PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

INTERNATIONALES Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5 :

C08K 5/56, C08L 53/00

(11) Internationale Veröffentlichungsnummer: WO 92/10537

(43) Internationales Veröffentlichungsdatum: 25. Juni 1992 (25.06.92)

(21) Internationales Aktenzeichen: PCT/EP91/02294

(22) Internationales Anmeldedatum: 3. Dezember 1991 (03.12.91)

(30) Prioritätsdaten:

(72) Erfinder: und

(74) Gemeinsamer Vertreter: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN; TFP-Patentabteilung, Henkelstraße 67, D-4000 Düsseldorf 13 (DE).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: LYO-GEL, ITS MANUFACTURE AND USE FOR SEALING

(54) Bezeichnung: LYO-GEL, SEINE HERSTELLUNG UND VERWENDUNG ZUM DICHTEN

(57) Abstract

The description relates to a lycogel with A) a gelling agent of a fully synthetic organic polymer which is cross-linked over its carboxylic acid groups and over metallic compounds, and B) a not easily volatilized and inert organic fluid with a volatility of less than 0.5 % wt. at 105 °C after 2 hours to ASTM D 972 as a swelling agent. It is distinguished by elastic deformability from -40 to +200 °C and no liquefaction up to 200 °C. It is therefore suitable for sealing, especially in devices used with electric power.

(57) Zusammenfassung

+ BESTIMMUNGEN DER "SU"

Die Bestimmung der "SU" hat Wirkung in der Russischen Föderation. Es ist noch nicht bekannt, ob solche Bestimmungen in anderen Staaten der ehemaligen Sowjetunion Wirkung haben.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlicht.

<table>
<thead>
<tr>
<th>AT</th>
<th>Österreich</th>
<th>ES</th>
<th>Spanien</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australien</td>
<td>FI</td>
<td>Finnland</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>Frankreich</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>Vereinigtes Königreich</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>GR</td>
<td>Griechenland</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>HU</td>
<td>Ungarn</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>IT</td>
<td>Italien</td>
</tr>
<tr>
<td>CF</td>
<td>Zentrale Afrikanische Republik</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>KR</td>
<td>Republik Korea</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CS</td>
<td>Tschehoslowakei</td>
<td>LU</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>MG</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
<td>MN</td>
<td>Mongolei</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritanien</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NL</td>
<td>Niederlande</td>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>PL</td>
<td>Polen</td>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SU+</td>
<td>Sowjetunion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>Tschad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
"Lyo-Gel, seine Herstellung und Verwendung zum Dichten"

Ein derartiges Lyo-Gel wird in der deutschen Offenlegungsschrift 26 49 544 beschrieben. Demnach entsteht aus einem Acrylsäurealkylester-Copolymerisat aus Acrylsäurealkylester, α,β-ungesättigten Carbonsäureanhydriden, insbesondere aus 0,2 bis etwa 20 Gew.-% Maleinsäureanhydrid, und ethylenisch ungesättigten Monomeren, das in einem organischen Lösungsmittel gelöst ist, und aus einem Metallalkoxid beim Lagern bei Raumtemperatur ein Gel (siehe Seite 10, Zeilen 4 bis 8). Bei den organischen Lösungsmitteln handelt es sich um leichtflüchtige Stoffe, so daß die Polymer-Lösung schnell trocknet (siehe Seite 12, Absatz 2). Da die Gelbildung unerwünscht ist, setzt man wenigstens 20 Gew.-% eines niederen aliphatischen Alkohols zu und chelatisiert die Metallalkoxide (siehe Seite 5, letzter Absatz bis Seite 6, Zeile 3 sowie Seite 10, ab Zeile 12 bis Seite 11, Absatz 3). Konkret werden Octyenglykol, Triethanolamin, 2,4-Pentandion oder Milchsäure genannt, wobei die Acetylacetonate bevorzugt sind. Die so stabilisierte Copolymer-Lösung wird als Klebstoff verwendet. Nach dem Entfernen des Lösungsmittels einschließlich des Alkohols vernetzt das Copolymeren nämlich und ergibt Verklebungen mit hoher Kohäsionsfestigkeit (siehe Seite 13, Absatz 2).

Weitere derartige druckempfindliche Klebstoffmischungen werden in den Offenlegungsschreien 24 16 991 sowie 23 37 558 beschrieben.

Zu diesem Zweck werden bekanntlich Dichtungssysteme auf Basis von folgenden makromolekularen Stoffen eingesetzt:

A) Thermoplastische Polymere, insbesondere Schmelzkleber und Spritzgußmassen,
B) vernetzende Systeme (Duroplasten) wie Epoxide, Polyurethane usw.,
C) vernetzende Systeme (Elastomere) wie Silikone und andere Gummi und
D) Wachse, Bitumen, Fette und Öle.

Diese bekannten Systeme weisen folgende Nachteile auf:

1.) Die Dichtstoffe schrumpfen beim Aushärten bzw. zwischen der Applikations- und Einsatztemperatur. Dadurch entstehen Spannungen, die sogar zu Rissen und Undichtigkeiten führen können, insbesondere bei den Systemen A), B) und D).

2.) Die Dichtstoffe sind bezüglich des Temperaturbereiches nur begrenzt einsetzbar, da sie außerhalb eines mehr oder weniger engen Bereiches die mechanische Festigkeit verlieren, brechen, auslaufen oder sich zersetzen. Dies gilt insbesondere für die Systeme A), B) und D).

3.) Die Dichtstoffe haften an den unterschiedlichen Werkstoffen teilweise nur unzureichend. Dies gilt in der Regel für die Systeme A), B), C) und D).

4.) Die Dichtstoffe sind nur ungenügend verformbar, z.B. beim Einbringen weiterer Kontakte in die bereits verfüllte Masse. Das gilt für alle Dichtsysteme A), B), C) und D).

5.) Die Dichtstoffe sind ungenügend resistent gegenüber Umwelteinflüssen wie Lösungsmittel, Ölen, Wasser usw. Das gilt für die Systeme A) und D) sowie teilweise auch für B).

6.) Beim Mischen, Verfüllen oder Härten entstehen gefährdende Komponenten und aggressive Spaltprodukte. Das gilt für die Systeme B) und C).

Diese Nachteile möchte die Erfindung vermeiden und darüber hinaus ein einfach zu handhabendes System zur Verfügung stellen. Die erfindungsgemäße Aufgabe besteht also darin, einen Dichtstoff ohne die beschriebenen Nachteile, insbesondere ohne Schrumpf, aber mit erhöhter Formstabilität in der Wärme zu finden. Darüber hinaus soll er in einem weiten Bereich einsetzbar und einfach zu handhaben sein.

Die erfindungsgemäße Lösung besteht in einem Lyo-Gel, wobei das Geliermittel aus einem organischen vollsynthetischen Polymeren, das über seine Carbonsäure-Gruppen und über Metall-Verbindungen vernetzt ist, besteht und das Quellmittel eine schwerflüchtige inerte organische Flüssigkeit mit einer Flüchtigkeit ist, definiert durch ihren Verdampfungsverlust von weniger als 0,5 Gew.-% bei 105 °C nach 2 Stunden gemäß ASTM D 972.

Das Ausmaß der Quellung und der Vernetzungsgrad richten sich nach den erforderlichen Eigenschaften. Das Ausgangsgemisch aus Polymer-
lösung und der Lösung bzw. Suspension der Metallverbindung soll
1) innerhalb der Verarbeitungszeit förderbar, frei oder unter
 Druck fließfähig sein, um Hohlräume auszufüllen,
2) nach Gelierung innerhalb der Dehnungsgrenzen unter mechanischem
 Druck elastisch verformbar sein und
3) die evtl. geforderten elektrischen Eigenschaften wie
 Dielektrizitätszahl, Druckschlagsfestigkeit und spez. Durch-
 gangswiderstand permanent erfüllen.

Der Fachmann weiß oder kann anhand weniger Versuche erfahren, wie
das Ausmaß der Quellung und die Stoffmengen an Polymer-Bausteinen
mit und ohne Carbonsäurederivate zu sein hat. Bevorzugt wird ein
Gewichtsverhältnis von Quellmittel zu Geliermittel von 1 bis 20 : 1.
Bevorzugt enthalten die Polymere 1 bis 5 Gew.-% an Bausteinen mit
einer Carbonsäure bzw. ihrem Derivat.

Bei den erfindungsgemäßen Polymeren handelt es sich um Homo- oder
Copolymere (und zwar sowohl statistische- als auch Block- und
Pfropf-Polymere) wie Polyurethan, Polyamid, Polyester und Poly-
merisate von Monomeren mit olefinischen Doppelbindungen. Bevorzugt
werden Copolymere mit olefinischer Doppelbindung, die Maleinsäure
und ihre Derivate wie Anhydrid und Ester, aufgepfropft oder in die
Kette eingebaut, enthalten, insbesondere thermoplastische Elasto-
mere wie Styrol-Ethylen-Butylen-Styrol-Blockpolymere mit gepfropf-
ten Säuregruppen. Sie sind im Handel erhältlich bzw. können auf
bekannte Weise hergestellt werden.

Unter "funktioneller Gruppe" sind Gruppen gemeint, die mit den Me-
tallverbindung unter Verarbeitungsbedingungen reagieren. Neben
den Carbonsäuren, Carbonsäureestern und Carbonsäureanhydridgruppen
können auch noch OH- und Amin-Gruppen anwesend sein, die alleine
kaum oder gar nicht reagieren, zusammen mit den übrigen funktio-
nellen Gruppen jedoch wirksam sind. Die freien Carbonsäuren rea-
gieren deutlich schneller als die entsprechenden Anhydride. Bei
benachbarter Stellung der funktionellen Gruppen, z.B. bei Malein-
säure reicht eine deutlich niedrigere Konzentration aus als bei
rein statischer Verteilung, um bei sonst gleichen Bedingungen eine
ausreichende Vernetzung zu erzielen. Die Carbonsäure-Gruppen können
aber auch am Kettenende stehen. Brauchbare Polymere sind ELVAX 4320
(ein Copolymerisat aus Ethylen, einem Säure-Conomonomen und Vinyl-
acetat mit einer Säurezahl von 4 bis 8), LOTADER 8750 (ein Copoly-
merisat aus Ethylen, Maleinsäureanhydrid und Acrylsäureester mit
einer Säurezahl von 17 und einem Schmelzindex von 400), KRATON FG
1901 X (SEBS-Blockcopolymerisat mit aufgepfropftem Maleinsäurean-
hydrid, das hydrolysiert oder mit Alkoholen wie z.B. Ethanol um-
gesetzt sein kann) sowie MACROMELT 6208 (Copolyamid mit einer
Säurezahl von >5 und einer Aminzahl von <0,8).

Für die Vernetzung brauchbare Metalle sind die der Hauptgruppen 2,
3, 4 und 5 sowie die Übergangsmetalle, insbesondere
Ruthenium, Vanadium, Chrom, Cobalt, Mangan, Aluminium, Eisen, Ti-
tan, Zirkonium, Hafnium, Zinn, Niob, Vanadium und Cer.
Aber auch zweiwertige Metalle wie Kupfer Titanyl-, Cadmium, Cobalt,
Mangan, Nickel, Palladium und Zink sind durchaus wirksam. Bevor-
zugte Metalle sind Eisen und Zirkonium. Die Metalle werden in Form
ihrer Komplexe, insbesondere ihrer Chelate eingesetzt. Zur Chelati-
sierung eignen sich z.B. Octylenlykol, Triethanolamin, Acetyl-
aceton oder Milchsäure. Bevorzugt wird Acetylaceton. Die Chelate
werden aus den Metallalkoxiden und dem Chelatbildner hergestellt.
Ihre Konzentration beeinflußt sowohl den Vernetzungsgrad als auch
die Gelierzeit. Bevorzugt wird ein molares Verhältnis von Carbon-
säure bzw. Carbonsäureester auf der einen Seite und Metallverbin-
dung auf der anderen Seite von 0,3 bis 3 : 1, insbesondere 1 bis 2 :
1. Die Metall-Chelate werden vorzugsweise als Suspension oder
Lösung den Polymerlösungen zugesetzt.

Das Gel kann in sehr geringen Mengen den Chelatbildner enthalten.

Das erfindungsgemäße Lyo-Gel kann noch weitere Zusätze enthalten, die aber seine grundlegenden Eigenschaften nicht verändern, insbesondere Füllstoffe, Streckmittel, Stabilisatoren und Oxidationsinhibitoren. Besonders genannt seien: pulverförmige Polymere, Voll- und Hohlkugeln aus Glas oder Kunststoff, Leitfähigkeitsruß, Carbonfasern, Kieselsäure, Silikat und magnetische Pulver.

Das Lyo-Gel zeigt folgende bemerkenswerte Eigenschaften: Das Volumen hat sich gegenüber dem Ausgangsgemisch praktisch nicht geändert. Es ist formstabil und elastisch in einem weiten Temperaturbereich von -40 bis mehr als 200 °C, ohne zu schmelzen. Es haftet gut an Metallen wie Kupfer und Aluminium sowie an Kunststoffen wie Polyethylen, Polypropylen und Nylon. Es ist leicht und extrem in weiten Bereichen verformbar, wobei die Bereiche selbst wiederum durch das Verhältnis von polymerem Netzwerk zu organischem Disper-
germittel sowie durch den Vernetzungsgrad variiert werden können. Es ist weitgehend chemisch resistent. Bei der Reaktion werden nur die Chelatbildner abgespalten. Dabei handelt es sich vorzugsweise um Alkohole bzw. Ketone, also keine aggressive oder gefährdende Spaltprodukte.

Das erfindungsgemäße Lyo-Gel wird im allgemeinen folgendermaßen hergestellt: 100 Gew.-Teile des Polymeren mit 5 bis 100 g an funktionellen Gruppen pro kg Polymer werden in 50 bis 2 000 Gew.-Teilen des schwerflüchtigen inerten Quellmittels gelöst. Wie üblich wird das Gemisch erwärmt, z.B. auf 100 bis 150 °C und gerührt sowie anschließend abgekühlt. Die bevorzugt fein gemahlenen Metallchelate werden in dem inerten organischen Quellmittel mit niedrigem Dampfdruck suspendiert oder gelöst (Gewichtsverhältnis 1 : 1 bis 10). Sie können aus Alkoholaten durch Zusatz der Chelatbildner hergestellt werden.

100 Gew.-Teile der Polymerlösung werden mit 0,1 bis 5 Gew.-Teilen der Metallverbindung in Pulverform, vorzugsweise aber suspendiert oder gelöst, bei Raumtemperatur gemischt, so daß eine möglichst gleichmäßige Verteilung erreicht wird. Die Mischung reagiert innerhalb von etwa 1 Minute bis 1 Tag (je nach Einstellung) bei Raumtemperatur und ist in dieser Zeit flüssig und förderbar, so daß sie leicht blasenfrei in ein Formwerkzeug gefüllt werden kann. Die Reaktionstemperatur ist nicht kritisch. Die Umsetzung kann sowohl bei -30 als auch bei +60 °C erfolgen. Nach der eingestellten Gelierzzeit von bis zu einer Stunde erhält man das formstabile Lyo-Gel.

Bevorzugte Reaktionsbedingungen sind: Es werden folgende Lösungsmittel für die bevorzugten Polymere, nämlich Styrol-Ethylen-Butadien-Styrol-Copolymere und sonstige Copolymere aus Comonomeren mit
olefinischer Doppelbindung, die Maleinsäure und ihre Derivate wie Anhydrid und Ester, aufgepfpft oder in der Kette eingebaut, enthalten, eingesetzt: Mineralöle, Dialkylenzole, Diarylalkane und Poly-α-Olefine.

Die Erfindung wird anhand folgender Beispiele näher erläutert:

Beispiel 1
a. Herstellung der Polymerlösung:
10 Teile Kraton FG 1901 X (SEBS-Copolymer mit ca. 2 % Maleinsäure-anhydrid, hergestellt von der Fa. Shell) werden in
90 Teilen Dealen RD 25 R (ein Gemisch von Diarylalkanen und
Dialkylbenezolen, hergestellt von der Fa. Texaco mit einem
Verdampfungsverlust von 0,1 % bei 105 °C nach 2 Stunden
gemäß an ASTM 972) bei ca. 130 bis 150 °C unter Rühren
gelöst und danach auf ca. 20 °C abgekühlt.

b. Herstellung der Suspension mit der Metallverbindung
1 Teil Eisen-III-acetylacetonat, auf kleiner als 50 μm gemahlen
und gesiebt, werden in
3 Teilen Dealen RD 25 R (s.o.)
suspendiert.

c. Mischung der Lösung und der Suspension
100 g der Lösung werden mit
2,5 g der Suspension durch manuelles Rühren vermischt.

Die Mischung ist bei Raumtemperatur ca. 30 Minuten verarbeitbar,
d.h. fließfähig und ist nach ca. 60 Minuten so stark geliert, daß
sie von selbst aus zuvor vergossenen Hohlräumen nicht mehr aus-
fließt.
Das Gel ist weich von -40 °C bis +200 °C, ohne zu reißen oder zu
schmelzen.
Es weist sehr gute Haftung zu Metallen (Cu, Al) sowie Kunststoffen
(PE, PP, PA) auf.
Beispiel 2
a. 100 Teile einer Lösung gemäß Beispiel 1, wobei die Konzentration des Kraton FG 1901 X auf 20 % erhöht wurde.

b. 10 Teile einer Lösung der Metallverbindung, hergestellt aus:
 5 Teilen Zirkon-IV-acetylacetonat, gelöst in
 20 Teilen Benzylalkohol, dann verdünnt mit
 75 Teilen Mineralöl RD 25 R.

Beispiel 3
Zur Prüfung der thermischen Stabilität des Lyo-Gels wird der Tropf- punkt nach folgender Methode bestimmt: Ein Glasrohr mit einer Länge von 12 mm und einem Innen-Durchmesser von 8 mm wird mit einer Öffnung auf Silikonpapier gestellt und durch die andere Öffnung mit einem Gemisch aus der Polymerlösung und Metall-Verbindung bis zum Rand gefüllt. Nach Ablauf der eingestellten Gelierzeit wird das Silikonpapier abgezogen und das gefüllte Prüfröhrchen in einem Umlufttrockenschrank auf ein Netz aus Edelstahl mit einer leichten Maschenweite von 2 mm gestellt. Bei einer Temperatursteigerung von ca. 5 °C pro Minute (linear) wird die Temperatur ermittelt, bei der das Gel oder Teile davon heruntertropfen.

Bei den Gemischen gemäß Beispiel 1 und 2 lag der Tropfpunkt oberhalb von 200 °C, d.h. es verflüssigte sich unterhalb von 200 °C nicht.
Patentansprüche

1. Lyo-Gel mit A) einem Geliermittel aus einem organischen vollsynthetischen Polymeren, das über seine Carbonsäure-Gruppen und über Metall-Verbindungen vernetzt ist, und B) einer schwerflüchtigen inerten organischen Flüssigkeit mit einer Flüchtigkeit von weniger als 0,5 Gew.-% bei 105 °C nach 2 Stunden gemäß ASTM D 972 als Quellmittel.

2. Lyo-Gel gemäß Anspruch 1, gekennzeichnet durch das Gewichtsverhältnis von Quellmittel zu Geliermittel von 1 bis 20 : 1.

3. Lyo-Gel gemäß Anspruch 1, gekennzeichnet durch eine elastische Verformbarkeit von -40 bis 200 °C sowie keine Verflüssigung bis 200 °C.

4. Lyo-Gel gemäß Anspruch 1, dadurch gekennzeichnet, daß das Polymer ein Copolymerisat aus mindestens einem Monomeren mit einer olefinischen Doppelbindung und mindestens einem Comonomeren mit einer Carbonsäure oder einem ihrer Derivate als weitere funktionelle Gruppe ist.

5. Lyo-Gel gemäß Anspruch 1, dadurch gekennzeichnet, daß es sich bei den Metallen um Metalle der Hauptgruppen 2, 3, 4 und 5 sowie um die Übergangsmetalle handelt, insbesondere um Eisen und Zirkonium.

6. Lyo-Gel nach Anspruch 5, dadurch gekennzeichnet, daß als Metalle Eisen und Zirkonium in Form ihrer Acetylacetonate eingesetzt werden.
7. Lyo-Gel nach Anspruch 1, dadurch gekennzeichnet, daß die schwerflüchtige inerte organische Flüssigkeit aus einem synthetischen Kohlenwasserstoff besteht.

8. Verfahren zur Herstellung eines Lyo-Gels nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß man das Polymere in der schwerflüchtigen inerten Flüssigkeit löst, diese Lösung mit gelöster oder suspendierter Metallverbindung mischt und reagieren läßt.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Metallverbindungen ausreichend fein verteilt sind und bevorzugt eine Teilchengröße von weniger als 50 μm haben.

10. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Metallverbindung in dem gleichen Lösungsmittel gelöst ist wie das Polymere, gegebenenfalls unter Zusatz einer möglichst hochsiedenden Hydroxy-Verbindung.

11. Verwendung des Lyo-Gels nach mindestens einem der Ansprüche 1 bis 7 zum Dichten, insbesondere von Vorrichtungen im Zusammenhang mit elektrischem Strom.

12. Kombinations-Erzeugnis zur Herstellung des Lyo-Gels nach Anspruch 1, enthaltend
A) eine Lösung eines organischen vollsynthetischen Polymeren mit Carbonsäure-Gruppen oder deren Anhydriden oder Estern in einem schwerflüchtigen inerten organischen Lösungsmittel mit einer Flüchtigkeit von weniger als 0,5 Gew.-% bei 105 °C nach 2 Stunden gemäß ASTM D 972.
B) einem Metall-Komplex, gelöst oder suspendiert in einer schwerflüchtigen inerten organischen Flüssigkeit mit einer Flüchtigkeit von weniger als 0,5 Gew.-% bei 105 °C nach 2 Stunden gemäß ASTM D 972.
INTERNATIONAL SEARCH REPORT

Application No. PCT/EP92/00294

I. CLASSIFICATION OF SUBJECT MATTER

According to the International Patent Classification (IPC) or to both National Classification and IPC:

<table>
<thead>
<tr>
<th>Int. Cl.</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>C08K 5/56, C08L 53/00</td>
</tr>
</tbody>
</table>

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. Cl. 5</td>
<td>C08K; C08L</td>
</tr>
</tbody>
</table>

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP, A2, 0224389 (RAYCHEM CORPORATION) 3 June 1987, see the whole document</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>EP, A2, 0299718 (RAYCHEM CORPORATION) 18 January 1989, see the whole document</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>EP, A1, 0371641 (RAYCHEM LIMITED) 6 June 1990, see the whole document</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4012567 (FREDERICK C. LOVELESS) 15 March 1977, see the whole document</td>
<td>1</td>
</tr>
</tbody>
</table>

IV. CERTIFICATION

<table>
<thead>
<tr>
<th>Date of the Actual Completion of the International Search</th>
<th>Date of Mailing of this International Search Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 February 1992 (26.02.92)</td>
<td>11 March 1992 (11.03.92)</td>
</tr>
</tbody>
</table>

International Searching Authority: European Patent Office

Signature of Authorized Officer: [Signature]

Form PCT/ISA/210 (second sheet) (January 1985)
ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. PCT/EP 91/02294

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 30/12/91. The European Patent office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US-A- 4716183</td>
<td>29/12/87</td>
</tr>
<tr>
<td>EP-A1- 0371641</td>
<td>06/06/90</td>
<td>AU-D- 4497989</td>
<td>28/05/90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-D- 4529389</td>
<td>28/05/90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 90/05166</td>
<td>17/05/90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 90/05401</td>
<td>17/05/90</td>
</tr>
<tr>
<td>US-A- 4012567</td>
<td>15/03/77</td>
<td>AT-B- 354077</td>
<td>27/12/79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 498300</td>
<td>01/03/79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-D- 1176176</td>
<td>15/09/77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE-A- 839450</td>
<td>13/09/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1061943</td>
<td>04/09/79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A-B-C 2607915</td>
<td>23/09/96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A-B- 2303827</td>
<td>08/10/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1538116</td>
<td>10/01/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1072783</td>
<td>30/11/81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 51114448</td>
<td>08/10/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-B- 56015739</td>
<td>11/04/81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU-A- 74544</td>
<td>01/09/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL-A- 7602543</td>
<td>14/09/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-B-C- 409874</td>
<td>10/09/79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-A- 7602793</td>
<td>13/10/76</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European patent Office, No. 12/82

EPO FORM P0479
INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen: PCT/EP 91/02294

I. KLASSIFIKATION DES ANMELDUNGSGENSTANTS (bei mehreren Klassifikationssymbolen sind alle anzugeben)\(^6\)

Nach der internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

| Int.Cl.| C 08 K 5/56, C 08 L 53/00 |

II. RECHERCHIERTE SACHGEBIETE

Recherchiert Mindestrüllstoff\(^7\)

<table>
<thead>
<tr>
<th>Klassifikationssystem</th>
<th>Klassifikationssymbole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.Cl.</td>
<td>C 08 K; C 08 L</td>
</tr>
</tbody>
</table>

Recherchierte nicht zum Mindestrüllstoff gehörende Veröffentlichungen, soweit diese unter den recherchierten Sachgebieten fallen\(^8\)

III. EINSCHLÄGIGE VERÖFFENTLICHUNGEN\(^9\)

<table>
<thead>
<tr>
<th>Art</th>
<th>Kennzeichnung der Veröffentlichung(^10), soweit erforderlich unter Angabe der maßgeblichen Teile(^12)</th>
<th>Betr. Anspruch Nr.(^13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP, A2, 0224389 (RAYCHEM CORPORATION) 3 Juni 1987, siehe Dokument insgesamt</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>EP, A2, 0299718 (RAYCHEM CORPORATION) 18 Januar 1989, siehe Dokument insgesamt</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>EP, A1, 0371641 (RAYCHEM LIMITED) 6 Juni 1990, siehe Dokument insgesamt</td>
<td>1-12</td>
</tr>
</tbody>
</table>

\(^*\) Besondere Kategorien von angegebenen Veröffentlichungen:\(^9\):

\(^A\) Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

\(^E\) älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

\(^L\) Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt

\(^O\) Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

\(^P\) Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanstandeten Prioritätsdatum veröffentlicht worden ist

\(^T\) Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrunde liegenden Prinzips oder der ihr zugrunde liegenden Theorie angegeben ist

\(^X\) Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

\(^Y\) Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegt ist

\(^A\) Veröffentlichung, die Mitglied derselben Patentfamilie ist

IV. BESCHEINIGUNG

Absendetermin des internationalen Recherchenberichts: 14.03.92

Internationale Recherchenbehörde: Europäisches Patentamt

Unterschrift des bevollmächtigten Bediensteten:

Formblatt PCT/ISA/210 (Blatt 2) (Januar 1985)
<table>
<thead>
<tr>
<th>Art</th>
<th>Kennzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der maßgeblichen Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 4012567 (FREDERICK C. LOVELESS) 15. März 1977, siehe Dokument insgesamt</td>
<td>1</td>
</tr>
</tbody>
</table>
ANHANG ZUM INTERNATIONALEN RESEARCHENBERICHT
ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR. PCT/EP 91/02294

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Researchenbericht anführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 30/12/91.
Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

<table>
<thead>
<tr>
<th>Im Researchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglieder der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US-A- 4716183</td>
<td>29/12/87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4942270</td>
<td>17/07/90</td>
</tr>
<tr>
<td>EP-A1- 0371641</td>
<td>06/06/90</td>
<td>AU-D- 4497989</td>
<td>28/05/90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-D- 4529389</td>
<td>28/05/90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 90/05166</td>
<td>17/05/90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 90/05401</td>
<td>17/05/90</td>
</tr>
<tr>
<td>US-A- 4012567</td>
<td>15/03/77</td>
<td>AT-B- 354077</td>
<td>27/12/79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 498300</td>
<td>01/03/79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-D- 1176176</td>
<td>15/09/77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE-A- 839450</td>
<td>13/09/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1061943</td>
<td>04/09/79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A-B-C 2607915</td>
<td>23/09/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A-B- 2303827</td>
<td>08/10/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1538116</td>
<td>10/01/79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1072783</td>
<td>30/11/81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 51114448</td>
<td>08/10/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-B- 56015739</td>
<td>11/04/81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU-A- 74544</td>
<td>01/09/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL-A- 7602543</td>
<td>14/09/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-B-C- 409874</td>
<td>10/09/79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-A- 7602793</td>
<td>13/10/76</td>
</tr>
</tbody>
</table>

Für nähere Einzelheiten zu diesem Anhang: siehe Amtsblatt des Europäischen Patentamts, Nr.12/92
EPO FORM P0473