
TOMMENU ON
US009921952B2

(12) United States Patent
Dean et al .

(10) Patent No . : US 9 , 921 , 952 B2
(45) Date of Patent : Mar . 20 , 2018

(54) EARLY RISK IDENTIFICATION IN DEVOPS
ENVIRONMENTS

(56) References Cited SÊ U . S . PATENT DOCUMENTS
(71) Applicant : International Business Machines

Corporation , Armonk , NY (US)

(72) Inventors : Daniel J . Dean , Raleigh , NC (US) ;
Andrzej Kochut , Mount Kisco , NY
(US) ; Anca Sailer , Scarsdale , NY (US) ;
Charles O . Schulz , Ridgefield , CT
(US)

5 , 161 , 158 A * 11 / 1992 Chakravarty GO6F 11 / 261
714 / 26

5 , 586 , 252 A * 12 / 1996 Barnard GO6Q 10 / 10
714 / 48

6 , 219 , 805 B1 4 / 2001 Jones et al .
6 , 532 , 552 B1 * 3 / 2003 Benignus G06F 11 / 2273

714 / 25
6 , 823 , 478 B1 * 11 / 2004 Prologo GO6F 11 / 368

714 / 38 . 14
7 , 035 , 766 B1 * 4 / 2006 Farel G06F 11 / 079

702 / 182
(Continued) (73) Assignee : International Business Machines

Corporation , Armonk , NY (US)
OTHER PUBLICATIONS

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 0 days .

(21) Appl . No . : 14 / 727 , 960
(22) Filed : Jun . 2 , 2015

(65) Prior Publication Data
US 2016 / 0357660 A1 Dec . 8 , 2016

b

Crow , Failure Modes and Effects Analysis , 2014 , located at http : / /
www . npd - solutions . com / fmea . html . *

(Continued)
Primary Examiner — Hossain Morshed
(74) Attorney , Agent , or Firm — Reza Sarbakhsh
(57) ABSTRACT
A computer executes a first version of a code module in a
first test environment , collects a first set of execution mea
surements , and creates a first profile based on the first set of
execution measurements . The computer executes the first
version of the code module in a second test environment ,
collects a second set of execution measurements , and creates
a second profile based on the second set of execution
measurements . In response to a difference between the first
profile and the second profile exceeding a threshold , the
computer provides diagnostic data characterizing the differ
ence , analyzes an impact of the difference on the execution
of the code module , calculates a risk of code module failure
value based on analyzing the impact of the difference , and
provides a recommended action based on analyzing the
impact of the difference and the calculated risk of code
module failure value .

20 Claims , 7 Drawing Sheets

e

(51) Int . CI .
G06F 9 / 44 (2006 . 01)
G06F 11 / 36 (2006 . 01)
G06Q 10 / 00 (2012 . 01)

(52) U . S . CI .
CPC G06F 11 / 3692 (2013 . 01) ; G06F 8 / 00

(2013 . 01) ; G06Q 10 / 00 (2013 . 01)
(58) Field of Classification Search

USPC . 717 / 124
See application file for complete search history .

302 EXECUTE MODULE IN
TEST ENVIRONMENT

304
COLLECT EXECUTION
MEASUREMENTS

306 CREATE TEST PROFILE

308
COMPARE TEST
PROFILE AGAINST
BASELINE PROFILE
AND ANALYZE
DIFFERENCES

310
ANALYZE RISK OF
DEPLOYMENT

312

PROVIDE FEEDBACK

PROVIDE
RECOMMENDED
ACTION AND RISK

316
PROVIDE KNOWN

CODE FIX

US 9 , 921 , 952 B2
Page 2

(56) References Cited OTHER PUBLICATIONS

U . S . PATENT DOCUMENTS
7 , 039 , 644 B2 * 5 / 2006 Hind G06F 11 / 3636
7 , 882 , 369 B1 * 2 / 2011 Kelleher GO6F 1 / 3203

345 / 419
9 , 256 , 509 B1 2 / 2016 Rajagopal et al .
9 , 349 , 111 B1 * 5 / 2016 Elgarat GO6F 11 / 36
9 , 740 , 478 B2 8 / 2017 Doganata et al .

2003 / 0056140 A1 * 3 / 2003 Taylor GO6F 11 / 0709
714 / 4 . 1

2004 / 0015317 A1 * 1 / 2004 Klotz G06F 11 / 263
702 / 123

2004 / 0107415 Al * 6 / 2004 Melamed GO6F 11 / 3684
717 / 124

2006 / 0155498 A1 * 7 / 2006 Dunsmore GOIR 27 / 28
702 / 107

2008 / 0282235 A1 * 11 / 2008 Jadhav G06F 11 / 3676
717 / 131

2009 / 0138306 A1 * 5 / 2009 Coburn G06Q 10 / 0635
705 / 7 . 28

2009 / 0282292 Al * 11 / 2009 Squire H04L 41 / 0631
714 / 39

2010 / 0191952 Al * 7 / 2010 Keinan GO6Q 10 / 06
713 / 100

2012 / 0254710 Al * 10 / 2012 Flanagan GO6Q 10 / 06395
715 / 202

2014 / 0156584 A1 * 6 / 2014 Motukuri GO6Q 10 / 06
706 / 52

2015 / 0019564 A1 * 1 / 2015 Higginson GO6F 17 / 3053
707 / 748

2015 / 0039386 A1 * 2 / 2015 Kymal G06Q 10 / 0635
705 / 7 . 28

2015 / 0254172 A1 * 9 / 2015 Baril G06F 11 / 3688
717 / 128

2015 / 0309918 A1 * 10 / 2015 Raghavan GO6F 11 / 3688
714 / 38 . 1

He , Using software dependency to bug prediction , 2013 , located at
https : / / www . hindawi . com / journals / mpe / 2013 / 869356 / . *
Chen et al . , “ Pinpoint : Problem Determination in Large , Dynamic
Internet Services , ” Proceedings of the International Conference on
Dependable Systems and Networks (DSN 02) , IEEE Computer
Society , 2002 , pp . 1 - 10 .
Desnoyers et al . , “ The LTTng tracer : A low impact performance and
behavior monitor for GNU / Linux , " Proceedings of the Linux Sym
posium , vol . One , Jul . 19 - 22 , 2006 , Ottawa , Ontario , Canada , pp .
209 - 224 .
Godefroid et al . , “ Automated Whitebox Fuzz Testing , ” NDSS
Symposium 2008 , San Diego , CA , Feb . 8 - 11 , 2008 , pp . 1 - 16 .
Jin et al . , “ Automated Concurrency - Bug Fixing , ” Proceedings of
the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ' 12) , Oct . 8 - 10 , 2012 , pp . 221 - 236 .
Traeger et al . , “ DARC : Dynamic Analysis of Root Causes of
Latency Distributions , ” SIGMETRICS ' 08 , Jun . 2 - 6 , 2008 , Annapo
lis , Maryland , USA , pp . 1 - 12 .
Troester , “ DevOps Success is Contingent on Shifting Left , ” DZone ,
Sep . 29 , 2013 , http : / / architects . dzone . com / articles / devops - success
contingent , Accessed on Jan . 9 , 2015 , pp . 1 - 3 .
Lettrari , “ Integrate model - based testing to find quality problems
early in development , ” Apr . 5 , 2011 , http : / / www . slideshare . net /
billduncan / integrate - modelbased - testing - to - fin . . . , Accessed on
Jan . 6 , 2015 , pp . 2 - 20 .
Cohen et al . , " Capturing , Indexing , Clustering , and Retrieving
System History , ” SOSP ' 05 Proceedings of the twentieth ACM
symposium on Operating systems principles , Oct . 23 - 26 , 2005 ,
Brighton , United Kingdom , pp . 105 - 118 .
Mell et al . , “ The NIST Definition of Cloud Computing , ” National
Institute of Standards and Technology , U . S . Department of Com
merce , Special Publication 800 - 145 , pp . 1 - 7 .

* cited by examiner

U . S . Patent Mar . 20 , 2018 Sheet 1 of 7 US 9 , 921 , 952 B2

122

go

ANALYZER PROFILE CREATOR
110 120

TEST
PROFILE

170

DECISION
TREE

180
MONITOR

130

PROFILE
REPOSITORY

165

160A 160C 175A 1754
160B 160D 175B

FIG . 1

U . S . Patent Mar . 20 , 2018 Sheet 2 of 7 US 9 , 921 , 952 B2

165

FEATURE ADDED
(VERSION 1)

220A PROFILE (S) CODE FIX 1 FIX DETAILS :
- 160 , 175

seve
s

maneres
• ERROR SYMPTOMS
• AFFECTED PORTIONS

DEVELOPER ID
AFFECTED LINES OF
CODE

de

FIX DETAILS
220 VERSION 2

FIX DETAILS : 220B DECISION
TREES

CODE FIX 2 180
ERROR SYMPTOMS
AFFECTED PORTIONS
DEVELOPER ID
AFFECTED LINES OF
CODE

FIG . 2

atent Mar . 20 , 2018 Sheet 3 of 7 US 9 , 921 , 952 B2

- 302 EXECUTE MODULE IN
TEST ENVIRONMENT

304
COLLECT EXECUTION
MEASUREMENTS

306
CREATE TEST PROFILE

308
COMPARE TEST
PROFILE AGAINST
BASELINE PROFILE

AND ANALYZE
DIFFERENCES

310

ANALYZE RISK OF
DEPLOYMENT

312
PROVIDE FEEDBACK

314
PROVIDE

RECOMMENDED
ACTION AND RISK

- 316
PROVIDE KNOWN

CODE FIX

FIG . 3A

atent Mar . 20 , 2018 Sheet 4 of 7 US 9 , 921 , 952 B2

COLLECT EXECUTION
MEASUREMENTS FROM
PRODUCTION LEVEL

n 332

334

COMPARE COLLECTED
MEASUREMENTS AGAINST

BASELINE PROFILE

336

DETERMINE ROOT CAUSE

338

DEPLOY KNOWN CODE FIX

FIG . 3B

122

- 420

426

440

U . S . Patent

PROCESSOR (S)
422

DEVICE DRIVERS

450

RAM (S)

2460
.

424

Mar . 20 , 2018

ROM (S)

430 , 165

COMPUTER READABLE STORAGE MEDIUM (MEDIA)

432

455

470 , 165

428

| - OPERATING SYSTEM (S)

R / W DRIVE
OR INTERFACE

PORTABLE COMPUTER READABLE STORAGE MEDIUM (MEDIA)

Sheet 5 of 7

96 , 110 , 120 , 130 , 160 , 170 , 175 , 180 , 220

- APPLICATION (S)

7436 NETWORK ADAPTER OR INTERFACE

US 9 , 921 , 952 B2

FIG . 4

154C

54NE 54NP
OB

U . S . Patent

4

- 4

444444444444444
4

44

"

"

"

"

"

"

"

"

"

"

Mar . 20 , 2018

- 122

Sheet 6 of 7

54B

54A

0000000000 0000000000 00000

??? " ? " " " ??????????

OS
TITUTI

11111

10 tu

FIG . 5

US 9 , 921 , 952 B2

77 : 7 : 7777 93

94

95

96

atent

WORKLOADS 90

84

Mar . 20 , 2018

MANAGEMENT
71

73

74

75

70890 OD OOOO
Sheet 7 of 7

VIRTUALIZATION

63

64

65

66

67

68

62

HARDWARE AND SOFTWARE
60

FIG . 6

US 9 , 921 , 952 B2

US 9 , 921 , 952 B2

5

EARLY RISK IDENTIFICATION IN DEVOPS provides a recommended action based on analyzing the
ENVIRONMENTS impact of the difference and the calculated risk of code

module failure value .
BACKGROUND

BRIEF DESCRIPTION OF THE SEVERAL
The present disclosure relates generally to proactive fault VIEWS OF THE DRAWINGS

location for reliability and availability and more particularly
to project risk detection early in the development cycle . Features and advantages of the present invention will
DevOps (a portmanteau of " development ” and “ opera - become apparent from the following detailed description of

tions ”) is a software development method that stresses 10 illustrative embodiments thereof , which is to be read in
communication , collaboration , integration , automation and connection with the accompanying drawings . The various
measurement of cooperation between software developers features of the drawings are not to scale as the illustrations
and other information - technology (IT) professionals . are for clarity in facilitating one skilled in the art in under

DevOps acknowledges the interdependence of software 15 standing the invention in conjunction with the detailed
development , quality assurance , and IT operations , and aims description . In the drawings :
to help an organization rapidly produce software products FIG . 1 illustrates a functional block diagram of an exem
and services and to improve reliability and security while plary cloud computing node , in accordance with an embodi
providing faster development and deployment cycles . ment of the present disclosure ;

20 FIG . 2 depicts an exemplary code development life cycle ,
SUMMARY in accordance with an embodiment of the disclosure ;

FIG . 3A is a flowchart illustrating early risk identification
Embodiments of the present invention disclose a method , in a DevOps test environment , in accordance with an

computer program product , and system in which a computer embodiment of the disclosure ;
executes a first version of a code module in a first test 25 FIG . 3B is a flowchart illustrating production level error
environment , collects a first set of execution measurements , identification and repair with DevOps early risk identifica
including code module execution times and code module tion executing in a cloud environment , in accordance with an
control flows , for the first version of the code module embodiment of the disclosure ;
executing in the first test environment , and creates a first FIG . 4 depicts a block diagram of components of the
profile of the first version of the code module based on the 30 computing device of FIG . 1 , in accordance with an embodi
first set of execution measurements . The computer executes ment of the disclosure ;
the first version of the code module in a second test FIG . 5 depicts a cloud computing environment including
environment , collects a second set of execution measure the computing device of FIGS . 1 and 4 , in accordance with
ments , including code module execution times and control an embodiment of the disclosure ; and
module control flows , for the first version of the code 35 FIG . 6 depicts a block diagram of functional layers of the
module executing in the second test environment , and cre - cloud computing environment of FIG . 5 , in accordance with
ates a second profile of the first version of the code module an embodiment of the disclosure .
based on the second set of execution measurements . In
response to a difference between the first profile and the DETAILED DESCRIPTION
second profile exceeding a threshold , the computer provides 40
diagnostic data characterizing the difference between the Cloud computing is a model of service delivery for
first profile and the second profile , analyzes an impact of the enabling convenient , on - demand network access to a shared
difference between the first profile and the second profile on pool of configurable computing resources (e . g . networks ,
the execution of the code module , calculates a risk of code network bandwidth , servers , processing , memory , storage ,
module failure value based on analyzing the impact of the 45 applications , virtual machines , and services) that can be
difference between the first profile and the second profile , rapidly provisioned and released with minimal management
and provides a recommended action based on analyzing the effort or interaction with a provider of the service . This cloud
impact of the difference and the calculated risk of code model may include at least five characteristics , at least three
module failure value . service models , and at least four deployment models .

In another aspect of the present disclosure , the computer 50 Characteristics are as follows :
executes a second version of the code module in the first test On - demand self - service : a cloud consumer can unilater
environment , wherein the second version of the code mod ally provision computing capabilities , such as server time
ule is the first version of the code module with one or more and network storage , as needed automatically without
code changes , collects a third set of execution measure - requiring human interaction with the service ' s provider .
ments , including code module execution times and code 55 Broad network access : capabilities are available over a
module control flows , for the second version of the code network and accessed through standard mechanisms that
module executing in the first test environment , and creates promote use by heterogeneous thin or thick client platforms
a third profile of the second version of the code module (e . g . , mobile phones , laptops , and PDAs) .
based on the third set of execution measurements . In Resource pooling : the provider ' s computing resources are
response to a difference between the first profile and the third 60 pooled to serve multiple consumers using a multi - tenant
profile exceeding a threshold , the computer provides diag model , with different physical and virtual resources dynami
nostic data characterizing the difference between the first cally assigned and reassigned according to demand . There is
profile and the third profile , analyzes the impact of the a sense of location independence in that the consumer
difference between the first profile and the third profile on generally has no control or knowledge over the exact
the execution of the code module , calculates a risk of code 65 location of the provided resources but may be able to specify
module failure value based on analyzing the impact of the location at a higher level of abstraction (e . g . , country , state ,
difference between the first profile and the third profile , and or datacenter) .

US 9 , 921 , 952 B2

Rapid elasticity : capabilities can be rapidly and elastically changes made in a DevOps environment and , prior to
provisioned , in some cases automatically , to quickly scale deploying the changed application , provide an early assess
out and rapidly released to quickly scale in . To the consumer , ment of risk to the reliability , availability , or performance of
the capabilities available for provisioning often appear to be the changed application . Various embodiments of the pres
unlimited and can be purchased in any quantity at any time . 5 ent disclosure may also collect data about production level
Measured service : cloud systems automatically control failure (s) discovered by users of the deployed application ,

and optimize resource use by leveraging a metering capa - identify the root cause (s) of the failure (s) , and deploy
bility at some level of abstraction appropriate to the type of corrective code to fix the deployed application .
service (e . g . , storage , processing , bandwidth , and active user Finding and fixing bugs in an application , before deploy
accounts) . Resource usage can be monitored , controlled , and 10 ment , may be challenging in enterprise level virtualized
reported providing transparency for both the provider and environments where testing all possible environments may
consumer of the utilized service . not be possible . Exemplary environmental problems may

Service Models are as follows : include , but are not limited to , network traffic delays or
Software as a Service (SaaS) : the capability provided to drops , and the unavailability of shared resources . In addi

the consumer is to use the provider ' s applications running on 15 tion , a deployed application may execute on a wide variety
a cloud infrastructure . The applications are accessible from of different systems , platforms , and architectures , each with
various client devices through a thin client interface such as its own characteristics and configuration specifications .
a web browser (e . g . , web - based e - mail) . The consumer does Each system may utilize configuration settings , such as
not manage or control the underlying cloud infrastructure timeout settings for its webservers , which are specifically
including network , servers , operating systems , storage , or 20 adapted for that system . Testing all possible systems , plat
even individual application capabilities , with the possible forms , architectures , and environments before deployment
exception of limited user - specific application configuration may not be feasible , nor cost effective , but an incorrect
settings . configuration setting , an incorrect driver / module specifica

Platform as a Service (PaaS) : the capability provided to tion , or an environmental problem in the production envi
the consumer is to deploy onto the cloud infrastructure 25 ronment may cause an application to behave differently than
consumer - created or acquired applications created using expected , and may cause untested code paths to execute in
programming languages and tools supported by the provider . the deployed application .
The consumer does not manage or control the underlying Finding and fixing bugs in an application before deploy
cloud infrastructure including networks , servers , operating ment may also be hampered if the application is developed
systems , or storage , but has control over the deployed 30 in a modular fashion , by a plurality of teams working in
applications and possibly application hosting environment different geographies , on different systems , each team inde
configurations . pendently developing portions of the same application . The

Infrastructure as a Service (IaaS) : the capability provided portions of the application developed by a first team may be
to the consumer is to provision processing , storage , net invoked by the portions of the application , written by
works , and other fundamental computing resources where 35 another team , in ways that were unanticipated by the first
the consumer is able to deploy and run arbitrary software , development team . While the invoked portion of the appli
which can include operating systems and applications . The cation code may have passed all unit testing by its devel
consumer does not manage or control the underlying cloud opment team , unanticipated interactions from other portions
infrastructure but has control over operating systems , stor of the application may expose previously undetected errors
age , deployed applications , and possibly limited control of 40 that may impact the reliability , availability , or performance
select networking components (e . g . , host firewalls) . of the entire application . Assessing the risk of error before

Deployment Models are as follows : deployment may help DevOps managers decide whether to
Private cloud : the cloud infrastructure is operated solely deploy or continue testing an application , and may minimize

for an organization . It may be managed by the organization the impact of untested interactions , systems , platforms ,
or a third party and may exist on - premises or off - premises . 45 architectures , etc . Any code errors missed during test or any
Community cloud : the cloud infrastructure is shared by untested , deployed code may risk performance degradation ,

several organizations and supports a specific community that benchmark violations , code execution failures , code input /
has shared concerns (e . g . , mission , security requirements , output failures , or system failures in the user locations where
policy , and compliance considerations) . It may be managed the application is deployed .
by the organizations or a third party and may exist on - 50 Various embodiments of the present invention may use
premises or off - premises . machine learning to “ learn ” the behavior of the application

Public cloud : the cloud infrastructure is made available to code base during pre - deployment testing by monitoring
the general public or a large industry group and is owned by execution behaviors such as code paths taken , code execu
an organization selling cloud services . tion times , etc . The learned behavior of the application may

Hybrid cloud : the cloud infrastructure is a composition of 55 be stored in execution profiles that are used to compare the
two or more clouds (private , community , or public) that behavior of changed code against known behavior of pre
remain unique entities but are bound together by standard vious levels of the application code . Changes in behavior
ized or proprietary technology that enables data and appli may be analyzed to determine the risk the changed code may
cation portability (e . g . , cloud bursting for load balancing have on the reliability , availability , or performance of the
between clouds) . 60 application , if deployed .

A cloud computing environment is service oriented with FIG . 1 illustrates a functional block diagram of an exem
a focus on statelessness , low coupling , modularity , and plary cloud computing node 122 , in accordance with an
semantic interoperability . At the heart of cloud computing is embodiment of the present disclosure . Cloud computing
an infrastructure comprising a network of interconnected node 122 may include DevOps early risk identification 96
nodes . 65 from the workloads 90 functional cloud environment layer

Various embodiments of the present disclosure identify (FIG . 6) . DevOps early risk identification 96 may identify
product or application (hereinafter , " application ”) code portions of code in an application that display signs of

US 9 , 921 , 952 B2

instability during code development and test , provide feed - data , execution time , and function identification . Profile
back to development , and calculate the risk of deploying the creator 110 may collect this data over multiple test runs in
application without additional testing . Signs of instability , each test phase and over multiple test phases to create a test
during code development , may appear as changes to the profile 170 covering the entire test of the application .
learned code behavior resulting from , among other reasons , 5 In various embodiments , profile creator 110 may create
errors in the code , test system environment variability as the test profile 170 after the first phase of testing and
testing progresses through multiple test phases , or test iteratively update the test profile 170 after each subsequent
configuration setting variability . DevOps early risk identifi - testing phase . The test profile 170 , after each test phase , may
cation 96 may maintain data on some or all portions of code include the averages of the collected data from the plurality
in the application , including impact data . Impact data may , 10 of test runs , and may be saved in profile repository 165 as
in various embodiments , be a value rating the impact the a test phase baseline execution profile 175 to be used by
portion of code may have on the application or on the system monitor 130 to determine the functional stability of the code .
on which the application executes due to , for example , the Monitor 130 will be discussed in further detail below .
number of other code portions dependent on this portion of The test profile 170 created after all testing phases have
code , and the frequency with which this portion of code is 15 completed may represent the execution of all code portions
executed (execution rate) . DevOps early risk identification of the application in the test environment , and once the
96 may utilize signs of instability in a portion of code , along application deploys , may be saved in profile repository 165
with the maintained impact data for that portion of code , to as the application execution profile 160 for the deployed
calculate a risk value associated with deploying the appli - version of the application . The saved execution profiles 160 ,
cation at its current level of instability . DevOps early risk 20 175 may be used as baselines against which future code
identification 96 may also maintain code control flow data behaviors may be compared .
and build a probabilistic decision tree of all possible control In various embodiments , the created profiles 160 , 170 ,
flow paths to be used for diagnosing errors during develop - 175 may include , but are not limited to , the identification of
ment , test , and production - level failures after the application each function called and its code version , aggregate data that
is deployed . 25 includes , but is not limited to , the average (determined from
DevOps early risk identification 96 may include one or a plurality of test runs) number of invocations of each

more profile creators 110 , one or more risk analyzers 120 , function ; the average execution time of each function ; the
one or more monitors 130 , one or more test profiles 170 , one average execution time of the application , and the average
or more probabilistic decision trees 180 , and one or more number of function invocations in the application , the set of
profile repositories 165 , all of which may be stored , for 30 executed code branches , the set of unexecuted code
example , on a computer readable storage medium , such as branches , and the execution order of code branches and
computer readable storage medium (media) 430 (FIG . 4) , function invocations . In various embodiments , the code
portable computer readable storage medium (media) 470 , version included in the created profile 160 , 170 , 175 for each
and / or RAM (S) 422 . In various embodiments , profile reposi - function may be used to identify the code developer of the
tory 165 may be locally attached to cloud computing node 35 function or code portion . In various embodiments , a plural
122 , or may be externally accessed through a network (for ity of application execution profiles 160A , 160B , 160C ,
example , the Internet , a local area network or other , wide 160D may be saved in profile repository 165 for the same
area network or wireless network) and network adapter or application . Application execution profile 160A may , for
interface 436 (FIG . 4) . The network may comprise copper example , represent version 1 of the deployed application
wires , optical fibers , wireless transmission , routers , fire - 40 while application execution profile 160B may represent
walls , switches , gateway computers , and / or edge servers . In version 2 of the deployed application .
various embodiments , profile repository 165 may include In various embodiments , profile creator 110 may use the
one or more application execution profiles 160A , 160B , simulated call stack of the application to create a probabi
160C , 160D , and one or more test phase baseline execution listic decision tree 180 for the application . The probabilistic
profiles 175A , 175B , for the one or more applications 45 decision tree 180 for the application may include all possible
monitored by DevOps early risk identification 96 . execution path decisions in the application , and the context

In various embodiments , profile creator 110 may collect information associated with each execution path decision . In
data about the application code and create an application various embodiments , the probabilistic decision tree 180
execution profile 160 for the code by collecting entry and may be stored in profile repository 165 . In certain embodi
exit information for each portion of code in the application . 50 ments a profile 160 , 170 , 175 may point to its associated
Profile creator 110 may simulate a call stack for each probabilistic decision tree 180 in the repository . In other
function call and branch in the portion of code to learn the embodiments , the probabilistic decision tree 180 may be
full context of the function call or branch , including , the included in the saved profile 160 , 175 itself . In various
invoker of the function or branch , parameters passed to the embodiments , the probabilistic decision tree 180 associated
function or branch , conditions met for the function to be 55 with any of the saved profiles 160 , 175 may be continually
invoked or branch to be taken , and any invoked function updated as code is added or changed for maintenance or
identifiers , such as function call package name or function enhancement , even though the associated version of the
call thread identifier . In various embodiments , profile creator application and application execution profile remains
110 may also collect code portion identifying information unchanged .
for the code portions being tested including , but not limited 60 In various embodiments , monitor 130 may utilize the data
to , code portion version , and code portion developer respon - collected by profile creator 110 and stored in the created
sible for the code portion or code changes . profiles 160 , 170 , 175 to identify tested code functions that
At each phase of testing , such as unit test , function test , are behaving differently than those same code functions

system test , performance test , integration test , etc . , in the behaved in previous versions of the code or in previous test
DevOps environment , profile creator 110 may collect a 65 phases . During the various phases of testing , monitor 130
count of the number of times each function call or branch is may compare the data collected from the current test phase
invoked , along with the function call ' s or branch ’ s context against a previously saved test phase baseline execution

US 9 , 921 , 952 B2

profile 175 for the same test phase , to determine function plurality of test runs or test phases , monitor 130 may identify
stability between versions , or may compare the data col those functions as behaving inconsistently .
lected from the current test phase against a previously saved In various embodiments utilizing k - means clustering ,
test phase baseline execution profile 175 for another test monitor 130 may identify a change in characteristic or
phase , to determine functional stability between test phases . 5 behavior for a code function by recognizing the function has
Functions behaving significantly differently than expected migrated from one k - means cluster to another k - means
may indicate potential coding , environmental , or configu cluster , either between test phases or when compared against
ration errors since mature code should behave relatively a prior version of the code portion . A code function or code

portion that has migrated k - means clusters may signify a consistently between versions or test phases . New or
changed code may be expected to behave inconsistently 10 behavior change for that function that monitor 130 may use

to identify functions behaving inconsistently . from previous versions and development may , in various In various embodiments , monitor 130 , may provide feed embodiments , identify portions of code that have been back to development for code portions or functions that are dramatically changed and are , therefore , expected to behave identified as behaving differently than expected or are iden
differently in one or more test phases than the prior version 15 tified as behaving inconsistently . In various embodiments .
of code . This expectation of different behavior may be monitor 130 may provide a ranked list of problematic code
specified by the code developer and may be included , for functions or code portions , enabling the developers to focus
example , in the function identification information . their testing efforts on those areas . Monitor 130 may also

In various embodiments , monitor 130 may determine that provide developers comparison data including , but not lim
functions , that are expected to behave consistently are , in 20 ited to , overall execution time changes , overall function
fact , behaving inconsistently from previous versions or invocation count changes , lists of unexpected code branches
previous test phases by comparing the test profile 170 taken , and lists of new code branches taken . In various
against a saved profile 160 , 175 . In various embodiments , embodiments , monitor 130 may also provide potential fixes
the test profile 170 may be compared to a test phase baseline for the errors causing the inconsistent or unexpected behav
execution profile 175 for the test phase in progress . In other 25 ior . Identifying and providing potential fixes for these errors
embodiments , the test profile 170 may be compared to the will be discussed in further detail with reference to FIG . 2 .
saved execution profile 160 of the previous version of the In various embodiments , monitor 130 may provide feed
application . back to project managers or executives assessing the risk of

In certain embodiments , monitor 130 may execute as a deploying the application without further testing . In various
cloud service and monitor development test phases occur - 30 embodiments , the risk may be assessed after each test phase .
ring across a plurality of machines or across a plurality of In other embodiments , the risk may not be assessed until the
geographic locations . final test phase , before deployment , has completed . In vari

In certain embodiments , monitor 130 may use statistical ous embodiments , monitor 130 may invoke risk analyzer
thresholds to identify code behaving inconsistently . For 120 , described in more detail below , to assess the risk
example , a statistical threshold of 95 % may be established 35 identified code behaving inconsistently may pose to the
and any test profile 170 average value that is not within 95 % reliability , availability , and performance of the deployed
of the baseline profile 160 , 175 value may be considered as application or system on which the deployed application
behaving inconsistently . In this example , monitor 130 may executes . In certain embodiments , monitor 130 may provide
recognize that the average number of invocations of a recommended actions , such as debug , fix , re - test , deploy as
particular function exceeds the 95 % statistical threshold of 40 is , or stop development and enter technical debt processing .
the average number of invocations for that same function Monitor 130 may provide risk assessments and recommen
when compared against the test phase baseline execution dations as reports , alerts to a mobile device , dashboard
profile 175 or application execution profile 160 . Monitor information , or any other communication mechanism .
130 may look for inconsistent behavior , using statistical In various embodiments , risk analyzer 120 may analyze
thresholds , in for example , the average number of invoca - 45 the risk and make recommendations based on data collected
tions of a function , a function ' s average execution time , the by monitor 130 including , but not limited to , the ratio of
average overall application execution time , the average stable to unstable functions or code portions , the number of
count of all function invocations , the average number of functions changed , the identity of the stable functions , the
unexpected paths that were executed , the average number of identity of the unstable functions , execution time variations ,
expected paths that were not executed , and any other col - 50 benchmarks violated , such as service level agreements , and
lected values that may be used to signify code characteristics a weighted value of the importance of an unstable function
or behaviors . In various embodiments the statistical thresh - based on the historical impact the unstable function has had
olds that signify inconsistent behavior of the code may be on the application and the number and criticality of other
configurable . In certain embodiments , a single statistical functions and other products that depend on the unstable
threshold may apply to all profile 160 , 170 , 175 compared 55 function .
values . In other embodiments , each compared value in the In various embodiments , risk analyzer 120 may make
profiles 160 , 170 , 175 may have its own statistical threshold recommendations using a classification approach . In an
to signify inconsistent behavior . exemplary classification approach , risk analyzer 120 may

In certain embodiments , monitor 130 may utilize one or create classes that align with the recommended actions of
more statistical thresholds to cluster code function portions , 60 debug , fix , re - test , deploy as is , etc . , in which each recom
for example by k - means clustering , based on the character - mended action is a class . For new applications or new
istics or behaviors of the code portions , such as number of functions , risk analyzer 120 may place the new functions or
invocations or execution times . Monitor 130 may use the code portions of the application into one of the recom
clusters to identify any code portions whose characteristics mended action classes based on the above listed data col
are not consistent across multiple test runs in a single test 65 lected by monitor 130 .
phase . If any particular code portion ' s characteristics do not for changed code , risk analyzer 120 may use historical
converge to be within the statistical threshold set , over the data from defect reporting tools , such as IBM® Rational®

US 9 , 921 , 952 B2

Team ConcertTM (RTC) , as well the current stability of the fix ; and the actual lines of code fixed . Profile creator 110
changed code , to classify , or reclassify , the changed func - may map the fix details 220A to Version 1 and associate the
tions or code portions . Risk analyzer 120 may base the code fix with the application execution profile 160 for
classification , or reclassification , at least in part , on the Version 1 . Profile creator 110 may also update the probabi
changed function ' s or changed code portion ' s historical 5 listic decision tree 180 for Version 1 to reflect new / changed
reliability and historical impact on the deployed applica - deleted paths and function calls in code fix 1 .
tion ' s availability , reliability and performance . Once classi In the exemplary code development cycle , a new version
fied , risk analyzer 120 may use that classification to provide (Version 2) of the feature is created , with its own profiles
a recommended action . Risk analyzer 120 may also provide 160 , 175 , probabilistic decision tree 180 and version map
a risk value , based on the identified impact of any unstable 10 ping . In various embodiments , code fix 1 may be incorpo
functions . The risk value may identify the risk level of rated into version 2 of the feature , so that fix details 220A
proceeding with the deployment of the application , function , is only mapped to Version 1 . The next code fix , code fix 2 ,
or code fix if the recommended action is not followed . In may fix an error that exists only in Version 2 of the feature
various embodiments , the risk value may be presented as a or may fix an error that exists in both Version 1 and Version
numerical value . In other embodiments , the risk value may 15 2 of the feature . The fix details 220B may be mapped to both
be presented as a level , such as low , medium , or high . In still Version 1 and Version 2 if code fix 2 fixes an error that exists
other embodiments , the risk value may be presented as a in both versions . Profile creator 110 may update all affected
range of colors , for example starting at green for a low risk . probabilistic decision trees 180 and profiles 160 , 175 for
DevOps early risk identification 96 may identify code code fix 2 .

instability and calculate risk of deployment for new func - 20 In various embodiments , monitor 130 may not only
tions , new code portions , new applications , enhanced func - identify a problem in the code , but may use the probabilistic
tion code changes , and error correction (or code fix) code decision tree 180 to find the likely root cause of the problem .
changes . In various embodiments , DevOps early risk iden - Monitor 130 may run the probabilistic decision tree 180 and
tification 96 may identify code instability in specific code compare the execution paths and function call contexts
portions , without requiring the recompile of the entire appli - 25 against the saved profiles 160 , 175 to identify the code most
cation code base . DevOps early risk identification 95 can likely to be the root cause of the error . Once a likely root
learn and compare the characteristics and behaviors of new cause has been identified , monitor 130 may search for an
or changed code portions independently or in conjunction existing solution for the error . Monitor 130 may utilize the
with existing unchanged code portions in the application . error symptoms and identified root cause code portion to

FIG . 2 depicts an exemplary code development life cycle , 30 search for existing solutions in , for example , the fix details
in accordance with an embodiment of the disclosure . In 220 of known fixed problems associated with the version ,
various embodiments , a revision control system may be used historical data from defect reporting tools , such as RTC , and
to develop functions , code portions , and complete applica - internet forums associated with the feature .
tions . In various embodiments of the present disclosure , During test , monitor 130 may provide the found solutions
DevOps early risk identification 96 may maintain a mapping 35 for developers . After deployment , monitor 130 may execute
which associates a code version with one or more test phase as a cloud service , monitoring the behavior of the deployed
baseline execution profiles 175 for the version , an applica - feature in production . Monitor 130 may collect production
tion execution profile 160 for the version , a probabilistic level measurement data produced and stored by the
decision tree 180 for the version , and known problem fix deployed feature . Monitor 130 may utilize the monitored
details 220A , 220B for the version . 40 data to identify code behavior inconsistency , code behavior

In various embodiments , as a new feature (Version 1) is instability , production level failure (s) of the deployed fea
developed , profile creator 110 may add the new feature ' s test ture , and identify the root cause of the problem . For these
phase baseline execution profiles 175 , application execution production level failures , monitor 130 may search for a
profile 160 , and probabilistic decision tree 180 to profile known fix for the problem and may deploy the known fix to
repository 165 and maintain a mapping for the version 45 the user location .
(Version 1) that relates the profiles 160 , 175 and probabi FIG . 3A is a flowchart illustrating early risk identification
listic decision trees 180 to each other and to the version in a DevOps test environment , in accordance with an
(Version 1) of the feature . The new feature may be a new embodiment of the disclosure . In various embodiments , an
function added to an existing application , a new code portion exemplary code module , which may be a function , a code
added to an existing application , or a new independent 50 portion , or an entire application , may be executed in a test
feature , such as an application . The feature ' s version infor environment , at 302 . In a DevOps environment , there may
mation may include identification information , including the be many test environments in which the code module will be
name of the code developer for the new feature . executed . In various embodiments , the same test environ

Over time , developers may change the code with code ment may be executed more than once . Each time the
fixes for errors discovered during the feature ' s test phases or 55 exemplary code module is tested in a test environment ,
discovered through production level failures in the deployed profile creator 110 may , at 304 , collect execution measure
feature . Some of the errors may be discovered by monitor ment data . The data collected may include , code paths taken
130 identifying code behavior inconsistency , code behavior (or code module control flows) and execution times for each
instability , or code failure . path taken or for the overall code module . The execution

In the exemplary code development life cycle , a code fix , 60 measurement data collected by profile creator 110 may also
code fix 1 , has been developed for the first version of the include the number of functions called and the number of
feature . The code may have been fixed during test or may times any particular function is called . Profile creator 110
have been fixed after deployment . When exemplary code fix may then create a test profile for the code module , at 306 . If
1 is deployed , profile creator 110 may create exemplary fix the code module has not been executed in this test environ
detail 220A that includes , but is not limited to , the error 65 ment before , profile creator 110 may create a new test profile
symptoms of the code inconsistency , instability , or error ; the 170 , with the collected execution measurement data , for this
code portions or functions fixed ; the code developer of the code module in this test environment . If the code module is

US 9 , 921 , 952 B2
11 12

being retested in the same test environment , profile creator code module . If the collected measurements do not match
110 may aggregate (e . g . , average , maintain a minimum / the application execution profile 160 , monitor 130 may
maximum value , provide to a learning algorithm) the col - determine the root cause , at 336 , of the problematic code
lected execution measurement data with the execution mea functions found . Monitor 130 may search for a known fix in ,
surement data already in the test profile 170 and store the 5 for example , service databases including fix data 220 , his
new aggregate execution measurement data in the test torical data from defect reporting tools , or forums of known
profile 170 . In various embodiments , profile creator 110 may fixes for the code module and may , at 338 , deploy the fix to
also collect and aggregate the collected execution measure update the deployed code module in the one or more user
ment data with the execution measurement data already in locations experiencing the problem .
the test profile 170 as the code module moves from one test 10 FIG . 4 depicts a block diagram of components of the
environment to another . computing device 122 of FIG . 1 , in accordance with an

For each test environment , monitor 130 may compare the embodiment of the disclosure . It should be appreciated that
test profile 170 to a baseline profile , at 308 , and analyze the FIG . 4 provides only an illustration of one implementation
differences . The baseline profile may be a test phase baseline and does not imply any limitations with regard to the
execution profile 175 saved from executing a prior version 15 environments in which different embodiments may be
of the code module in this test environment , a test phase implemented . Many modifications to the depicted environ
baseline execution profile 175 saved from executing this ment may be made .
version of the code module in a different test environment , Computing device 122 can include one or more proces
or may be an application execution profile 160 for a previ sors 420 , one or more computer - readable RAMs 422 , one or
ously deployed version of this code module . If the test 20 more computer - readable ROMs 424 , one or more computer
profile 170 matches the baseline profile 160 , 175 , the code readable storage medium 430 , 165 , device drivers 440 ,
module is behaving similarly to past versions of the code read / write drive or interface 432 , and network adapter or
module . If there is a disparity , where the test profile 170 does interface 436 , all interconnected over a communications
not match the baseline profile 160 , 175 , monitor 130 may fabric 426 . Communications fabric 426 can be implemented
analyze the differences in the profiles 170 , 160 , 175 to create 25 with any architecture designed for passing data and / or
a ranked list of problematic code functions or code portions , control information between processors (such as micropro
and a set of execution measurement comparisons between cessors , communications and network processors , etc .) , sys
the test profile 170 and the baseline profile 160 , 175 . Risk tem memory , peripheral devices , and any other hardware
analyzer 120 may , at 310 , utilize the collected execution components within a system .
measurement data and the comparison data to determine a 30 One or more operating systems 428 , DevOps early risk
recommended course of action based on the number and identifications 96 , profile creators 110 , risk analyzers 120 ,
type of problematic code functions and the extent of execu - monitors 130 , probabilistic decision trees 180 , test profiles
tion measurement disparities between the test profile 170 170 , profile repositories 165 , application execution profiles
and the baseline profiles 160 , 175 . Risk analyzer 120 may 160 , test phase execution baseline profiles 175 , and fix
also , at 310 , determine a risk factor of not following the 35 details 220 are stored on one or more of the computer
recommended course of action . Risk analyzer 120 may set readable storage medium 430 , 165 for execution by one or
the risk factor based on analyzing the impact the problematic more of the processors 420 via one or more of the respective
code function or code portions may have on the overall code RAMS 422 (which typically include cache memory) . In the
module , if deployed as is . illustrated embodiment , each of the computer readable stor

Monitor 130 may , at 312 , provide diagnostic data to be 40 age medium 430 , 165 can be a magnetic disk storage device
used by the developers of the code module that characterizes of an internal hard drive , CD - ROM , DVD , memory stick ,
the disparity between the compared profiles 160 , 170 , 175 , magnetic tape , magnetic disk , optical disk , a semiconductor
including a ranked list of problematic code functions or code storage device such as RAM , ROM , EPROM , flash memory
portions , and execution measurement comparisons . Monitor or any other computer readable storage medium that can
130 may , at 314 , provide the recommended action and risk 45 store a computer program and digital information .
value to be used by the project managers and higher level Computing device 122 can also include a R / W drive or
executive to provide the tradeoffs of , for example , deploying interface 432 to read from and write to one or more portable
the code module , as is , rather than performing additional computer readable storage medium 470 , 165 . DevOps early
testing . risk identification 96 , profile creator 110 , risk analyzer 120 ,

In various embodiments , monitor 130 may determine the 50 monitor 130 , probabilistic decision tree 180 , test profile 170 ,
root cause of problematic code functions and may search , for profile repository 165 , application execution profile 160 , test
example , internal service databases , historical data from phase execution baseline profile 175 , and fix details 220 can
defect reporting tools , or external forums for known fixes be stored on one or more of the portable computer readable
and may , at 316 , provide potential code fixes to development storage medium 470 , 165 read via the respective R / W drive
as possible solutions to fix the problematic code functions . 55 or interface 432 , and loaded into the respective computer

FIG . 3B is a flowchart illustrating production level error readable storage medium 430 , 165 .
identification and repair with DevOps early risk identifica - Computing device 122 can also include a network adapter
tion 96 executing in a cloud environment , in accordance or interface 436 , such as a TCP / IP adapter card or wireless
with an embodiment of the disclosure . In various embodi - communication adapter (such as a 4G wireless communica
ments , monitor 130 may , at 332 , collect production level 60 tion adapter using OFDMA technology) . DevOps early risk
execution and failure data from a deployed code module in identification 96 , profile creator 110 , risk analyzer 120 ,
one or more user locations . Monitor 130 may collect the data monitor 130 , probabilistic decision tree 180 , test profile 170 ,
by monitoring user forums , monitoring error reporting data profile repository 165 , application execution profile 160 , test
bases , or collecting measurement data produced and stored phase execution baseline profile 175 , and fix details 220 can
by the deployed code module . At 334 , monitor 130 may 65 be downloaded to the computing device from an external
compare the collected measurements against the application computer or external storage device via a network (for
execution profile 160 matching the deployed version of the example , the Internet , a local area network or other , wide

Illas

US 9 , 921 , 952 B2
13 14

area network or wireless network) and network adapter or In one example , management layer 80 may provide the
interface 436 . From the network adapter or interface 436 , the functions described below . Resource provisioning 81 pro
programs are loaded into the computer readable storage vides dynamic procurement of computing resources and
medium 430 , 165 . The network may comprise copper wires , other resources that are utilized to perform tasks within the
optical fibers , wireless transmission , routers , firewalls , 5 cloud computing environment . Metering and Pricing 82
switches , gateway computers , and / or edge servers . provide cost tracking as resources are utilized within the

Computing device 122 can also include a display screen cloud computing environment , and billing or invoicing for
450 , a keyboard or keypad 460 , and a computer mouse or consumption of these resources . In one example , these
touchpad 455 . Device drivers 440 interface to display screen resources may comprise application software licenses . Secu
450 for imaging , to keyboard or keypad 460 , to computer 10 rity provides identity verification for cloud consumers and
mouse or touchpad 455 , and / or to display screen 450 for tasks , as well as protection for data and other resources . User
pressure sensing of alphanumeric character entry and user portal 83 provides access to the cloud computing environ
selections . The device drivers 440 , R / W drive or interface m ent for consumers and system administrators . Service level
432 , and network adapter or interface 436 can comprise management 84 provides cloud computing resource alloca
hardware and software (stored in computer readable storage 15 tion and management such that required service levels are
medium 430 and / or ROM 424) . met . Service Level Agreement (SLA) planning and fulfill

It is understood in advance that although this disclosure ment 85 provide pre - arrangement for , and procurement of ,
includes a detailed description on cloud computing , imple - cloud computing resources for which a future requirement is
mentation of the teachings recited herein are not limited to anticipated in accordance with an SLA .
a cloud computing environment . Rather , embodiments of the 20 Workloads layer 90 provides examples of functionality
present invention are capable of being implemented in for which the cloud computing environment may be utilized .
conjunction with any other type of computing environment Examples of workloads and functions which may be pro
now known or later developed . vided from this layer include : mapping and navigation 91 ;

FIG . 5 depicts a cloud computing environment 50 includ - software development and lifecycle management 92 ; virtual
ing the computing device 122 of FIGS . 1 and 4 , in accor - 25 classroom education delivery 93 ; data analytics processing
dance with an embodiment of the disclosure . As shown , 94 ; transaction processing 95 ; and DevOps early risk iden
cloud computing environment 50 comprises one or more tification 96 .
cloud computing nodes 122 with which local computing The present invention may be a system , a method , and / or
devices used by cloud consumers , such as , for example , a computer program product . The computer program prod
personal digital assistant (PDA) or cellular telephone 54A , 30 uct may include a computer readable storage medium (or
desktop computer 54B , laptop computer 54C , and / or auto media) having computer readable program instructions
mobile computer system 54N may communicate . Nodes 122 thereon for causing a processor to carry out aspects of the
may communicate with one another . They may be grouped present invention .
(not shown) physically or virtually , in one or more networks , The computer readable storage medium can be a tangible
such as Private , Community , Public , or Hybrid clouds as 35 device that can retain and store instructions for use by an
described hereinabove , or a combination thereof . This instruction execution device . The computer readable storage
allows cloud computing environment 50 to offer infrastruc - medium may be , for example , but is not limited to , an
ture , platforms and / or software as services for which a cloud electronic storage device , a magnetic storage device , an
consumer does not need to maintain resources on a local optical storage device , an electromagnetic storage device , a
computing device . It is understood that the types of com - 40 semiconductor storage device , or any suitable combination
puting devices 54A - N shown in FIG . 5 are intended to be of the foregoing . A non - exhaustive list of more specific
illustrative only and that computing devices 122 and cloud examples of the computer readable storage medium includes
computing environment 50 can communicate with any type the following : a portable computer diskette , a hard disk , a
of computerized device over any type of network and / or random access memory (RAM) , a read - only memory
network addressable connection (e . g . , using a web browser) . 45 (ROM) , an erasable programmable read - only memory

FIG . 6 depicts a block diagram of functional layers of the (EPROM or Flash memory) , a static random access memory
cloud computing environment 50 of FIG . 5 , in accordance (SRAM) , a portable compact disc read - only memory (CD
with an embodiment of the disclosure . It should be under - ROM) , a digital versatile disk (DVD) , a memory stick , a
stood in advance that the components , layers , and functions floppy disk , a mechanically encoded device such as punch
shown in FIG . 6 are intended to be illustrative only and 50 cards or raised structures in a groove having instructions
embodiments of the invention are not limited thereto . As recorded thereon , and any suitable combination of the fore
depicted , the following layers and corresponding functions going . A computer readable storage medium , as used herein ,
are provided : is not to be construed as being transitory signals per se , such
Hardware and software layer 60 includes hardware and as radio waves or other freely propagating electromagnetic

software components . Examples of hardware components 55 waves , electromagnetic waves propagating through a wave
include : mainframes 61 ; RISC (Reduced Instruction Set guide or other transmission media (e . g . , light pulses passing
Computer) architecture based servers 62 ; servers 63 ; blade through a fiber - optic cable) , or electrical signals transmitted
servers 64 ; storage devices 65 ; and networks and networking through a wire .
components 66 . In some embodiments , software compo Computer readable program instructions described herein
nents include network application server software 67 and 60 can be downloaded to respective computing processing
database software 68 . devices from a computer readable storage medium or to an

Virtualization layer 70 provides an abstraction layer from external computer or external storage device via a network ,
which the following examples of virtual entities may be for example , the Internet , a local area network , a wide area
provided : virtual servers 71 ; virtual storage 72 ; virtual network and / or a wireless network . The network may com
networks 73 , including virtual private networks ; virtual 65 prise copper transmission cables , optical transmission fibers ,
applications and operating systems 74 ; and virtual clients wireless transmission , routers , firewalls , switches , gateway
75 . computers and / or edge servers . A network adapter card or

15
US 9 , 921 , 952 B2

16
network interface in each computing processing device The flowchart and block diagrams in the Figures illustrate
receives computer readable program instructions from the the architecture , functionality , and operation of possible
network and forwards the computer readable program implementations of systems , methods , and computer pro
instructions for storage in a computer readable storage gram products according to various embodiments of the
medium within the respective computing / processing device . 5 present invention . In this regard , each block in the flowchart

Computer readable program instructions for carrying out or block diagrams may represent a module , segment , or
operations of the present invention may be assembler portion of instructions , which comprises one or more
instructions , instruction - set - architecture (ISA) instructions , executable instructions for implementing the specified logi
machine instructions , machine dependent instructions , cal function (s) . In some alternative implementations , the
microcode , firmware instructions , state - setting data , or 10 functions noted in the block may occur out of the order noted
either source code or object code written in any combination in the figures . For example , two blocks shown in succession
of one or more programming languages , including an object may , in fact , be executed substantially concurrently , or the
oriented programming language such as Smalltalk , C + + or blocks may sometimes be executed in the reverse order ,
the like , and conventional procedural programming lan - depending upon the functionality involved . It will also be
guages , such as the “ C ” programming language or similar 15 noted that each block of the block diagrams and / or flowchart
programming languages . The computer readable program illustration , and combinations of blocks in the block dia
instructions may execute entirely on the user ' s computer , grams and / or flowchart illustration , can be implemented by
partly on the user ' s computer , as a stand - alone software special purpose hardware - based systems that perform the
package , partly on the user ' s computer and partly on a specified functions or acts or carry out combinations of
remote computer or entirely on the remote computer or 20 special purpose hardware and computer instructions .
server . In the latter scenario , the remote computer may be Although preferred embodiments have been depicted and
connected to the user ' s computer through any type of described in detail herein , it will be apparent to those skilled
network , including a local area network (LAN) or a wide in the relevant art that various modifications , additions ,
area network (WAN) , or the connection may be made to an substitutions and the like can be made without departing
external computer (for example , through the Internet using 25 from the spirit of the invention , and these are , therefore ,
an Internet Service Provider) . In some embodiments , elec - considered to be within the scope of the invention , as defined
tronic circuitry including , for example , programmable logic in the following claims .
circuitry , field - programmable gate arrays (FPGA) , or pro What is claimed is :
grammable logic arrays (PLA) may execute the computer 1 . A method comprising :
readable program instructions by utilizing state information 30 executing , by a computer , a first version of a code module
of the computer readable program instructions to personalize in a first test environment ; collecting , by the computer ,
the electronic circuitry , in order to perform aspects of the a first set of execution measurements , including code
present invention . module execution times and code module control

Aspects of the present invention are described herein with flows , for the first version of the code module executing
reference to flowchart illustrations and / or block diagrams of 35 in the first test environment ;
methods , apparatus (systems) , and computer program prod creating , by the computer , a first profile of the first version
ucts according to embodiments of the invention . It will be of the code module based on the first set of execution
understood that each block of the flowchart illustrations measurements ;
and / or block diagrams , and combinations of blocks in the executing , by the computer , the first version of the code
flowchart illustrations and / or block diagrams , can be imple - 40 module in a second test environment ;
mented by computer readable program instructions . collecting , by the computer , a second set of execution

These computer readable program instructions may be measurements , including code module execution times
provided to a processor of a general purpose computer , and control module control flows , for the first version
special purpose computer , or other programmable data pro of the code module executing in the second test envi
cessing apparatus to produce a machine , such that the 45 ronment ;
instructions , which execute via the processor of the com creating , by the computer , a second profile of the first
puter or other programmable data processing apparatus , version of the code module based on the second set of
create means for implementing the functions / acts specified execution measurements ; and
in the flowchart and / or block diagram block or blocks . These in response to a difference between the first profile and the
computer readable program instructions may also be stored 50 second profile providing , by the computer , diagnostic
in a computer readable storage medium that can direct a data characterizing the difference between the first
computer , a programmable data processing apparatus , and / profile and the second profile ;
or other devices to function in a particular manner , such that analyzing , by the computer , an impact of the difference
the computer readable storage medium having instructions between the first profile and the second profile on the
stored therein comprises an article of manufacture including 55 execution of the code module , the impact comprising a
instructions which implement aspects of the function / act value rating based on both of a number of other
specified in the flowchart and / or block diagram block or functions or other products dependent on the code
blocks . module , and a frequency with which the code module

The computer readable program instructions may also be is executed ;
loaded onto a computer , other programmable data process - 60 calculating , by the computer , a risk of code module failure
ing apparatus , or other device to cause a series of operational value based on analyzing the impact of the difference
steps to be performed on the computer , other programmable between the first profile and the second profile ;
apparatus or other device to produce a computer imple providing , by the computer , a recommended action based
mented process , such that the instructions which execute on on analyzing the impact of the difference and the
the computer , other programmable apparatus , or other 65 calculated risk of code module failure value , based at
device implement the functions / acts specified in the flow least on a weighted value of an importance of an
chart and / or block diagram block or blocks . unstable function included in the first version of the

17
US 9 , 921 , 952 B2

18
code module based on a historical impact the unstable a count of changed functions ;
function has had on the first version of the code module an identity of an unstable function ;
and the number and criticality of the other functions an historical impact value of the unstable function ;
and other products that depend on the unstable func a change in execution time of a function ; and
tion , and 5 a weighted value of importance of the unstable function .

deploying corrective code to fix the first version of the 7 . The method according to claim 1 , wherein the code
code module , using the recommended action . module failure risk value includes the risk of the executed 2 . The method according to claim 1 , further comprising : code module experiencing at least one of : executing , by the computer , a second version of the code a performance degradation ;
module in the first test environment , wherein the sec - 10 a benchmark violation ; ond version of the code module is the first version of a code execution failure ; the code module with one or more code changes ; a code input / output failure ; collecting , by the computer , a third set of execution
measurements , including code module execution times an application failure ; and
and code module control flows , for the second version 15 a system failure .
of the code module executing in the first test environ 8 . A computer program product , the computer program
ment ; product comprising one or more computer readable storage

creating , by the computer , a third profile of the second medium and program instructions stored on at least one of
version of the code module based on the third set of the one or more computer readable storage medium , the
execution measurements ; and 20 program instructions comprising :

in response to a difference between the first profile and the program instructions to execute , by a computer , a first
third profile exceeding a threshold : version of a code module in a first test environment ;
providing , by the computer , diagnostic data character program instructions to collect , by the computer , a first set

izing the difference between the first profile and the of execution measurements , including code module
third profile ; 25 execution times and code module control flows , for the

analyzing , by the computer , the impact of the difference first version of the code module executing in the first
between the first profile and the third profile on the test environment ;
execution of the code module ; program instructions to create , by the computer , a first

calculating , by the computer , a risk of code module profile of the first version of the code module based on
failure value based on analyzing the impact of the 30 the first set of execution measurements ;
difference between the first profile and the third program instruction to execute , by the computer , the first
profile ; and version of the code module in a second test environ

providing , by the computer , a recommended action ment ;
based on analyzing the impact of the difference and program instructions to collect , by the computer , a second
the calculated risk of code module failure value . 35 set of execution measurements , including code module

3 . The method according to claim 2 , further comprising : execution times and control module control flows , for
determining , by the computer , a set of code changes to the the first version of the code module executing in the

code module , based on the difference between profiles second test environment ;
and the diagnostic data characterizing the difference program instructions to create , by the computer , a second
between profiles . 40 40 profile of the first version of the code module based on

4 . The method according to claim 1 , wherein the diag the second set of execution measurements ; and
nostic data diagnostic characterizing the difference between in response to a difference between the first profile and the
profiles includes at least one of : second profile exceeding a threshold :

code functions characterized as problematic ; program instructions to provide , by the computer , diag
execution times characterized as changed ; nostic data characterizing the difference between the
function invocation counts characterized as changed ; first profile and the second profile ;
executed functions characterized as new ; program instructions to analyze , by the computer , an
executed functions characterized as unexpected ; and impact of the difference between the first profile and the
an identification , identifying a developer of the code second profile on the execution of the code module , the

functions characterized as problematic . 50 impact comprising a value rating based on both of a
5 . The method according to claim 1 , wherein the profile number of other functions and other products depen

includes at least one of : dent on the code module , and a frequency with which
an aggregate of a number of times each function in the the code module is executed ;

code module is invoked ; program instructions to calculate , by the computer , a risk
an aggregate execution time for each function in the code 55 of code module failure value based analyzing the
module ; impact of the difference between the first profile and the

an aggregate overall execution time for the code module ; second profile ;
an aggregate count of all function invocations in the code program instructions to provide , by the computer , a rec
module ; ommended action based on analyzing the impact of the

a set of executed functions in the code module ; difference and the calculated risk of code module
a set of unexecuted functions in the code module ; and failure value , based at least on a weighted value of an
an order of execution of the executed functions in the code importance of an unstable function within the first
module . version of the code module based on a historical impact

6 . The method according to claim 1 , wherein analyzing , the unstable function has had on the first version of the
by the computer , the impact of the difference between 65 code module and the number and criticality of the other
profiles includes analyzing at least one of : functions and other products that depend on the

a ratio of stable to unstable functions ; unstable function , and

45 45

50

30

US 9 , 921 , 952 B2
19 20

program instructions to deploy corrective code to fix the a ratio of stable to unstable functions ;
first version of the code module , using the recom a count of changed functions ;
mended action . an identity of an unstable function ;

9 . The computer program product according to claim 8 , an historical impact value of the unstable function ;
further comprising : a change in execution time of a function ; and

program instructions to execute , by the computer , a sec a weighted value of importance of the unstable function .
ond version of the code module in the first test envi 14 . The computer program product according to claim 8 ,
ronment , wherein the second version of the code mod wherein the code module failure risk value includes the risk ule is the first version of the code module with one or of the executed code module experiencing at least one of : more code changes ; a performance degradation ; program instructions to collect , by the computer , a third a benchmark violation ; set of execution measurements , including code module a code execution failure ; execution times and code module control flows , for the
second version of the code module executing in the first a code input / output failure ;
test environment ; an application failure ; and

program instructions to create , by the computer , a third a system failure .
profile of the second version of the code module based 15 . A computer system , the computer system comprising
on the third set of execution measurements ; and one or more processors , one or more computer readable

in response to a difference between the first profile and the memories , one or more computer readable tangible storage
third profile exceeding a threshold : 20 medium , and program instructions stored on at least one of
program instructions to provide , by the computer , diag the one or more storage medium for execution by at least one

nostic data characterizing the difference between the of the one or more processors via at least one of the one or
first profile and the third profile ; more memories , the program instructions comprising :

program instructions to analyze , by the computer , the program instructions to execute , by a computer , a first
impact of the difference between the first profile and 25 version of a code module in a first test environment ;
the third profile on the execution of the code module ; program instructions to collect , by the computer , a first set

program instructions to calculate , by the computer , a of execution measurements , including code module
risk of code module failure value based on analyzing execution times and code module control flows , for the
the impact of the difference between the first profile first version of the code module executing in the first
and the third profile ; and test environment ;

program instructions to provide , by the computer , a program instructions to create , by the computer , a first
recommended action based on analyzing the impact profile of the first version of the code module based on
of the difference and the calculated risk of code the first set of execution measurements ;
module failure value . program instruction to execute , by the computer , the first

10 . The computer program product according to claim 9 , 35 version of the code module in a second test environ
further comprising : ment ;

program instructions to determine , by the computer , a set program instructions to collect , by the computer , a second
of code changes to the code module , based on the set of execution measurements , including code module
difference between profiles and the diagnostic data execution times and control module control flows , for
characterizing the difference between profiles . 40 the first version of the code module executing in the

11 . The computer program product according to claim 8 , second test environment ;
wherein the diagnostic data diagnostic characterizing the program instructions to create , by the computer , a second
difference between profiles includes at least one of : profile of the first version of the code module based on

code functions characterized as problematic ; the second set of execution measurements ; and
execution times characterized as changed ; 45 in response to a difference between the first profile and the
function invocation counts characterized as changed ; second profile exceeding a threshold :
executed functions characterized as new ; program instructions to provide , by the computer , diag
executed functions characterized as unexpected ; and nostic data characterizing the difference between the
an identification , identifying a developer of the code first profile and the second profile ;

functions characterized as problematic . 50 program instructions to analyze , by the computer , an
12 . The computer program product according to claim 8 , impact of the difference between the first profile and the

wherein the profile includes at least one of : second profile on the execution of the code module , the
an aggregate of a number of times each function in the impact comprising a value rating based on both of a

code module is invoked ; number of other functions and other products depen
an aggregate execution time for each function in the code 55 dent on the code module , and a frequency with which
module ; the code module is executed ;

an aggregate overall execution time for the code module ; program instructions to calculate , by the computer , a risk
an aggregate count of all function invocations in the code of code module failure value based analyzing the
module ; impact of the difference between the first profile and the

a set of executed functions in the code module ; second profile ;
a set of unexecuted functions in the code module ; and program instructions to provide , by the computer , a rec
an order of execution of the executed functions in the code ommended action based on analyzing the impact of the
module . difference and the calculated risk of code module

13 . The computer program product according to claim 8 , failure value , based at least on a weighted value of an
wherein program instructions to analyze , by the computer , 65 importance of an unstable function within the first
the impact of the difference between profiles includes pro version of the code module based on a historical impact
gram instructions to analyze at least one of : the unstable function has had on the first version of the

22
US 9 , 921 , 952 B2

21
code module and the number and criticality of the other program instructions to determine , by the computer , a set
functions and other products that depend on the of code changes to the code module , based on the
unstable function , and difference between profiles and the diagnostic data

program instructions to deploy corrective code to fix the characterizing the difference between profiles .
first version of the code module , using the recom - 5 18 . The computer system according to claim 15 , wherein
mended action . the diagnostic data diagnostic characterizing the difference

16 . The computer system according to claim 15 , further between profiles includes at least one of : comprising : code functions characterized as problematic ; program instructions to execute , by the computer , a sec execution times characterized as changed ; ond version of the code module in the first test envi - 10
ronment , wherein the second version of the code mod function invocation counts characterized as changed ;

executed functions characterized as new ; ule is the first version of the code module with one or executed functions characterized as unexpected ; and more code changes ;
program instructions to collect , by the computer , a third an identification , identifying a developer of the code

functions characterized as problematic . set of execution measurements , including code module 15
execution times and code module control flows , for the 19 . The computer system according to claim 15 , wherein
second version of the code module executing in the first the profile includes at least one of :
test environment ; an aggregate of a number of times each function in the

program instructions to create , by the computer , a third code module is invoked ;
profile of the second version of the code module based 20 an aggregate execution time for each function in the code
on the third set of execution measurements ; and module ;

in response to a difference between the first profile and the an aggregate overall execution time for the code module ;
third profile exceeding a threshold : an aggregate count of all function invocations in the code
program instructions to provide , by the computer , diag module ;

nostic data characterizing the difference between the 25 a set of executed functions in the code module ;
first profile and the third profile ; a set of unexecuted functions in the code module ; and

program instructions to analyze , by the computer , the an order of execution of the executed functions in the code
impact of the difference between the first profile and module .
the third profile on the execution of the code module ; 20 . The computer system according to claim 15 , wherein

program instructions to calculate , by the computer , a 30 pro o program instructions to analyze , by the computer , the impact
risk of code module failure value based on analyzing of the difference between profiles includes program instruc
the impact of the difference between the first profile tions to analyze at least one of :
and the third profile ; and a ratio of stable to unstable functions ;

program instructions to provide , by the computer , a a count of changed functions ;
recommended action based on analyzing the impact 35 an identity of an unstable function ;
of the difference and the calculated risk of code an historical impact value of the unstable function ;
module failure value . a change in execution time of a function ; and

17 . The computer system according to claim 16 , further a weighted value of importance of the unstable function .
comprising : * * * * *

