a2 United States Patent

Dean et al.

US009921952B2

US 9,921,952 B2
Mar. 20, 2018

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

EARLY RISK IDENTIFICATION IN DEVOPS
ENVIRONMENTS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Daniel J. Dean, Raleigh, NC (US);
Andrzej Kochut, Mount Kisco, NY
(US); Anca Sailer, Scarsdale, NY (US);
Charles O. Schulz, Ridgefield, CT
(US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/727,960
Filed: Jun. 2, 2015

Prior Publication Data

US 2016/0357660 A1 Dec. 8, 2016

Int. CI.

GOGF 9/44 (2006.01)

GOGF 11/36 (2006.01)

G06Q 10/00 (2012.01)

U.S. CL

CPC ... GOGF 11/3692 (2013.01); GOGF 8/00

(2013.01); GO6Q 10/00 (2013.01)

Field of Classification Search
USPC e 717/124
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,161,158 A * 11/1992 Chakravarty GO6F 11/261
714/26
5,586,252 A * 12/1996 Barnard G06Q 10/10
714/48

6,219,805 Bl 4/2001 Jones et al.
6,532,552 B1* 3/2003 Benignus GOGF 11/2273
714/25
6,823,478 B1* 11/2004 Prologo GO6F 11/368
714/38.14
7,035,766 B1* 4/2006 Farelc.oone. GO6F 11/079
702/182

(Continued)

OTHER PUBLICATIONS

Crow, Failure Modes and Effects Analysis, 2014, located at http://
www.npd-solutions.com/fmea html.*

(Continued)

Primary Examiner — Hossain Morshed
(74) Attorney, Agent, or Firm — Reza Sarbakhsh

(57) ABSTRACT

A computer executes a first version of a code module in a
first test environment, collects a first set of execution mea-
surements, and creates a first profile based on the first set of
execution measurements. The computer executes the first
version of the code module in a second test environment,
collects a second set of execution measurements, and creates
a second profile based on the second set of execution
measurements. In response to a difference between the first
profile and the second profile exceeding a threshold, the
computer provides diagnostic data characterizing the differ-
ence, analyzes an impact of the difference on the execution
of the code module, calculates a risk of code module failure
value based on analyzing the impact of the difference, and
provides a recommended action based on analyzing the
impact of the difference and the calculated risk of code
module failure value.

20 Claims, 7 Drawing Sheets

EXECUTE MODULE IN 302
TEST ENVIRONMENT

304

COLLECT EXECUTION
MEASUREMENTS

CREATE TEST PROFILE

308

COMPARE TEST
PROFILE AGAINST
BASELINE PROFILE
AND ANALYZE
DIFFERENCES

l 310

ANALYZE RISK OF
DEPLOYMENT

312
PROVIDE FEEDBACK

I

PROVIDE 14

RECOMMENDED
ACTION AND RISK

316
PROVIDE KNOWN
CODE FIX

US 9,921,952 B2
Page 2

(56)

7,039,644
7,882,369

9,256,509

9,349,111

9,740,478
2003/0056140
2004/0015317
2004/0107415
2006/0155498
2008/0282235
2009/0138306
2009/0282292
2010/0191952
2012/0254710
2014/0156584
2015/0019564
2015/0039386
2015/0254172

2015/0309918

References Cited
U.S. PATENT DOCUMENTS

B2* 5/2006 Hind ...

B1* 2/2011 Kelleher

Bl 2/2016 Rajagopal et al.

Bl* 5/2016 Elgarat ...

B2 8/2017 Doganata et al.
Al* 3/2003 Taylor

Al* 1/2004 Klotzccoovnnene.

Al* 6/2004 Melamed

Al* 7/2006 Dunsmore

Al* 11/2008 Jadhav ...

.... GO6F 11/0709

OTHER PUBLICATIONS

He, Using software dependency to bug prediction, 2013, located at
https://www.hindawi.com/journals/mpe/2013/869356/.*

Chen et al., “Pinpoint: Problem Determination in Large, Dynamic
Internet Services,” Proceedings of the International Conference on
Dependable Systems and Networks (DSN ’02), IEEE Computer
Society, 2002, pp. 1-10.

Desnoyers et al., “The LTTng tracer: A low impact performance and
behavior monitor for GNU/Linux,” Proceedings of the Linux Sym-
posium, vol. One, Jul. 19-22, 2006, Ottawa, Ontario, Canada, pp.
209-224.

Godefroid et al., “Automated Whitebox Fuzz Testing,” NDSS
Symposium 2008, San Diego, CA, Feb. 8-11, 2008, pp. 1-16.

Jin et al., “Automated Concurrency-Bug Fixing,” Proceedings of
the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI *12), Oct. 8-10, 2012, pp. 221-236.
Traeger et al., “DARC: Dynamic Analysis of Root Causes of

Al* 5/2009 Cobumn ...
AL* 11/2009 Squire
Al* 7/2010 Keinan ...
Al* 10/2012 Flanagan

Al* 6/2014 Motukuri

Al* 1/2015 Higginson

Al* 2/2015 Kymal
Al* 9/2015 Baril ...ccooceuenen.
Al* 10/2015 Raghavan

G06Q 10/0635
HO4L 41/0631
G06Q 10/06
GO06Q 10/06395
G06Q 10/06
GO6F 17/3053
G06Q 10/0635

GO6F 11/3688

717/131

705/7.28

714/39

713/100

715/202

706/52

707/748

705/7.28

717/128

GO6F 11/3688

714/38.1

Latency Distributions,” SIGMETRICS ’08, Jun. 2-6, 2008, Annapo-
lis, Maryland, USA, pp. 1-12.

Troester, “DevOps Success is Contingent on Shifting Left,” DZone,
Sep. 29, 2013, http://architects.dzone.com/articles/devops-success-
contingent, Accessed on Jan. 9, 2015, pp. 1-3.

Lettrari, “Integrate model-based testing to find quality problems
early in development,” Apr. 5, 2011, http://www.slideshare.net/
billduncan/integrate-modelbased-testing-to-fin . . . , Accessed on
Jan. 6, 2015, pp. 2-20.

Cohen et al., “Capturing, Indexing, Clustering, and Retrieving
System History,” SOSP ’05 Proceedings of the twentieth ACM
symposium on Operating systems principles, Oct. 23-26, 2005,
Brighton, United Kingdom, pp. 105-118.

Mell et al., “The NIST Definition of Cloud Computing,” National
Institute of Standards and Technology, U.S. Department of Com-
merce, Special Publication 800-145, pp. 1-7.

* cited by examiner

U.S. Patent Mar. 20, 2018 Sheet 1 of 7 US 9,921,952 B2

122
%
PROFILE CREATOR ANALYZER
110 120
TEST | |DECISION
PROFILE TREE MONITOR
170 180 130
\J{ROF!LE >
EPOSITORY
\—REF 7
\ /
165

FIG. 1

U.S. Patent Mar. 20, 2018 Sheet 2 of 7 US 9,921,952 B2

/’l?\
—_—
e —————
FEATURE ADDED @ >
(VERSION 1)
P 7
CODE FIX 1 x/ FIX DETAILS: 2204 PROFILE(S)
—>
| ERRORsYMPTOMS 160, 175
\ |+ AFFECTED PORTIONS
\ |* DEVELOPERID
\ |» AFFECTED LINES OF
\| cobE
\
\
FIX DETAILS
VERSION2 @ q 220
/ |FIX DETAILS: 220B DECISION
/ TREES
;. |+ ERRORSYMPTOMS
CODE FIX 2 T « AFFECTED PORTIONS g 180
\ e DEVELOPER ID
N |+ AFFECTED LINES OF —
\| CODE

FIG. 2

U.S. Patent

Mar. 20, 2018 Sheet 3 of 7

EXECUTE MODULE IN
TEST ENVIRONMENT

;

COLLECT EXECUTION
MEASUREMENTS

v

CREATE TEST PROFILE

— 302

l — 308

COMPARE TEST
PROFILE AGAINST
BASELINE PROFILE

AND ANALYZE
DIFFERENCES

’

ANALYZE RISK OF
DEPLOYMENT

v

310

/ 312

PROVIDE FEEDBACK

v

y/~ 314

PROVIDE
RECOMMENDED
ACTION AND RISK

!

PROVIDE KNOWN
CODE FIX

316

FIG. 3A

US 9,921,952 B2

U.S. Patent

Mar. 20, 2018

Sheet 4 of 7

US 9,921,952 B2

COLLECT EXECUTION
MEASUREMENTS FROM
PRODUCTION LEVEL

;

COMPARE COLLECTED
MEASUREMENTS AGAINST
BASELINE PROFILE

:

336

DETERMINE ROOT CAUSE

I

DEPLOY KNOWN CODE FIX

338

FIG. 3B

US 9,921,952 B2

Sheet 5 of 7

Mar. 20, 2018

U.S. Patent

(VIQ3aw) WNIaaw
IOVHOLS I1g9vavay
HIALNdNOD F19V.1HO0d

g9l ‘0LY GGt

7 'DIA
H31dvav
xwvo;.mz 0ZZ ‘081
'GLL'0L) (SINOILYODITddY -
9ty ‘09L‘0cL
‘0zL'oLL
JOV4431NI ‘96 S i
90 < - SINTLSAS ONILYHILO
QY
AAEA MW
-~ VOIN WATGIN IOVE0IS N
- wL ~—_TTavavad mm_.S%o\u
G691 ‘0Oct
(sinod
>
(S)Invy
SEVS (O > 5
F0IA3d ey
\ \ (8)40SS3AD0Yd
Obp 9zv P——

NNF\

U.S. Patent Mar. 20, 2018 Sheet 6 of 7

US 9,921,952 B2

0
=249
548
/

54N

FIG. 5

54C

S4A

US 9,921,952 B2

Sheet 7 of 7
N \\\

Mar. 20, 2018

U.S. Patent

9 Ol

09
/

U & &R s

FJAVMLHZ0S ANV FdVMAdVH

[4

9 19

NOILVZITVNLHIA
7 17 ¢l 2l L
/
INFNIDYNVIN

YA &Y &Y AV

/77777

US 9,921,952 B2

1
EARLY RISK IDENTIFICATION IN DEVOPS
ENVIRONMENTS

BACKGROUND

The present disclosure relates generally to proactive fault
location for reliability and availability and more particularly
to project risk detection early in the development cycle.

DevOps (a portmanteau of “development” and “opera-
tions”) is a software development method that stresses
communication, collaboration, integration, automation and
measurement of cooperation between software developers
and other information-technology (IT) professionals.

DevOps acknowledges the interdependence of software
development, quality assurance, and IT operations, and aims
to help an organization rapidly produce software products
and services and to improve reliability and security while
providing faster development and deployment cycles.

SUMMARY

Embodiments of the present invention disclose a method,
computer program product, and system in which a computer
executes a first version of a code module in a first test
environment, collects a first set of execution measurements,
including code module execution times and code module
control flows, for the first version of the code module
executing in the first test environment, and creates a first
profile of the first version of the code module based on the
first set of execution measurements. The computer executes
the first version of the code module in a second test
environment, collects a second set of execution measure-
ments, including code module execution times and control
module control flows, for the first version of the code
module executing in the second test environment, and cre-
ates a second profile of the first version of the code module
based on the second set of execution measurements. In
response to a difference between the first profile and the
second profile exceeding a threshold, the computer provides
diagnostic data characterizing the difference between the
first profile and the second profile, analyzes an impact of the
difference between the first profile and the second profile on
the execution of the code module, calculates a risk of code
module failure value based on analyzing the impact of the
difference between the first profile and the second profile,
and provides a recommended action based on analyzing the
impact of the difference and the calculated risk of code
module failure value.

In another aspect of the present disclosure, the computer
executes a second version of the code module in the first test
environment, wherein the second version of the code mod-
ule is the first version of the code module with one or more
code changes, collects a third set of execution measure-
ments, including code module execution times and code
module control flows, for the second version of the code
module executing in the first test environment, and creates
a third profile of the second version of the code module
based on the third set of execution measurements. In
response to a difference between the first profile and the third
profile exceeding a threshold, the computer provides diag-
nostic data characterizing the difference between the first
profile and the third profile, analyzes the impact of the
difference between the first profile and the third profile on
the execution of the code module, calculates a risk of code
module failure value based on analyzing the impact of the
difference between the first profile and the third profile, and

10

15

20

25

30

35

40

45

50

55

60

65

2

provides a recommended action based on analyzing the
impact of the difference and the calculated risk of code
module failure value.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Features and advantages of the present invention will
become apparent from the following detailed description of
illustrative embodiments thereof, which is to be read in
connection with the accompanying drawings. The various
features of the drawings are not to scale as the illustrations
are for clarity in facilitating one skilled in the art in under-
standing the invention in conjunction with the detailed
description. In the drawings:

FIG. 1 illustrates a functional block diagram of an exem-
plary cloud computing node, in accordance with an embodi-
ment of the present disclosure;

FIG. 2 depicts an exemplary code development life cycle,
in accordance with an embodiment of the disclosure;

FIG. 3A is a flowchart illustrating early risk identification
in a DevOps test environment, in accordance with an
embodiment of the disclosure;

FIG. 3B is a flowchart illustrating production level error
identification and repair with DevOps early risk identifica-
tion executing in a cloud environment, in accordance with an
embodiment of the disclosure;

FIG. 4 depicts a block diagram of components of the
computing device of FIG. 1, in accordance with an embodi-
ment of the disclosure;

FIG. 5 depicts a cloud computing environment including
the computing device of FIGS. 1 and 4, in accordance with
an embodiment of the disclosure; and

FIG. 6 depicts a block diagram of functional layers of the
cloud computing environment of FIG. 5, in accordance with
an embodiment of the disclosure.

DETAILED DESCRIPTION

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

US 9,921,952 B2

3

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer is to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment is service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes.

Various embodiments of the present disclosure identify
product or application (hereinafter, “application™) code

25

35

40

45

60

65

4

changes made in a DevOps environment and, prior to
deploying the changed application, provide an early assess-
ment of risk to the reliability, availability, or performance of
the changed application. Various embodiments of the pres-
ent disclosure may also collect data about production level
failure(s) discovered by users of the deployed application,
identify the root cause(s) of the failure(s), and deploy
corrective code to fix the deployed application.

Finding and fixing bugs in an application, before deploy-
ment, may be challenging in enterprise level virtualized
environments where testing all possible environments may
not be possible. Exemplary environmental problems may
include, but are not limited to, network traffic delays or
drops, and the unavailability of shared resources. In addi-
tion, a deployed application may execute on a wide variety
of different systems, platforms, and architectures, each with
its own characteristics and configuration specifications.
Each system may utilize configuration settings, such as
timeout settings for its webservers, which are specifically
adapted for that system. Testing all possible systems, plat-
forms, architectures, and environments before deployment
may not be feasible, nor cost effective, but an incorrect
configuration setting, an incorrect driver/module specifica-
tion, or an environmental problem in the production envi-
ronment may cause an application to behave differently than
expected, and may cause untested code paths to execute in
the deployed application.

Finding and fixing bugs in an application before deploy-
ment may also be hampered if the application is developed
in a modular fashion, by a plurality of teams working in
different geographies, on different systems, each team inde-
pendently developing portions of the same application. The
portions of the application developed by a first team may be
invoked by the portions of the application, written by
another team, in ways that were unanticipated by the first
development team. While the invoked portion of the appli-
cation code may have passed all unit testing by its devel-
opment team, unanticipated interactions from other portions
of the application may expose previously undetected errors
that may impact the reliability, availability, or performance
of the entire application. Assessing the risk of error before
deployment may help DevOps managers decide whether to
deploy or continue testing an application, and may minimize
the impact of untested interactions, systems, platforms,
architectures, etc. Any code errors missed during test or any
untested, deployed code may risk performance degradation,
benchmark violations, code execution failures, code input/
output failures, or system failures in the user locations where
the application is deployed.

Various embodiments of the present invention may use
machine learning to “learn” the behavior of the application
code base during pre-deployment testing by monitoring
execution behaviors such as code paths taken, code execu-
tion times, etc. The learned behavior of the application may
be stored in execution profiles that are used to compare the
behavior of changed code against known behavior of pre-
vious levels of the application code. Changes in behavior
may be analyzed to determine the risk the changed code may
have on the reliability, availability, or performance of the
application, if deployed.

FIG. 1 illustrates a functional block diagram of an exem-
plary cloud computing node 122, in accordance with an
embodiment of the present disclosure. Cloud computing
node 122 may include DevOps early risk identification 96
from the workloads 90 functional cloud environment layer
(FIG. 6). DevOps early risk identification 96 may identify
portions of code in an application that display signs of

US 9,921,952 B2

5

instability during code development and test, provide feed-
back to development, and calculate the risk of deploying the
application without additional testing. Signs of instability,
during code development, may appear as changes to the
learned code behavior resulting from, among other reasons,
errors in the code, test system environment variability as
testing progresses through multiple test phases, or test
configuration setting variability. DevOps early risk identifi-
cation 96 may maintain data on some or all portions of code
in the application, including impact data. Impact data may,
in various embodiments, be a value rating the impact the
portion of code may have on the application or on the system
on which the application executes due to, for example, the
number of other code portions dependent on this portion of
code, and the frequency with which this portion of code is
executed (execution rate). DevOps early risk identification
96 may utilize signs of instability in a portion of code, along
with the maintained impact data for that portion of code, to
calculate a risk value associated with deploying the appli-
cation at its current level of instability. DevOps early risk
identification 96 may also maintain code control flow data
and build a probabilistic decision tree of all possible control
flow paths to be used for diagnosing errors during develop-
ment, test, and production-level failures after the application
is deployed.

DevOps early risk identification 96 may include one or
more profile creators 110, one or more risk analyzers 120,
one or more monitors 130, one or more test profiles 170, one
or more probabilistic decision trees 180, and one or more
profile repositories 165, all of which may be stored, for
example, on a computer readable storage medium, such as
computer readable storage medium (media) 430 (FIG. 4),
portable computer readable storage medium (media) 470,
and/or RAM(S) 422. In various embodiments, profile reposi-
tory 165 may be locally attached to cloud computing node
122, or may be externally accessed through a network (for
example, the Internet, a local area network or other, wide
area network or wireless network) and network adapter or
interface 436 (FIG. 4). The network may comprise copper
wires, optical fibers, wireless transmission, routers, fire-
walls, switches, gateway computers, and/or edge servers. In
various embodiments, profile repository 165 may include
one or more application execution profiles 160A, 160B,
160C, 160D, and one or more test phase baseline execution
profiles 175A, 175B, for the one or more applications
monitored by DevOps early risk identification 96.

In various embodiments, profile creator 110 may collect
data about the application code and create an application
execution profile 160 for the code by collecting entry and
exit information for each portion of code in the application.
Profile creator 110 may simulate a call stack for each
function call and branch in the portion of code to learn the
full context of the function call or branch, including, the
invoker of the function or branch, parameters passed to the
function or branch, conditions met for the function to be
invoked or branch to be taken, and any invoked function
identifiers, such as function call package name or function
call thread identifier. In various embodiments, profile creator
110 may also collect code portion identifying information
for the code portions being tested including, but not limited
to, code portion version, and code portion developer respon-
sible for the code portion or code changes.

At each phase of testing, such as unit test, function test,
system test, performance test, integration test, etc., in the
DevOps environment, profile creator 110 may collect a
count of the number of times each function call or branch is
invoked, along with the function call’s or branch’s context

10

15

20

25

30

35

40

45

50

55

60

65

6

data, execution time, and function identification. Profile
creator 110 may collect this data over multiple test runs in
each test phase and over multiple test phases to create a test
profile 170 covering the entire test of the application.

In various embodiments, profile creator 110 may create
the test profile 170 after the first phase of testing and
iteratively update the test profile 170 after each subsequent
testing phase. The test profile 170, after each test phase, may
include the averages of the collected data from the plurality
of test runs, and may be saved in profile repository 165 as
a test phase baseline execution profile 175 to be used by
monitor 130 to determine the functional stability of the code.
Monitor 130 will be discussed in further detail below.

The test profile 170 created after all testing phases have
completed may represent the execution of all code portions
of the application in the test environment, and once the
application deploys, may be saved in profile repository 165
as the application execution profile 160 for the deployed
version of the application. The saved execution profiles 160,
175 may be used as baselines against which future code
behaviors may be compared.

In various embodiments, the created profiles 160, 170,
175 may include, but are not limited to, the identification of
each function called and its code version, aggregate data that
includes, but is not limited to, the average (determined from
a plurality of test runs) number of invocations of each
function; the average execution time of each function; the
average execution time of the application; and the average
number of function invocations in the application, the set of
executed code branches, the set of unexecuted code
branches, and the execution order of code branches and
function invocations. In various embodiments, the code
version included in the created profile 160, 170, 175 for each
function may be used to identify the code developer of the
function or code portion. In various embodiments, a plural-
ity of application execution profiles 160A, 160B, 160C,
160D may be saved in profile repository 165 for the same
application. Application execution profile 160A may, for
example, represent version 1 of the deployed application
while application execution profile 160B may represent
version 2 of the deployed application.

In various embodiments, profile creator 110 may use the
simulated call stack of the application to create a probabi-
listic decision tree 180 for the application. The probabilistic
decision tree 180 for the application may include all possible
execution path decisions in the application, and the context
information associated with each execution path decision. In
various embodiments, the probabilistic decision tree 180
may be stored in profile repository 165. In certain embodi-
ments a profile 160, 170, 175 may point to its associated
probabilistic decision tree 180 in the repository. In other
embodiments, the probabilistic decision tree 180 may be
included in the saved profile 160, 175 itself. In various
embodiments, the probabilistic decision tree 180 associated
with any of the saved profiles 160, 175 may be continually
updated as code is added or changed for maintenance or
enhancement, even though the associated version of the
application and application execution profile remains
unchanged.

In various embodiments, monitor 130 may utilize the data
collected by profile creator 110 and stored in the created
profiles 160, 170, 175 to identify tested code functions that
are behaving differently than those same code functions
behaved in previous versions of the code or in previous test
phases. During the various phases of testing, monitor 130
may compare the data collected from the current test phase
against a previously saved test phase baseline execution

US 9,921,952 B2

7

profile 175 for the same test phase, to determine function
stability between versions, or may compare the data col-
lected from the current test phase against a previously saved
test phase baseline execution profile 175 for another test
phase, to determine functional stability between test phases.
Functions behaving significantly differently than expected
may indicate potential coding, environmental, or configu-
ration errors since mature code should behave relatively
consistently between versions or test phases. New or
changed code may be expected to behave inconsistently
from previous versions and development may, in various
embodiments, identify portions of code that have been
dramatically changed and are, therefore, expected to behave
differently in one or more test phases than the prior version
of code. This expectation of different behavior may be
specified by the code developer and may be included, for
example, in the function identification information.

In various embodiments, monitor 130 may determine that
functions, that are expected to behave consistently are, in
fact, behaving inconsistently from previous versions or
previous test phases by comparing the test profile 170
against a saved profile 160, 175. In various embodiments,
the test profile 170 may be compared to a test phase baseline
execution profile 175 for the test phase in progress. In other
embodiments, the test profile 170 may be compared to the
saved execution profile 160 of the previous version of the
application.

In certain embodiments, monitor 130 may execute as a
cloud service and monitor development test phases occur-
ring across a plurality of machines or across a plurality of
geographic locations.

In certain embodiments, monitor 130 may use statistical
thresholds to identify code behaving inconsistently. For
example, a statistical threshold of 95% may be established
and any test profile 170 average value that is not within 95%
of the baseline profile 160, 175 value may be considered as
behaving inconsistently. In this example, monitor 130 may
recognize that the average number of invocations of a
particular function exceeds the 95% statistical threshold of
the average number of invocations for that same function
when compared against the test phase baseline execution
profile 175 or application execution profile 160. Monitor
130 may look for inconsistent behavior, using statistical
thresholds, in for example, the average number of invoca-
tions of a function, a function’s average execution time, the
average overall application execution time, the average
count of all function invocations, the average number of
unexpected paths that were executed, the average number of
expected paths that were not executed, and any other col-
lected values that may be used to signify code characteristics
or behaviors. In various embodiments the statistical thresh-
olds that signify inconsistent behavior of the code may be
configurable. In certain embodiments, a single statistical
threshold may apply to all profile 160, 170, 175 compared
values. In other embodiments, each compared value in the
profiles 160, 170, 175 may have its own statistical threshold
to signify inconsistent behavior.

In certain embodiments, monitor 130 may utilize one or
more statistical thresholds to cluster code function portions,
for example by k-means clustering, based on the character-
istics or behaviors of the code portions, such as number of
invocations or execution times. Monitor 130 may use the
clusters to identify any code portions whose characteristics
are not consistent across multiple test runs in a single test
phase. If any particular code portion’s characteristics do not
converge to be within the statistical threshold set, over the

25

40

45

55

8

plurality of test runs or test phases, monitor 130 may identify
those functions as behaving inconsistently.

In various embodiments utilizing k-means clustering,
monitor 130 may identify a change in characteristic or
behavior for a code function by recognizing the function has
migrated from one k-means cluster to another k-means
cluster, either between test phases or when compared against
a prior version of the code portion. A code function or code
portion that has migrated k-means clusters may signify a
behavior change for that function that monitor 130 may use
to identify functions behaving inconsistently.

In various embodiments, monitor 130, may provide feed-
back to development for code portions or functions that are
identified as behaving differently than expected or are iden-
tified as behaving inconsistently. In various embodiments,
monitor 130 may provide a ranked list of problematic code
functions or code portions, enabling the developers to focus
their testing efforts on those areas. Monitor 130 may also
provide developers comparison data including, but not lim-
ited to, overall execution time changes, overall function
invocation count changes, lists of unexpected code branches
taken, and lists of new code branches taken. In various
embodiments, monitor 130 may also provide potential fixes
for the errors causing the inconsistent or unexpected behav-
ior. Identitying and providing potential fixes for these errors
will be discussed in further detail with reference to FIG. 2.

In various embodiments, monitor 130 may provide feed-
back to project managers or executives assessing the risk of
deploying the application without further testing. In various
embodiments, the risk may be assessed after each test phase.
In other embodiments, the risk may not be assessed until the
final test phase, before deployment, has completed. In vari-
ous embodiments, monitor 130 may invoke risk analyzer
120, described in more detail below, to assess the risk
identified code behaving inconsistently may pose to the
reliability, availability, and performance of the deployed
application or system on which the deployed application
executes. In certain embodiments, monitor 130 may provide
recommended actions, such as debug, fix, re-test, deploy as
is, or stop development and enter technical debt processing.
Monitor 130 may provide risk assessments and recommen-
dations as reports, alerts to a mobile device, dashboard
information, or any other communication mechanism.

In various embodiments, risk analyzer 120 may analyze
the risk and make recommendations based on data collected
by monitor 130 including, but not limited to, the ratio of
stable to unstable functions or code portions, the number of
functions changed, the identity of the stable functions, the
identity of the unstable functions, execution time variations,
benchmarks violated, such as service level agreements, and
a weighted value of the importance of an unstable function
based on the historical impact the unstable function has had
on the application and the number and criticality of other
functions and other products that depend on the unstable
function.

In various embodiments, risk analyzer 120 may make
recommendations using a classification approach. In an
exemplary classification approach, risk analyzer 120 may
create classes that align with the recommended actions of
debug, fix, re-test, deploy as is, etc., in which each recom-
mended action is a class. For new applications or new
functions, risk analyzer 120 may place the new functions or
code portions of the application into one of the recom-
mended action classes based on the above listed data col-
lected by monitor 130.

For changed code, risk analyzer 120 may use historical
data from defect reporting tools, such as IBM® Rational®

US 9,921,952 B2

9

Team Concert™ (RTC), as well the current stability of the
changed code, to classify, or reclassify, the changed func-
tions or code portions. Risk analyzer 120 may base the
classification, or reclassification, at least in part, on the
changed function’s or changed code portion’s historical
reliability and historical impact on the deployed applica-
tion’s availability, reliability and performance. Once classi-
fied, risk analyzer 120 may use that classification to provide
a recommended action. Risk analyzer 120 may also provide
a risk value, based on the identified impact of any unstable
functions. The risk value may identify the risk level of
proceeding with the deployment of the application, function,
or code fix if the recommended action is not followed. In
various embodiments, the risk value may be presented as a
numerical value. In other embodiments, the risk value may
be presented as a level, such as low, medium, or high. In still
other embodiments, the risk value may be presented as a
range of colors, for example starting at green for a low risk.

DevOps early risk identification 96 may identify code
instability and calculate risk of deployment for new func-
tions, new code portions, new applications, enhanced func-
tion code changes, and error correction (or code fix) code
changes. In various embodiments, DevOps early risk iden-
tification 96 may identify code instability in specific code
portions, without requiring the recompile of the entire appli-
cation code base. DevOps early risk identification 95 can
learn and compare the characteristics and behaviors of new
or changed code portions independently or in conjunction
with existing unchanged code portions in the application.

FIG. 2 depicts an exemplary code development life cycle,
in accordance with an embodiment of the disclosure. In
various embodiments, a revision control system may be used
to develop functions, code portions, and complete applica-
tions. In various embodiments of the present disclosure,
DevOps early risk identification 96 may maintain a mapping
which associates a code version with one or more test phase
baseline execution profiles 175 for the version, an applica-
tion execution profile 160 for the version, a probabilistic
decision tree 180 for the version, and known problem fix
details 220A, 220B for the version.

In various embodiments, as a new feature (Version 1) is
developed, profile creator 110 may add the new feature’s test
phase baseline execution profiles 175, application execution
profile 160, and probabilistic decision tree 180 to profile
repository 165 and maintain a mapping for the version
(Version 1) that relates the profiles 160, 175 and probabi-
listic decision trees 180 to each other and to the version
(Version 1) of the feature. The new feature may be a new
function added to an existing application, a new code portion
added to an existing application, or a new independent
feature, such as an application. The feature’s version infor-
mation may include identification information, including the
name of the code developer for the new feature.

Over time, developers may change the code with code
fixes for errors discovered during the feature’s test phases or
discovered through production level failures in the deployed
feature. Some of the errors may be discovered by monitor
130 identifying code behavior inconsistency, code behavior
instability, or code failure.

In the exemplary code development life cycle, a code fix,
code fix 1, has been developed for the first version of the
feature. The code may have been fixed during test or may
have been fixed after deployment. When exemplary code fix
1 is deployed, profile creator 110 may create exemplary fix
detail 220A that includes, but is not limited to, the error
symptoms of the code inconsistency, instability, or error; the
code portions or functions fixed; the code developer of the

10

15

20

25

30

35

40

45

50

55

60

65

10

fix; and the actual lines of code fixed. Profile creator 110
may map the fix details 220A to Version 1 and associate the
code fix with the application execution profile 160 for
Version 1. Profile creator 110 may also update the probabi-
listic decision tree 180 for Version 1 to reflect new/changed/
deleted paths and function calls in code fix 1.

In the exemplary code development cycle, a new version
(Version 2) of the feature is created, with its own profiles
160, 175, probabilistic decision tree 180 and version map-
ping. In various embodiments, code fix 1 may be incorpo-
rated into version 2 of the feature, so that fix details 220A
is only mapped to Version 1. The next code fix, code fix 2,
may fix an error that exists only in Version 2 of the feature
or may fix an error that exists in both Version 1 and Version
2 of the feature. The fix details 220B may be mapped to both
Version 1 and Version 2 if code fix 2 fixes an error that exists
in both versions. Profile creator 110 may update all affected
probabilistic decision trees 180 and profiles 160, 175 for
code fix 2.

In various embodiments, monitor 130 may not only
identify a problem in the code, but may use the probabilistic
decision tree 180 to find the likely root cause of the problem.
Monitor 130 may run the probabilistic decision tree 180 and
compare the execution paths and function call contexts
against the saved profiles 160, 175 to identify the code most
likely to be the root cause of the error. Once a likely root
cause has been identified, monitor 130 may search for an
existing solution for the error. Monitor 130 may utilize the
error symptoms and identified root cause code portion to
search for existing solutions in, for example, the fix details
220 of known fixed problems associated with the version,
historical data from defect reporting tools, such as RTC, and
internet forums associated with the feature.

During test, monitor 130 may provide the found solutions
for developers. After deployment, monitor 130 may execute
as a cloud service, monitoring the behavior of the deployed
feature in production. Monitor 130 may collect production
level measurement data produced and stored by the
deployed feature. Monitor 130 may utilize the monitored
data to identify code behavior inconsistency, code behavior
instability, production level failure(s) of the deployed fea-
ture, and identify the root cause of the problem. For these
production level failures, monitor 130 may search for a
known fix for the problem and may deploy the known fix to
the user location.

FIG. 3A is a flowchart illustrating early risk identification
in a DevOps test environment, in accordance with an
embodiment of the disclosure. In various embodiments, an
exemplary code module, which may be a function, a code
portion, or an entire application, may be executed in a test
environment, at 302. In a DevOps environment, there may
be many test environments in which the code module will be
executed. In various embodiments, the same test environ-
ment may be executed more than once. Each time the
exemplary code module is tested in a test environment,
profile creator 110 may, at 304, collect execution measure-
ment data. The data collected may include, code paths taken
(or code module control flows) and execution times for each
path taken or for the overall code module. The execution
measurement data collected by profile creator 110 may also
include the number of functions called and the number of
times any particular function is called. Profile creator 110
may then create a test profile for the code module, at 306. If
the code module has not been executed in this test environ-
ment before, profile creator 110 may create a new test profile
170, with the collected execution measurement data, for this
code module in this test environment. If the code module is

US 9,921,952 B2

11

being retested in the same test environment, profile creator
110 may aggregate (e.g., average, maintain a minimum/
maximum value, provide to a learning algorithm) the col-
lected execution measurement data with the execution mea-
surement data already in the test profile 170 and store the
new aggregate execution measurement data in the test
profile 170. In various embodiments, profile creator 110 may
also collect and aggregate the collected execution measure-
ment data with the execution measurement data already in
the test profile 170 as the code module moves from one test
environment to another.

For each test environment, monitor 130 may compare the
test profile 170 to a baseline profile, at 308, and analyze the
differences. The baseline profile may be a test phase baseline
execution profile 175 saved from executing a prior version
of the code module in this test environment, a test phase
baseline execution profile 175 saved from executing this
version of the code module in a different test environment,
or may be an application execution profile 160 for a previ-
ously deployed version of this code module. If the test
profile 170 matches the baseline profile 160, 175, the code
module is behaving similarly to past versions of the code
module. If there is a disparity, where the test profile 170 does
not match the baseline profile 160, 175, monitor 130 may
analyze the differences in the profiles 170, 160, 175 to create
a ranked list of problematic code functions or code portions,
and a set of execution measurement comparisons between
the test profile 170 and the baseline profile 160, 175. Risk
analyzer 120 may, at 310, utilize the collected execution
measurement data and the comparison data to determine a
recommended course of action based on the number and
type of problematic code functions and the extent of execu-
tion measurement disparities between the test profile 170
and the baseline profiles 160, 175. Risk analyzer 120 may
also, at 310, determine a risk factor of not following the
recommended course of action. Risk analyzer 120 may set
the risk factor based on analyzing the impact the problematic
code function or code portions may have on the overall code
module, if deployed as is.

Monitor 130 may, at 312, provide diagnostic data to be
used by the developers of the code module that characterizes
the disparity between the compared profiles 160, 170, 175,
including a ranked list of problematic code functions or code
portions, and execution measurement comparisons. Monitor
130 may, at 314, provide the recommended action and risk
value to be used by the project managers and higher level
executive to provide the tradeoffs of, for example, deploying
the code module, as is, rather than performing additional
testing.

In various embodiments, monitor 130 may determine the
root cause of problematic code functions and may search, for
example, internal service databases, historical data from
defect reporting tools, or external forums for known fixes
and may, at 316, provide potential code fixes to development
as possible solutions to fix the problematic code functions.

FIG. 3B is a flowchart illustrating production level error
identification and repair with DevOps early risk identifica-
tion 96 executing in a cloud environment, in accordance
with an embodiment of the disclosure. In various embodi-
ments, monitor 130 may, at 332, collect production level
execution and failure data from a deployed code module in
one or more user locations. Monitor 130 may collect the data
by monitoring user forums, monitoring error reporting data-
bases, or collecting measurement data produced and stored
by the deployed code module. At 334, monitor 130 may
compare the collected measurements against the application
execution profile 160 matching the deployed version of the

10

20

25

30

35

40

45

50

55

60

65

12

code module. If the collected measurements do not match
the application execution profile 160, monitor 130 may
determine the root cause, at 336, of the problematic code
functions found. Monitor 130 may search for a known fix in,
for example, service databases including fix data 220, his-
torical data from defect reporting tools, or forums of known
fixes for the code module and may, at 338, deploy the fix to
update the deployed code module in the one or more user
locations experiencing the problem.

FIG. 4 depicts a block diagram of components of the
computing device 122 of FIG. 1, in accordance with an
embodiment of the disclosure. It should be appreciated that
FIG. 4 provides only an illustration of one implementation
and does not imply any limitations with regard to the
environments in which different embodiments may be
implemented. Many modifications to the depicted environ-
ment may be made.

Computing device 122 can include one or more proces-
sors 420, one or more computer-readable RAMs 422, one or
more computer-readable ROMs 424, one or more computer
readable storage medium 430, 165, device drivers 440,
read/write drive or interface 432, and network adapter or
interface 436, all interconnected over a communications
fabric 426. Communications fabric 426 can be implemented
with any architecture designed for passing data and/or
control information between processors (such as micropro-
cessors, communications and network processors, etc.), sys-
tem memory, peripheral devices, and any other hardware
components within a system.

One or more operating systems 428, DevOps early risk
identifications 96, profile creators 110, risk analyzers 120,
monitors 130, probabilistic decision trees 180, test profiles
170, profile repositories 165, application execution profiles
160, test phase execution baseline profiles 175, and fix
details 220 are stored on one or more of the computer-
readable storage medium 430, 165 for execution by one or
more of the processors 420 via one or more of the respective
RAMs 422 (which typically include cache memory). In the
illustrated embodiment, each of the computer readable stor-
age medium 430, 165 can be a magnetic disk storage device
of an internal hard drive, CD-ROM, DVD, memory stick,
magnetic tape, magnetic disk, optical disk, a semiconductor
storage device such as RAM, ROM, EPROM, flash memory
or any other computer readable storage medium that can
store a computer program and digital information.

Computing device 122 can also include a R/W drive or
interface 432 to read from and write to one or more portable
computer readable storage medium 470, 165. DevOps early
risk identification 96, profile creator 110, risk analyzer 120,
monitor 130, probabilistic decision tree 180, test profile 170,
profile repository 165, application execution profile 160, test
phase execution baseline profile 175, and fix details 220 can
be stored on one or more of the portable computer readable
storage medium 470, 165 read via the respective R/W drive
or interface 432, and loaded into the respective computer
readable storage medium 430, 165.

Computing device 122 can also include a network adapter
or interface 436, such as a TCP/IP adapter card or wireless
communication adapter (such as a 4G wireless communica-
tion adapter using OFDMA technology). DevOps early risk
identification 96, profile creator 110, risk analyzer 120,
monitor 130, probabilistic decision tree 180, test profile 170,
profile repository 165, application execution profile 160, test
phase execution baseline profile 175, and fix details 220 can
be downloaded to the computing device from an external
computer or external storage device via a network (for
example, the Internet, a local area network or other, wide

US 9,921,952 B2

13

area network or wireless network) and network adapter or
interface 436. From the network adapter or interface 436, the
programs are loaded into the computer readable storage
medium 430, 165. The network may comprise copper wires,
optical fibers, wireless transmission, routers, firewalls,
switches, gateway computers, and/or edge servers.

Computing device 122 can also include a display screen
450, a keyboard or keypad 460, and a computer mouse or
touchpad 455. Device drivers 440 interface to display screen
450 for imaging, to keyboard or keypad 460, to computer
mouse or touchpad 455, and/or to display screen 450 for
pressure sensing of alphanumeric character entry and user
selections. The device drivers 440, R/W drive or interface
432, and network adapter or interface 436 can comprise
hardware and software (stored in computer readable storage
medium 430 and/or ROM 424).

It is understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

FIG. 5 depicts a cloud computing environment 50 includ-
ing the computing device 122 of FIGS. 1 and 4, in accor-
dance with an embodiment of the disclosure. As shown,
cloud computing environment 50 comprises one or more
cloud computing nodes 122 with which local computing
devices used by cloud consumers, such as, for example,
personal digital assistant (PDA) or cellular telephone 54A,
desktop computer 54B, laptop computer 54C, and/or auto-
mobile computer system 54N may communicate. Nodes 122
may communicate with one another. They may be grouped
(not shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 50 to offer infrastruc-
ture, platforms and/or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device. It is understood that the types of com-
puting devices 54A-N shown in FIG. 5 are intended to be
illustrative only and that computing devices 122 and cloud
computing environment 50 can communicate with any type
of computerized device over any type of network and/or
network addressable connection (e.g., using a web browser).

FIG. 6 depicts a block diagram of functional layers of the
cloud computing environment 50 of FIG. 5, in accordance
with an embodiment of the disclosure. It should be under-
stood in advance that the components, layers, and functions
shown in FIG. 6 are intended to be illustrative only and
embodiments of the invention are not limited thereto. As
depicted, the following layers and corresponding functions
are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include: mainframes 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking
components 66. In some embodiments, software compo-
nents include network application server software 67 and
database software 68.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: virtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

10

15

20

25

30

35

40

45

50

55

60

65

14

In one example, management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
resources may comprise application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.

Workloads layer 90 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 91;
software development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94; transaction processing 95; and DevOps early risk iden-
tification 96.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or

US 9,921,952 B2

15

network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

10

15

20

25

30

35

40

45

50

55

60

65

16

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

Although preferred embodiments have been depicted and
described in detail herein, it will be apparent to those skilled
in the relevant art that various modifications, additions,
substitutions and the like can be made without departing
from the spirit of the invention, and these are, therefore,
considered to be within the scope of the invention, as defined
in the following claims.

What is claimed is:

1. A method comprising:

executing, by a computer, a first version of a code module

in a first test environment; collecting, by the computer,
a first set of execution measurements, including code
module execution times and code module control
flows, for the first version of the code module executing
in the first test environment;

creating, by the computer, a first profile of the first version

of the code module based on the first set of execution
measurements;

executing, by the computer, the first version of the code

module in a second test environment;

collecting, by the computer, a second set of execution

measurements, including code module execution times
and control module control flows, for the first version
of the code module executing in the second test envi-
ronment;

creating, by the computer, a second profile of the first

version of the code module based on the second set of
execution measurements; and

in response to a difference between the first profile and the

second profile providing, by the computer, diagnostic
data characterizing the difference between the first
profile and the second profile;

analyzing, by the computer, an impact of the difference

between the first profile and the second profile on the
execution of the code module, the impact comprising a
value rating based on both of a number of other
functions or other products dependent on the code
module, and a frequency with which the code module
is executed;

calculating, by the computer, a risk of code module failure

value based on analyzing the impact of the difference
between the first profile and the second profile;
providing, by the computer, a recommended action based
on analyzing the impact of the difference and the
calculated risk of code module failure value, based at
least on a weighted value of an importance of an
unstable function included in the first version of the

US 9,921,952 B2

17

code module based on a historical impact the unstable
function has had on the first version of the code module
and the number and criticality of the other functions
and other products that depend on the unstable func-
tion, and

deploying corrective code to fix the first version of the

code module, using the recommended action.
2. The method according to claim 1, further comprising:
executing, by the computer, a second version of the code
module in the first test environment, wherein the sec-
ond version of the code module is the first version of
the code module with one or more code changes;

collecting, by the computer, a third set of execution
measurements, including code module execution times
and code module control flows, for the second version
of the code module executing in the first test environ-
ment;

creating, by the computer, a third profile of the second

version of the code module based on the third set of
execution measurements; and

in response to a difference between the first profile and the

third profile exceeding a threshold:

providing, by the computer, diagnostic data character-
izing the difference between the first profile and the
third profile;

analyzing, by the computer, the impact of the difference
between the first profile and the third profile on the
execution of the code module;

calculating, by the computer, a risk of code module
failure value based on analyzing the impact of the
difference between the first profile and the third
profile; and

providing, by the computer, a recommended action
based on analyzing the impact of the difference and
the calculated risk of code module failure value.

3. The method according to claim 2, further comprising:

determining, by the computer, a set of code changes to the

code module, based on the difference between profiles
and the diagnostic data characterizing the difference
between profiles.

4. The method according to claim 1, wherein the diag-
nostic data diagnostic characterizing the difference between
profiles includes at least one of:

code functions characterized as problematic;

execution times characterized as changed;

function invocation counts characterized as changed;

executed functions characterized as new;

executed functions characterized as unexpected; and

an identification, identifying a developer of the code

functions characterized as problematic.

5. The method according to claim 1, wherein the profile
includes at least one of:

an aggregate of a number of times each function in the

code module is invoked;

an aggregate execution time for each function in the code

module;

an aggregate overall execution time for the code module;

an aggregate count of all function invocations in the code

module;

a set of executed functions in the code module;

a set of unexecuted functions in the code module; and

an order of execution of the executed functions in the code

module.

6. The method according to claim 1, wherein analyzing,
by the computer, the impact of the difference between
profiles includes analyzing at least one of:

a ratio of stable to unstable functions;

10

15

20

30

35

40

45

50

55

60

65

18

a count of changed functions;
an identity of an unstable function;
an historical impact value of the unstable function;
a change in execution time of a function; and
a weighted value of importance of the unstable function.
7. The method according to claim 1, wherein the code
module failure risk value includes the risk of the executed
code module experiencing at least one of:
a performance degradation;
a benchmark violation;
a code execution failure;
a code input/output failure;
an application failure; and
a system failure.
8. A computer program product, the computer program
product comprising one or more computer readable storage
medium and program instructions stored on at least one of
the one or more computer readable storage medium, the
program instructions comprising:
program instructions to execute, by a computer, a first
version of a code module in a first test environment;

program instructions to collect, by the computer, a first set
of execution measurements, including code module
execution times and code module control flows, for the
first version of the code module executing in the first
test environment;

program instructions to create, by the computer, a first

profile of the first version of the code module based on
the first set of execution measurements;

program instruction to execute, by the computer, the first

version of the code module in a second test environ-
ment;

program instructions to collect, by the computer, a second

set of execution measurements, including code module
execution times and control module control flows, for
the first version of the code module executing in the
second test environment;

program instructions to create, by the computer, a second

profile of the first version of the code module based on
the second set of execution measurements; and

in response to a difference between the first profile and the

second profile exceeding a threshold:

program instructions to provide, by the computer, diag-

nostic data characterizing the difference between the
first profile and the second profile;

program instructions to analyze, by the computer, an

impact of the difference between the first profile and the
second profile on the execution of the code module, the
impact comprising a value rating based on both of a
number of other functions and other products depen-
dent on the code module, and a frequency with which
the code module is executed;

program instructions to calculate, by the computer, a risk

of code module failure value based analyzing the
impact of the difference between the first profile and the
second profile;

program instructions to provide, by the computer, a rec-

ommended action based on analyzing the impact of the
difference and the calculated risk of code module
failure value, based at least on a weighted value of an
importance of an unstable function within the first
version of the code module based on a historical impact
the unstable function has had on the first version of the
code module and the number and criticality of the other
functions and other products that depend on the
unstable function, and

US 9,921,952 B2

19

program instructions to deploy corrective code to fix the
first version of the code module, using the recom-
mended action.

9. The computer program product according to claim 8,
further comprising:

program instructions to execute, by the computer, a sec-

ond version of the code module in the first test envi-
ronment, wherein the second version of the code mod-
ule is the first version of the code module with one or
more code changes;

program instructions to collect, by the computer, a third

set of execution measurements, including code module
execution times and code module control flows, for the
second version of the code module executing in the first
test environment;

program instructions to create, by the computer, a third

profile of the second version of the code module based
on the third set of execution measurements; and

in response to a difference between the first profile and the

third profile exceeding a threshold:

program instructions to provide, by the computer, diag-
nostic data characterizing the difference between the
first profile and the third profile;

program instructions to analyze, by the computer, the
impact of the difference between the first profile and
the third profile on the execution of the code module;

program instructions to calculate, by the computer, a
risk of code module failure value based on analyzing
the impact of the difference between the first profile
and the third profile; and

program instructions to provide, by the computer, a
recommended action based on analyzing the impact
of the difference and the calculated risk of code
module failure value.

10. The computer program product according to claim 9,
further comprising:

program instructions to determine, by the computer, a set

of code changes to the code module, based on the
difference between profiles and the diagnostic data
characterizing the difference between profiles.

11. The computer program product according to claim 8,
wherein the diagnostic data diagnostic characterizing the
difference between profiles includes at least one of:

code functions characterized as problematic;

execution times characterized as changed;

function invocation counts characterized as changed;

executed functions characterized as new;

executed functions characterized as unexpected; and

an identification, identifying a developer of the code

functions characterized as problematic.

12. The computer program product according to claim 8,
wherein the profile includes at least one of:

an aggregate of a number of times each function in the

code module is invoked;

an aggregate execution time for each function in the code

module;

an aggregate overall execution time for the code module;

an aggregate count of all function invocations in the code

module;

a set of executed functions in the code module;

a set of unexecuted functions in the code module; and

an order of execution of the executed functions in the code

module.

13. The computer program product according to claim 8,
wherein program instructions to analyze, by the computer,
the impact of the difference between profiles includes pro-
gram instructions to analyze at least one of:

20

a ratio of stable to unstable functions;

a count of changed functions;

an identity of an unstable function;

an historical impact value of the unstable function;

a change in execution time of a function; and

a weighted value of importance of the unstable function.

14. The computer program product according to claim 8,
wherein the code module failure risk value includes the risk

o of the executed code module experiencing at least one of:

15

20

25

35

40

45

50

55

60

65

a performance degradation;
a benchmark violation;
a code execution failure;
a code input/output failure;
an application failure; and
a system failure.
15. A computer system, the computer system comprising
one or more processors, one or more computer readable
memories, one or more computer readable tangible storage
medium, and program instructions stored on at least one of
the one or more storage medium for execution by at least one
of the one or more processors via at least one of the one or
more memories, the program instructions comprising:
program instructions to execute, by a computer, a first
version of a code module in a first test environment;

program instructions to collect, by the computer, a first set
of execution measurements, including code module
execution times and code module control flows, for the
first version of the code module executing in the first
test environment;

program instructions to create, by the computer, a first

profile of the first version of the code module based on
the first set of execution measurements;

program instruction to execute, by the computer, the first

version of the code module in a second test environ-
ment;

program instructions to collect, by the computer, a second

set of execution measurements, including code module
execution times and control module control flows, for
the first version of the code module executing in the
second test environment;

program instructions to create, by the computer, a second

profile of the first version of the code module based on
the second set of execution measurements; and

in response to a difference between the first profile and the

second profile exceeding a threshold:

program instructions to provide, by the computer, diag-

nostic data characterizing the difference between the
first profile and the second profile;

program instructions to analyze, by the computer, an

impact of the difference between the first profile and the
second profile on the execution of the code module, the
impact comprising a value rating based on both of a
number of other functions and other products depen-
dent on the code module, and a frequency with which
the code module is executed;

program instructions to calculate, by the computer, a risk

of code module failure value based analyzing the
impact of the difference between the first profile and the
second profile;

program instructions to provide, by the computer, a rec-

ommended action based on analyzing the impact of the
difference and the calculated risk of code module
failure value, based at least on a weighted value of an
importance of an unstable function within the first
version of the code module based on a historical impact
the unstable function has had on the first version of the

US 9,921,952 B2

21

code module and the number and criticality of the other
functions and other products that depend on the
unstable function, and
program instructions to deploy corrective code to fix the
first version of the code module, using the recom-
mended action.
16. The computer system according to claim 15, further
comprising:
program instructions to execute, by the computer, a sec-
ond version of the code module in the first test envi-
ronment, wherein the second version of the code mod-
ule is the first version of the code module with one or
more code changes;
program instructions to collect, by the computer, a third
set of execution measurements, including code module
execution times and code module control flows, for the
second version of the code module executing in the first
test environment;
program instructions to create, by the computer, a third
profile of the second version of the code module based
on the third set of execution measurements; and
in response to a difference between the first profile and the
third profile exceeding a threshold:
program instructions to provide, by the computer, diag-
nostic data characterizing the difference between the
first profile and the third profile;
program instructions to analyze, by the computer, the
impact of the difference between the first profile and
the third profile on the execution of the code module;
program instructions to calculate, by the computer, a
risk of code module failure value based on analyzing
the impact of the difference between the first profile
and the third profile; and
program instructions to provide, by the computer, a
recommended action based on analyzing the impact
of the difference and the calculated risk of code
module failure value.
17. The computer system according to claim 16, further
comprising:

10

15

20

25

3

<

35

22

program instructions to determine, by the computer, a set
of code changes to the code module, based on the
difference between profiles and the diagnostic data
characterizing the difference between profiles.

18. The computer system according to claim 15, wherein
the diagnostic data diagnostic characterizing the difference
between profiles includes at least one of:

code functions characterized as problematic;

execution times characterized as changed;

function invocation counts characterized as changed;

executed functions characterized as new;

executed functions characterized as unexpected; and

an identification, identifying a developer of the code

functions characterized as problematic.

19. The computer system according to claim 15, wherein
the profile includes at least one of:

an aggregate of a number of times each function in the

code module is invoked;

an aggregate execution time for each function in the code

module;

an aggregate overall execution time for the code module;

an aggregate count of all function invocations in the code

module;

a set of executed functions in the code module;

a set of unexecuted functions in the code module; and

an order of execution of the executed functions in the code

module.

20. The computer system according to claim 15, wherein
program instructions to analyze, by the computer, the impact
of the difference between profiles includes program instruc-
tions to analyze at least one of:

a ratio of stable to unstable functions;

a count of changed functions;

an identity of an unstable function;

an historical impact value of the unstable function;

a change in execution time of a function; and

a weighted value of importance of the unstable function.

#* #* #* #* #*

