Title: FDCA-BASED POLYESTERS MADE WITH ISOSORBIDE

Abstract: A polymer comprising reaction product of (a) one or more diacid, diester thereof, glycolide, and (b) one or more polyol, wherein component (a) comprises (i) 2,6-naphthalene dicarboxylic acid, C1 to C6 alkyl diester thereof, glycolic acid, glycolide or combinations thereof, and (ii) 2,5-furan dicarboxylic acid, one or more C1 to C6 alkyl diester thereof, or combinations thereof, and component (b) comprises isosorbide.
FDCA-Based Polyesters Made with Isosorbide

Field of the Invention

This invention relates to polyester polymers comprising the reaction products of (a) one or more diacid, diester thereof, or glycolide, and (b) one or more polyol, wherein component (a) comprises (i) 2,6-naphthalene dicarboxylic acid, C_1 to C_{10} alkyl diester thereof, glycolide or combinations thereof, and (ii) 2,5-furan dicarboxylic acid, one or more Ci to C_{10} alkyl diester thereof, or combinations thereof, and component (b) comprises isosorbide. The invention further relates to compositions which comprise blends of such polymer, and articles, such as single- and multi-layer films, made with such polymers.

Background

Polyethylene terephthalate (PET) is widely used in both flexible and rigid packaging. There is a need to provide polymer films with improved barrier properties to oxygen, carbon dioxide and moisture to accommodate increasing demands in lighter weighting of bottles, simpler designs, and longer shelf life of packaged food, including produce, meat, fish, and cheese and other dairy products. In addition, with the emphasis on technologies based on sustainable chemistry, there has been increased interest in films based on monomers from renewable sources, such as polyethylene furanoate based on furan dicarboxylic acid, which can be produced using bioderived compounds, such as fructose.

Several new polymers with high barrier properties have been developed from either renewable or non-renewable resources and some of these have already been commercialized. These include polyethylene naphthalate (PEN), polyglycolic acid (PGA), and polyethylene furanoate (PEF). For those polymers, the oxygen barrier property (at about 23 °C and 50% relative humidity) follows the order:

\[\text{PGA} \approx \text{EVOH} > \text{PEN} \approx \text{PEF} > \text{PET} \]

Compared to PET, PEF has been reported to have six times improved oxygen barrier, two times improved barrier to carbon dioxide, and also improved moisture barrier. "Bioplastics, Reshaping the Industry", Las Vegas, February 3, 2011.

In WO 2010/0177133 (Sipos, assigned to Furanix Technologies B.V.), a process for the production of PEF polymers and copolymers made from 2,5-furandicarboxylate is disclosed. The (co)polymers have a number average molecular weight of at least 10,000 (as determined by GPC based on polystyrene standards), and an absorbance below 0.05 (as a 5
mg/ml solution in a dichlomethane : hexafluoroisopropanol 8:2 mixture at 400 nm). These (co)polymers may be subjected to solid state polycondensation and then attain a number average molecular weight greater than 20,000 (as determined by GPC based on polystyrene standards), without suffering from discoloration.

There remains a need for novel polymers which can be used to form films in a cost-effective manner that exhibit a desirable balance of properties, such as improved oxygen, carbon dioxide, and water-vapor permeability, higher glass transition temperature (Tg), and improved toughness, chemical, heat and impact resistance. There is, further, a need for novel polymers which can used to form films with high-temperature heat sealability using alternative sealing technologies.

The present invention achieves these objectives by forming a film from a component (a) which comprises (i) 2,6-naphthalene dicarboxylic acid, C_1 to C_{10} alkyl diester thereof, glycolide or combinations thereof, and (ii) 2,5-furan dicarboxylic acid, one or more C_1 to C_{10} alkyl diester thereof, or combinations thereof, and component, and a component (b) which comprises isosorbide, by esterification or trans-esterification, respectively, in presence of suitable catalysts, followed by further polycondensation at higher temperature and optionally at reduced pressure, and using solid state polymerization to increase the molecular weight.

Summary of the Invention

The present invention relates to polymers comprising reaction product of (a) one or more diacid or diester thereof, and (b) one or more polyol, wherein component (a) comprises (i) 2,6-naphthalene dicarboxylic acid (NDCA), C_1 to C_{10} alkyl diester thereof, glycolide or combinations thereof, and (ii) 2,5-furan dicarboxylic acid (FDCA), one or more C_1 to C_{10} alkyl diester thereof, or combinations thereof, and component (b) comprises isosorbide. Suitable diesters include dimethyl furanoate (DMF) and dimethyl naphthanoate (DMN).

Component (a) (diacid or diester) comprises less than 100 mole% FDCA, C_1 to C_{10} alkyl diester thereof (e.g., DMF), or combinations thereof, based on the total amount of component (a). Component (a) may comprise 5 mole% or more, or 10 mole% or more FDCA, C_i to C_{10} alkyl diester thereof, combinations thereof; and may contain 99 mole% or less, or 95 mole% or less, or 90 mole% of less FDCA, C_i to C_{10} alkyl diester thereof, combinations thereof.
Component (a) further comprise up to 95 mole% NDCA, Ci to C₁₀ alkyl diesters thereof (e.g., DMN), glycolide or combinations thereof, based on the total amount of component (a). This portion of component (a) may comprise 1 mole% or more, or 5 mole% or more, or 10 mole% or more NDCA, Ci to Cio alkyl diesters thereof, glycolide or combinations thereof; and may contain 95 mole% or less, or 90 mole% or less NDCA, Ci to Cio alkyl diesters thereof, glycolide or combinations thereof.

The polymer may be formed from component (a) comprising 5 to 95 mole% FDCA, Ci to Cio alkyl diester thereof, and 5 to 95 mole% NDCA, Ci to Cio alkyl diesters thereof, glycolide or combinations thereof. For example, the polymer may be formed from diacids comprising 5 to 95 mole% of FDCA and 5 to 95 mole% of NDCA, based on the total amount of component (a). As another example, the polymer may be formed from diesters comprising 5 to 95 mole% of one or more Ci to Cio alkyl diester of FDCA, such as DMF, and 5 to 95 mole% of one or more C₁ to Cio alkyl diester of NDCA, such as DMN, based on the total amount of component (a).

The polyol, component (b) may consist essentially of isosorbide. When component (b) contains other polyols besides just isosorbide, component (b) may comprise ethylene glycol, a mixture of 1,3-cyclohexanediol and 1,4-cyclohexanediol, or 2,2,4,4-tetramethyl-1,3-cyclobutanediol, or combinations thereof. For example, component (b) may comprise 10 to 90 mole%, based on the total amount of component (b) polyol, of isosorbide, and 10 to 90 mole% based on the total amount of component (b) polyol, of ethylene glycol, a mixture of 1,3-cyclohexanediol and 1,4-cyclohexanediol, or 2,2,4,4-tetramethyl-1,3-cyclobutanediol, or combinations thereof.

When component (b) contains a mixture of 1,3- and 1,4-cyclohexanediol, the cyclohexanediol may comprise 25 to 75 mole% of 1,3-cyclohexanediol and 25 to 75 mole% of 1,4-cyclohexanediol. As an example, the cyclohexanediol may comprise 45 to 65 mole% of 1,3-cyclohexanediol and 35 to 55 mole% of 1,4-cyclohexanediol. As a further example, the cyclohexanediol may comprise 55 mole% of 1,3-cyclohexanediol and 45 mole% of 1,4-cyclohexanediol.

The invention further includes compositions comprising (1) one or more first polymer comprising reaction product of (a) one or more diacid or diester thereof, and (b) one or more polyol, wherein component (a) comprises (i) NDCA, Ci to Cio alkyl diester thereof, glycolide or combinations thereof, and (ii) FDCA, one or more Ci to Cio alkyl diester thereof, or combinations thereof, and component (b) comprises isosorbide, and (2)
one or more second polymer selected from the group consisting (A) of polymers of (1) above different from the first polymer and (B) other polyesters which are reaction product of (i) acids or esters and (ii) polyols, wherein (x) the acids and esters do not include NDCA, C_i to C_o alkyl diester thereof, glycolide or combinations thereof, and FDCA, or C_i to C_o alkyl diester thereof or combinations thereof, when the polyl comprises isosorbide, and (y) wherein the polyols do not include isosorbide when the acids and esters comprise NDCA, C_i to C_o alkyl diester thereof, glycolide, or combinations thereof, and FDCA, or C_i to C_o alkyl diester thereof, or combinations thereof. This composition may comprise two or more polymers, wherein at least one polymer is the reaction product of NDCA, FDCA or combinations thereof, and at least one other polymer is the reaction product of glycolide, C_1 to C_o alkyl diester of NDCA, C_i to C_o alkyl diester of FDCA, or combinations thereof.

The composition may comprise one or more other polyester comprising a reaction product of component (i) glycolide, and component (ii) one or more polyol comprising a mixture of 1,3- and 1,4-cyclohexanediol, or 2,2,4,4-tetramethyl-1,3-cyclobutanediol, or combinations thereof. For the composition described in the previous sentence, since the polyl component contains a mixture of 1,3- and 1,4-cyclohexanediol, or 2,2,4,4-tetramethyl-1,3-cyclobutanediol, the polyl cannot be solely isosorbide or ethylene glycol.

The other polyester may also comprise aliphatic homopolymer polyglycolide or polyglycolic acid (PGA), polylactic acid (PLA), polycaprolactone (PCL), copolymer polyethylene adipate (PEA), polyhydroxyalkanoate (PHA), polyethylene terephthalate (PET), semi-aromatic copolymer PET, polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), and aromatic copolymers from polycondensation of 4-hydroxybenzoic acid and 6-hydroxynaphthalene-2-carboxylic acid.

The invention further includes an article comprising one or more polymers or compositions described above. Examples of such articles include, but are not limited to, thermoformed articles, film, shrink label, retortable packaging, pipe, bottle, profile, molded article, extruded article, fiber, and fabric. Rigid or semi-rigid (i.e., somewhat deformable) bottles and various rigid articles may be made using conventional blow-molding processes well-known in the art.

The invention further includes methods of forming films or sheets comprising the steps of (i) extruding a polymer to form an extrudate; (ii) shaping the extrudate by passing it through a flat or annular die; and (iii) cooling the extrudate to form a film or sheet having a machine direction and a cross direction; wherein the polymer comprises reaction product
of (a) one or more diacid or diester thereof, and (b) one or more polyol, wherein component
(a) comprises (i) NDCA, Ci to C_{10} alkyl diester thereof, glycolide or combinations thereof,
and (ii) FDCA, one or more Ci to C_{10} alkyl diester thereof, or combinations thereof, and
component (b) comprises isosorbide. The method may comprise the further step of
orienting the film or sheet in the machine or cross direction, or both.

The invention further includes a film or sheet of one or more layers, wherein at least
one layer comprises polymer comprising the reaction product of (a) one or more diacid,
diester thereof, glycolide, and (b) one or more polyol, wherein component (a) comprises (i)
NDCA, C_{1} to C_{10} alkyl diester thereof, glycolide or combinations thereof, and (ii) FDCA,
one or more Ci to C_{10} alkyl diester thereof, or combinations thereof, and component (b)
comprises isosorbide.

The invention further comprises a barrier film comprising a polyester-based polymer
with (a) an O_{2} gas permeability of 0.4 cc-mil/100 in^{2} 24 hrs atm (8 cc 20 µ/m^{2} 24 hrs atm) at
50% relative humidity (ASTM D-3985) or less, (b) a moisture permeability of 0.5 g mil/
100 in^{2} 24 hrs atm (9.8 g 20 µ/m^{2} 24 hrs atm) at 38°C (ASTM F-1249) or less, and (c) a
glass transition temperature of 100°C or higher. The barrier film may further have (x) a
Falling dart drop impact (Type A) of 200 g or greater (ASTM D-1709) for a 50 micron
thick film material at room temperature and 50% relative humidity, (y) an Elmendorf tear of
400 g or greater (ASTM D-1922 for a 50 micron thick film material) at room temperature
and 50% relative humidity, and (z) a notched Izod impact of 1.0 J/cm or greater at room
temperature and 50% relative humidity (ASTM D-256 for rigid materials). Preferably, the
film has properties (a), (b) and (c), and one or more of properties (x), (y) and (z).

Detailed Description of the Invention

The present invention provides cost-effective polymers that exhibit a desirable
balance of properties, relative to PEF polymers, including improved oxygen, carbon
dioxide, and water-vapor permeability, higher glass transition temperature (Tg), and
improved chemical, heat and impact resistance. In addition, these polymers can be used to
form films with high-temperature heat sealability using alternative sealing technologies.

The polymers of the present invention comprise the reaction product of (a) one or
more diacid or diester thereof, and (b) one or more polyol, wherein component (a)
comprises (i) 2,6-naphthalene dicarboxylic acid (NDCA), Ci to C_{10} alkyl diester thereof,
glycolide or combinations thereof, and (ii) 2,5-furan dicarboxylic acid (FDCA), one or
more C_i to C₁₀ alkyl diester thereof, or combinations thereof, and component (b) comprises isosorbide. Suitable diesters include dimethyl furanoate (DMF) and dimethyl naphthanoate (DMN). Glycolic acid could be used in place of, or in addition to, glycolide as described herein, but its use is not favored for practical reasons.

It can be desirable to prepare polymers with FDCA or DMF and other diacids or diesters. Component (a) (diacid or diester) comprises less than 100 mole% FDCA, C_i to C_{io} alkyl diester thereof (e.g., DMF), or combinations thereof, based on the total amount of component (a). Component (a) may comprise 5 mole% or more, or 10 mole% or more FDCA, C_i to C_{io} alkyl diester thereof, combinations thereof; and may contain 99 mole% or less, or 95 mole% or less, or 90 mole% of less FDCA, C_i to C_{io} alkyl diester thereof, combinations thereof. Range endpoints and ranges disclosed in this paragraph and elsewhere herein are inclusive and independently combinable (e.g., ranges of "up to 95 mole%", or, more specifically, 10 mole% to 90 mole%", is inclusive of the endpoints and all intermediate values of the ranges of "10 mole% to 95 mole%," etc).

Component (a) further comprise up to 95 mole% NDCA, C_i to C_{io} alkyl diesters thereof (e.g., DMN), glycolide or combinations thereof, based on the total amount of component (a). This portion of component (a) may comprise 1 mole% or more, or 5 mole% or more, or 10 mole% or more NDCA, C_i to C_{io} alkyl diesters thereof, glycolide or combinations thereof; and may contain 95 mole% or less, or 90 mole% of less NDCA, C_i to C_{io} alkyl diesters thereof, glycolide or combinations thereof.

The polymer may be formed from component (a) comprising 5 to 95 mole% FDCA, C_i to C_{io} alkyl diester thereof, and 5 to 95 mole% NDCA, C_i to C_{io} alkyl diesters thereof, glycolide or combinations thereof. For example, the polymer may be formed from diacids comprising 5 to 95 mole% of FDCA and 5 to 95 mole% of NDCA, based on the total amount of component (a). As another example, the polymer may be formed from diesters comprising 5 to 95 mole% of one or more C_i to C_{io} alkyl diester of FDCA, such as DMF, and 5 to 95 mole% of one or more C_i to C_{io} alkyl diester of NDCA, such as DMN, based on the total amount of component (a).

Preferably, the component (a) diacid(s) or diester(s) is made up exclusively of diacid(s) or diester(s), respectively. These may be combinations of FDCA and only other diacids, or DMF and only other diesters. However, component (a) may also comprise a mixture of diacid(s) and diester(s). When component (a) has a mixture of diacid(s) and diester(s), the alternate (non-predominant) form is preferably present at relatively low
amounts, for example, 20 or 10, or 5, or 1, or 0.5, or 0.1 mole% based on the total amount of component (a). For example, component (a) may comprise 90 mole% DMN and 10 mole% NDCA. As component (a) may comprise a mixture of diacids or diesters, the alternate form diester(s) or diacid(s), respectively, may also be a mixture and are not necessarily the counterpart diacid or diester. For example, component (a) may comprise a predominant amount of DMN and DMF with a smaller amount of FDCA; or as another example, component (a) may comprise a predominant amount of DMF with a smaller amount of NDCA.

The terms "FDCA-based polymer" and "FDCA/NDCA-based polymer" refer to polymers made from either the diacids or the diesters, and refer to polymers made from FDCA itself or DMF or other diesters of FDCA and other diacids or diesters as described herein (not just NDCA or DMN); i.e., NDCA, C₁ to C₁₀ alkyl diester of NDCA, glycolide or combinations thereof. As described herein, such FDCA-based polymers and FDCA/NDCA-based polymers may comprise residues of other diacids and diesters as well.

The polyol, component (b) may consist of isosorbide or may consist essentially of isosorbide. When component (b) contains other polyols beside just isosorbide, component (b) may comprise ethylene glycol, a mixture of 1,3-cyclohexanediol and 1,4-cyclohexanediol, or 2,2,4,4-tetramethyl-1,3-cyclobutanediol, or combinations thereof. The polyol component (b) preferably comprises 100 mole% isosorbide, based on the total amount of component (b), or up to 99 mole%, or up to 95 mole%, or up to 90 mole%, or up to 80 mole% or up to 70 mole% isosorbide, or at least 1 mole%, at least 5 mole%, at least 10 mole%, at least 20 mole%, or at least 30 mole% isosorbide. For example, component (b) may comprise 10 to 90 mole%, based on the total amount of component (b) polyol, of isosorbide, and 10 to 90 mole% based on the total amount of component (b) polyol, of ethylene glycol, a mixture of 1,3-cyclohexanediol and 1,4-cyclohexanediol, or 2,2,4,4-tetramethyl-1,3-cyclobutanediol, or other polyols, or combinations thereof.

When component (b) contains a mixture of 1,3- and 1,4-cyclohexanediol, the cyclohexanediol may comprise 25 to 75 mole% of 1,3-cyclohexanediol and 25 to 75 mole% of 1,4-cyclohexanediol. As an example, the cyclohexanediol may comprise 45 to 65 mole% of 1,3-cyclohexanediol and 35 to 55 mole% of 1,4-cyclohexanediol. As a further example, the cyclohexanediol may comprise 55 mole% of 1,3-cyclohexanediol and 45 mole% of 1,4-cyclohexanediol.
The invention further includes compositions comprising (1) one or more first polymer comprising reaction product of (a) one or more diacid or diester thereof, and (b) one or more polyol, wherein component (a) comprises (i) NDCA, Ci to Cio alkyl diester thereof, glycolide or combinations thereof, and (ii) FDCA, one or more Ci to Cio alkyl diester thereof, or combinations thereof, and component (b) comprises isosorbide, and (2) one or more second polymer selected from the group consisting of polymers of (1) above different from the first polymer and (B) other polyesters which are reaction product of (i) acids or esters and (ii) polyols, wherein (x) the acids and esters do not include NDCA, Ci to Cio alkyl diester thereof, glycolide, FDCA, or Ci to Cio alkyl diester thereof, when the polyol is isosorbide, and (y) wherein the polyols do not include isosorbide when the acids and esters are selected from the group consisting of NDCA, Ci to Cio alkyl diester thereof, glycolide, FDCA, or Ci to Cio alkyl diester thereof, or combinations thereof. This composition may comprise two or more polymers, wherein at least one polymer is the reaction product of NDCA, FDCA or combinations thereof, and at least one other polymer is the reaction product of glycolide, Ci to Cio alkyl diester of NDCA, Ci to Cio alkyl alkyl diester of FDCA, or combinations thereof.

The composition may comprise one or more other polyester comprising a reaction product of component (i) glycolide, and component (ii) one or more polyol comprising a mixture of 1,3- and 1,4-cyclohexanediol, or 2,2,4,4-tetramethyl-1,3-cyclobutanediol, or combinations thereof. For the composition described in the previous sentence, since the polyol component contains a mixture of 1,3- and 1,4-cyclohexanediol, or 2,2,4,4-tetramethyl-1,3-cyclobutanediol, the polyol cannot be solely isosorbide or ethylene glycol.

The polymers of the present invention have a glass transition temperature (Tg) of at least 100°C as measured by differential scanning calorimetry (DSC) or calculated according to the Fox Equation (see, T. G. Fox, Bull. Am. Physics Soc, vol. 1(3), p.123 (1956)). Preferably, the Tg of the polymers is in the range from 100 to 150°C, or 110 to 150°C, or 120 to 150°C. Polymers with Tg of 100°C or higher, and preferably 120°C or higher, and the films, sheets and articles made from them, exhibit desirable physical characteristics as described elsewhere herein.

The polymers and copolymers described above may be prepared by known methods. WO 2010/0177133, referenced above, teaches methods to make these polyesters, and produce them at high molecular weights and without discoloration. The method of WO
2010/0177133 is applicable to preparing the present polymers using FDCA or DMF alone or together with suitable amounts of NDCA or DMN or C₂ to C₁₀ alkyl diesters of NDCA.

For example, the polymers of the present invention may be made by a two-step process, wherein first, in Step (I), a prepolymer is made having furan dicarboxylate and/or naphthalene dicarboxylate moieties within the polymer backbone. This intermediate product is preferably an ester composed of two diol monomers and one diacid monomer, wherein at least part of the diacid monomers comprises FDCA or FDCA and NDCA, followed by a melt-polymerization of the prepolymer under suitable polymerization conditions. Such conditions typically involve reduced pressure to remove the excess of diol monomers. Using DMF and DMN as examples of the diester, in Step (I) DMF and DMN are reacted in a catalyzed transesterification process with about 2 equivalents of a diol, to generate the prepolymer while removing 2 equivalents of the corresponding alcohol. DMF and DMN are preferred, since this transesterification step then generates methanol, a volatile alcohol that is easy to remove. However, as starting material diesters of FDCA and NDCA with other volatile alcohols or phenols (e.g., having a boiling point at atmospheric pressure of less than 150°C, preferably less than 100°C, more preferably of less than 80°C) may be used as well. Examples, therefore, include ethanol, methanol and a mixture of ethanol and methanol. The reaction leads to formation of a polyester. As discussed in more detail below, the diol monomers may contain additional hydroxyl groups, such as glycerol, pentaerythritol or sugar alcohols.

Step (I) is commonly referred to as esterification when acid is used, and transesterification when ester is used, with concomitant removal of water or an alcohol, respectively. Step (II) of the process is a catalyzed polycondensation step, wherein the prepolymer is polycondensed under reduced pressure, at an elevated temperature and in the presence of a suitable catalyst.

The first step, transesterification, is catalyzed by a specific transesterification catalyst at a temperature preferably in the range of about 150 to about 220°C, more preferably in the range of about 180 to about 200°C, and carried out until the starting ester content is reduced until it reaches the range of about 3 mole% to about 1 mole%. The transesterification catalyst may be removed, to avoid interaction in the second step of polycondensation, but often remains present for the second step. The selection of the transesterification catalyst can be affected by the selection of the catalyst used in the polycondensation step, and vice versa.
Suitable catalysts for use in the Step (I) transesterification process include tin(IV) based catalysts, preferably organotin(IV) based catalysts, more preferably alkyltin(IV) salts including monoalkyltin(IV) salts, dialkyl and trialkyltin(IV) salts and mixtures thereof. The tin(IV) based catalysts are better than tin(II) based catalysts, such as tin(II) octoate.

The tin(IV) based catalysts may also be used with alternative or additional transesterification catalysts. Examples of alternative or additional transesterification catalysts that may be used in Step (I) include one or more of titanium(IV) alkoxides or titanium(IV) chelates, zirconium(IV) chelates, or zirconium(IV) salts (e.g. alkoxides); hafnium(IV) chelates or hafnium(IV) salts (e.g. alkoxides). Although these alternative or additional catalysts may be suitable for the transesterification, they may actually interfere during the polycondensation step. Therefore, preferably, the main or sole transesterification catalyst is a tin(IV) based catalyst. Alternatively, when alternative or additional catalysts are used, they are removed after Step (I) and before Step (II).

Preferred transesterification catalysts are selected from one or more of, butyltin(IV) tris(octoate), dibutyltin(IV) di(octoate), dibutyltin(IV) diacetate, dibutyltin(IV) laureate, bis(dibutylchlorotin(IV)) oxide, dibutyltin dichloride, tributyltin(IV) benzoate and dibutyltin oxide.

In respect to the catalyst, it should be realized that the active catalyst as present during the reaction may be different from the catalyst as added to the reaction mixture. The catalysts are used in an amount of about 0.01 to about 0.2 mole% relative to initial diester, more preferably in an amount of about 0.04 to about 0.16 mole% of initial diester.

The intermediate product (i.e., the prepolymer) may, but importantly need not be isolated and/or purified. Preferably, the product is used as such in the subsequent polycondensation step. In this catalyzed polycondensation step, the prepolymer is polycondensed under reduced pressure, at an elevated temperature and in the presence of a suitable catalyst. The temperature is preferably in the range of about the melting point of the polymer to about 30°C above this melting point, but preferably not less than about 180°C. The pressure should be reduced, preferably gradually at stages. It should preferably be reduced to as low as a pressure as possible, more preferably below 1 mbar. Step (II) is catalyzed by specific polycondensation catalysts and the reaction is carried out at mild melt conditions.

Examples of suitable polycondensation catalysts for use in Step (II) include tin(II) salts, such as tin(II) oxide, tin(II) dioctoate, butyltin(II) octoate, or tin(II) oxalate. Preferred
catalysts are tin(II) salts obtained by the reduction of the tin(IV) catalyst, e.g., alkyltin(IV),
dialkyltin(IV), or trialkyltin(IV) salts, used as transesterification catalyst in Step (I), with a
reducing compound. Reducing compounds used may be well-known reducing compounds,
preferably phosphorus compounds.

Particularly preferred reducing compounds are organophosphorus compounds of
trivalent phosphorus, in particular a monoalkyl or dialkyl phosphinate, a phosphonite or a
phosphite. Examples of suitable phosphorus compounds are triphenyl phosphite, diphenyl
alkyl phosphite, phenyl dialkyl phosphite, tris(nonylphenyl) phosphite, trilauryl phosphite,
trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tri(2,4-di-tert-butylphenyl)
phosphite, diisodecyl pentaerythritol diphosphite, di(2,4-di-tert-butylphenyl) pentaerythritol
diphosphite, tristearyl sorbitol triphosphite, tetrakis(2,4-di-tert-butylphenyl) 4,4'-
diphenylenediphosphonite, 4,4'-isopropylidenediphenol C_{12-15} alkyl phosphite,
poly(dipropylene glycol) phenyl phosphite, tetraphenyl dipropylene glycol phosphite,
tetraphenyl diisodecyl glycol phosphite, trisisodecyl phosphite, diisodecyl-phenyl
phosphite, diphenyl isodecyl phosphite, and mixtures thereof.

The preferred polycondensation catalysts therefore include tin(II) salts such as tin(II)
dioctoate, butyl(II) octoate and other alkyltin(II) octoate compounds, prepared from the
corresponding tin(IV) salt using e.g., a trialkyl phosphite, a monoalkyl diaryl phosphite, a
dialkyl monoaryl phosphite or a triaryl phosphite. Preferably, the reducing compound is
added in the melt of the prepolymer. Addition of the reducing compound at that stage
avoids discoloration.

A combination of transesterification catalyst and polycondensation catalyst that may
be particularly suitable, is based on a tin(IV) type catalyst during transesterification, which
is reduced, preferably with triphenylphosphite and/or tris(nonylphenyl)phosphite, to a tin(II)
type catalyst during the polycondensation. The catalysts are used in an amount of about 0.01
to about 0.2 mole % relative to initial diester, more preferably in an amount of about 0.04 to
about 0.16 mole% of initial diester.

It is particularly useful that the combination of tin(IV) type catalyst and tin(II) type
 catalyst retains activity. This allows for the same catalyst to be used for a subsequent solid
state polycondensation. Solid state polycondensation (SSP) is a common process used in
the preparation of other polyesters, such as PET. In SSP processes, pellets, granules, chips
or flakes of polymer are subjected for a certain amount of time to elevated temperatures
(below melting point) in a hopper, a tumbling drier or a vertical tube reactor or the like.
With tin(IV)/tin(II) catalyst systems, higher molecular weight can be reached than with titanium catalysts. Tin type catalysts allow SSP of the FDCA- or FDCA/NDCA-based polymers to reach a number average molecular weight of 20,000 and greater. Conditions and equipment for SSP are known, in particular as SSP is frequently used to upgrade recycled PET. In applying the SSP process to these polymer systems, the temperature should be elevated relative to traditional SSP processes (as for PET), but nonetheless remain below, and preferably well below, the melting point of the polymer.

Polyesters and various copolymers may be made according to the process described above, depending on the selection of the monomers used. Furthermore, the copolymers may be formed as random or block copolymers depending on the process and process conditions employed. For instance, linear polyesters may be made with FDCA (in the form of its methyl ester) and isosorbide and an aromatic, aliphatic or cycloaliphatic diol. The C\textsubscript{1} to C\textsubscript{10} alkyl diester of FDCA may be used in combination with one or more other dicarboxylic acid esters or lactones. Likewise, the diol may be a combination of two or more diols.

Polyesters that have never been produced before and that are claimed in this application are those having both a 2,5-furan dicarboxylate moiety and isosorbide within the polymer backbone. The polyesters will comprise residues of other diacid(s) and/or diester(s), and may comprise residues of other polyols as well.

The polymers and copolymers according to the current invention need not be linear. If a polyfunctional aromatic, aliphatic or cycloaliphatic alcohol is used, or part of the diol is replaced by such a polyol, then a branched or even crosslinked polymer may be obtained. A branched or crosslinked polymer may also be obtained when part of the FDCA ester or NDCA ester is replaced by an ester of a polyacid. However, branching would reduce barrier properties, and too much crosslinking would impair film processability. As a result, the polymers should have only a moderate degree of branching or crosslinking, or little to essentially no branching or crosslinking, and preferably have no branching or crosslinking.

The diacids and diesters used in the present invention may comprise FDCA and the C\textsubscript{1} to C\textsubscript{10} alkyl diesters of FDCA, and NDCA and its C\textsubscript{1} to C\textsubscript{10} alkyl diesters of FDCA, based on the total amount of diacid/diester in the polymer. The polymers of the present invention comprise less than 100 mole% FDCA or the Ci to C\textsubscript{10} alkyl diesters of FDCA, or it may be made with as little as 1 mole% of FDCA or DMF. The diacid or
diester used to make the polymer may comprise 0.1 to 99 mole% NDCA or DMN or glycolide, or combinations thereof, and at least 5 mole% of FDCA or DMF. The diacids and diesters used to make the polymers of the present invention may further comprise other suitable diacids and diesters. Preferably, the diacid or diester comprises 1 to 99 mole% FDCA or DMF and 1 to 99 mole% NDCA or DMN; or 10 to 90 mole% FDCA or DMF and 10 to 90 mole% NDCA or DMN; more preferably 70 to 80 mole% FDCA or DMF and 20 to 30 mole% NDCA or DMN.

Other diacids, diesters, lactones or lactides may be present as well. Suitable di- or polycarboxylic acid esters which can be used in combination with the DMF or in combination with DMF and DMN include dimethyl terephthalate, dimethyl isophthalate, dimethyl adipate, dimethyl azelate, dimethyl sebacate, dimethyl dodecanoate, dimethyl 1,4-cyclohexanedicarboxylate, dimethyl maleate, dimethyl succinate, and trimethyl 1,3,5-benzenetricarboxylate.

Preferred examples of dicarboxylic acid esters or polycarboxylic acid esters to be used in combination with the DMF or in combination with DMF and DMN are dimethyl terephthalate, dimethyl adipate, dimethyl maleate, and dimethyl succinate. More preferably, these may be present in a molar ratio of about 10:1 to about 1:10 vis-a-vis the DMF or the combination of DMF and DMN. This mixture of reactants may be referred to as the acid ester reactant.

Preferred examples of lactones to be used in combination with the DMF or in combination with DMF and DMN are pivalolactone, ε-caprolactone and lactides (L,L; D,D; D,L) and glycolide

The polymers and copolymers according to the current invention need not be linear. If a polyfunctional aromatic, aliphatic or cycloaliphatic alcohol is used, or part of the dihydroxyl polyol is replaced by a tri- or higher OH-functional polyol, then a branched or even crosslinked polymer may be obtained. A branched or crosslinked polymer may also be obtained when part of the DMF is replaced by an ester of a polyacid. Nevertheless, linear polymer and copolymer are preferred.

The polymers of the present invention are made using isosorbide, and the polyol may consist entirely of isosorbide, or may consist essentially of isosorbide. The polyol may comprise isosorbide and other polyol(s). Suitable other polyols may be selected from the group consisting of ethylene glycol, mixtures of 1,3-cyclohexanediethanol and 1,4-cyclohexanediethanol, or 2,2,4,4-tetramethyl-1,3-cyclobutane diol, ethylene glycol,
diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-
hexanediol, 1,4-benzenedimethanol, 2,2-dimethyl-1,3-propanediol, poly(ethylene glycol),
poly(tetrahydofuran), 2,5-di(hydroxymethyl) tetrahydrofuran, glycerol, pentaerythritol,
sorbitol, mannitol, erythritol, and threitol. Among those additional polyols which may be
used to form the polymers of the present invention, preferred are ethylene glycol, mixture of
1,3-cyclohexanediol and 1,4-cyclohexanediol, 2,2,4,4-tetramethyl-1,3-
cyclobutanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 2,2-dimethyl-1,3-
propanediol, poly(ethylene glycol), and poly(tetrahydofuran), or combinations thereof.

When the polyol comprises mixtures of 1,3- and 1,4-cyclohexanediol, this
polyol component preferably comprises 25 to 75 mole% of 1,3-cyclohexanediol and
25 to 75 mole% of 1,4-cyclohexanediol, based on the total amount of polyol; more
preferably, 45 to 65 mole% of 1,3-cyclohexanediol and 35 to 55 mole% of 1,4-
cyclohexanediol, based on the total amount of polyol; and still more preferably, 55
mole% of 1,3-cyclohexanediol and 45 mole% of 1,4-cyclohexanediol, based
on the total amount of polyol.

The 1,3- and 1,4-cyclohexanediol generally comprise a mixture of cis- and
trans- forms of the molecule. Preferably, both the 1,3-cyclohexanediol and 1,4-
cyclohexanediol independently comprise 35 mole% cis- and 65 mole% trans- forms
of the molecules.

The FDCA- and FDCA/NDCA-based polymers made by the processes described
above, or by other known processes for the preparation of polyesters, can be combined to
form novel, useful compositions. The novel polymers may be combined with alternate
novel polymers, or with known polyesters, or with both alternate novel polymers and
known polyesters. The present invention includes compositions comprising (1) one or more
first polymer comprising reaction product of (a) one or more diacid or diester thereof, and
(b) one or more polyol, wherein component (a) comprises (i) NDCA, C_{1} to C_{10} alkyl diester
thereof, glycolide or combinations thereof, and (ii) FDCA, one or more C_{i} to C_{10} alkyl
diester thereof, or combinations thereof, and component (b) comprises isosorbide, and (2)
one or more second polymer selected from the group consisting (A) of polymers of (1)
above different from the first polymer and (B) other polyesters which are reaction product
of (i) acids or esters and (ii) polyols, wherein (x) the acids and esters do not include NDCA,
Ci to Cio alkyl diester thereof, glycolide or combinations thereof, and FDCA, or C_{i} to C_{10}
alkyl diester thereof or combinations thereof, when the polyol comprises isosorbide, and (y)
wherein the polyols do not include isosorbide when the acids and esters comprise NDCA,
C₁ to C₁₀ alkyl diester thereof, glycolide, or combinations thereof, and FDCA, or C_i to C₁₀
alkyl diester thereof, or combinations thereof.

Preferably, this composition comprises two or more polymers, wherein at least one
polymer is the reaction product of a diacid and at least one other polymer is the reaction
product of a diester. This composition may comprise two or more polymers, wherein at
least one polymer is the reaction product of FDCA and NDCA or combinations thereof, and
at least one other polymer is the reaction product of C_i to C₁₀ alkyl alkyl diester of FDCA
and glycolide, C_i to C₁₀ alkyl diester of NDCA or combinations thereof.

The composition may comprise one or more other polyester comprising a reaction
product of component (i) glycolide, and component (ii) one or more polyl comprising a
mixture of 1,3- and 1,4-cyclohexanediol, or 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
or combinations thereof. Since the polyl component contains a mixture of 1,3- and 1,4-
cyclohexanediol, or 2,2,4,4-tetramethyl-1,3-cyclobutanediol, it cannot be solely
isosorbide or ethylene glycol.

The other polyester used in forming the compositions may be one or more known
polyesters, conventional or otherwise, including, but not limited to, aliphatic homopolymer
polyglycolide (also known as "polyglycolic acid") (PGA), polylactide (also known as
"polylactic acid") (PLA), polycaprolactone (PCL), copolymer polyethylene adipate (PEA),
polyhydroxyalkanoate (PHA), polyethylene terephthalate (PET), semi-aromatic copolymer
PET, polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene
naphthalate (PEN), and aromatic copolymers from polycondensation of 4-hydroxybenzoic
acid and 6-hydroxynaphthalene-2-carboxylic acid.

The invention further includes articles comprising one or more FDCA- or
FDCA/NDCA-based polymers, or compositions containing them. The polymers and
compositions containing the polymers may contain other components such as plasticizers,
softeners, dyes, pigments, antioxidants, stabilizers, fillers and the like. Examples of articles
include, but are not limited to, thermoformed articles, film, shrink label, retortable
packaging, pipe, bottle, profile, molded article, extruded article, fiber, and fabric. Rigid or
semi-rigid (i.e., somewhat deformable) bottles and various rigid articles may be made using
conventional blow-molding processes well-known in the art. The polymers may be used in
forms of application where currently PET, or PEF, or similar polyesters are used.
The invention further includes methods of forming films or sheets comprising the steps of (i) extruding a polymer to form an extrudate; (ii) shaping the extrudate by passing it through a flat or annular die; and (iii) cooling the extrudate to form a film or sheet having a machine direction and a cross direction; wherein the polymer comprises reaction product of (a) one or more diacid or diester thereof, and (b) one or more polyl, wherein component (a) comprises (i) NDCA, \(C_1 \) to \(C_{10} \) alkyl diester thereof, glycolide or combinations thereof, and (ii) FDCA, one or more \(C_1 \) to \(C_{10} \) alkyl diester thereof, or combinations thereof, and component (b) comprises isosorbide. The method may comprise the further step of orienting the film or sheet in the machine or cross direction, or both. The polymer resin may be processed according to standard processes applicable to other polyesters such as PET and PEF. When the resulting film or sheet is oriented in both the machine and cross directions, such orientation may be imparted sequentially or simultaneously. The barrier film thickness typically ranges from 1 \(\mu \)m to 350 \(\mu \)m.

The invention further includes a film or sheet of one or more layers, wherein at least one layer comprises polymer comprising the reaction product of (a) one or more diacid, diester thereof, glycolide, and (b) one or more polyl, wherein component (a) comprises (i) NDCA, \(C_1 \) to \(C_{10} \) alkyl diester thereof, glycolide or combinations thereof, and (ii) FDCA, one or more \(C_1 \) to \(C_{10} \) alkyl diester thereof, or combinations thereof, and component (b) comprises isosorbide. Such multilayer films may be prepared according to standard processes applicable to other polyesters such as PET and PEF.

Films and resins made from the polymers and compositions of the present invention exhibit a desirable balance of properties, relative to PEF polymers, including improved oxygen, carbon dioxide, and water-vapor permeability, higher glass transition temperature (\(T_g \)), and improved chemical, heat and impact resistance. In addition, these polymers can used to form films with high-temperature heat sealability using alternative sealing technologies.

These films and resins may be used for various applications which benefit from the combination of properties described above, such as shrink labels, bottles for beverages and other fluids, high-barrier film applications for conventional (i.e., for use in less demanding applications than retort) and retortable packaging, hot-fill packaging, and high-heat (i.e., dry heat) applications, such as oven-proof packaging. These films and resins can be used to form packaging for applications generally served by PET films without the need for additional barriers layers needed with PET-based systems. At similar thicknesses as PET
food packaging films, the films and resins of the present invention can be used for long
shelf-life packaging for food products and pharmaceuticals, or alternatively can be used at
down-gauged levels for food packaging and pharmaceuticals with performance comparable
to conventional (but thicker) PET-based systems. These films and resins can be used to
form transparent packaging that can provide UV-blocking for food, pharmaceutical and
other applications.

The polymer can also be used in tape applications, such as the carrier for magnetic
tape or backing for pressure sensitive adhesive tapes, for packaging trays and blister packs.
The polymer can also be used as substrate in thin film and solar cell applications.

The polymer may be used formed into injection molded articles, extruded sheets,
profile extruded articles and extruded blow molded articles. The polymers may be used in
applications including, but not limited to, medical packaging, shrink labels, rigid laminates
(e.g., for furniture), transaction cards (e.g., credit cards), bottles (including so-called clear
handleware), housewares, appliances, equipment, and signage.

Films and resins of the present invention can be used to form multilayer packaging
systems. Because of the high barrier properties (vis-a-vis oxygen, CO₂ and moisture), such
multilayer systems can be made without metal foil or metalized polymeric film layers. This
enables the construction of transparent or substantially transparent packaging films, a
desirable opportunity for marketing food and other products. For example, the invention

barrier films may comprise a polyester-based polymer with (a) an O₂ gas permeability of
0.4 cc-mil/100 in.² 24 hrs atm (7.9 cc 20 µg/m² 24 hrs atm) at 50% relative humidity
(ASTM D-3985) or less, (b) a moisture permeability of 0.5 g mil/100 in.² 24 hrs atm (9.8 g
20 µg/m² 24 hrs atm) at 38°C (ASTM F-1249) or less, and (c) a glass transition
temperature (Tg) of 100°C or higher. The barrier film may further have (x) a Falling dart
drop impact (Type A) of 200 g for a 50 µm thick film material at room temperature and
50% relative humidity (ASTM D-1709) or greater, (y) an Elmendorf tear of 400 g for a 50
µm thick film material at room temperature and 50% relative humidity (ASTM D-1922) or
greater, or (z) a notched Izod impact of 1.0 J/cm at room temperature and 50% relative
humidity (ASTM D-256 for rigid materials) or greater, or combinations thereof. Preferably,
the film has properties (a), (b) and (c), and one or more of properties (x), (y) and (z). Such
polymers are particularly suitable for food, industrial, consumer, pharmaceutical, medical,
and electronic and electronic component packaging applications.
The barrier films may preferably comprise a polyester-based polymer with (a) an 0.2 gas permeability of 2.5 or less, 2 or less, 1 or less, or 0.5 or less cc-mil/100 in.² 24 hrs atm (5 or less, 4 or less, 2 or less, or 1 or less cc 20 μη/μ2 24 hrs atm) at 50% relative humidity, (b) a moisture permeability of 0.3 or less, 0.2 or less, or 0.1 or less g mil/100 in.² 24 hrs atm (6 or less, 4 or less, or 2 or less g 20 μη/μ2 24 hrs at 38°C), and (c) a Tg of 110°C or higher, or 120°C or higher, or 100 to 150°C, or 110 to 150°C, or 120 to 150°C.

The barrier film may preferably have (x) a Falling dart drop impact (Type A) of 250 or greater, or 300 or greater, or 500 g or greater for a 50 μη thick film material at room temperature and 50% relative humidity, (y) an Elmendorf tear of 450 or greater, or 500 or greater, or 600 g or greater at room temperature and 50% relative humidity, or (z) a notched Izod impact of 1.5 or greater, or 2.0 or greater, or 2.5 or greater, or 3.0 J/cm or greater at room temperature and 50% relative humidity, or combinations of (x), (y) and (z).

Each of the various figures for the barrier, Tg and toughness properties described in the preceding three paragraphs may be independently combined to describe films within the scope of the present invention. Merely as an illustration of that point, as one example, the barrier film of the present invention may comprise a polyester-based polymer with (a) an 0.2 gas permeability of 2.5 cc-mil/100 in.² 24 hrs atm (5 cc 20 μη/μ2 24 hrs atm) or less at 50% relative humidity, (b) a moisture permeability of 0.5 g mil/100 in.² 24 hrs atm (9.8 g 20 μη/μ2 24 hrs atm) or less at 38°C, and (c) a Tg of 120°C or higher; and that barrier film may further have (x) a Falling dart drop impact (Type A) of 250 g or greater for a 50 μη thick film material at room temperature and 50% relative humidity, (y) an Elmendorf tear of 600 g or greater at room temperature and 50% relative humidity, and (z) a notched Izod impact of 3 J/cm or greater at room temperature and 50% relative humidity. This illustrates the point that the barrier film may satisfy any combination of the stated measures for properties (a), (b) and (c), and that it may comprise those properties alone or further in combination with one or more of the properties (x), (y) or (z), and any combination of the stated properties for properties (x), (y) and (z).

The polymer may form a film with similar or lesser barrier properties as described above, but with one or more of the following properties indicating toughness:

(a) a Falling dart drop impact (Type A) of 200 g for a 50 μη thick film material at room temperature and 50% relative humidity (ASTM D1709) or greater;
(b) an Elmendorf tear of 400 g for a 50 μη thick film material at room temperature and 50% relative humidity (ASTM D-1922) or greater; or
(c) a notched Izod impact of 1.0 J/cm at room temperature and 50% relative humidity (ASTM D-256 for rigid materials) or greater; or combinations thereof.

The following examples illustrate the present invention.

Examples

A typical synthesis procedure could be as follows:

DMF (2,5-dimethyl furandicarboxylate), the selected diol and ethylene glycol are charged into a reactor with vigorous mixing in presence of a catalyst like monobutyltin oxide and titanium n-butoxide under nitrogen. The temperature of the contents is slowly increased to 160°C and kept at that temperature for about an hour while collecting methanol through a side-arm attached to vacuum. The temperature is then increased to 170°C for an hour, followed by at 185°C for two hours. The vacuum is slowly applied and is reduced to about 1 bar over about 1 hour or more. Finally, the temperature is further increased to 230°C for about 4 hrs, followed by cooling to about ambient temperature.

<table>
<thead>
<tr>
<th>Example</th>
<th>Diacid/Diester</th>
<th>Required Polyol</th>
<th>Other Polyol</th>
<th>Equivalent % Ethylene glycol in the blend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMN/DMF (1:1 equiv ratio)</td>
<td>Isosorbide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DMN/DMF (1:1 equiv ratio)</td>
<td>Isosorbide</td>
<td>Ethylene Glycol</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Glycolide/DMF (1:1 equiv ratio)</td>
<td>Isosorbide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Glycolide/DMF (1:1 equiv ratio)</td>
<td>Isosorbide</td>
<td>Ethylene Glycol</td>
<td>25</td>
</tr>
<tr>
<td>Comp. 1</td>
<td>DMF</td>
<td></td>
<td>Ethylene Glycol</td>
<td></td>
</tr>
<tr>
<td>Comp. 2</td>
<td>DMN/DMF (1:1 equiv ratio)</td>
<td></td>
<td>Ethylene Glycol</td>
<td></td>
</tr>
</tbody>
</table>

The comparative example incorporates only DMF and excess ethylene glycol in the process of the above example.

Analytical: MW Measurements:

HPLC by Waters.

Detector: A differential refractometer

Eluent: A 5-Mm solution of sodium trifluoroacetate in hexafluoroisopropanol
Flow rate: 1.0 ml/min
Column Temperature: 40°C
Standard: Polymethyl methacrylate (PMMA) resin.

5 **Forming the Film**

The polyester-based polymers with the compositions as described in the preparations above may be formed into barrier films as follows:

- the polymer is sufficiently dried and extruded onto casting drum (provides smooth surface to plastic film).
- the resulting film is stretched 2 to 7 times in both the forward and transverse directions, either in a simultaneous process or sequentially
 - Sequential Draw process: the film's forward draw is over a series of precision motorized rollers; transverse or sideways draw uses diverging clips in a multiple zoned oven with tightly controlled temperatures
 - Simultaneous Draw process: the film is drawn using precision controlled simultaneously diverging, and accelerating clips through a multiple zoned oven with tightly controlled temperatures
 - tension and temperatures are maintained properly to ensure final quality of the film
- the film is wound into large master rolls, which can optionally be slit to precision widths
- the film thickness typically ranges from 1 µm to 350 µm.
What is claimed is:

1. A polymer comprising the reaction product of (a) one or more diacid, diester thereof, glycolide, and (b) one or more polyol, wherein:
 component (a) comprises:
 (i) 2,6-naphthalene dicarboxylic acid (NDCA), C\textsubscript{1} to C\textsubscript{10} alkyl diester thereof, glycolide or combinations thereof, and
 (ii) 2,5-furan dicarboxylic acid (FDCA), one or more C\textsubscript{1} to C\textsubscript{10} alkyl diester thereof, or combinations thereof, and
 component (b) comprises isosorbide.

2. The polymer of Claim 1 wherein component (b) consists essentially of isosorbide.

3. The polymer of Claim 1 wherein component (b) further comprises ethylene glycol, a mixture of 1,3-cyclohexanediol and 1,4-cyclohexanediol, or 2,2,4,4-tetramethyl-1,3-cyclobutanediol, or combinations thereof.

4. The polymer of Claim 3 wherein component (b) comprises 10 to 90 mol.%, based on the total amount of component (b), of isosorbide, and 10 to 90 mol.%, based on the total amount of component (b), of ethylene glycol, a mixture of 1,3-cyclohexanediol and 1,4-cyclohexanediol, or 2,2,4,4-tetramethyl-1,3-cyclobutanediol, or combinations thereof.

5. The polymer of Claim 1 wherein component (a) comprises 5 to 95 mol.%, based on the total weight of component (a), of NDCA, and 5 to 95 mol.%, based on the total amount of component (a), of FDCA.

6. The polymer of Claim 1 wherein component (a) comprises 5 to 95 mol.%, based on the total weight of component (a), of C\textsubscript{1} to C\textsubscript{10} alkyl diester of NDCA, glycolide or combinations thereof, and 5 to 95 mol.%, based on the total amount of component (a), of one or more C\textit{i} to C\textsubscript{10} alkyl diester of FDCA, or combinations thereof.
7. A composition comprising one or more first polymer of Claim 1 and one or more second polymer selected from the group consisting of polymers of Claim 1 different from the first polymer and other polyesters which are reaction product of (i) acids or esters and (ii) polyols, wherein (x) the acids and esters do not include NDCA, Ci to C\textsubscript{10} alkyl diester thereof, glycolide or combinations thereof, and FDCA, or C\textsubscript{1} to C\textsubscript{10} alkyl diester thereof or combinations thereof, when the polyol comprises isosorbide, and (y) wherein the polyols do not include isosorbide when the acids and esters comprise NDCA, Ci to C\textsubscript{10} alkyl diester thereof, glycolide, or combinations thereof, and FDCA, or Ci to C\textsubscript{10} alkyl diester thereof, or combinations thereof.

8. The composition of Claim 7 comprising two or more polymers of Claim 1, wherein at least one first polymer is the reaction product of NDCA, FDCA or combinations thereof, and at least one second polymer is the reaction product of glycolide, Ci to C\textsubscript{10} alkyl diester of NDCA, Ci to C\textsubscript{io} alkyl alkyl diester of FDCA, or combinations thereof.

9. The composition of Claim 7, wherein the other polyester comprises reaction product of component (i) glycolide, and component (ii) one or more polyol comprising a mixture of 1,3-cyclohexanediol and 1,4-cyclohexanediol, or 2,2,4,4-tetramethyl-1,3-cyclobutane diol, or combinations thereof.

10. The composition of Claim 7, wherein the other polyester comprises aliphatic homopolymer polyglycolide or polyglycolic acid (PGA), polylactide or polylactic acid (PLA), polycaprolactone (PCL), copolymer polyethylene adipate (PEA), polyhydroxyalkanoate (PHA), polyethylene terephthalate (PET), semi-aromatic copolymer PET, polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), and aromatic copolymers from polycondensation of 4-hydroxybenzoic acid and 6-hydroxynaphthalene-2-carboxylic acid.

11. An article comprising one or more polymers of Claim 1.

12. A film or sheet of one or more layers, wherein at least one layer comprises polymer comprising the reaction product of (a) one or more diacid, diester thereof, glycolide, and (b) one or more polyol, wherein:
component (a) comprises:
(i) 2,6-naphthalene dicarboxylic acid (NDCA), C\textsubscript{1} to C\textsubscript{10} alkyl diester thereof, glycolide or combinations thereof, and
(ii) 2,5-furan dicarboxylic acid (FDCA), one or more C\textsubscript{1} to C\textsubscript{10} alkyl diester thereof, or combinations thereof, and

component (b) comprises isosorbide.

13. A method of forming a film comprising:
(i) extruding a polymer to form an extrudate;
(ii) shaping the extrudate by passing it through a flat or annular die; and
(iii) cooling the extrudate to form a film or sheet having a machine direction and a cross direction;

wherein the polymer comprises the reaction product of (a) one or more diacid, diester thereof, glycolide, and (b) one or more polyol, wherein:

component (a) comprises:
(i) 2,6-naphthalene dicarboxylic acid (NDCA), C\textsubscript{1} to C\textsubscript{10} alkyl diester thereof, glycolide or combinations thereof, and
(ii) 2,5-furan dicarboxylic acid (FDCA), one or more C\textsubscript{1} to C\textsubscript{10} alkyl diester thereof, or combinations thereof, and

component (b) comprises isosorbide.

14. The method of Claim 13 comprising the further step of orienting the film or sheet in the machine or cross direction, or both.

15. A barrier film comprising a polyester-based polymer with (a) an O\textsubscript{2} gas permeability of 0.4 cc·mil/100 in2·24 hrs atm (8 cc 20 µ/m2·24 hrs atm) at 50% relative humidity (ASTM D-3985) or less, (b) a moisture permeability of 0.5 g mil/100 in2·24 hrs atm (9.8 g·20 µ/m2·24 hrs atm) at 38°C (ASTM F-1249) or less, and (c) a glass transition temperature (Tg) of 100°C or higher.

16. The barrier film of Claim 15 with one or more of the following:
(x) a Falling dart drop impact (Type A) of 200 g or greater (ASTM D-1709) for a 50 µm thick film material at room temperature and 50% relative humidity.
(y) an Elmendoif tear of 400 g or greater (ASTM D-1922) for a 50 µm thick film material at room temperature and 50% relative humidity; or

(z) a notched Izod impact of 1.0 J/cm or higher at room temperature and 50% relative humidity (ASTM D-256 for rigid materials).