WO 2006/051404 A2 || 000000 0 000 O O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 May 2006 (18.05.2006)

2|) R
2 |0 O 0 OO0

(10) International Publication Number

WO 2006/051404 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/IB2005/003385

(22) International Filing Date:
11 November 2005 (11.11.2005)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
PCT/IB2004/3705
11 November 2004 (11.11.2004) 1B
60/626,921 12 November 2004 (12.11.2004) US

(71) Applicant (for all designated States except US): CERTI-
COM CORP. [CA/CA]; 5520 Explorer Drive, 4th Floor,
Mississauga, Ontario L4W 511 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BROWN, Daniel,
R.L. [CA/CA]; 6033 Paddle Road, Mississauga, Ontario
L5N 1X8 (CA). GALLANT, Robert, P. [CA/CA]; 4788

(74)

(81)

(84)

Rosebush Road, Mississauga, Ontario L5SM 5N1 (CA).
VANSTONE, Scott, A. [CA/CA]; 10140 Pineview Trail,
P.O. Box 490, Campbellville, Ontario LOP 1BO (CA).

Agents: ORANGE, John et al.; Blake, Cassels & Graydon
LLP, 199 Bay Street, Suite 2800, Commerce Court West,
Toronto, ON M5L 1A9 (CA).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, HI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ,VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: SECURE INTERFACE FOR VERSATILE KEY DERIVATION FUNCTION SUPPORT

100

Destination

_’/40

User Device

60

Private Key
Module Device

L ~5&0

(57) Abstract: Improper re-use of a static
Dithe-Hellman (DH) private key may leak
information about the key. The leakage is prevented
by a key derivation function (KDF), but standards do
not agree on key derivation functions. The module
for performing a DH private key operation must
somehow support multiple different KDF standards.
The present invention provides an intermediate
approach that neither attempts to implement all
possible KDF operations, nor provide unprotected
access to the raw DH private key operation. Instead,
the module performs parts of the KDF operation,
as indicated by the application using the module.
This saves the module from implementing the entire
KDF for each KDF needed. Instead, the module
implements only re-usable parts that are common to
most DFs.Furthermore, when new KDFs are required,
the module may be able to support them if they built
on the parts that the module has implemented.

WO 2006/051404 A2 I} H10 Y A08OH0 000 0O 000 AR

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, For two-letter codes and other abbreviations, refer to the "Guid-
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, ance Notes on Codes and Abbreviations" appearing at the begin-
RO, SE, S, SK, TR), OAPI (BF, BJ, CE CG, CI, CM, GA, ning of each regular issue of the PCT Gazette.
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

10

15

20

25

WO 2006/051404 PCT/IB2005/003385

-1-
SECURE INTERFACE FOR VERSATILE KEY DERIVATION FUNCTION SUPPORT

FIELD OF INVENTION

[0001] The invention relates generally to the field of cryptography. In particular, the

invention relates to providing versatile key derivation function support.

BACKGROUND OF INVENTION

[0002] Diffie-Hellman (DH) key agreement is a fundamental development in
cryptography. It is the first workable method of public-key cryptography, that made key

distribution feasible without setting up pre-arranged secrets.

[0003] In the simplest form of the DH key agreement, each party has a respective private
key x, y from which a public key o, o respectively, can be derived. By exchanging public
keys, each party can compute a shared secret key o by combining the private and public
keys. The function used to derive a public key from a private key is a one way function that
makes computation of the public key relatively simple but renders it infeasible to extract the
private key from the public key. Such a function is based on the difficulty of factoring large
numbers which are the product of two large primes or the discrete log problem over finite

fields.

[0004] Diffie-Hellman (DH) key agreement is in wide use today. The IPSec protocol uses
DH key agreement, and IPSec is used in most Virtual Private Networks (VPNs) that most
corporations’ use for allowing employees to connect remotely to the corporate network, as

well as for connecting separate offices over the open Internet.

[0005] Diffie-Hellman key agreement is also a NIST recommended option in the
Transport Layer Security (TLS) protocol. The TLS protocol is the successor to the SSL
protocol. These protocols are used widely today for securing sensitive web traffic, such as

online banking.

[0006] Static DH key agreement is a variant of DH key agreement in which one of the

private keys is static, which means that it is a long term key to be used multiple times.

[0007] Because of the sensitivity of the pﬁvate key, particularly where it is used multiple

times, it is usually located in a private key module, which is an implementation that includes

10

15

20

25

30

WO 2006/051404 PCT/IB2005/003385

-2-

the private key operation. Generally, such modules include measures to prevent extraction of
the private key, and to a much more limited extent, abuse of the private key operation. For
example, these modules can be implemented in specialized hardware that does not admit the
loading of malicious software such as viruses, worms and Trojan horses. Generally, such
anti-tampering measures are expensive to Implement. Therefore, to reduce costs, modules
are generally designed with a minimum functionality. That way, the least amount of

functionality needs anti-tampering protection.

[0008] By way of a simple example, a module may be a smart card. The smart card is
owned by a user. Suppose that the user wishes to make a secure connection to a destination,
such as a home computer from some remote computer. The user enters the smart card into a
smart card reader attached to the remote computer. Then a connection is made to the home
computer. The home computer authenticates the user by sending a challenge. The remote
computer forwards the challenge to the smart card. The smart card signs the challenge,
which is then forwarded back to the home computer. The home computer verifies the
challenge and then provides the necessary access to the user via the remote computer. This
allows the user to move around to different remote computers. The remote computers,
however, should not be able to extract the user's private key from the smart card. That is,
they should only be able to connect to the home computer while the user leaves the smart
card in the reader. (For this to be achieved, a more sophisticated method than simple
challenge and response is needed. Instead, the smart card may need to perform regular

authentication of traffic or even encryption and decryption of all of the traffic.)

{0009] To enhance security furfher, a key derivation function (KDF), which is a one-way
function applied to the raw DH shared secret, is often specified. Some standards specify that
a KDF is to be used with DH key agreement. Different standards recommend different
KDFs, however. For example, ANSI specifies several different KDFs, as does IEEE, as do
SSL and TLS, and different yet again is IPSec.

[0010] The following provides a simplified description of the details behind two
standardized key derivation functions. These are the ANSI X9.63 key derivation and the TLS

key derivation functions.

[0011] The ANSI X9.63 key denvation is computed as follows. The input has three
components. The first input component is Z, which is a secret value shared between the

private key module and the destination, for example, the home computer in the simple

10

15

20

25

30

WO 2006/051404 PCT/IB2005/003385

-3-

example above. This shared secret value Z is not to be revealed to any gateway, such as the
remote computer in the example above. The second input component is an integer key
datalen, which is the length in octets of the keying data to be generated. The optional third
input component is an octet string SharedInfo, which consists of some data shared by the
entities who share the shared secret value Z. Furthermore, SharedInfo can also optionally be
given an encoding of the Abstract Syntax Notation One (ASN.1), which includes 5 fields: an
algorithm identifier, optional identifiers for each of the two entities, optional public shared
information and optional private shared information. Evaluation of the KDF on this input

then proceeds as follows.

[0012] The first steps of the ANSI X9.63 key derivation function are certain consistency
checks made on the lengths of the inputs and the desired output length keydatalen. Then a 4-
octet integer counter j is initialised with value 1. A series of hash values Kj are computed as
follows: Kj = SHA-1(Z ||/ || [SharedInfo]), where || indicates concatenation and [] indicates
that the bracketed input is optional. The number 7 of these outputs depends on keydatalen.
The hash values are concatenated to form a octet string K’ = K1 || K2 || ...|| K. The octet
string is truncated to a shorted octet string X by taking the leftmost keydatalen octets. The
output of the ANSI X9.63 KDF is XK.

[0013] In the TLS standard, key derivation functions are called pseudorandom functions
(PRF). The construction of the TLS PRF is quite different from the ANSI X9.63 KDF, and is
given as follows. The construction makes use of an auxiliary construction HMAC, which is

described first.

[0014] The HMAC construction can be built on any hash function. When the HMAC
construction is used with a hash function, such as MD5 and SHA-1, then the resulting
function is labelled HMAC-Hash, where Hash is the name of the hash function. The TLS
PRF uses HMAC-SHA-1 and HMAC-MDS5. The generic form of HMAC, namely HMAC-

Hash, operates as follows.

[0015] The inputs to HMAC are a secret key K and a message M. The output is a tag T.
The HMAC tag is computed as 7 = Hash ((C+K) || Hash ((D+K) || M)) where || indicates
concatenation, + indicates the well-known bit-wise exclusive-or (XOR) operation, and C and
D are constant bit strings as determined by the HMAC algorithm. More precisely, the key K
is padded with zero bits until its length matches that of C and D, except if K is longer than C
and D, in which case, K is replaced with the hash of the key. This is written as:

10

15

20

25

WO 2006/051404 PCT/IB2005/003385

T = HMAC-Hash (X, M).

[0016] The function HMAC-Hash is used in another auxiliary hash-generic construction

in TLS PRF, called P_Hash. The construction for P_Hash is as follows:

P _Hash (Z, seed) = HMAC-Hash (Z, A(1) || seed) | HMAC-Hash (Z, A(2) || seed)
| HMAC-Hash (Z, AG3) || seed) | ...

where || indicates concatentation and A() is defined as follows:
A(0) = seed; A(j) = HMAC_Hash (Z, AG-1)).

[0017] P_Hash can be iterated as many times as necessary to produce the necessary
amount of data As with the ANSI X9.63, the truncation of the final (rightmost) bytes 1s used

when the resulting concatenation of HMAC tags is longer than the amount of data needed.
[0018] - The TLS PRF is defined as follows:
PRF (Z, label, seed) = P_MDS5 (S1, label || seed) + P_SHA-1 (S2, label || seed)

where, as usual, + indicates exclusive-or and || indicates concatenation. The values S/ and S2
are obtained by partitioning the octet string secret Z into two halves, the left half being S/ and
right half 2, with the left half being large secret has an odd number of octets.

[0019] Because the MD5 outputs as specified by the algorithm are 16 octets while the
SHA-1 outputs are 20 octets, the function P_MD5 will generally use more iterations than
P_SHA-1.

[0020] The TLS PRF is used extensively in the TLS protocol. For example, it is used to .
derive a master secret from a pre-master secret, and it is also used to derive an encryption key

from the master key, and so on.

[0021] The disharmony between standards on KDF creates a large incentive to module
implementers either to support DH key agreement without the KDF, or to support just a
limited number of KDFs.

[0022] The standard Public Key Cryptography Standard (PKCS) #11: Cryptographic
Token Interface (cryptoki) addresses an interface for tokens such as smart cards, which are a
class of private key modules. In this standard, a few KDFs are supported, but the interface
provided are generally not KDF-flexible. The standard FIPS 140-2 also specifies

requirement for private key modules. It explicitly requires that the cryptographic values such

10

15

20

25

30

WO 2006/051404 PCT/IB2005/003385

-5-
as raw DH shared secret values do not depart the security boundary of the private key

module, but it does not provide a precise mechanism for key derivation.

[0023] The inventors have discovered that improper re-use of a static DH private key can
ultimately result in recovery of the private key by an adversary. More precisely, when a
shared secret established via static DH key agreement is used without application of a key
derivation function (KDF), an adversary can launch an attack where multiple different shared

keys are established and used, thereby recovering the static DH private key.

[0024] The inventors' recent discovery means that the option of implementing DH
without KDF can be a security risk. Supporting a reduced number of KDF’s may be too

limiting; for example, it may require hardware upgrade just to use a new application standard.

[0025] As standards do not agree on key derivation functions, the module for performing
a DH private key operation must somehow support multiple different KDF standards. One
approach is for the module to implement all the KDF algorithms, which can be expensive
because the module must support multiple different KDFs and limiting because the module
cannot support new KDFs when these arise. The opposite approach is for the module to
provide unprotected access to the raw DH private key op eration, and let the application using
the module apply the KDF. However, this renders the private key vulnerable to the recently

discovered attacks.

[0026] It is an object of the present invention to obviate or mitigate the above

disadvantages.

SUMMARY OF INVENTION

[0027] In general terms, the present invention permits the module to perform parts of the
KDF algorithms, as indicated by the application using the module. This saves the module
from implementing the entire KDF for each KDF needed. Instead, only re-usable parts are
implemented that are common to most KDFs. Furthermore, when new KDFs are required,
the module may be able to support them if they are built on the KDF parts that the module

has implemented.

[0028] In this manner, raw access to the static DH private key operation is not permitted
on the module, because this generally tends to be too much of a security risk. Instead, the

module provides an interface flexible enough to support all existing KDFs of interest as well

10

15

20

25

30

WO 2006/051404 PCT/IB2005/003385

-6-

as all foreseeable KDFs. This is done by implementing the common parts of the existing and
foreseeable KDFs on a secure private key module. Most KDFs today are built on hash
functions. Conveniently, most private key modules need to implement at least a hash
function. This is also important for anti-tampering considerations because a hash function 1s

crucial to the security of many algorithms, such as digital signatures. °

[0029] As an alternate to this, the module can also simply provide access to the
compression function of SHA-1. The application can use this compression function to
compute SHA-1 just by adding some necessary padding and doing some appropriate
chaining. This further simplifies the implementation module and also makes it more
flexible. For example, some additional flexibility is that certain ANSI deterministic random
number generators use the SHA-1 compression function instead of the whole of the function
SHA-1. More generally, random number generation, like key derivation, generally involves a
combination of hash function evaluations upon a mixture of secret and non-secret inputs.
Therefore the present invention is not just limited to supporting multiple KDFs, it can also

support multiple deterministic random number generators.

[0030] For even greater flexibility, the module could support more atomic operations,
such as some of the sub-operations of the SHA-1 compression function. However, it does not
seem likely that these sub-operations will be re-used for some purpose other than the SHA-1
compression function. Also, these individual sub-operations do not provide the full security
of SHA-1, and may therefore expose secrets on the module to the application, which is to be
avoided. An exception to this principle, however, are the two pairs of new hash functions:
the pair SHA-384 and SHA-512, and the pair SHA-224 and SHA-256. Each of these pairs
has much in common and could essentially be implemented with a single common function.
The application would process the inputs and outputs only to the common function to obtain

the desired hash function.

[0031] In the case of the TLS key derivation, known as pseudo-random function (PRF) in
TLS terminology, two hash functions are used. One is SHA-1 and the other is MD5. To
apply the PRF-TLS to a secret Z, the secret is split into two halves, S1 and S2. Then a PRF
based on MDS5 is applied to S1 and a function based on SHA1 1s applied to S2. To save the
module from implementing both MD5 and SHA1, which is potentially costly, the module

could instead provide a mechanism to reveal S1 to the application and keep S2 within the

10

15

20

25

WO 2006/051404 PCT/IB2005/003385

-7-
module. The module could perform the SHA1 calculation on S2 and the application could
perform the MD5 calculation on S1.

[0032] Although it is not anticipated that any other KDF than the one in TLS will divide
up secrets in such a manner, it tends to be difficult to predict which way standards will go.
Therefore it may be useful for a module to support a generic method of dividing up a secret.
The interface for the module therefore includes a mechanism whereby the application can
request that part of a secret is made public. The module is implemented in a way such that
enough of the secret remains secret, and that the application cannot make multiple request for

different parts of the secret.

[0033] Because new standards keep arising, and because standards keep re-designing
KDFs and random number generators, a flexible and secure interface to a hardware module
provides considerable value for extending the usability of the module. Otherwise the module

risks becoming obsolete too quickly.

BRIEF DESCRIPTION OF DRAWINGS

[0034] An embodiment of the invention will now be described by way of example only

with reference to the accompanying drawings, in which:

[0035] Figure 1 is a block diagram showing a connection between a user device and a

destination secured with a private key module; and

[0036] Figure 2 is a schematic diagram illustrating implementation of a key derivation

function in the user device and the private key module shown in Figure 1.
[0037] Figure 3 is a schematic diagram illustrating a private key module device.
[0038] Figure 4 is a flow chart illustrating one example of a key derivation function.

[0039] Figure5 is a flow chart illustrating another example of a key derivation function.

DETAILED DESCRIPTION OF EMBODIMENTS

[0040] The description which follows, and the embodiments described therein, are
provided by way of illustration of an example, or examples, of particular embodiments of the

principles of the present invention. These examples are provided for the purposes of

10

15

20

25

30

WO 2006/051404 PCT/IB2005/003385

-8-
explanation, and not limitation, of those principles and of the invention. In the description
which follows, like parts are marked throughout the specification and the drawings with the

same respective reference numerals.

[0041] Referring to Figure 1, there is shown a connection between a user device 40 and a
destination 100 secured with a private key module device 50. The connection between user
device 40 and destination 100 is generally not secure and is open. For example, the
connection may consist of a link 70 to a public network 80, such as Internet, and a link 90
from the public network to destination 100. Either link may be a wired link, wireless link or
a combination of both. In general, private key module device 50 is a self-contained device,
such as a smart card or token, which may be inserted into some local deyice, or user device
40, on which the application runs. The module device 50 cooperates with the user device 40

when invoked by an application to secure a communication over the link 70.

[0042] In this mode of operation, the private key module device 50 provides a private key
functionality to secure the connection between user device 40 and the destination device 100.
However, since private key module device 50 is a custom private'key module, it needs some
additional protection beyond that of a typical user computer like user device 40.
Implementing a key derivation function (KDF) partly in an application running on user
device 40 and partly in a module executing on private key module device 50 enhances the
security. It will be appreciated that although user device 40 and private key module device
50 are described as distinct devices here, they may be integrated into a single physical device.
For example, private key module device 50 may reside on user device 40 as a special

embedded chipset.

[0043] The user device 40 typically will run multiple applications and perform different
functions utilizing a CPU 42 and memory device 44. The user device 40 includes a
communication module 45 to manage the link 70 under direction of a communication
application running on the CPU 42. To establish a secure communication, the
communication application implements an established secure protocol, such as one of those
discussed above, that requires a private key functionality, such as a KDF. To facilitate
computation of a selected KDF, whilst maintaining flexibility, the KDF derivation is
separated into discreet subroutines and those that require operation on a private key are
performed by the private key module 50. The balance are performed by the user device 40 so

that the raw private key data is not accessible through the user device 40.

10

15

20

25

30

WO 2006/051404 PCT/IB2005/003385

-9.-

[0044] Referring to Figure 2, there is shown an exemplary implementation of security
system that has a key derivation function (KDF) implemented partly in an application 10
running on the user device 40 and partly in an application 20 running on a private key module
50 The KDF is divided into two parts. Private key module 50 generates components 24 of
the KDF and application 10 uses those components to compute the balance 22 of the KDF.
Private key module 20 has a module interface 26 for exchanging data and communicating
with application 10. Module interface 26 further has two interface functions, a first interface

function 28 and a second interface function 30.

[0045] Advantageously, some secret value, such as a Diffie-Hellmena shared secret value
Z, are determined in private key module 20. The length of Z is made known to application 10,
but the value of Z is not. Application 10 has a handle whereby it can reference the secret Z

and thus ask private key module 20 to derive values from Z.

[0046] The first interface function 28 has input consisting of an integer and the handle of
secret Z. This integer defines the number of octets of Z that shall be revealed to application
10. This is the S1 value in the TLS PRF. When executing this function, private key module
20 can enforce a minimum number of octets of the secret to be retained as S2, so that
application 10 does not learn the entire secret. The minimum number is chosen to be
appropriate for the intended security level of the application. It may be 10 octets for a
security level of 80 bits. Once first interface function 28 is called, the secret may be
permanently truncated to S2, and private key module 20 will not allow further truncation of
S2. A handle or pointer for referencing S2 is provided to application 10. Preferably, the
handle or pointer referencing Z may be re-used as Z is not used in further computation.
Henceforth, private key module 20 sets the secret Z = S2 after first interface function 28 1s
called. Optionally private key module 20 can create a new handle that points to just S2 and
output this new handle to application 10, enabling application 10 to refer to S2 later on. The
value S1 is always part of the output of first interface function 28, so that application 10, i.e,,
first part 22 of the KDF contained in application 10, can perform any calculations it needs to
on S1, such as the MD5 calculations used in the TLS PRF.

[0047] The second interface function 30 has input consisting of two values X and Y and
the handle of the secret Z. The first value is an octet string of length identical to the secret Z.

The output of second interface function 30 is:

SHA-1(X+Z|| 1).

10

15

20

25

30

WO 2006/051404 PCT/IB2005/003385

-10-
[0048] Second interface function 30 is the fundamental cryptographic operation from
which both the ANSI X9.63 KDF and the TLS PRF can be built. From the output S1 of first
interface function 28 and the output of second interface function 30, namely, the hash value

of SHA-1, application 10 can complete the KDF computation and derive a key.

[0049] User device 40 generally has a CPU 42, memory device 44 accessible to CPU 42
storage media 46, also accessible to CPU 20, and some input and output devices (not shown).
As will be appreciated, user device 40 may also be some other programmable computation
device. Application 10 executes on CPU 42. Application 10 may be stored on storage media
46, which may be permanently installed in user device 40, removable from user device 40 or
remotely accessible to user device 40. Application 10 may also be directly loaded to CPU 42.
Output of the KDF is required for securing the connection from user device 40 to destination

100.

[0050] Private key module device 50 generally has a CPU or a microprocessor 52,
memory device 54 accessible to CPU 52 and storage media 56, also accessible to CPU 52.
Private key module 20 executes on CPU 52. Private key module 50 may be stored on storage

media 56 or directly loaded to memory device 52. Private key module 50 may store the secret

private key in its memory device 54 or its storage media 56. As will be appreciated, private

key module 50 may also have input means, such as a keyboard where private key module

device 50 is a smart card with keyboard, for users to enter a secret private key.

[0051] While the distinction is made here that there are a memory device 54 which tends
to be used for storing more volatile data and a storage media 56 which tends to be used to
store more persistent data, private key module device 50 may have only a single data storage
device for storing both volatile and persistent data. Similarly, user device 40 may have only a

single data storage device for storing both volatile and persistent data.

[0052] Data link 60 provides a communication channel between application 10 and
private key module 50 when needed. Data link 60 may be wired, or wireless. It may be a
direct connection between user device 40 and private key module device 50. The data link 60
may be permanent, or more preferably, a connection that is established on demand. In

general, data link 60 is not an open link but instead is a protected link.

[0053] As noted above, private key module 20 does not implement an entire KDF.

Components 24 of the KDF generated in private key module 50 implements only those re-

10

15

20

25

30

WO 2006/051404 PCT/IB2005/003385

211 -

usable portion and only the part that performs the cryptographic operations that are
fundamental to security. This promotes flexibility without compromising security. When
implementing a DH protocol, for example, raw access to the static DH private key operation
is not permitted on the module. Instead, the module provides an interface flexible enough to
support all existing KDFs of interest as well as all foreseeable KDFs. One way to do this
most efficiently is to implement the common parts of the existing and foreseeable KDFs.
Most KDFs today are built on hash functions, although it is also foreseeable that some in the
future will be built from block ciphers. Most private key modules ought to support at least a
hash function, because a hash function is crucial to the security of many algorithms, such as
digital signatures. Fortunately, fewer hash functions are standardized than KDFs. For
example, the hash function SHA-1 can be re-used to support several different KDFs, such as
the distinct ANSI, IPSec and TLS key derivation functions. The TLS key denvation also
uses another hash function, MDS, but this can be handled outside of the module 50, as
explained further below.

[0054] Referring to Figure 3, for KDFs that are generated using SHA-1 operations, the
application 10 instructs the private key module 50 what input to supply to as the input to the
hash function. Some of the input is a secret and unknown to the application. To specify this,
the application 10 refers to such secret input via a handle or pointer 57. Public input may be
provided directly by the application 10. Formatting of the input, which is custom to each
KDF, is specified by generic formatting interface provided by the module. The hash outputs
that private key module 50 provides to the application 10, may be re-used by the application
10 as further inputs to more hash function calls. This is because many KDFs are based on a
chaining mechanism where the output of one hash call is fed into the input of another hash
call.

[0055] In one embodiment, the private key module 50 includes an implementation of
SHA-1 and a simple interface. In an alternative embodiment, the private key module 20

includes a general purpose execution environment.

{0056] Alternatively, an interface may be implemented whereby a module can support
both the TLS PRF and the ANSI X9.63 KDF without unduly exposing the raw private key

operation (thereby avoiding the attack discovered by the inventors).

[0057] The operation in support of the ANSI X9.63 KDF and TLS PRF, ANSI X9.63

KDF derives a key from a shared secret value by computing a series of hash values computed

10

15

20

25

30

WO 2006/051404 PCT/IB2005/003385

-12-

from hash function SHA-1 based on the shared secret value and then truncating an octet
string formed from the concatenation of the hash values, while TLS PRF has a much more
complicated construction, involving the computation of both hash function MD5 and hash
function SHA-1.

[00S8] A goal of the module interface 26 is to not implement the hash function MDS5.
Only the hash function SHA-1 is implemented on private key module 20, namely on the
second part 24 of the KDF. The application 10 using private key module 20 is therefore
responsible for implementing MDS in its first part 22 of the KDF. From a security
perspective, this may not present a significant drawback. This is because the MD5 hash
function is not universally considered to provide adequate security, whereas the SHA-1 hash
function tends to be universally accepted to provide adequate security for the purposes of key
derivation, for all but the highest security levels (these higher levels require the use of SHA-
256 or another successor to SHA-1).

[0059] The operation in support of ANSI X9.63 KDF is generally shown in Figure 4. In
such operation, application 10 chooses X=0and Y =] || [SharedInfo], where j is the 4-octet
counter that the application maintains. Application 10 may then call function 30 with X, Y
and the handle for Z. The application 20 of the private key module 50 may then use the
values for X and Y and the handle for Z supplied by application 10 to compute the SHA-1
according to the expression described above and shown in Figure 4. The application 10 may
then obtain the computed SHA-1 value and use this for building the ANSI X9.63 KDF and

deriving a key.

[0060] The operation of applications 10 and 20 is support of the TLS PRF is shown n
Figure 5. The application 10 calls the first interface function 28 in order to divide the shared
secret Z into two halves S1 and S2 (part 1 of Figure 5) and described above regarding
function 28. The application 10 then calls the second interface function 30 to compute a hash
value based on S2 (part 2 of Figure 5), and then uses the construction above to compute
P _SHA-1 from the outputs of the first and second interface functions 28, 30 (part 3 of Figure
5). Parts 2 and 3 are explained below.

[0061] To build the function HMAC-SHA-1 used in part 2 of the TLS-PRF operation
shown in Figure 5, application 10 first calls second interface function 30 withX=Dand Y=
M and the handle for key K, which gives T1 = SHA-1 (D + K) | M). (The value of D is a
publicly known constant, so is available to application 10.) Then application 10 sets X = C

10

15

20

25

30

WO 2006/051404 PCT/IB2005/003385

-13 -
and Y = T with the same handle for K, to get 7= SHA-1 ((C + K) || T1) = HMAC-SHA(K,
M). (The value of C is public like D.)

[0062] Ifthe key K needs to be padded with zero bits, then application 10 will account for
this by prepending the second input Y with the necessary zero bits as XORed with the
appropriate octets of the constant C and D. If the key K is long enough to require
compression first, then application 10 can do this by setting X =0 and Y =0, to get the hashed
key. In this case, application 10 may be optionally able to perform the rest of the
computation on its own, because it has all the information necessary, or it may be use yet a

third interface feature to designate the above hash output as another secret with a new handle.

[0063}] To build the function P_SHA-1 in part 3 of the operation supporting TLS-PRF
shown in Figure 3, the application 10 now uses S1 provided as an output in part 1 and the
construction above for computing HMAC-SHA-1, where the secret key is confined to private
key module 20. This involves computing A(0), AQ1), A(2), using iterated applications of
HMAC_SHA-1 which are then used in tumn to form the output of P_SHA-1 by further
application of HMAC_SHA-1.

[0064] The ouiput P_SHA-1 may then be used to build the KDF and derive a key.

[0065] The example above assumes that the keys derived in private key module 20 are
delivered as output to application 10. An alternative to this is the keys derived remain within
private key module 20, and the outputs are just handles or pointers to the said keys. An
advantage of this is that all keys can be retained on private key module 20, which gives the
module holder greater assurance that application cannot abuse even the derived session keys,

let alone the long-term private keys.

[0066] In an altemative embodiment, private key module 20 has an even greater degree
of flexibility. Private key module 20 will support some simple execution language, such as
javascript or java, which enables a vast generality of operations to be performed on the card.
In other words, application 10 supplies a program to private key module 20, which pnivate
key module 20 then executes. The program, while in the module, can access secrets freely.
For security, private key module 20 ensures all outputs from the module go though approved
secure algorithms, such as a hash algorithm like SHA-1 or as part of symmetric encryption

operation like AES. This prevents most abuses that a malicious program could attempt.

10

15

WO 2006/051404 PCT/IB2005/003385

-14-

[0067] To further enhance security, private key module 20 requires that the program be
digitally signed by a signer whose public verification key has already been securely loaded
onto private key module 20. This is one way to authenticate the program loaded into private
key module 20. Program authentication ensures that the program is not a malicious
executable with the objective of compromising the module's secrets. With program
authentication it is not as necessary to restrict the module output to certain hashes or other

algorithms, because program itself is trustworthy enough to perform any algorithm.

[0068] The advantages of this altemative embodiment over the first embodiment are that
it offers greater flexibility, such as allowing a variety of hashes, both existing and new, to be
executed on the module. The disadvantage is that the module needs to support a general

execution language, and possibly a portion of a public key infrastructure.

[0069] Various embodiments of the invention have now been described in detail. Those
skilled in the art will appreciate that numerous modifications, adaptatiohs and variations may
be made to the embodiments without departing from the scope of the invention. Since
changes in and or additions to the above-described best mode may be made without departing
from the nature, spirit or scope of the invention, the invention is not to be limited to those details

but only by the appended claims.

10

15

WO 2006/051404 PCT/IB2005/003385

=15 -
CLAIMS

What is claimed is:

1. A method of computing a cryptographic function involving a DH shared secret, said DH
shared secret being accessible to a private key module, the method comprising the steps of:

performing on the private key module components of the cryptographic function of utilizing
the shared secret and providing such components to an application running on another device

to complete computation of said cryptographic function.

2. A method according to claim 1 wherein said cryptographic function is a key derivation

function.
3. A method according to claim 2 wherein said components include a hash function.

4. A cryptographic apparatus comprising a first module having a shared secret and a CPU to
generate cryptographic components using said shared secret, a second module running an
application to compute a cryptographic function and a data transfer to transfer components

from said first module to said second module.

WO 2006/051404 PCT/IB2005/003385

100

Destination ‘
80

Public '
Network

User Device

60

Private Key | _~50
Module Device :

Figure 1

1/4

WO 2006/051404 PCT/IB2005/003385

44
4?\ 45
Communication
Module

40 \
CPU Device

_‘/—'—10
) Application
—22
Storage
~ i KDF .
45 e Media 1 _/
AN
fGO
52 28

CPU First Second - ——/—

Function Functon | | /" Interface (26)

L— Private Key

Module

KDF,

/_24

Storage
Media

S1.5;

Memory
Device

\
~

54

Fig'ure 2

2/4

WO 2006/051404 PCT/IB2005/003385

Public key

Shared
> Secret

Private key Y

hash input 1

: > Output
hash input 2 CPU
hash input 3
°
select input
from application 10 Supply public data
Figure 3
40 - ' 50
choose:
X=0
Y =j|| [sharedinfo]
call 30 with X, Y, handle for Z . . use handle for Z'.& inputs
> compute: .
' SHA-1 (X +Z}| Y)
Obtain SHA-1 (<
\
KDF and key
Figure 4

3/4

WO 2006/051404 PCT/1IB2005/003385

40 - 50
call 28 with ' Divide Z into
handle of Z . ' S1&82
Y
1 SetZ=382
Obtain a;:]%irg?r to 82 . Provide po inter
(output 1) to $2 and output S1
Choose
X=D D
Y=M (public)
use X, Y & handle
L compute:
2 T1 =SHA-1(X+Z“Y)
Set
— c
5; $ (public) .
B [T = SHA-1((D+ K) || M)
= HMAC-SHA-1(K,M)
Obtain HMAC-SHA-1
3 : compute P_SHA-1 '
KDF & key
Figure 5

4/4

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

