US011520913B2

a2z United States Patent (10) Patent No.: US 11,520,913 B2
Boivie 45) Date of Patent: Dec. 6, 2022
(54) SECURE EXECUTION SUPPORT FOR A.L (56) References Cited
SYSTEMS (AND OTHER HETEROGENEOUS U S. PATENT DOCUMENTS
SYSTEMS) -
, . . . 2006/0130128 Al* 6/2006 Gorancic GOSGF 21/77
(71) Applicant: International Business Machines 726/9
Corporation, Armonk, NY (US) 2007/0226807 Al 9/2007 Ginter et al.
(Continued)

(72) Inventor: Richard H. Boivie, Monroe, CT (US)
FOREIGN PATENT DOCUMENTS
(73) Assignee: INTERNATIONAL BUSINESS

MACHINES CORPORATION, CN 100580682 C 1/2010
Armonk, NY (US) CN 102428473 A 4/2012

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 174 days.

Hategekimana et al., “Secure Hardware Kernels Execution in CPU+
FPGA Heterogeneous Cloud,” 2018 International Conference on
Field-Programmable Technology (FPT) Year: 2018 | Conference

(21) Appl. No.: 15/977,429 Paper | Publisher: IEEE *
(22) Filed: May 11, 2018 (Continued)
. oo Primary Examiner — Roderick Tolentino

(65) Prior Publication Data (74) Attorney, Agent, or Firm — Jeflrey S. LaBaw, Esq.;
US 2019/0347432 Al Nov. 14, 2019 McGinn I.P. Law Group, PLLC.

(51) Imt.ClL (57) ABSTRACT
GO6F 21/62 (2013.01) A method for securing Secure Objects that are protected
Go6l’ 9/54 (2006.01) from other software on a heterogeneous data processing
GOGF 21/60 (2013.01) system including a plurality of different types of processors
Go6l’ 21/72 (2013.01) wherein different portions of a Secure Object may run on
GO6N 20/00 (2019.01) different types of processors. A Secure Object may begin

(52) US. CL execution on a first processor then, depending on application
CPC .o GO6F 21/6209 (2013.01); GOGF 9/54 requirements, the Secure Object may make a call to a second

(2013.01); GO6F 21/602 (2013.01); GO6F processor passing information to the second processor using
21/72 (2013.01); GO6N 20/00 (2019.01) a special inter-processor function call. The second processor
(58) Field of Classification Search performs the requested processing and then performs an
CPC GO6F 21/6209; GO6F 21/602; GO6F 21/72; inter-processor “function return” returning information as
GOG6F 9/54; GO6F 21/12; GO6F 21/70; appropriate to the Secure Object on the first processor.
GO6F 21/10; GO6F 21/56; GO6N 20/00

See application file for complete search history. 20 Claims, 9 Drawing Sheets
+ 300
301 304 302
7 303
MICROPROCESSOR L1 /
CACHE /
CPU CRYPTO L2
207 P ENGINE CACHE EXTERNAL
«> > ¢ » MEMORY
PROTECTED .
AREA KEYS

306 305

US 11,520,913 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2008/0295120 Al* 11/2008 SuzukKicccccceeee. GOG6F 9/547
719/330
2013/0067240 Al* 3/2013 Tamasiccc.c...... GOG6F 21/602
713/189
2014/0053278 Al* 2/2014 Dellowc.c...... GOG6F 21/60
726/27
2014/0304505 Al 10/2014 Dawson
2016/0041909 Al* 2/2016 GU ...ccccoevevecnn GOGF 12/0835
711/121
2016/0162171 ALl* 6/2016 Yi weceevvvvnninene. GOG6F 40/143
715/211
2016/0301759 Al* 10/2016 Xuecccoveeee. HOAL 67/146
2016/0378693 Al* 12/2016 Sasakiccc...... GO6F 21/74
711/152
2017/0286701 Al* 10/2017 Kimccoovvvnverenenn. GOG6F 9/545
2017/0318008 Al 11/2017 Mead
2018/0373849 Al* 12/2018 Gidleycccceeeen. GO6F 21/54

OTHER PUBLICATIONS

Fan et al., “One Secure Access Scheme Based on Trusted Execution
Environment,” 2018 17th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/ 12th
IEEE International Conference On Big Data Science And Engineer-
ing (TrustConvBigDataSE) Year: 2018 | Conference Paper | Pub-

lish.*

Chinese Office Action, dated Sep. 1, 2022, in Chinese Application
No. 201910387553 X.

* cited by examiner

US 11,520,913 B2

Sheet 1 of 9

Dec. 6, 2022

U.S. Patent

1 O

901

<3P0 d1eAld aJow>
(psomssedmau ‘promssedplo ‘piuidoj)piomssedagueyd uesjoog olgnd |

{
<3po02 ajeald> /
Hpsomssed ‘piutdoj)piomssedalepijen ueajooq dignd

91eald ale suonejuawaldwi Iing ‘ajgissadoe Ajjealjgnd :spoysw oygnd // T |

<spoylaw aieand>
<$34N30NJIS elep aleald>
} ®jge1 pJomssed sse|D) a4naag

—- GOT

~ 101
~ €01

\ 0T 10T

00T

US 11,520,913 B2

Sheet 2 of 9

Dec. 6, 2022

U.S. Patent

¢ 9l

<elep pardAidus asow>

<elep pardAidus asow>
<ejep pardAsoua>
<uofldnaIsul wsj padAnus>

<apoo pardAious siow>
<9p02 paidAidus atow>
<3pod paydAious>
<8|puey> wss

00T -

US 11,520,913 B2

Sheet 3 of 9

Dec. 6, 2022

U.S. Patent

AYOWIN
TVNYILXE

\

y 3

\

€0¢e

00€ -

A 4

¢ Ol
S0¢€ 90¢
\\ N\
m>m§\ . V3dv
b d3193104d
P «—>
_+ LO€
3HIVO ANIONAG]
4 OLldAdD Ndd
/ FHOVO
\ 17 | HOSSIO0UdOUIIN
<
N\
[44}3 POE 10¢€

US 11,520,913 B2

Sheet 4 of 9

Dec. 6, 2022

U.S. Patent

2e

TOV

¥ 'Ol

Z0% €0y

\\

201 Aubsjul | \ 0

00t

SIDYNG UORBIIUNWIWIOD [pueiado
NS Lapeo| .uoibail peosioidun

US 11,520,913 B2

Sheet 5 of 9

Dec. 6, 2022

U.S. Patent

[40)°)

S '3i4
8TS
oidAin _ 105532014 D23
905 8¢a @%Cu 105592044 O
\ ﬁm\
92§
s 01dAJ
AJOWB|N Wa3sAS D % Vo
1443 -
03dAID _ / Ndo
os S w/

o01dAi) / Ndd

0cs Sm\

US 11,520,913 B2

Sheet 6 of 9

Dec. 6, 2022

U.S. Patent

009

9 "3i4

209

819

105582044 D)3

10SsS3a204d D

Alowan walsAg

0¢s

91S
VOdd
/Em
Z15
01dA1) NdD.
/
/Sm

US 11,520,913 B2

Sheet 7 of 9

Dec. 6, 2022

U.S. Patent

00L

[4%4

30L
0L

0L

405533044 15414 2y UO UOIINdaxXa Sawnsal uuw_‘no 24NJa§ 9y |

1 UOIIDUNY J0SS3204d-193Ul UB SWI0Mad J0SSDI0.4d PUOIS DY

10$5820.4 15414 8y3 uo 13[qo
21n2as ay3 03 areridosdde se uonewIOUL BUlUINIDS UINIDI

2

guissanoud paisanbas oyl swioad 10SSa204d pU0IaS 3y L

3

M

1055300.4d puUu0d9s§ 9yl O] UmmmmVUOLQ 9(
O] uoijewliojul wr__mmmd 1055330.1d puUodaS € O} jjed uoljdunyj

gOmmmuohas._mﬁ.E ue sadjell J0SSad01d 3844 Uo MUOEO 24NJeS

105$320.4d 15414 B U0 303[gQ 24n23S 9Yy3 JO UoiINIaxa uidag

W9lSAS Snosua304919H e 404 13[gQ 24ndas e pjing

L 'Ol

US 11,520,913 B2

Sheet 8 of 9

Dec. 6, 2022

U.S. Patent

3 OIYE L
S— . wmm:
YILNIYd 001} _DH_
65i__J ﬂ
YaLdvay
¥3Ldvay MANNYOS
AVIdSId AY1dSIa ISElE womn_u%pz. I ="
seu ent ||) -_— sz [
¥aLdvay ¥aLdvay
SNOLLYDINNINNOD o/l WOY | | Wvd | | NdD | | NdD

vmt/\

f

=

HHOMLN ovt/\ 74 t/\

it) o) o)

U.S. Patent Dec. 6, 2022 Sheet 9 of 9 US 11,520,913 B2

1200

D
=
oN
C

US 11,520,913 B2

1
SECURE EXECUTION SUPPORT FOR A.L
SYSTEMS (AND OTHER HETEROGENEOUS
SYSTEMS)

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is related to, makes reference to
the following patent applications all of which are incorpo-
rated herein by reference: U.S. patent application Ser. No.
12/492,738, filed on Jun. 26, 2009, to Richard H. Boivie,
entitled “Support for Secure Objects in a Computer Sys-
tem”, now issued as U.S. Pat. No. 8,819,446; U.S. patent
application Ser. No. 12/878,696, filed on Sep. 9, 2010, to
Richard H. Boivie, entitled “Cache Structure for a Computer
System Providing Support for Secure Objects”, now issued
as U.S. Pat. No. 9,298,894; U.S. patent application Ser. No.
13/033,367, filed on Feb. 23, 2011, to Boivie and Williams,
entitled “Secure Object Having Protected Region, Integrity
Tree and Unprotected Region™, now issued as U.S. Pat. No.
8,578,175; U.S. patent application Ser. No. 13/033,455, filed
on Feb. 23, 2011, to Boivie and Williams, entitled “Building
and Distributing Secure Object Software”, now issued as
U.S. Pat. No. 8,954,752; U.S. patent application Ser. No.
13/226,079, filed on Sep. 6, 2011, to Boivie and Pendarakis,
entitled “Protecting Application Programs from Malicious
Software or Malware”, now issued as U.S. Pat. No. 9,846,
789; and U.S. patent application Ser. No. 14/839,691, filed
on Aug. 28, 2015, to Boivie et al, entitled “System and
Method for Supporting Secure Objects Using a Memory
Access Control Monitor”.

BACKGROUND OF THE INVENTION
Field of the Invention

The disclosed invention relates generally to an embodi-
ment of secure execution support, and more particularly, but
not by way of limitation, relating to a use of secure execution
support for Artificial Intelligence (AI) systems and other
heterogeneous systems.

Description of the Related Art

In recent years computers systems have been increasingly
under attack by various forms of hacking and malware. To
address this, the concept of a ‘Secure Object’ was introduced
comprising code and data that is cryptographically protected
from the other software on a computer system including any
malware that an attacker may be able to introduce into a
targeted computer system. Secure Objects and computer
architectures for supporting these Secure Objects have been
discussed previously in the patent applications incorporated
herein by reference.

In the last few years computer systems have become more
heterogeneous incorporating in addition to traditional CPUs
(Central Processing Units), other kinds of special processors
such as GPUs (Graphical Processing Units) and special-
purpose processing units for Artificial Intelligence applica-
tions such as ANNs (Artificial Neural Networks) and TPUs
(Google Tensor Processing Units).

As systems become more heterogeneous, there is a need
to protect the security of applications that run on these
heterogeneous systems.

SUMMARY OF INVENTION

In view of the foregoing and other problems, disadvan-
tages, and drawbacks of the aforementioned background art,

20

25

30

35

40

45

50

55

60

65

2

an exemplary aspect of the disclosed invention provides
secure execution support for Artificial Intelligence (AI)
systems and other heterogeneous systems.

One aspect of the present invention is to provide support
for Secure Objects that are protected from other software on
a heterogeneous data processing system comprising a plu-
rality of different types of processors wherein different
portions of a Secure Object may run on different types of
processors. A Secure Object may begin execution on a first
processor then, depending on application requirements, the
Secure Object may make a call to a second processor passing
information to the second processor using a special inter-
processor function call. The second processor performs the
requested processing and then performs an inter-processor
“function return”, returning “return values” as appropriate to
the Secure Object on the first processor. The processing on
the second processor can be considered an “extension” of
the Secure Object on the first processor.

Another aspect of the present invention provides a method
for securing a data processing system including providing a
Secure Object comprising code and data that is protected
from the other software on the data processing system on a
first processor which is a first type of processor, wherein the
data processing system has a plurality of processors of
different types, beginning execution of the Secure Object on
the first processor, responsive to a portion of the Secure
Object being needed to be executed on a second processor
which is a second type of processor, by the first processor
calling the second processor in a special call, returning by
the second processor to the first processor a new value for an
integrity root of the Secure Object, and retrieving, by the
first processor, encrypted information from system memory
using a crypto key and the integrity root.

Another example aspect of the disclosed invention is to
provide a computer readable medium storing a method for
securing Secure Objects on a heterogeneous data processing
system comprising a plurality of different types of proces-
sors wherein different portions of a Secure Object may run
on different types of processors wherein a Secure Object
may begin execution on a first processor then, depending on
application requirements, the Secure Object may make a call
to a second processor passing information to the second
processor via a special inter-processor function call. The
second processor performs the requested processing and
then performs an inter-processor “function return”, returning
“return values” as appropriate to the Secure Object on the
first processor.

Another example aspect of the disclosed invention is to
provide a computer readable medium storing a method for
securing a data processing system including providing a
Secure Object comprising code and data that is protected
from the other software on the data processing system on a
first processor which is a first type of processor, wherein the
data processing system has a plurality of processors of
different types, beginning execution of the Secure Object on
the first processor, responsive to a portion of the Secure
Object being needed to be executed on a second processor
which is a second type of processor, by the first processor
calling the second processor in a special call, returning by
the second processor to the first processor a new value for an
integrity root of the Secure Object, and retrieving, by the
first processor, encrypted information from system memory
using a crypto key and the integrity root.

There has thus been outlined, rather broadly, certain
embodiments of the invention in order that the detailed
description thereof herein may be better understood, and in
order that the present contribution to the art may be better

US 11,520,913 B2

3

appreciated. There are, of course, additional embodiments of
the invention that will be described below and which will
form the subject matter of the claims appended hereto.

It is to be understood that the invention is not limited in
its application to the details of construction and to the
arrangements of the components set forth in the following
description or illustrated in the drawings. The invention is
capable of embodiments in addition to those described and
of being practiced and carried out in various ways. Also, it
is to be understood that the phraseology and terminology
employed herein, as well as the abstract, are for the purpose
of description and should not be regarded as limiting.

As such, those skilled in the art will appreciate that the
conception upon which this disclosure is based may readily
be utilized as a basis for the designing of other structures,
methods and systems for carrying out the several purposes
of the present invention. It is important, therefore, that the
claims be regarded as including such equivalent construc-
tions insofar as they do not depart from the spirit and scope
of the present invention.

BRIEF DESCRIPTION OF DRAWINGS

The exemplary aspects of the invention will be better
understood from the following detailed description of the
exemplary embodiments of the invention with reference to
the drawings.

FIG. 1 illustrates a high-level language description of a
Secure Object 100 that includes code and data that is
cryptographically protected from other software.

FIG. 2 is an illustration of a low-level implementation 200
(e.g., the compiled version) of a Secure Object.

FIG. 3 shows an example block diagram 300 of a micro-
processor that provides support for Secure Objects.

FIG. 4 illustrates an example format of an executable file
400 that includes Secure Object-based software.

FIG. 5 illustrates a system 500 of a first example embodi-
ment.

FIG. 6 illustrates a system 600 of a second example
embodiment.

FIG. 7 illustrates an example method of the systems 500
and 600.

FIG. 8 illustrates an exemplary hardware/information
handling system for incorporating the exemplary embodi-
ment of the invention therein.

FIG. 9 illustrates a non-transitory signal-bearing storage
medium for storing machine-readable instructions of a pro-
gram that implements the method according to the exem-
plary embodiment of the invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The invention will now be described with reference to the
drawing figures, in which like reference numerals refer to
like parts throughout. It is emphasized that, according to
common practice, the various features of the drawing are not
necessarily to scale. On the contrary, the dimensions of the
various features can be arbitrarily expanded or reduced for
clarity. Exemplary embodiments are provided below for
illustration purposes and do not limit the claims.

There is the concept of a Secure Object comprising code
and data that is protected from the other software on a
system. The Secure Object, like objects in other object-
oriented programming languages, contains data and code
that manipulates and provides access to that data. A Secure
Object differs from objects in existing programming lan-

20

25

30

35

40

45

50

55

60

65

4

guages such as Java, in that the Secure Object’s private code
and data are cryptographically protected so that no other
software can access the Secure Object’s private information.

FIG. 1 provides an example of what a Secure Object 100
might look like in a high-level programming language. This
Secure Object includes private data 101 and private methods
102, as well as methods that allow access to the Secure
Object through its public interfaces 103, 105. Secure Objects
can be used by other software (that is, other software can
“call” or “send messages” to a Secure Object) but other
software can only access a Secure Object through its public
interfaces 103, 105.

In one embodiment of a Secure Object based system,
private information is almost always encrypted. It is
encrypted while it is in memory and while it is on disk,
whether it is in a paging system or in a file system.

FIG. 2 shows how the compiled version 200 of a Secure
Object might appear in memory. A Secure Object’s private
information is “in the clear” only when: It is accessed from
inside the Secure Object; and only while that information is
inside the microprocessor.

Since no other code has access to a Secure Object’s
private information, a software attack that gets into a system
through a vulnerability in another software module has no
means of accessing the unencrypted version of the Secure
Object’s private information. As demonstrated in FIG. 2, the
private information that is encrypted can include private
code as well as private data corresponding to the private
code 102 and private data 101 in FIG. 1.

For example, a design can include two new instructions
that are used to enter and leave a method of a Secure Object,
“esm” and “Ism”, for “enter secure method” and “leave
secure method”, respectively.

The “esm” instruction loads crypto key information into
special registers that are used to decrypt a Secure Object’s
private code and data as the code and data move from
memory into the microprocessor. Other data such as the
arguments passed to the method and the return address that
was saved when the Secure Object was called are accessed
without this decryption.

FIG. 3 is a block diagram 300 of a microprocessor 301
that provides support for Secure Objects. This microproces-
sor executes code much like microprocessors in common
use today but includes a crypto-engine 302 for (1) decrypt-
ing sensitive information as that information moves from
external memory 303 into the I.1 cache 304 and (2) encrypt-
ing sensitive information as it moves from the L1 cache 304
to external memory 303. This cryptography is used to ensure
that other software including viruses, worms and other
“attack software” will not be able to access the unencrypted
version of sensitive information.

FIG. 3 also shows a block 305 labeled “keys” within the
crypto engine that holds the keys that are used in the
encryption and decryption processes. The keys block might
include a set of crypto registers specifically designated for
holding these keys. It is noted that the crypto engine 302
could be a coprocessor associated with the processor 307, or
the crypto engine could be a function executed by the CPU
processor itself.

The “Ism” instruction, which can simply consist of an
opcode, restores the previous state of the special crypto
registers 305, so that ordinary non-secure code can execute
without this encryption and decryption when the secure
method returns.

US 11,520,913 B2

5

In the Secure Object system, the keys 305 that are used to
decrypt a Secure Object’s private information are available
to the Secure Object but these keys are not available to any
other code.

Turning now to example embodiments, Secure Objects
can be used to protect the confidentiality and integrity of
applications or sensitive portions of applications. Secure
Objects can also be used to protect software containers such
as Docker containers and to protect virtual machines on a
system that supports the concurrent execution of multiple
virtual machines.

As systems become more heterogeneous, incorporating in
addition to CPUs other kinds of processors such as GPUs
(Graphical Processing Units), ANNs (artificial neural net-
works), FPGAs (Field Programmable Gate Arrays), TPUs
(Tensor Processing Units), IBM Q (Quantum) processors
etc., there is a need to protect the confidentiality and
integrity of applications that run on heterogeneous systems.

As discussed in the previous patent applications incorpo-
rated herein by reference, a CPU-based system can protect
the confidentiality and integrity of a Secure Object from the
other software on the system with cryptography and an
integrity tree if the crypto key and the root of the integrity
tree are protected from the other software. The crypto key
and the integrity tree can be managed by hardware or by a
combination of hardware and firmware. For example, the
hardware and firmware can be in, or run in, the CPU.

However, in a heterogeneous system, other kinds of
processors will need to be able to access the unencrypted
form of a Secure Object’s information and may need to
access the Secure Object’s crypto key and integrity root—
while protecting that information from other software.

FIG. 4 illustrates an exemplary format of an executable
file 400 that includes Secure Object-based software. The file
contains (1) the Secure Object code and data in encrypted
form 401, (2) the initial version of an integrity tree 402 that
will be used at run-time to protect the integrity of the Secure
Object’s code and data, and (3) loader code including an
“esm” instruction (in 403) to ‘Enter Secure Mode’. The
“esm” instruction allows a Secure Object’s sensitive infor-
mation to be decrypted on the path from external memory
into the CPU and encrypted on the path from CPU to
external memory.

FIG. 4 also shows communication buffers in the unpro-
tected region 403. These will be discussed in more detail
below. Thus, in FIG. 4, the unshaded region 403 of the
binary file is an unprotected region that includes a loader, the
“esm” instruction including the “esm” operand (or handle),
and communication buffers. The shaded regions include the
integrity tree 402 and the encrypted region 401 that includes
one or more of code, data, stack, and heap data. This file
might be in a standard executable format, such as ELF. The
code and data are encrypted so that only the target CPU can
read the encrypted region and only in secure mode.

The binary file for the secure object contains the
encrypted code and data 401 of the secure object, the initial
integrity tree 402, and the unprotected region 403 including
communication buffers, the loader code and the “esm”
instruction that will be used to enter secure mode at run-
time.

In a first example embodiment of the current invention,
shown in FIG. 5, a system 500 will consist of a system
memory 502 that is accessible by various kinds of proces-
sors, such as one or more CPUs (central processing units)
510, GPUs (Graphical Processing Units) 512, ANNs (arti-
ficial neural networks), FPGAs (Field Programmable Gate
Arrays) 514, TPUs (Tensor Processing Units), IBM Q

20

25

30

35

40

45

50

55

60

65

6

(Quantum) processors or other Quantum processors 516,
ECC (Elliptic Curve Cryptography) processors 518 etc. A
Secure Object’s private information will be cryptographi-
cally protected while it is in this system memory 502 and
this information will only be available in unencrypted form
to a processor that has the Secure Object’s crypto key.
Moreover, this private information will only be writable in
a way that does not later cause an integrity exception, by a
processor that has both the Secure Object’s crypto key and
the root of its integrity tree.

System memory 502 may also include “unprotected
memory” 504 which a Secure Object can use for commu-
nications buffers to communicate with other entities. Infor-
mation in this unprotected memory 504 is not protected by
the Secure Object protection mechanisms although a Secure
Object will normally protect information that it puts in this
area of unprotected memory 504 by other means such as
SSL/TLS (Security Socket Layer/Transport Security Layer),
IPsec (Internet Protocol Security) or dm-crypt (a transparent
disk encryption subsystem) as discussed in the previous
patent applications.

In this example embodiment, a Secure Object will begin
execution on a CPU (Central Processing Unit) 510. When
some portion of the processing is to be done on a special
processor such as a GPU (Graphic Processing Unit) 512 or
a TPU (Tensor Processing Unit), for example, the CPU 510
will “call” the special processor 512 to 518 via a “hardware
subroutine call”. This “call” will include an indication of the
processor that is being called, an indication of the specific
function that is being called, the address(es) in system
memory of the data to be processed and the address(es) in
system memory 502 where return values can be stored. The
“call” will also securely pass the Secure Object’s crypto key
and integrity root to the special processor so that the special
processor can access and update the Secure Object’s cryp-
tographically-protected information in system memory 510.
In this embodiment, the special processors, such as a GPU
(Graphics Processing Unit) 512, FPGA (Field-program-
mable gate array) 514, Q Processor (Quantum Processor)
516, and ECC (Elliptic Curve Cryptography) Processor 518,
include crypto engines 520, 522, 524, 526, and 528, respec-
tively, that decrypt information and check integrity when
reading from system memory 502 and encrypt information
and update integrity values when writing system memory
502 as discussed in the previous applications. When the
special processor 512 to 518 completes the requested pro-
cessing, it will “return” to the CPU 510 any return values as
well as a new value for the root of the Secure Object’s
integrity tree. At this point, the Secure Object can resume
execution on the CPU 510 and access and update its cryp-
tographically-protected information in system memory 502,
including any information that was written by the special
processor (512 to 518) and the CPU 510 will be able to do
this without getting an integrity exception.

The CPU 510 will also be able to “call” other special
processors 512 to 518 as necessary. The “calls” and
“returns” can be implemented as inter-processor interrupts.
The information passed to or returned from a “hardware
subroutine call” can be passed in cryptographically-pro-
tected system memory 506 and the crypto key and the root
of the integrity tree can be securely passed via a standard
communications security mechanism like TLS (Transport
Layer Security) under a key negotiated between the CPU
and the special processor at system boot. The TLS packets
can be transferred via an inter-processor communications
mechanism like PCle (Peripheral Component Interconnect
Express) or through “unprotected” system memory 504.

US 11,520,913 B2

7

Of course, this example embodiment is not limited to
special ‘Artificial Intelligence’ processors. It can also sup-
port other kinds of special processors. The design can
include an ECC (Elliptic Curve Cryptography) processor, as
shown in FIG. 5 or an RSA (Rivest Shamir Adleman)
processor for generating and validating digital signatures.

In a second example embodiment, shown in FIG. 6, a
Secure Object’s sensitive information is unencrypted in
system memory 602 but access control mechanisms are used
to control access to this memory 602 as discussed in U.S.
patent application Ser. No. 14/839,691. In this second
example embodiment, a memory page is labeled with the ID
of the Secure Object that owns the page and when a Secure
Object “calls” a special processor 512 to 518, the Secure
Object’s ID is securely passed to the special processor 512
to 518. This Secure Object ID allows the special processor
512 to 518 to access the Secure Object’s memory and since
the memory is unencrypted, the special processor 512 to 518
can read and write the Secure Object’s protected information
in system memory 602 without having to decrypt or encrypt
that information and without having to check or generate
integrity values. When protected information is accessed by
a special processor 512 to 518, or by a CPU thread of the
CPU 510, that does not have the appropriate Secure Object
1D, a CPU 510 exception will occur which will allow
firmware on the CPU 510 to intervene and handle the
exception. For example, if a disk driver or disk firmware
attempts to read a protected memory page to page it out to
disk, say, firmware on the CPU 510 can catch the exception
and encrypt the page before allowing the disk driver or disk
firmware to read the page to page it out.

The example embodiments described above are sufficient
if special processors (such as 512 to 518) contain only
trustworthy hardware and firmware. However, if applica-
tions can load their own software into a special processor
512 to 518, additional mechanisms are needed to make sure
that this potentially malicious software cannot compromise
the private information of other secure applications. For
example, when one Secure Object on a special processor 512
to 518 acquires the information needed to access a secure
Object’s private information in system memory such as the
crypto key and integrity root in the first example embodi-
ment or the Secure Object’s ID in the second example
embodiment, this information, which will be called, in the
remainder of this patent application the “access key” for
accessing a Secure Object’s private information, should not
be available to other software that may run on the special
processor.

When a Secure Object on a CPU 510 makes a “call” to a
special processor 512 to 518, the “access key” that is needed
to access the Secure Object’s private information in system
memory 502 or 602 can be securely passed from trusted
firmware on the CPU 510 to trusted firmware on the special
processor 512 to 518. The trusted firmware on the special
processor 512 to 518 can use this information to make the
data in system memory 502 or 602 that is to be processed
available to the “called” function. The firmware can do this
for example by getting the information from system memory
502 or 602 and passing it on to the “called” function, or by
configuring access control hardware or crypto hardware on
the special processor 512 to 518 so that the “called” function
can access the Secure Object information in system memory
502 or 602 directly.

However, the trusted firmware will not give the “access
key” to any untrusted software. Moreover, when the “called”
function on a special processor 512 to 518 “returns” to the
CPU 510, the trusted firmware can clear any registers and

20

25

30

35

40

45

50

55

60

65

8

any memory on the special processor that was used by the
“called” function to remove any traces of the Secure
Object’s private information to protect that information from
any untrusted software that may subsequently run on the
special processor 512 to 518. Prior to the “return” to the
CPU 510, the trusted firmware can also delete the “access
key” on the special processor 512 to 518.

If a special processor 512 to 518 can process multiple
requests concurrently, the special processor 512 to 518
should also have a means of protecting/isolating the data and
processing of one “call” from that of other “calls”. This can
be done via standard memory management mechanisms for
example or via the Secure Object mechanisms discussed in
previous applications.

A Secure Object can limit the amount of private infor-
mation that it exposes to a special processor 512 to 518 by
passing length information along with the address(es) of
arguments. Trusted firmware on the special processor 512 to
518 can make sure that the function “called” on the special
processor 512 to 518 only sees the data that it’s supposed to
see. In the second example embodiment above, the firmware
can do this by appropriately configuring access control
mechanisms on the special processor 512 to 518. In the first
example embodiment above, the trusted firmware can
decrypt the appropriate block or blocks in system memory
and then pass on to the called function just those bytes that
were specified in the “call”.

The trusted firmware on a special processor 512 to 518
can be “built-in”, e.g. in a ROM (Read-Only Memory) on
the special processor 512 to 518. Alternatively, a TPM
(Trusted Platform Module defined by the Trusted Comput-
ing Group) can be used to securely boot the Special Pro-
cessor 512 to 518 with trusted firmware via techniques that
are well known in the industry. The Secure Boot process
guarantees that appropriate firmware and data are loaded
into the Special Processor 512 to 518. The data that is loaded
can include public keys and/or digital certificates that the
Secure Processor can use to authenticate other entities such
as the CPU 510 in a heterogeneous system 500 or 600. Since
the TPM can also “seal” secrets to a trusted state, the Secure
Boot process can also provide the Secure Processor with
secrets, such as a private key that the Secure Processor can
use to prove its identity to other entities such as the CPU
510. The public keys or digital certificates and the private
key can be used to establish a secure channel that the CPU
510 and the Special Processor 512 to 518 can use at run-time
to securely communicate sensitive information such as the
encryption keys, integrity roots and Secure Object IDs
discussed above.

Other kinds of information can also be loaded into a
Special Processor 512 to 518 such as the microcode that
might be used for computing digital signatures on a special-
purpose RSA (Rivest Shamir Adleman) public key crypto
engine, the programming for an FPGA, or the connectivity,
weights and thresholds of an ANN (artificial neural network)
model] etc.

This “functionality” can be loaded into a Special Proces-
sor 512 to 518 at system boot using standard techniques such
as the ‘Trusted Boot’ or ‘Secure Boot” procedures defined by
the Trusted Computing Group. Functionality can also be
loaded at run-time via a “call” from a Secure Object or from
an ordinary application on the CPU 510. In this case the
“call” would specify the address(es) and length(s) of infor-
mation in system memory that should be loaded into the
Special Processor 512 to 518 and firmware on the Special
Processor 512 to 518 would then load this information into
the Special Processor 512 to 518. Subsequent calls from the

US 11,520,913 B2

9

Secure Object or ordinary application could then make use
of the functionality loaded into the Special Processor 512 to
518 to process other data. This allows a Secure Object to
load and use sensitive functionality on a special processor,
such as sensitive ANN models, as well as sensitive data,
while protecting both the functionality and the data from
other software.

FIG. 7 illustrates an example method of the system 500
and 600 (with reference to FIGS. 5 and 6). A method for
securing a Secure Object on a heterogeneous data processing
system 500 or 600 comprising a plurality of different types
of processors wherein different portions of a Secure Object
may run on different types of processors includes: Building
a Secure Object for a Heterogeneous System (in step 702),
Beginning execution of the Secure Object on a first proces-
sor such as CPU 510 (step 704) then, depending on appli-
cation requirements, the Secure Object may make an inter-
processor function call to a second processor (e.g.
specialized processor 512-518) passing information to be
processed to the second processor via the inter-processor
function call (step 706).

Then the second processor performs the requested pro-
cessing (step 708) and performs an inter-processor function
return, returning information as appropriate to the Secure
Object on the first processor (step 710). The Secure Object
then resumes execution on the first processor (step 712).

The special call can include an indication of the second
processor (specialized processor 512 to 518) that is being
called, an indication of the specific function that is being
requested and the data that should be processed. The call can
include a crypto key and an integrity value for the Secure
Object in the first embodiment illustrated in FIG. 5. The call
can include a Secure Object ID in the second embodiment
illustrated in FIG. 6. The data processing system can be an
artificial intelligence system. The second type of processor
can be a specialized processor such as a GPU or a TPU, or
other specialized processors 512 to 518. Other alternatives
or changes can be made in the steps 700 of the systems 500
or 600.

Another Exemplary Hardware Implementation

FIG. 8 illustrates another hardware configuration of an
information handling/computer system 1100 in accordance
with the invention and which preferably has at least one
processor or central processing unit (CPU) 1110 that can
implement the techniques of the invention in a form of a
software program.

The CPUs 1110 are interconnected via a system bus 1112
to a random access memory (RAM) 1114, read-only
memory (ROM) 1116, input/output (I/O) adapter 1118 (for
connecting peripheral devices such as disk units 1121 and
tape drives 1140 to the bus 1112), user interface adapter 1122
(for connecting a keyboard 1124, mouse 1126, speaker 1128,
microphone 1132, and/or other user interface device to the
bus 1112), a communication adapter 1134 for connecting an
information handling system to a data processing network,
the Internet, an Intranet, a personal area network (PAN), etc.,
and a display adapter 1136 for connecting the bus 1112 to a
display device 1138 and/or printer 1139 (e.g., a digital
printer or the like).

In addition to the hardware/software environment
described above, a different aspect of the invention includes
a computer-implemented method for performing the above
method. As an example, this method may be implemented in
the particular environment discussed above.

20

25

30

35

40

45

50

55

60

65

10

Such a method may be implemented, for example, by
operating a computer, as embodied by a digital data pro-
cessing apparatus, to execute a sequence of machine-read-
able instructions. These instructions may reside in various
types of signal-bearing media.

Thus, this aspect of the present invention is directed to a
programmed product, comprising signal-bearing storage
media tangibly embodying a program of machine-readable
instructions executable by a digital data processor incorpo-
rating the CPU 1110 and hardware above, to perform the
method of the invention.

This signal-bearing storage media may include, for
example, a RAM contained within the CPU 1110, as repre-
sented by the fast-access storage for example.

Alternatively, the instructions may be contained in
another signal-bearing storage media 1200, such as a mag-
netic data storage diskette 1210 or optical storage diskette
1220 (FIG. 9), directly or indirectly accessible by the CPU
1110.

Whether contained in the diskette 1210, the optical disk
1220, the computer/CPU 1110, or elsewhere, the instructions
may be stored on a variety of machine-readable data storage
media, such as DASD storage (e.g., a conventional “hard
drive” or a RAID array), magnetic tape, electronic read-only
memory (e.g., ROM, EPROM, or EEPROM), an optical
storage device (e.g. CD-ROM, WORM, DVD, digital opti-
cal tape, etc.), paper “punch” cards, or other suitable signal-
bearing storage media, including memory devices in trans-
mission media, such as communication links and wireless
devices, and in various formats, such as digital and analog
formats. In an illustrative embodiment of the invention, the
machine-readable instructions may comprise software
object code.

Therefore, the present invention may be a system, a
method, and/or a computer program product. The computer
program product may include a computer readable storage
medium (or media) having computer readable program
instructions thereon for causing a processor to carry out
aspects of the present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an

US 11,520,913 B2

11

external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks.

These computer readable program instructions may also
be stored in a computer readable storage medium that can
direct a computer, a programmable data processing appara-
tus, and/or other devices to function in a particular manner,
such that the computer readable storage medium having
instructions stored therein comprises an article of manufac-
ture including instructions which implement aspects of the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational

20

25

30

35

40

45

50

55

60

65

12

steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The many features and advantages of the invention are
apparent from the detailed specification, and thus, it is
intended by the appended claims to cover all such features
and advantages of the invention which fall within the true
spirit and scope of the invention. Further, since numerous
modifications and variations will readily occur to those
skilled in the art, it is not desired to limit the invention to the
exact construction and operation illustrated and described,
and accordingly, all suitable modifications and equivalents
may be resorted to, falling within the scope of the invention.

What is claimed is:
1. A method for providing support for Secure Objects on
a data processing system comprising:

providing a Secure Object comprising code and data that
is protected from another software on the data process-
ing system on a first processor which is a first type of
processor, wherein the data processing system has a
plurality of processors of different types;

beginning execution of the Secure Object on the first
processor; and

responsive to a portion of the Secure Object being needed
to be executed on a second processor which is a second
type of processor, by the first processor calling the
second processor in a special interprocessor call to
allow access of protected information by the second
processor from the first processor and returning infor-
mation by the second processor to the first processor;

wherein the Secure Object is protected from the other
software on the data processing system when the
Secure Object is executing on the first processor and
when the Secure Object is executing on the second
processor that is a different type than the first processor
in a heterogeneous system,

in which the special interprocessor call passes a crypto
key and an integrity value from the first processor to the
second processor which the second processor uses to
access a cryptographically protected region in system
memory.

2. The method according to claim 1, in which the special

call passes a crypto key and an integrity value from the first

US 11,520,913 B2

13

processor to the second processor which the second proces-
sor uses to access a cryptographically protected region in
system memory,

wherein the Secure Object comprising code and data

begins execution on the first type of processor and
makes a call to and continues execution on the second
type of processor,

wherein the first processor which is the first type of

processor is different than the second processor which
is the second type of processor, and

wherein the second processor securely processes the

information passed and protects the information from
other processing on the data processing system.

3. The method according to claim 1, in which the special
call passes a Secure Object ID from the first processor to the
second processor which the second processor uses to access
a protected region in system memory,

wherein the Secure Object is protected on each of the

different processors including the first processor and
the second processor, and

further comprising retrieving, by the first processor, infor-

mation returned by the second processor from system
memory.

4. The method according to claim 2, wherein the second
processor performs the processing requested in the special
call, storing encrypted information resulting from the pro-
cessing in system memory.

5. The method according to claim 2, wherein the second
processor returns an integrity value for the Secure Object to
the first processor.

6. The method according to claim 1, wherein the special
call includes an indication of the particular processor that is
being called, an indication of the specific function that is
being requested and the data that should be processed, and

wherein different portions of a Secure Object are config-

ured to run on different types of processors from among
the plurality of processors of different types.

7. The method according to claim 1, wherein the data
processing system is an artificial intelligence system, and

wherein responsive to the portion of the Secure Object

being needed to be executed on the first processor
which is the first type of processor, by the second
processor calling the first processor in the special
interprocessor call to allow access of protected infor-
mation by the first processor from the second processor
and returning information by the first processor to the
second processor.

8. The method according to claim 1, wherein the second
type of processor is one of a Central Processing Unit, a
Graphical Processing Unit, a Tensor Processing Unit, a Field
Programmable Gate Array, an Artificial Neural Network, a
Quantum Processor and a Cryptographic Processor.

9. The method according to claim 1, wherein the second
type of processor is a specialized processor and the first type
of processor is a CPU (Central Processing Unit), and

in which the special call passes a crypto key and an

integrity value from the first processor to the second

processor which the second processor uses to access a

cryptographically protected region in system memory,

wherein the Secure Object comprising code and data
begins execution on the first type of processor and
makes a call to and continues execution on the
second type of processor,

wherein the first processor which is the first type of
processor is different than the second processor
which is the second type of processor, and

[

10

20

25

30

35

40

60

14

wherein the second processor securely processes the
information passed and protects the information
from other processing on the data processing system.

10. A computer readable medium, storing a method for
securing a Secure Object on a data processing system
comprising:

providing a Secure Object comprising code and data that

is protected from another software on the data process-
ing system on a first processor which is a first type of
processor, wherein the data processing system has a
plurality of processors of different types;

beginning execution of the Secure Object on the first

processor,

responsive to a portion of the Secure Object being needed

to be executed on a second processor which is a second
type of processor, by the first processor calling the
second processor in a special interprocessor call, the
second processor securely processing the information
passed and protecting the information from other pro-
cessing on the data processing system; and

returning information by the second processor to the first

processor;

wherein the Secure Object is protected from the other

software on the data processing system when the
Secure Object is executing on the first processor and
when the Secure Object is executing on the second
processor,

in which the special interprocessor call passes a crypto

key and an integrity value from the first processor to the
second processor which the second processor uses to
access a cryptographically protected region in system
memory.

11. The computer readable medium according to claim 10,
in which the special call passes a crypto key and an integrity
value from the first processor to the second processor which
the second processor uses to access a cryptographically
protected region in system memory, and

wherein the first processor calls the second processor in

the special interprocessor call to allow access of pro-
tected information by the second processor from the
first processor,

wherein the Secure Object comprising code and data

begins execution on the first type of processor and
makes a call to and continues execution on the second
type of processor, and

wherein the first processor which is the first type of

processor is different than the second processor which
is the second type of processor.

12. The computer readable medium according to claim
10, in which the special call passes a Secure Object ID from
the first processor to the second processor which the second
processor uses to access a protected region in system
memory,

further comprising retrieving, by the first processor, infor-

mation returned by the second processor.

13. The computer readable medium according to claim 11,
wherein the second processor performs the processing
requested in the special call, storing encrypted information
resulting from the processing in system memory.

14. The computer readable medium according to claim 11,
wherein the second processor returns an integrity value to
the first processor.

15. The computer readable medium according to claim
10, wherein the special call includes an indication of the
particular processor that is being called, an indication of the
specific function that is being requested and the data that
should be processed.

US 11,520,913 B2

15

16. The computer readable medium according to claim
10, wherein the data processing system is an artificial
intelligence system, and

wherein responsive to the portion of the Secure Object
being needed to be executed on the first processor
which is the first type of processor, by the second
processor calling the first processor in the special
interprocessor call to allow access of protected infor-
mation by the first processor from the second processor
and returning information by the first processor to the
second processor.

17. The computer readable medium according to claim
10, wherein the second type of processor is one of Central
Processing Unit, a Graphical Processing Unit, a Tensor
Processing Unit, a Field Programmable Gate Array, an
Artificial Neural Network, a Quantum Processor and a
Cryptographic Processor.

18. The computer readable medium according to claim
10,

wherein the second type of processor is a specialized
processor and the first type of processor is a CPU
(Central Processing Unit) in a heterogeneous system,

wherein the computer readable medium includes a non-
transitory computer readable medium, and

wherein the first processor and the second processor
process the Secure Object to protect security of appli-
cations that run on the heterogeneous system.

19. A Secure Objects apparatus providing support for
Secure Objects that are protected from another software on
a heterogeneous data processing system, the Secure Objects
apparatus comprising:

a plurality of different types of processors including at
least a first hardware processor and a second hardware
processor, wherein different portions of a Secure Object
run securely on different types of processors,

wherein the Secure Object begins execution on a first
hardware processor then, depending on application
requirements, the Secure Object makes a call to a
second hardware processor passing information to the
second hardware processor using a predetermined
inter-processor function call, the second hardware pro-
cessor securely processing the information passed and
protecting the information from other processing on the
data processing system,

wherein the second hardware processor performs the
requested processing and then performs an inter-pro-

—

5

20

25

30

35

40

45

16

cessor function return, returning values to the Secure
Object on the first hardware processor, and
wherein the Secure Object is protected from the other
software on the data processing system when the
Secure Object is executing on the first processor and
when the Secure Object is executing on the second
processot,
wherein a special interprocessor call passes a crypto key
and an integrity value from the first processor to the
second processor which the second processor uses to
access a cryptographically protected region in system
memory.
20. A Secure Objects apparatus according to claim 19,
further comprising a system memory accessible by the
plurality of processors,

wherein the system memory includes unprotected
memory and cryptographically-protected system
memory,

wherein a Secure Object’s private information is crypto-
graphically protected in the cryptographically-pro-
tected memory and the private information is available
only in unencrypted form to a processor that has the
Secure Object’s crypto key,

wherein the Secure Object utilizes unprotected memory
for communications buffers to communicate with other
entities,

wherein the first processor calls the second processor in
the special interprocessor call to allow access of pro-
tected information by the second processor from the
first processor,

wherein when the Secure Object comprising code and
data begins execution on the first type of processor and
makes a call to and continues execution on the second
type of processor, and

wherein the first processor which is the first type of
processor is different than the second processor which
is the second type of processor, and

wherein responsive to the portion of the Secure Object
being needed to be executed on the first processor
which is the first type of processor, by the second
processor calling the first processor in the special
interprocessor call to allow access of protected infor-
mation by the first processor from the second processor
and returning information by the first processor to the
second processor.

#* #* #* #* #*

	Page 1 - Bibliography/Abstract
	Page 2 - Bibliography
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description/Claims
	Page 18 - Claims
	Page 19 - Claims

