Bestrahlung mit Laserlicht, dass reaktionshemmende Umgebungen aufgebrochen werden und somit die Ausgangsstoffe als Reaktanden überhaupt erst verfügbar gemacht werden.

Ohne Energiezufuhr sollten die im Trägerkörper vorgehaltenen Ausgangsstoffe zur Erzeugung einer haltbaren Information nicht zu einer Eigenschafts- oder Stoffände rung veranlasst werden können. Ihre statistische Reaktionswahrscheinlichkeit sollte also beispielsweise gegenüber den Reaktionspartnern eines Bleichprozesses abgesenkt sein. Dafür dürfte unter normalen Umgebungsbedingungen weder die Aktivierungssenergie, die notwendig ist, um aus den Ausgangsstoffen reaktive Molekülspezies zu erzeugen, erreicht werden, noch sollten die reaktiven Molekülspezies unter normalen Bedingungen in ausreichender lokaler Konzentration vorhanden sein, um eine Reaktion zu initiieren oder sogar einen vollständigen Reaktionsumsatz zu erreichen. Eine weitere Bedingung für geeignete Ausgangsstoffe ist eine Inertheit gegenüber dem Trägerkörper selber, so dass dieser nicht durch die Ausgangsstoffe nachhaltig verändert und dadurch gegebenenfalls geschädigt oder unbrauchbar gemacht wird.

Als im Trägerkörper vorgehaltenen Ausgangsstoffe kommen daher grundsätzlich Stoffgemische oder -verbindungen aller Elemente des Periodensystems in Betracht, die für einen derart „robusten“ Einsatz ertüchtigt sind. In besonderem Maße werden diese Kriterien vorzugsweise von ausgewählten anorganischen Stoffgemischen erfüllt,
da diese vergleichsweise wenig im Trägerkörper migrieren und Reaktionen unter Stoff- oder Eigenschaftsänderung üblicherweise nur bei hohen Temperaturen von mehreren hundert Grad Celsius, wie z.B. im Inneren einer Bunsenbrennerflamme, zeigen.


Für eine oder mehrere nach Bedarf ausgewählte farbige Information oder Informatio- nen werden die Ausgangsstoffe der Synthesereaktionen unterschiedlicher Farbände- rungen vorzugsweise derart gewählt, dass das Produkt der jeweiligen Synthesereaktion jeweils einer Grundfarbe eines CMYK-Farbschemas für Cyan, Magenta, Yellow und Kontrast oder Schwarz zugeordnet ist. Damit können bei geeigneter Kombination Mono- oder Mischfarben erzeugt werden.

Um grafisch besonders vielfältige Farbmuster und -variationen im Trägerkörper zu er- möglichen, werden die Ausgangsstoffe von Synthesereaktionen unterschiedlicher Farbänderungen vorzugsweise in voneinander abgegrenzten Volumensegmenten im Trägerkörper vorgehalten.


oder bei höherer Konzentration sogar eine Schwärzung infolge feinverteilten Platins generieren.


In besonders vorteilhafter Ausgestaltung sind bei dem Verfahren als Grundkomponenten des Trägerkörpers vorzugsweise die Laserbestrahlung nicht absorbierende Stoffe, wie Papier, Kunststofffolien und/oder eine Farb-, Kleber- und/oder Lackschicht vorgesehen, die vorteilhafterweise zur fälschungssicheren Kennzeichnung oder zur maschinellen Verifizierung und gleichzeitigen Entwertung der Dokumente, beschriftet oder markiert werden.


Bezüglich des Trägerkörpers wird die genannte Aufgabe gelöst, indem in und/oder auf ihm eine Anzahl von Ausgangsstoffen derart vorgehalten ist, dass laserinduziert die Reaktionsbedingungen für eine Synthesereaktion der Ausgangsstoffe einstellbar sind.
Als Grundkomponenten des Trägerkörpers sind vorzugsweise die Laserbestrahlung nicht absorbierende Stoffe, wie Papier, Folien, insbesondere thermoplastische Kunststoffe, und/oder eine Farb-, Kleber- und/oder Lackschicht vorgesehen.


Für eine oder mehrere je nach Bedarf ausgewählte ein- oder mehrfarbige Information sind die Ausgangsstoffe im Trägerkörper vorzugsweise derart gewählt, dass das Produkt der jeweiligen Synthesereaktion jeweils einer Grundfarbe eines CMYK-Farbschemas für Cyan, Magenta, Yellow und Kontrast oder Schwarz zugeordnet ist.

Um den Trägerkörper besonders vielseitig einsetzen zu können, ist der Trägerkörper zweckmäßig erweise für die Erzeugung permanenter intensiver farbiger Information ausgestattet. Für ein Produkt mit der Zuordnung zu der Farbe Blau („Cyan“) sind vorzugsweise als Ausgangsstoffe MnSO₄, KNO₃ und KOH vorgehalten. Alternativ oder kumulativ sind für ein Produkt mit der Zuordnung zu der Farbe Rot („Magenta“) vorzugsweise als Ausgangsstoffe Fe₂(SO₄)₃ und KSCN vorgehalten. Alternativ oder kumulativ zu den Farben Blau („Cyan“) und/oder Rot („Magenta“) sind für ein Produkt mit der Zuordnung zu der Farbe Gelb („Yellow“) als Ausgangsstoffe vorzugsweise Cr₂O₃, KNO₃ und KOH vorgehalten.
Für eine Erhöhung der Vielfalt an farbigen Information, sind in Trägerkörper für ein Produkt mit der Zuordnung zu der Farbe Blau als Ausgangsstoffe vorzugsweise Cu\textsuperscript{2+} und NH\textsubscript{3} für die Reaktion zum Tetraammin-Kupferkomplex oder die Substanzen Co(NO\textsubscript{3})\textsubscript{2} und Al\textsubscript{2}O\textsubscript{3} und/oder für ein Produkt mit der Zuordnung zu der Farbe Grün als Ausgangsstoffe vorzugsweise Co(NO\textsubscript{3})\textsubscript{2} und ZnO oder die Substanzen K\textsubscript{2}CrO\textsubscript{4} und C\textsubscript{3}H\textsubscript{7}OH vorgehalten.

Um grafisch besonders vielfältige Farbmuster und -variationen im Trägerkörper zu ermöglichen, sind die Ausgangsstoffe von Synthesereaktionen unterschiedlicher Farbänderungen vorzugsweise in voneinander abgegrenzten Volumensegmenten im Trägerkörper vorgehalten.


Um die Laserbestrahlung direkt auf zumindest einen Ausgangsstoff, insbesondere, wenn dieser allein nicht oder nur unzureichend für die Absorption der Laserstrahlung geeignet ist, zu fokussieren, ohne den Trägerkörper mit zu hoher Laserenergie zu zerstören, sind im Trägerkörper vorzugsweise die Laserbestrahlung absorbierende Hilfsstoffe oder -schichten eingebettet.

In besonders vorteilhafter Ausgestaltung des Trägerkörpers ist in ihm für die Zuordnung zu Kontrast oder Schwarz alternativ oder kumulativ zu den Farben Blau („Cyan“), Rot („Magenta“) und/oder Gelb („Yellow“) als Hilfsstoff, der die eingestrahlte Laserstrahlung über Interferenz- oder Spiegelreffekte zu einem ausgewählten Ausgangsstoff transfe-

rirt, vorzugsweise ein Glimmer-Pigment, wie „Iridin“, aber auch einfach Titandioxid.
oder Kohlenstoff in der Form von Ruß oder vorteilhafterweise auch ein Farbpigment, wie Phthalocyanin, vorgehalten.

Um den Trägerkörper zeitlich und örtlich zuverlässig und flexibel einsetzen zu können, sind die in ihm für eine Synthesereaktion vorgesehenen Ausgangsstoffe vorzugsweise zumindest teilweise von einer Verkapselung umhüllt, die diese Reaktion bis zur Anregung durch Laserbestrahlung hemmt. In besonders vorteilhafter Weise ist die Verkapselung dabei derart gewählt, dass sie durch die Laserbestrahlung aufgebrochen wird und den betreffenden Ausgangsstoff erst mit dem Auﬀrchen als Reaktionspartner freigibt. Dafür ist die Verkapselung vorzugsweise derart ausgestaltet, dass sie die Laserstrahlung selbst absorbiert.

Für eine Herabsetzung der Aktivierungsenergie, insbesondere für Redoxreaktionen der im Trägerkörper vorgehaltenen Ausgangsstoffen, und zugunsten des Einsatzes eines vergleichsweise leistungsarmen Lasers sind im Trägerkörper vorzugsweise katalytisch wirkende Partikel eingebettet.


Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass gerade durch die Synthesereaktion einer Anzahl von Ausgangsstoffen beständige Informationen erzeugt werden. Es lassen sich insbesondere literaturbekannte typische und empfindliche Nachweisreaktionen für Nebengruppenmetalle zu der Erzeugung besonders intensiver und gegenüber Umwelteinflüssen widerstandsfähiger farbiger Informationen einsetzen. Gerade durch Bestrahlung zumindest eines Reaktanden mit Laserlicht ist eine zuverlässige Verfahrensführung ermöglicht. Die Laserbestrahlung gewährleistet dabei, dass gerade eine für die gewünschte Synthesereaktion ausreichend hohe Reaktionstemperatur bereitgestellt wird und/oder, dass die bestrahlten Substanzen ausrei-
chend stark bewegt und/oder zur Freisetzung reaktiver Molekülspezies veranlasst werden.

Des Weiteren erlaubt der Trägerkörper durch seine in besonderem Maße geeignete Ausstattung mit Verkapselungen besonders reaktiver Ausgangsstoffe, mit die Laserstrahlung absorbierenden Hilfsstoffen oder -schichten und/oder mit katalytisch wirkenden Partikeln eine gezielt gesteuerte Verfahrensführung. So ist im Trägerkörper, wenn die Ausgangsstoffe einer Synthesereaktion bereits bei Raumtemperatur oder durch Verreiben miteinander reaktiv sind, zumindest einer der Ausgangsstoffe im Trägerkörper gekapselt vorgehalten, damit die Synthesereaktion erst durch laserinduziertes Aufbrechen der Verkapselung ermöglicht wird. Während ein die Laserstrahlung nicht oder nur wenig absorbierender Ausgangsstoff indirekt über im Trägerkörper eingebettete die Laserstrahlung absorbierende Hilfsstoffe oder -schichten durch die Laserstrahlung aktiviert wird, indem die Laserstrahlung über Interferenz- oder Spiegeleneffekte der Hilfsstoffe oder -schichten auf den ausgewählten Ausgangsstoff hin fokussiert wird und dort durch die lokale Temperaturerhöhung ein hot-spot entsteht, an dem der Ausgangsstoff zur Wechselwirkung mit zumindest einem weiteren Ausgangsstoff oder zur monomolekularen Reaktion gebracht wird. Im Trägerkörper eingebettete katalytisch wirkende Partikel setzen die Aktivierungsernergie der Ausgangsstoffe herab.

Ein Ausführungsbeispiel der Erfindung wird nachfolgend näher erläutert.

Im folgenden werden verschiedene Ausgangsstoffe, deren Einbau in und/oder auf einen Trägerkörper sowie deren Laserinitialisierung, die einen wellenlängenspezifischen Effekt über den UV-VIS-IR-Bereich ermöglicht, beschrieben.


Selbstverständlich sind neben den im Ausführungsbeispiel folgend genannten Komplexbildungs- und Redoxreaktionen der im Trägerkörper vorgehaltenen Ausgangsstoffe auch andere Synthesereaktionen denkbar, wie z.B. Eliminierungen, bei denen ein Teil des Moleküls abgespalten wird, womit sich auch dessen physikalische Eigenschaften ändern, oder Additionen, bei der neue kovalente Bindungen geknüpft werden und somit einen „neuen“ Stoff generieren, oder Substitutionsreaktionen, bei der z.B. Liganden eines Komplexes ausgetauscht werden.

**Beispiel 1: Blaue Laser-Beschriftung**


Die Reaktion zu Thenards-Blau kann mit folgender Gleichung beschrieben werden:

\[ \text{Co(NO}_3\text{)}_2 + \text{Al}_2\text{O}_3 \rightarrow \text{CoAl}_2\text{O}_3 + 2 \text{NO}_2 + \frac{1}{2} \text{O}_2 \]

**In Figur 1** ist schematisch ein in eine Matrix 1 eingebettetes Pigment 2, „Iridin“, gezeigt, das in seinem Glimmerkern 4 das eingestrahlte Laserlicht 6 absorbirt und es, wie in Figur 1 durch einen Blitz 8 symbolisiert ist, über Interferenzeffekte zu den an seiner Grenzfläche 10 in der Matrix 1 befindlichen anorganischen Ausgangsstoffen Co(NO₃)₂ und Al₂O₃ transferiert. Damit entsteht an der Grenzfläche 10 des Pigments 2 ein hot-spot 12, so dass die in Beispiel 1 beschriebene Reaktion unter Farbänderung initiiert wird.
Beispiel 2: Grüne Laser-Beschichtung


Die Reaktion zu Rinmanns-Grün kann mit folgender Gleichung beschrieben werden: 2 Co(NO₃)₂ + ZnO → ZnCo₂O₄ + 4 NO₂ + ½ O₂

Beispiel 3: Blaue („Cyane“) Laser-Beschichtung

Die Reaktion zum grün-blauen ("cyanen") Manganat kann mit folgender Gleichung beschrieben werden:
\[ \text{MnSO}_4 + 2 \text{KNO}_3 + 2 \text{KOH} \rightarrow \text{K}_2\text{MnO}_4 + 2 \text{KNO}_2 + \text{H}_2\text{SO}_4 \]

Beispiel 4 a) Gelbe ("Yellow") Laser-Beschriftung und b) Grüne Laser-Beschriftung

a) Eine stöchiometrische Mischung der anorganischen Ausgangsstoffe aus grünem Chrom(III)-oxid mit 3 Kaliumnitrat und 2 Kaliumhydroxid wird analog zu einem der Beispiele 1 bis 3 in eine Matrix eingearbeitet. Auf den Einsatz von "Iridin" kann in diesem Ausführungsbeispiel verzichtet werden, da \( \text{Cr}^{3+} \) sehr gut im roten Spektralbereich absorbiert. Bei der Bestrahlung mit einem leistungsstarken Farbstoff- oder Halbleiter-Laser mit roter Emission (630 – 690 nm) tritt an dem dadurch erzeugten hot-spot oder der heißen Stelle die auch als Chrom-Oxidationsschmelze bekannte Reaktion zum gelborangen ("yellow") Dichromat (Cr \( ^{6+} \)) ein.

Die Redoxreaktion zum gelb-orangen ("yellow") Dichromat kann mit folgender Gleichung beschrieben werden:
\[ \text{Cr}_2\text{O}_3 + 3 \text{KNO}_3 + 2 \text{KOH} \rightarrow \text{K}_2\text{Cr}_2\text{O}_7 + 3 \text{KNO}_2 + \text{H}_2\text{O} \]

b) Als Farbreaktion von gelb nach grün eignet sich die auch als "klassischer Alkoholtest" im Prüfröhrchen bekannte Reaktion vom gelben Kaliumchromat (Cr\( ^{5+} \)) mit Propanol, das in vielen Druckadditiven zumindest in Spuren vorhanden ist, zum grünen Chrom(III)-oxid nach der Gleichung:
\[ 2 \text{K}_2\text{CrO}_4 + 3 \text{C}_3\text{H}_7\text{OH} \rightarrow \text{Cr}_2\text{O}_3 + 3 \text{C}_3\text{H}_6\text{O} + 4 \text{KOH} + \text{H}_2\text{O} \]

Bei einer Implementierung in einem Trägerkörper ist die Mobilität des Systems beispielsweise durch Einlaminierung zu minimieren, um gesundheitliche Gefahren, die von den giftigen Chromaten ausgehen können, auszuschließen.

In Figur 2 ist schematisch in eine Matrix 1 eingebettetes Pigment 2, gelbes Chromat (Cr\( ^{5+} \)), gezeigt, wobei die Matrix 1 als Reduktionsmittel 14 Spuren eines Alkohols (R-OH) enthält. Der Blitz 8 symbolisiert einen durch das eingestrahnte Laserlicht 6 induzierten hot-spot 12 oder eine heiße Stelle an der Grenzfläche 10 des Pigments 2 (Cr\( ^{6+} \))
zur Matrix 1. Dort wird der Alkohol zu einem Aldehyd (R-HO) oxidiert und das Cr\textsuperscript{6+} zum grünen Cr\textsuperscript{3+} reduziert nach der in Beispiel 4b) beschriebenen Gleichung.

**Beispiel 5: Rote („Magenta“) Laser-Beschriftung**

a) Eisen in der Oxidationsstufe +3, z.B. Eisen(III)-sulfat, bildet mit Thiocyanaten auch im nicht wässrigen Medium einen tiefroten („magenta“), charakteristischen Komplex nach der Gleichung:

$$\text{Fe}_2(\text{SO}_4)_3 + 6 \text{KSCN (}+ 6 \text{H}_2\text{O}) \rightarrow 2 [\text{Fe(SCN)}_3(\text{H}_2\text{O})_3] + 3 \text{K}_2\text{SO}_4$$

Die Komplexbildung findet dabei bereits beim Verreiben der Ausgangsstoffe miteinander statt, so dass das Eisen(III)-sulfat verkapselt in die Matrix eingebracht wird und erst die Laserstrahlung die Verkapselung aufbricht, um die Reaktion unter Farbänderung anzuregen.

b) Eisen(II)-sulfat bedarf keiner Verkapselung. Es wird mit Kaliumnitrat und Kaliumthiocyanat und Wasser durch die Lasereinwirkung zu Eisen mit der Oxidationsstufe +3 oxidiert, welches sofort zu dem tiefroten („magenta“), charakteristischen Komplex reagiert nach der Gleichung:

$$2 \text{FeSO}_4 + \text{KNO}_3 + 6 \text{KSCN} + 4 \text{H}_2\text{O} \rightarrow 2 [\text{Fe(SCN)}_3(\text{H}_2\text{O})_3] + \text{KNO}_2 + 2 \text{K}_2\text{SO}_4 + 2 \text{KOH}$$

**Beispiel 6: Rote fluoreszierende Laser-Beschriftung**

Europium mit der Oxidationsstufe +2 zeigt bei Oxidation mit Salpeter zur Oxidationsstufe +3 nach einer Laserbestrahlung in einer blau fluoreszieren den Umgebung eine örtlich begrenzte rote Fluoreszenz.

Die Redoxreaktion kann mit folgender Gleichung beschrieben werden:

$$2 \text{Eu}^{2+} + \text{KNO}_3 + \text{H}_2\text{O} \rightarrow 2 \text{Eu}^{3+} + \text{KNO}_2 + 2 \text{OH}^-$$

**Beispiel 7: Mehrfarbige Laser-Beschriftung**

Des Weiteren lassen sich die in den Beispielen 3, 4 und 5 vorgestellten Ausgangsstoffe für ihre laserinduzierten charakteristischen Farbreaktionen jeweils untereinander kombiniert in verschiedenen voneinander abgegrenzten Schichten 16a-d, die jeweils einen Trägerkörperr mit einer entsprechend reaktionsfähigen Matrix darstellen, einbetten, wie in Figur 3 gezeigt. Im Ausführungsbeispiel ist ein Folienverbundaufbau mit vier unter-
schiedlich dotierten Schichten 16a-d vorgesehen, wobei die unterste Schicht 16a mit MnSO₄, KNO₃ und KOH (Beispiel 3), die zweitunterste Schicht 16b mit Fe₂(SO₄)₃ und KSCN (Beispiel 5), die dritte Schicht 16c von unten mit Cr₂O₃, KNO₃ und KOH (Beispiel 4) sowie die oberste Schicht 16d mit „Iriodin“ dotiert ist. Die jeweilige Synthesereaktion wird durch die Bestrahlung mit einem Nd:YAG-Laser initiirt. Der Laser wird dazu, z.B. durch eine konfokale Optik, auf ausgewählte Volumensegmente 18a-d innerhalb der jeweiligen Schicht 16a-d (z-Koordinate) an bestimmten Positionen (x-y-Koordinaten) fokussiert. Es werden dabei Auflösungen von etwa 10 μm in x-y-Richtung und von etwa 30 μm in z-Richtung erreicht. Aufgrund der vergleichsweise geringen Fokussierungs-
schärfe in z-Richtung wird jede Schicht 16a-d einzeln abgerastert, um an den ausgewählten Volumensegmenten 18a-d die Synthesereaktion durchzuführen. Dabei wird im Ausführungsbeispiel in der unterste Schicht 16a durch die Umsetzung von MnSO₄ mit KNO₃ und KOH eine Farbänderung zu Blau („Cyan“) erreicht (Beispiel 3). Im zweiten Schritt wird dann der Laser auf die zweitunterste Schicht 16b eingestellt und innerhalb dieser auf die gewünschten x-y-Positionen fokussiert. Hier wird infolge der Bestrahlung durch Reaktion von Fe₂(SO₄)₃ mit KSCN eine Farbänderung zu Rot („Magenta“) erzeugt (Beispiel 5). Analog wird in der dritten Schicht 16c von unten die Reaktion von Cr₂O₃, KNO₃ und KOH in den ausgewählten Volumensegmenten 18c induziert und damit die Farbänderung zu Gelb („Yellow“) erreicht (Beispiel 4). Abschließend wird im Ausführungsbeispiel in der mit „Iriodin“ dotierten obersten Schicht 16d die ortsaufgelöste Bestrahlung durchgeführt. Dabei wird in den ausgewählten Volumensegmenten 18d durch die lokale Überhitzung eine graue bis schwarze Farbänderung erzeugt, die den Kontrast darstellt. Wird der Folienverbundaufbau nach dem laserinduzierten Be-
schreibungsprozess senkrecht zu den Schichten 16a-d betrachtet, ergibt sich durch die Überlagerung der einzelnen eingefärbten Volumensegmente 18a-d ein vollfarbiges CMYK-Bild durch subtraktive Farbmischung. Durch die oben genannten Ortsauflösungen sind Bilder mit einer Auflösung von mehr als 600 dpi möglich, was mithin der Standardauflösung von modernen Farbdruckern entspricht.
Bezugszeichenliste

1 Matrix
2 Pigment
4 Glimmerkern
6 eingestrahltes Laserlicht
8 Blitz
10 Grenzfläche
12 hot-spot
14 Reduktionsmittel
16a-d Schicht
18a-d Volumensegmente
Ansprüche


2. Verfahren nach Anspruch 1, bei dem als Synthesereaktion eine Addition, eine Eliminierung, eine Substitution, eine Redoxreaktion oder eine Komplexbildungsreaktion eingesetzt wird.

3. Verfahren nach Anspruch 1 oder 2, bei dem als Ausgangsstoffe der Synthesereaktion anorganische Stoffgemische eingesetzt werden.

4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Ausgangsstoffe derart gewählt werden, dass sie zu einer Synthesereaktion unter Farbbänderung veranlasst werden.

5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Ausgangsstoffe derart gewählt werden, dass das Produkt der jeweiligen Synthesereaktion jeweils einer Grundfarbe eines CMYK-Farbschemas zugeordnet ist.


7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem Ausgangsstoffe von Synthesereaktionen unterschiedlicher Eigenschaftsänderungen, insbesondere Farbbänderungen, in voneinander abgegrenzten Schichten (16a-d) im Trägerkörper vorgehalten werden.
8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem zumindest einer der Ausgangsstoffe gekapselt vorgehalten wird, wobei die Verkapselung derart gewählt wird, dass sie durch die Laserbestrahlung aufgebrochen wird.

9. Verfahren nach Anspruch 8, bei dem die Verkapselung derart gewählt wird, dass sie die Laserstrahlung absorbiert.

10. Verfahren nach einem der vorhergehenden Ansprüche, bei dem im Trägerkörper die Laserbestrahlung absorbierende Hilfsstoffe oder -schichten eingebettet sind.

11. Verfahren nach einem der vorhergehenden Ansprüche, bei dem im Trägerkörper für die Synthesereaktion katalytisch wirkende Partikel eingebettet sind.


15. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die im und/oder auf dem Trägerkörperformhaltenen Ausgangsstoffe bei der Folien- oder Papierherstellung als zusätzliches Additiv eingebracht und/oder durch Beschichtungsverfahren, wie Streichen, Spritzen, Sprühen, Coaten, Tauchen, und/oder durch Druckverfahren, wie Offset, Stahltichdruck, Rastertiefdruck,

16. Trägerkörper, insbesondere für das Verfahren nach einem der Ansprüche 1 bis 15, in und/oder auf dem eine Anzahl von Ausgangsstoffen derart vorgehalten ist, dass laserinduziert die Reaktionsbedingungen für eine Synthesereaktion der Ausgangsstoffe einstellbar sind.


18. Trägerkörper nach Anspruch 16 oder 17, bei dem als Ausgangsstoffe der Synthesereaktion anorganische Stoffgemische eingesetzt sind.

19. Trägerkörper nach einem der Ansprüche 16 bis 18, bei dem die Ausgangsstoffe derart gewählt sind, dass das Produkt der jeweiligen Synthesereaktion jeweils einer Grundfarbe eines CMYK-Farbschemas zugeordnet ist.


21. Trägerkörper nach Anspruch 19 oder 20, bei dem für ein Produkt mit der Zuordnung zu der Farbe Rot („Magenta“) als Ausgangsstoffe Fe₂(SO₄)₃ und KSCN vorgehalten sind.

22. Trägerkörper nach einem der Ansprüche 19 bis 21, bei dem für ein Produkt mit der Zuordnung zu der Farbe Gelb („Yellow“) als Ausgangsstoffe Cr₂O₃, KNO₃ und KOH vorgehalten sind.
23. Trägerkörper nach einem der Ansprüche 19 bis 22, bei dem für ein Produkt mit der Zuordnung zu der Farbe Blau als Ausgangsstoffe Cu\textsuperscript{2+} und NH\textsubscript{3} oder die Substanzen Co(NO\textsubscript{3})\textsubscript{2} und Al\textsubscript{2}O\textsubscript{3} und/oder für ein Produkt mit der Zuordnung zu der Farbe Grün als Ausgangsstoffe Co(NO\textsubscript{3})\textsubscript{2} und ZnO oder die Substanzen K\textsubscript{2}CrO\textsubscript{4} und C\textsubscript{3}H\textsubscript{7}OH vorgehalten sind.

24. Trägerkörper nach einem der Ansprüche 16 bis 23, bei dem Ausgangsstoffe von Synthesereaktionen unterschiedlicher Eigenschaftsänderungen, insbesondere Farbänderungen, in voneinander abgegrenzten Volumensegmenten (18a-d) Trägerkörper vorgehalten sind.

25. Trägerkörper nach einem der Ansprüche 16 bis 24, bei dem Ausgangsstoffe von Synthesereaktionen unterschiedlicher Eigenschaftsänderungen, insbesondere Farbänderungen, in voneinander abgegrenzten Schichten (16a-d) im Trägerkörper vorgehalten sind.

26. Trägerkörper nach einem der Ansprüche 16 bis 25, in dem die Laserbestrahlung absorbierende Hilfsstoffe oder -schichten eingebettet sind.

27. Trägerkörper nach Anspruch 26, bei dem für die Zuordnung zu Kontrast oder Schwarz als ein die Laserbestrahlung absorbierender Hilfsmittel ein Glimmer- oder Farb-Pigment vorgehalten ist.

28. Trägerkörper nach einem der Ansprüche 16 bis 27, in dem zumindest einer der Ausgangsstoffe einer Synthesereaktion gekapselt vorgehalten ist, wobei die Verkapselung derart gewählt ist, dass sie durch die Laserbestrahlung auf- gebrochen wird.

29. Trägerkörper nach Anspruch 28, bei dem die Verkapselung derart gewählt ist, dass sie die Laserbestrahlung absorbiert.

30. Trägerkörper nach einem der Ansprüche 16 bis 29, in dem für die Synthesereaktion katalytisch wirkende Partikel eingebettet sind.
1. Beschriftung: blau ("cyan")

2. Beschriftung: rot ("magenta")

3. Beschriftung: gelb ("yellow")

4. Beschriftung: schwarz ("kontrast")

Fig. 3
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B41M5/26 B41M3/14

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 B41M B42D G06K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)
EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X DE 100 53 264 A (ORGA KARTENSYSTEME GMBH)
8 May 2002 (2002-05-08)
column 1, line 1 - line 7
column 1, line 54 - column 2, line 20
column 2, line 58 - line 62
claims 1,2,8-11

X WO 02/068205 A (SHERWOOD TECHNOLOGY LIMITED) 6 September 2002 (2002-09-06)
page 1, line 29 - page 2, line 2
page 2, line 20 - page 3, line 18
claims 1,6; examples 1-16

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"*" Special categories of cited documents:
"*" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"*X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"*Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"*S" document member of the same patent family

Date of the actual completion of the international search: 27 July 2004
Date of mailing of the international search report: 04/08/2004

Name and mailing address of the ISA
European Patent Office, P.B. 5618 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 440-2040, Tx. 31 651 apo nl,
Fax (+31-70) 440-3016

Authorized officer
Bacon, A

Form PCT/ISA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 01/09230 A (NOKIA MOBILE PHONES LIMITED) 8 February 2001 (2001-02-08)</td>
<td>1-30</td>
</tr>
<tr>
<td></td>
<td>page 1, line 1 - line 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 2, line 1 - page 3, line 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 4, line 29 - page 5, line 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 8, line 9 - line 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 8, line 25 - page 9, line 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims 1,3,15,16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WO 02/096662 A (3M INNOVATIVE PROPERTIES COMPANY) 5 December 2002 (2002-12-05)</td>
<td>1-30</td>
</tr>
<tr>
<td></td>
<td>claims 1,2,6,13-16,19,20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 1, line 4 - line 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 7, line 12 - line 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 9, line 8 - line 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>example 1</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>DE 10053264</td>
<td>08-05-2002</td>
<td>DE 10053264 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2361002 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0235444 A1</td>
</tr>
<tr>
<td>WO 02068205</td>
<td>06-09-2002</td>
<td>EP 1365923 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02068205 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2374561 A, B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003186001 A1</td>
</tr>
<tr>
<td>WO 0109230</td>
<td>08-02-2001</td>
<td>GB 2352824 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7407500 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0109230 A1</td>
</tr>
<tr>
<td>WO 02096662</td>
<td>05-12-2002</td>
<td>US 2002187426 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1392518 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02096662 A1</td>
</tr>
</tbody>
</table>
### INTERNATIONALER RECHERCHENBERICHT

**INFORMATIONES AKTENZEICHEN**

PCT/EP2004/003218

---

**A. KLASSEIFISIERUNG DES ANMELDUNGSSTANDES**

IPK 7 B41M5/26 B41M3/14

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

**B. RECHERCHIERTE GEBIETE**

Recherchierte Mindestpräfetöck (Klassifikationssystem und Klassifikationsysteme)

IPK 7 B41M B42D G06K

Recherchierte aber nicht zum Mindestpräfetöck gehörend Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

---

**C. ALS WESENTLICH ANGESEHENE UNTERLAGEN**

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>

---

**X** Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

**X** Siehe Anhang Patentfamilie

---

**X** Besondere Kategorien von angegebenen Veröffentlichungen :

**X** Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutend angesehen ist

**X** Bilddokument, das jedoch erst am oder nach dem Internationalen Anmeldetag veröffentlicht worden ist und mit der Anmeldung der Anmeldung nicht korreliert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

**X** Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht aufgrund dieser Veröffentlichung noch als neu oder auf erforderlicher Tätigkeit beurteilt betrachtet werden

**X** Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als neu und erforderlicher Tätigkeit betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

Datum des Abschlusses der Internationalen Recherche: 27. Juli 2004

Absendezeitpunkt des Internationalen Recherchenberichts: 04/08/2004

Name und Postanschrift der Internationalen Recherchenbehörde:

Europäisches Patentamt, P.B. 5618 Patentamt 2 NL - 2330 Tübingen Tel. (+31-70) 940-2040, Tx. 31 651 epo nl, Fax: (+31-70) 940-3010

Bevollmächtigter Gerichtskorrespondent: Bacon, A
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 01/09230 A (NOKIA MOBILE PHONES LIMITED) 8. Februar 2001 (2001-02-08) Seite 1, Zeile 1 - Zeile 4&lt;br&gt;Seite 2, Zeile 1 - Seite 3, Zeile 5&lt;br&gt;Seite 4, Zeile 29 - Seite 5, Zeile 2&lt;br&gt;Seite 8, Zeile 9 - Zeile 11&lt;br&gt;Seite 8, Zeile 25 - Seite 9, Zeile 2&lt;br&gt;Ansprüche 1,3,15,16</td>
<td>1-30</td>
</tr>
<tr>
<td>X</td>
<td>WO 02/096662 A (3M INNOVATIVE PROPERTIES COMPANY) 5. Dezember 2002 (2002-12-05) Ansprüche 1,2,6,13-16,19,20&lt;br&gt;Seite 1, Zeile 4 - Zeile 6&lt;br&gt;Seite 7, Zeile 12 - Zeile 21&lt;br&gt;Seite 9, Zeile 8 - Zeile 22&lt;br&gt;Beispiel 1</td>
<td>1-30</td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(er) der Patentfamilie</td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>--------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>DE 10053264 A</td>
<td>08-05-2002</td>
<td>DE 10053264 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2361002 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0235444 A1</td>
</tr>
<tr>
<td>WO 02068205 A</td>
<td>06-09-2002</td>
<td>EP 1365923 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02068205 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2374561 A,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003186001 A1</td>
</tr>
<tr>
<td>WO 0109230 A</td>
<td>08-02-2001</td>
<td>GB 2352824 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7407500 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0109230 A1</td>
</tr>
<tr>
<td>WO 02096662 A</td>
<td>05-12-2002</td>
<td>US 2002187426 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1392518 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02096662 A1</td>
</tr>
</tbody>
</table>