ISOQUINOLINAMINE AND PHTHALAZINAMINE DERIVATIVES WHICH INTERACT WITH CRF RECEPTORS

Disclosed are compounds that are highly selective partial agonists or antagonists at human CRF₁ receptors that are useful in the diagnosis and treatment of treating stress related disorders such as post traumatic stress disorder (PTSD) as well as depression, headache and anxiety. The compounds have formula (I) or the pharmaceutically acceptable salts thereof wherein Ar, R₁, R₂, R₃, R₄ and W are various organic and inorganic substituents.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslavia</td>
<td>TR</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
<td>UA</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>CG</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>CH</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NL</td>
<td>Norway</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>CI</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NO</td>
<td>New Zealand</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CM</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>NZ</td>
<td>Poland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
<td>RU</td>
<td>Romanian</td>
</tr>
<tr>
<td>CU</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Russian Federation</td>
<td>SD</td>
<td>Russia</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Singapore</td>
<td>SE</td>
<td>Singapore</td>
</tr>
</tbody>
</table>
ISOQUINOLINAMINE AND PHTHALAZINAMINE DERIVATIVES WHICH INTERACT WITH CRF RECEPTORS

This invention provides novel compounds of Formula I which interact with CRF receptors.

The invention provides pharmaceutical compositions comprising compounds of Formula I. It further relates to the use of such compounds in treating stress related disorders such as post traumatic stress disorder (PTSD) as well as depression, headache and anxiety. Accordingly, a broad embodiment of the invention is directed to a compound of Formula I:

\[
\begin{array}{c}
\text{R}_3 \quad \text{N} \quad \text{R}_4 \\
\text{W} \quad \text{I} \\
\text{N} \quad \text{Ar} \\
\text{R}_1 \quad \text{R}_2
\end{array}
\]

wherein

Ar is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, 4- or 5- pyrimidinyl, each of which is mono-, di-, or trisubstituted with halogen, hydroxy, C\(_1\)-C\(_6\) alkyl, or C\(_1\)-C\(_6\) alkoxy, with the proviso that at least one of the positions on Ar ortho to the point of attachment to the phthalazinamine or isoquinolinamine ring is substituted;

R\(_1\) and R\(_2\) are the same or different and represent hydrogen, C\(_1\)-C\(_6\) alkyl, halogen, hydroxy, C\(_1\)-C\(_6\) alkoxy, NH\(_2\), NH(C\(_1\)-C\(_6\) alkyl), N(C\(_1\)-C\(_6\) alkyl)\(_2\), NO\(_2\), cyano, trifluoromethyl;

R\(_3\) and R\(_4\) are the same or different and represent C\(_1\)-C\(_6\) alkyl optionally substituted with halogen, hydroxy, or C\(_1\)-C\(_6\) alkoxy; or C\(_1\)-C\(_6\) alkylaryl, where aryl is phenyl, 1-or 2-naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl or 2-, 4-, or 5-pyrimidinyl, each of which is optionally mono- or disubstituted with halogen, hydroxy, C\(_1\)-C\(_6\) alkyl, C\(_1\)-C\(_6\) alkoxy, or C\(_1\)-C\(_6\) alkylaryl.
alkoxy; or C₁-C₆ alkyl-Y-R₃, wherein Y is O, S NH, N(C₁-C₆ alkyl), and
R₃ is hydrogen or C₁-C₆ alkyl; and
W is N or C-R₆, where in R₆ is hydrogen or C₁-C₆ alkyl.

These compounds are highly selective partial agonists or antagonists of CRF receptors
and are useful in the diagnosis and treatment of stress related disorders such as post traumatic
stress disorder (PTSD) as well as depression and anxiety.

The invention further encompasses methods for treating mammals, such as, for
example, humans and companion animals (i.e., cats and dogs) suffering from PTSD,
depression, and/or anxiety. Such methods comprise administering to a patient mammal an
amount effective of a compound of Formula I to relieve the depression, anxiety or PTSD.
In addition to the compounds of Formula I above, the invention provides compounds encompassed by Formula II:

\[
\begin{array}{c}
\text{II} \\
\end{array}
\]

wherein

Ar is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, 4- or 5- pyrimidinyl, each of which is mono-, di-, or trisubstituted with halogen, hydroxy, C\(_1\)-C\(_6\) alkyl, C\(_1\)-C\(_6\) alkoxy with the proviso that at least one of the positions on Ar ortho to the point of attachment to the phthalazinamine ring is substituted;

R\(_1\) and R\(_2\) are the same or different and represent hydrogen, C\(_1\)-C\(_6\) alkyl, halogen, hydroxy, C\(_1\)-C\(_6\) alkoxy, NH\(_2\), NH(C\(_1\)-C\(_6\) alkyl), N(C\(_1\)-C\(_6\) alkyl)\(_2\), NO\(_2\), cyano, trifluoromethyl; and

R\(_3\) and R\(_4\) are the same or different and represent

C\(_1\)-C\(_6\) alkyl optionally substituted with halogen, hydroxy, or C\(_1\)-C\(_6\) alkoxy; or C\(_1\)-C\(_6\) alkylaryl, where aryl is phenyl, 1- or 2-naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl or 2-, 4-, or 5-pyrimidinyl, each of which is optionally mono- or disubstituted with halogen, hydroxy, C\(_1\)-C\(_6\) alkyl, C\(_1\)-C\(_6\) alkoxy; or C\(_1\)-C\(_6\) alkyl-Y-R\(_5\), wherein Y is O, S NH, N(C\(_1\)-C\(_6\) alkyl), and R\(_5\) is hydrogen or C\(_1\)-C\(_6\) alkyl.
Preferred compounds of formula II are those where \(R_3 \) and \(R_4 \) independently represent \(C_1-C_6 \) alkyl optionally substituted with halogen, hydroxy, or \(C_1-C_6 \) alkoxy, \(Ar \) is phenyl that is mono-, di-, or trisubstituted with halogen, hydroxy, \(C_1-C_6 \) alkyl, or \(C_1-C_6 \) alkoxy, with the proviso that at least one of the positions on the phenyl group ortho to the point of attachment to the phthalazinamine ring is substituted. More preferred compounds of Formula II are those where \(R_1 \) and \(R_2 \) are independently hydrogen or lower alkyl, most preferably hydrogen or \(C_1-C_3 \) alkyl; and \(Ar \) is phenyl that is trisubstituted with \(C_1-C_6 \) alkyl, with the proviso that at least one of the positions on the phenyl group ortho to the point of attachment to the phthalazinamine ring is substituted. Most preferred compounds of Formula II are those where \(R_1 \) and \(R_2 \) are hydrogen; and \(R_3 \) and \(R_4 \) independently represent \(C_1-C_6 \) alkyl optionally substituted with halogen, hydroxy, or \(C_1-C_6 \) alkoxy, \(Ar \) is phenyl that is trisubstituted in the 2, 4, and 6 positions (para and both ortho positions relative to the point of attachment to the phthalazinamine ring) with \(C_1-C_3 \) alkyl, most preferably methyl. Particularly preferred compounds of Formula II are those where \(R_3 \) and \(R_4 \) are independently hydrogen or \(C_1-C_4 \) alkyl, e.g., methyl, ethyl, propyl, butyl, or cyclopropylmethyl.

The invention also provides compounds of formula III:

\[
\begin{align*}
\text{III} \\
\begin{array}{c}
\text{N} \\
\text{N} \\
\text{N} \\
\text{Ar}
\end{array}
\end{align*}
\]

wherein

\(Ar \) is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, 4- or 5-pyrimidinyl, each of which is mono-, di-, or trisubstituted with halogen, hydroxy, \(C_1-C_6 \) alkyl, \(C_1-C_6 \) alkoxy with the proviso that at least one of the
positions on Ar ortho to the point of attachment to the phthalazinamine ring is substituted; and

R_3 and R_4 are the same or different and represent

C_1-C_6 alkyl optionally substituted with halogen, hydroxy, or C_1-C_6 alkoxy; or C_1-C_6 alkylaryl, where aryl is phenyl, 1-or 2-naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thieryl or 2-, 4-, or 5-pyrimidinyl, each of which is optionally mono- or disubstituted with halogen, hydroxy, C_1-C_6 alkyl, C_1-C_6 alkoxy; or C_1-C_6 alkyl-Y-R_5, wherein Y is O, S, NH, N(C_1-C_6 alkyl), and R_5 is hydrogen or C_1-C_6 alkyl.

Preferred compounds of formula III are those where R_3 and R_4 independently represent C_1-C_6 alkyl optionally substituted with halogen, hydroxy, or C_1-C_6 alkoxy, Ar is phenyl that is mono-, di-, or trisubstituted with halogen, hydroxy, C_1-C_6 alkyl, or C_1-C_6 alkoxy, with the proviso that at least one of the positions on the phenyl group ortho to the point of attachment to the phthalazinamine ring is substituted. Most preferred compounds of Formula III are those where R_3 and R_4 independently represent C_1-C_6 alkyl optionally substituted with halogen, hydroxy, or C_1-C_6 alkoxy, Ar is phenyl that is trisubstituted in the 2, 4, and 6 positions (para and both ortho positions relative to the point of attachment to the phthalazinamine ring) with C_1-C_3 alkyl, most preferably methyl. Particularly preferred compounds of Formula III are those where R_3 and R_4 are independently hydrogen or C_1-C_4 alkyl, e.g., methyl, ethyl, propyl, butyl, or cyclopropylmethyl.

The invention provides compounds of formula IV
wherein

Ar is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, 4- or 5-
pyrimidinyl, each of which is mono-, di-, or trisubstituted with halogen,
hydroxy, C₁-C₆ alkyl, C₁-C₆ alkoxy with the proviso that at least one of the
positions on Ar ortho to the point of attachment to the isoquinolinamine ring is
substituted;

R₁ and R₂ are the same or different and represent hydrogen, C₁-C₆ alkyl, halogen,
hydroxy, C₁-C₆ alkoxy, NH₂, NH(C₁-C₆ alkyl), N(C₁-C₆ alkyl)₂, NO₂, cyano,
trifluoromethyl;

R₃ and R₄ are the same or different and represent
C₁-C₆ alkyl optionally substituted with halogen, hydroxy, or C₁-C₆ alkoxy; or
C₁-C₆ alkylaryl, where aryl is phenyl, 1-or 2-naphthyl, 2-, 3-, or 4-pyridinyl, 2-
or 3- thienyl or 2-, 4-, or 5-pyrimidinyl, each of which is optionally
mono- or disubstituted with halogen, hydroxy, C₁-C₆ alkyl, C₁-C₆
alkoxy; or C₁-C₆ alkyl-Y-R₃, wherein Y is O, S NH, N(C₁-C₆ alkyl), and
R₃ is hydrogen or C₁-C₆ alkyl; and

R₆ is hydrogen or C₁-C₆ alkyl.

Preferred compounds of Formula IV are those where R₃ and R₄ independently
represent C₁-C₆ alkyl optionally substituted with halogen, hydroxy, or C₁-C₆ alkoxy, Ar is
phenyl that is mono-, di-, or trisubstituted with halogen, hydroxy, C₁-C₆ alkyl, or C₁-C₆
alkoxy, with the proviso that at least one of the positions on the phenyl group ortho to the point of attachment to the isoquinolinamine ring is substituted. Most preferred compounds of Formula IV are those where R₃ and R₄ independently represent C₁-C₆ alkyl optionally substituted with halogen, hydroxy, or C₁-C₆ alkoxy, Ar is phenyl that is trisubstituted in the 2, 4, and 6 positions (para and both ortho positions relative to the point of attachment to the isoquinolinamine ring) with C₁-C₃ alkyl, most preferably methyl. Particularly preferred compounds of Formula IV are those where R₃ and R₄ are independently hydrogen or C₁-C₄ alkyl, e.g., methyl, ethyl, propyl, butyl, or cyclopropylmethyl.

The invention also provides compounds of formula V:

![Chemical Structure](image)

wherein

Ar is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, 4- or 5-pyrimidinyl, each of which is mono-, di-, or trisubstituted with halogen, hydroxy, C₁-C₆ alkyl, C₁-C₆ alkoxy with the proviso that at least one of the positions on Ar ortho to the point of attachment to the isoquinolinamine ring is substituted;

R₃ and R₄ are the same or different and represent

C₁-C₆ alkyl optionally substituted with halogen, hydroxy, or C₁-C₆ alkoxy; or C₁-C₆ alkylaryl, where aryl is phenyl, 1-or 2-naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl or 2-, 4-, or 5-pyrimidinyl, each of which is optionally mono- or disubstituted with halogen, hydroxy, C₁-C₆ alkyl, C₁-C₆...
alkoxy; or C₁-C₆ alkyl-Y-R₅, wherein Y is O, S NH, N(C₁-C₆ alkyl), and
R₅ is hydrogen or C₁-C₆ alkyl; and
R₆ is hydrogen or C₁-C₆ alkyl.

Preferred compounds of formula V are those where R₃ and R₄ independently represent
C₁-C₆ alkyl optionally substituted with halogen, hydroxy, or C₁-C₆ alkoxy, Ar is phenyl that is
mono-, di-, or trisubstituted with halogen, hydroxy, C₁-C₆ alkyl, or C₁-C₆ alkoxy, with the
proviso that at least one of the positions on the phenyl group ortho to the point of attachment
to the isoquinolinamine ring is substituted. Most preferred compounds of Formula V are
those where R₃ and R₄ independently represent C₁-C₆ alkyl optionally substituted with
halogen, hydroxy, or C₁-C₆ alkoxy, Ar is phenyl that is trisubstituted in the 2, 4, and 6
positions (para and both ortho positions relative to the point of attachment to the
isoquinolinamine ring) with C₁-C₆ alkyl, most preferably methyl. Particularly preferred
compounds of Formula V are those where R₃ and R₄ are independently hydrogen or C₁-C₄
alkyl, e.g., methyl, ethyl, propyl, butyl, or cyclopropylmethyl.

The invention also encompasses intermediates for preparing compounds of Formula I.
Among these intermediates are compounds of Formula VI:

\[
\begin{align*}
\text{VI} \\
\text{X} & \\
\text{R₁} & \\
\text{R₂} & \\
\text{R₆} & \\
\text{Rₙ} & \\
\text{Ar} & \\
\end{align*}
\]

wherein

X is NH₂ or NO₂;
R₁, R₂, and R₆, are as defined above for Formula I;
Rₙ is hydrogen or R₆O₂C- where R₆ represents C₁-C₆ alkyl; and
Ar is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, 4- or 5-pyrimidinyl, each of which is mono-, di-, or trisubstituted with halogen, hydroxy, C₁-C₆ alkyl, or C₁-C₆ alkoxy, with the proviso that at least one of the positions on Ar ortho to the point of attachment to the isoquinolinamine ring is substituted.

Preferred Ar groups are 2,4,6-tri(C₁-C₆)alkylphenyl groups, most preferably 2,4,6-trimethylphenyl groups.

The invention further encompasses intermediates of Formula VII:

![Formula VII](image)

wherein

X is NH₂ or NO₂;

R₁, R₂, and R₆ are as defined above for Formula I;

R₅ is hydrogen or R₆O₂C- where R₆ represents C₁-C₆ alkyl; and

Ar is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, 4- or 5-pyrimidinyl, each of which is mono-, di-, or trisubstituted with halogen, hydroxy, C₁-C₆ alkyl, or C₁-C₆ alkoxy, with the proviso that at least one of the positions on Ar ortho to the point of attachment to the isoquinolinamine ring is substituted.

Preferred Ar groups are 2,4,6-tri(C₁-C₆)alkylphenyl groups, most preferably 2,4,6-trimethylphenyl groups.

The invention further encompasses intermediates of Formula VIII:
wherein

R_1, R_2, R_3, and R_4, are as defined above for Formula I; and

Ar is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, 4- or 5-pyrimidinyl,
each of which is mono-, di-, or trisubstituted with halogen, hydroxy, C_1-C_6 alkyl, or
C_1-C_6 alkoxy, with the proviso that at least one of the positions on Ar ortho to the
point of attachment to the isoquinolinamine ring is substituted.

Preferred Ar groups are 2,4,6-tri(C_1-C_6)alkylphenyl groups, most preferably 2,4,6-
trimethylphenyl groups.

Also encompassed by the invention are intermediates useful for preparing
phthalazinamines of the invention. Thus, compounds of Formula IX are within the invention:

wherein

R_1, and R_2 are as defined above for Formula I; and

Ar is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, 4- or 5-pyrimidinyl,
each of which is mono-, di-, or trisubstituted with halogen, hydroxy, C_1-C_6 alkyl, or
C₁-C₆ alkoxy, with the proviso that at least one of the positions on Ar ortho to the point of attachment to the benzene ring is substituted.

Preferred Ar groups are 2,4,6-tri(C₁-C₆)alkylphenyl groups, most preferably 2,4,6-trimethylphenyl groups.

The invention also encompasses compounds of Formula X:

![Chemical Structure](image)

R₁ and R₂ are as defined above for Formula I; and

Ar is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, 4- or 5-pyrimidinyl, each of which is mono-, di-, or trisubstituted with halogen, hydroxy, C₁-C₆ alkyl, or C₁-C₆ alkoxy, with the proviso that at least one of the positions on Ar ortho to the point of attachment to the phthalazinone ring is substituted.

Preferred Ar groups are 2,4,6-tri(C₁-C₆)alkylphenyl groups, most preferably 2,4,6-trimethylphenyl g

The invention also encompasses compounds of Formula XI:

![Chemical Structure](image)

R₁ and R₂ are as defined above for Formula I;
Y is a halogen, preferably chloride or bromide; and

Ar is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, 4- or 5-pyrimidinyl,
each of which is mono-, di-, or trisubstituted with halogen, hydroxy, C1-C8 alkyl, or
C1-C8 alkoxy, with the proviso that at least one of the positions on Ar ortho to the
point of attachment to the phthalazinamine ring is substituted.

Preferred Ar groups are 2,4,6-tri(C1-C8)alkylphenyl groups, most preferably 2,4,6-
trimethylphenyl.

Representative compounds of the present invention, which are encompassed by

Formula I, include, but are not limited to the compounds in Table I and their pharmaceutically
acceptable salts. Non-toxic pharmaceutically acceptable salts include salts of acids such as
hydrochloric, phosphoric, hydrobromic, sulfuric, sulfinic, formic, toluenesulfonic,
methanesulfonic, nitric, benzoic, citric, tartaric, maleic, hydroiodic, alkanoic such as acetic,
HOOC-(CH2)n-COOH where n is 0-4, and the like. Those skilled in the art will recognize a
wide variety of non-toxic pharmaceutically acceptable addition salts.

The present invention also encompasses the acylated prodrugs of the compounds of
Formula I. Those skilled in the art will recognize various synthetic methodologies which may
be employed to prepare non-toxic pharmaceutically acceptable addition salts and acylated
prodrugs of the compounds encompassed by Formula I.

When a compound of formula I is obtained as a mixture of enantiomers these may be
separated by conventional methods such as crystallization in the presence of a resolving agent,
or chromatography, for example, using a chiral HPLC column.

In the compounds of the invention, the Ar group is preferably a phenyl group that is
mono-, di-, or trisubstituted with halogen, hydroxy, C1-C8 alkyl, or C1-C8 alkoxy, with the
proviso that at least one of the positions on the phenyl group ortho to the point of attachment
to the isoquinolinamine or phthalazinamine ring is substituted. Where Ar is phenyl, the
carbon atom by which the phenyl group is attached to the isoquinolinamine or phthalazinamine ring is defined as the 1-position. Thus, the positions ortho to the point of attachment are the 2 and 6 positions, and the para position is the 4-position of the phenyl group.

By the terms (C1-C6)alkyl and lower alkyl is meant straight and branched chain alkyl groups having from 1-6 carbon atoms as well as cyclic alkyl groups such as, for example, cyclopropyl, cyclobutyl, or cyclohexyl. Specific examples of such alkyl groups are methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, neopentyl and n-pentyl. Preferred C1-C6 alkyl groups are methyl, ethyl, propyl, butyl or cyclopropylmethyl.

By the terms (C1-C6)alkoxy and lower alkoxy is meant straight and branched chain alkoxy groups having from 1-6 carbon atoms.

By hydroxy C1-C6 alkyl is meant a C1-C6 alkyl group carrying a terminal hydroxy moiety.

By C1-C6 alkoxy C1-C6 alkyl is meant a group of the formula -(CH2)XO(CH2)YCH3,

where x and y independently represent integers of from 1-6.

By the term C1-C6 alkenyl is meant straight or branched chain hydrocarbon groups having from 1-6 carbon atoms and at least one double bond.

By halogen, halo, or halide is meant fluorine, chlorine, bromine and iodine substituents.

By aryl(C1-C6)alkyl is meant aryl groups attached to the parent group by a straight or branched chain alkyl group having 1-6 carbon atoms. The aryl groups include phenyl, 1- or 2-naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3-thienyl or 2-, 4-, or 5- pyrimidinyl and are optionally substituted with up to two groups selected from halogen, hydroxy, (C1-C6)alkyl, and (C1-C6)alkoxy.

Representative examples of compounds according to the invention are shown in Table 1 below.
The pharmaceutical utility of compounds of this invention are indicated by the following assay for CRF receptor activity.

Assay for CRF receptor binding activity

CRF receptor binding is performed using a modified version of the assay described by Grigoriadis and De Souza (Biochemical, Pharmacological, and Autoradiographic Methods to Study Corticotropin-Releasing Factor Receptors. *Methods in Neurosciences*, Vol. 5, 1991). Membrane pellets containing CRF receptors are resuspended in 50mM Tris buffer pH 7.7 containing 10 mM MgCl₂ and 2 mM EDTA and centrifuged for 10 minutes at 48000g. Membranes are washed again and brought to a final concentration of 1500mg/ml in binding buffer (Tris buffer above with 0.1 % BSA, 15 mM bacitracin and 0.01 mg/ml aprotinin.). For the binding assay, 100 ml of the membrane preparation is added to 96 well microtube plates containing 100 ml of ¹²⁵I-CRF (SA 2200 Ci/mmol, final concentration of 100 pM) and 50 ml
of drug. Binding is carried out at room temperature for 2 hours. Plates are then harvested on a Brandel 96 well cell harvester and filters are counted for gamma emissions on a Wallac 1205 Betaplate liquid scintillation counter. Non specific binding is defined by 1 mM cold CRF. IC50 values are calculated with the non-linear curve fitting program RS/1 (BBN Software Products Corp., Cambridge, MA).

The compounds of the invention typically have binding affinities, expressed as IC50 values, of from about 0.5 nanomolar (nM) to about 10 micromolar (μM).

The compounds of general formula I may be administered orally, topically, parenterally, by inhalation or spray or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques. In addition, there is provided a pharmaceutical formulation comprising a compound of general formula I and a pharmaceutically acceptable carrier. One or more compounds of general formula I may be present in association with one or more non-toxic pharmaceutically acceptable carriers and/or diluents and/or adjuvants and if desired other active ingredients. The pharmaceutical compositions containing compounds of general formula I may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsion, hard or soft capsules, or syrups or elixirs.

Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium
carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glycercyl monostearate or glycercyl distearate may be employed.

Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.

Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydropropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
Oily suspensions may be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.

Pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol, anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.

Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents. The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be sterile injectable solution or suspension in a non-toxic parentally acceptable diluent or
solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

The compounds of general formula I may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials are cocoa butter and polyethylene glycols.

Compounds of general formula I may be administered parenterally in a sterile medium. The drug, depending on the vehicle and concentration used, can either be suspended or dissolved in the vehicle. Advantageously, adjuvants such as local anesthetics, preservatives and buffering agents can be dissolved in the vehicle.

Dosage levels of the order of from about 0.1 mg to about 140 mg per kilogram of body weight per day are useful in the treatment of the above-indicated conditions (about 0.5 mg to about 7 g per patient per day). The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. Dosage unit forms will generally contain between from about 1 mg to about 500 mg of an active ingredient.

It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the particular disease undergoing therapy.
A representative illustration of methods suitable for the preparation of compounds of the present invention is shown in Schemes I and II. Those having skill in the art will recognize that the starting materials may be varied and additional steps employed to produce compounds encompassed by the present invention. For example, in certain situations, protection of reactive moieties such as amino groups, will be required.
Scheme I

wherein \(\text{Ar}, R_1, R_2, R_3, R_4, \) and \(R_6 \) are as defined as above for Formula I.

Scheme II
In the above scheme, \(R_1-R_{10}, R_\infty, W \) and \(Ar \) carry the definitions set forth above for Formula I.

The disclosures in this application of all articles and references, including patents, are incorporated herein by reference.

The invention is illustrated further by the following examples which are not to be construed as limiting the invention in scope or spirit to the specific procedures and compounds described in them.

Example 1

A. **Ethyl 1-(2,4,6-trimethylphenyl)-1,2-dihydro-2-isoquinolinecarboxylate**

A solution of 2-mesitylmagnesium bromide in THF (1.0 M, 11mL; 11mmol) was added to an ice-cold solution of isoquinoline (1.3g, 10mmol) in THF (10ml). After 5 minutes, ethyl chloroformate was added slowly dropwise and the mixture was further stirred at 0°C for 10min before quenched by saturated NH₄CL solution. The mixture was poured into 0.5 N hydrochloric acid and extracted twice with ethyl ether. Combined organics were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo to give 3.58 g of titled compound (quantitative) as an oil which was used in the next reaction without further purification.

B. **Ethyl 4-nitro-1(2,4,6-triethylphenyl)-1,2-dihydro-2-isoquinolinecarboxylate**

To a solution of the product of step A(1.6g, 5.0 mmol) in acetic acid (8 mL) was cautiously added nitric acid (90%, 0.35 mL, 7.5 mmol) with external cooling. After the addition, the mixture was allowed to worm to room temperature and further stirred for 2.5 h. Resulting yellow suspension was filtered and the crystalline solid collected was washed with methanol and air-dried to give 0.83 g of the dihydronitroisoquinoline, m.p. 171°C (dec.).
C. 4-Nitro-1-(2,4,6-trimethylphenyl)-isoquinoline

Hydrobromic acid (3.0 M in HOAc, 1 mL) was added to a suspension of the dihydronitroisoquinoline (0.83g) in glacial HOAc (2 mL). The mixture was heated to 100°C for 1 day with occasional addition of more hydrobromic acid solution (3 mL overall). After the reaction, the mixture was allowed to cool to room temperature, concentrated in vacuo, diluted by water, and extracted twice with ethyl ether. Combined organics were washed by saturated NaHCO₃ solution, dried over Na₂SO₄, filtered, concentrated in vacuo, and chromatographed on silica gel (5% to 10% ethyl acetate in hexane) to give 234 mg of nitroisoquinoline (35%) as solids, along with 95 mg of 4-bromo-1(2,4,6-trimethylphenyl)isoquinoline (13%).

D. 4-Amino-1-(2,4,6-trimethylphenyl)-isoquinoline

A solution of nitroisoquinoline (210 mg, 0.72 mmol) in MeOH (10mL) was placed in Parr hydrogenation bottle, to which was added conc. HCl (ca. 0.1 ml) and 10% palladium on carbon (ca. 10mg). The mixture was shaken under 50 psi of hydrogen pressure for 4 h and filtered on celite. The filtrate was diluted by 1N NaOH and extracted 3 times with CH₂Cl₂, and combined extracts were dried over Na₂SO₄, filtered, concentrated in vacuo, and chromatographed on silica gel (33% to 67% ethyl acetate in hexane) to give 135 mg of the aminoisooquinoline as an oil.

E. N-Propyl-1-(2,4,6-trimethylphenyl)-4-isoquinolinamine

The aminoisooquinoline (50 mg, 0.19 mmol) was dissolved in propionic acid (0.5 mL) and NaBH₄ (30 mg) was added in portions as a solid. After 5 min, the mixture was heated to 100°C for 45 minutes before cooled back to room temperature. The mixture was diluted by 1N HC1 and vigorously stirred for 4 min, basified by cold 1N NaOH, and extracted 3 times with CH₂Cl₂. Combined extracts were dried over Na₂SO₄, filtered, and concentrated in vacuo.
to give 55 mg of the title compound as an oil which was used in the next reaction without further purification.

F. N-cyclopropylmethyl-N-propyl-1-(2,4,6-trimethylphenyl)-4-isoquinolinamine
 (Compound 1)

To a solution of the product of step E (72 mg, 9.24 mmol) in DMSO (0.7 mL) was added potassium t-butoxide (40 mg, 0.36 mmol), followed by slow dropwise addition of bromomethylcyclopropane (0.028 mL, 0.3 mmol). The mixture was stirred at room temperature for 1 h, diluted by aqueous NH₄Cl, and extracted twice with 50% ethyl ether in hexane. Combined organics were dried over Na₂SO₄, filtered, concentrated, and chromatographed on silica gel (6% to 10% ethyl acetate in hexane) to give 62 mg of the title compound as an oil. 'H NMR (CDCl₃): δ 0.10 (m, 2 H), 0.50 (m, 2 H), 0.78 (t, 3 H), 1.00 (m, 1 H), 1.50 (q, 2 H), 186 (s, 6 H), 2.38 (s, 3 H), 2.45 (d, 2 H), 2.56 (t, 2 H), 4.07 (s, 2 H), 6.98 (s, 2 H), 7.42 (s, 1 H), 7.52 (d, 1 H), 7.66 (t, 1 H), 8.48 (d, 1 H), 8.53 (s 1 H) ppm.

The following compounds are prepared essentially according to procedures set forth above in Example 1.

Example 2

N-Cyclopropylmethyl-N-ethyl-1-(2,4,6-trimethylphenyl)-4-isoquinolinamine

Example 3

N-benzyl-N-propyl-1-(2,4,6-trimethylphenyl)-4-isoquinolinamine

Example 4

N-Cyclopropylmethyl-N-(2-methoxyethyl)-1-(2,4,6-trimethylphenyl)-4-isoquinolinamine
Example 5

N,N-Dipropyl-1-(2,4,6-trimethylphenyl)-4-isoquinolinamine

Example 6

N-Cyclopropymethyl-N-propyl-3-methyl-1-(2,4,6-trimethylphenyl)-4-
isoquinolinaminime

Example 7

10 A. 2-(2,4,6-Trimethylbenzoyl)-benzoic acid

Aluminum chloride (60 g, 0.45 mol) was added in portions to a solution of phthalic
anhydride (30 g, 0.20 mol) and mesitylene (40 mL) in 150 mL of 1,2-dichloroethane at 0°C.
the reaction mixture was stirred at room temperature for 2 hours, then poured into ice-water.
The mixture was acidified with 37% hydrochloric acid and extracted with ether. The ether
extract was washed with 1 N hydrochloric acid, water, dried and concentrated to give 59 g of
the title compound as white solids which was used in the next reaction without further
purification.

B. 4-(2,4,6-Trimethylphenyl)-1(2H)phthalazinone

20 A mixture of 2-(2,4,6-trimethylbenzoyl)_benzoic acid (5.0 g, 18.7 mmol) and
hydrazine hydrate (2mL) in 15 mL of EtOH was stirred at reflux for 8 hours. The solvent was
then removed from the mixture. The residue was heated to melt for about 10 minutes and
then solidified by cooling. The resulting yellow solids were triturated with ether and filtered.
The solid was washed with 1 N NaOH and water, and dried to give 1.8 g of titled compound
as yellow solids, m.p. 259-62 °C.
C. 4-(2,4,6-Trimethylphenyl)-4-chloro-phthalazine

A solution of 4-(2,4,6-Trimethylphenyl)-1(2H)phthalazinone (1.0 g) in 5 mL of POCI₃ was heated at 80 °C for 2 hours. The excess POCI₃ was removed under reduce pressure. The resulting residue was dissolved in ethyl acetate and washed with NaHCO₃ solution and water. The ethyl acetate solution was then dried over Na₂SO₄ and concentrated to a yellow solid which was used in the next reaction without further purification.

D. N-Cyclopropylmethyl-N-propyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine (Compound 2)

A mixture of the product of step C (100 mg), N-propyl-N-cyclopropylmethylamine (0.5 mL) and in 1 mL of toluene was heated at 100 °C overnight. The mixture was cooled and concentrated. The residue was purified through silica gel column chromatography to give 40 mg of the title compound as an oil. ¹H NMR (CDCl₃): δ 0.08 (q, 2H), 0.50 (q 2H), 0.95 (t, 3H), 1.20 (m, 1H), 1.76 9m, 2H), 1.92 (s, 6H), 2.36)s, 3H), 3.45 (d, 2H), 3.68 (m, 2H), 6.90 (s, 2H), 7.36 (d, 1H), 7.64 (t, 1H), 7.74 (t, 1H), 8.19 (d, 1H)ppm.

The following compounds are prepared essentially according to procedures set forth above in Example 7.

Example 8

N-Cyclopropylmethyl-N-ethyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine

Example 9

N-Cyclopropylmethyl-N-methyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine

Example 10

- 25 -
N-Cyclopropylmethyl-N-(2-methoxyethyl)-4-(2,4,6-trimethylphenyl)-1-phthalazinamine

Example 11
N-Benzyl -N-ethyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine

Example 12
N-(2'-Chlorophenylmethyl-N-ethyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine

Example 13
N-(4'-Chlorophenylmethyl-N-ethyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine

Example 14
N-(2'-Tolylmethyl)-N-ethyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine

Example 15
N-(2'-Methoxyphenylmethyl)-N-ethyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine

Example 16
N-(2'-Pyridylmethyl) -N-ethyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine

The invention and the manner and process of making and using it, are now described in such full, clear, concise and exact terms as to enable any person skilled in the art to which it pertains, to make and use the same. It is to be understood that the foregoing describes preferred embodiments of the present invention and that modifications may be made therein without departing from the spirit or scope of the present invention as set forth in the claims.
To particularly point out and distinctly claim the subject matter regarded as invention, the following claims conclude this specification.
WHAT IS CLAIMED IS:

1. A compound of the formula:

\[\text{R}_3 \text{N} \text{R}_4 \]

\[\text{W} \text{N} \text{Ar} \]

\[\text{R}_1 \text{R}_2 \]

or the pharmaceutically acceptable salts thereof wherein

5. \(\text{Ar} \) is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, or 4- or 5-pyrimidinyl,
each of which is mono-, di-, or trisubstituted with halogen, hydroxy, \(\text{C}_1-\text{C}_6 \) alkyl, or \(\text{C}_1-\text{C}_6 \) alkoxy, with the proviso that at least one of the positions on \(\text{Ar} \) ortho to the
point of attachment to the nitrogen-containing 8-membered aromatic ring is
substituted;

10. \(\text{R}_1 \) and \(\text{R}_2 \) are the same or different and represent hydrogen, \(\text{C}_1-\text{C}_6 \) alkyl, halogen, hydroxy, \(\text{C}_1-\text{C}_6 \) alkoxy, \(\text{NH}_2, \text{NH}(\text{C}_1-\text{C}_6 \text{ alkyl}), \text{N}(\text{C}_1-\text{C}_6 \text{ alkyl})_2, \text{NO}_2, \text{cyano, trifluoromethyl} \);

\(\text{R}_3 \) and \(\text{R}_4 \) are the same or different and represent

\(\text{C}_1-\text{C}_6 \) alkyl optionally substituted with halogen, hydroxy, or \(\text{C}_1-\text{C}_6 \) alkoxy; or

\(\text{C}_1-\text{C}_6 \text{alkylaryl} \), where aryl is phenyl, 1-or 2-naphthyl, 2-, 3-, or 4-pyridinyl, 2-
or 3- thienyl or 2-, 4-, or 5-pyrimidinyl, each of which is optionally
mono- or disubstituted with halogen, hydroxy, \(\text{C}_1-\text{C}_6 \) alkyl, \(\text{C}_1-\text{C}_6 \)
alkoxy; or \(\text{C}_1-\text{C}_6 \) alkyl-Y-\(\text{R}_s \), wherein \(\text{Y} \) is O, S NH, \(\text{N}(\text{C}_1-\text{C}_6 \text{ alkyl}) \), and
\(\text{R}_s \) is hydrogen or \(\text{C}_1-\text{C}_6 \) alkyl and
\(W \) is N or C-R\(_{\text{R}_s} \), where in \(\text{R}_s \) is hydrogen or \(\text{C}_1-\text{C}_6 \) alkyl.

20

2. A compound of the formula:
or the pharmaceutically acceptable salts thereof wherein

Ar is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, or 4- or 5-pyrimidinyl, each of which is mono- , di- , or trisubstituted with halogen, hydroxy, C1-C6 alkyl, or C1-C6 alkoxy, with the proviso that at least one of the positions on Ar ortho to the point of attachment to the phthalazinamine ring is substituted;

R₁ and R₂ are the same or different and represent hydrogen, C₁-C₆ alkyl, halogen, hydroxy, C₁-C₆ alkoxy, NH₂, NH(C₁-C₆ alkyl), N(C₁-C₆ alkyl)₂, NO₂, cyano, trifluoromethyl; and

R₃ and R₄ are the same or different and represent

C₁-C₆ alkyl optionally substituted with halogen, hydroxy, or C₁-C₆ alkoxy; or

C₁-C₆ alkylary1, where aryl is phenyl, 1- or 2-naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3-thienyl or 2-, 4-, or 5-pyrimidinyl, each of which is optionally mono- or disubstituted with halogen, hydroxy, C₁-C₆ alkyl, C₁-C₆ alkoxy; or C₁-C₆ alkyl-Y-R₆, wherein Y is O, S NH, N(C₁-C₆ alkyl), and R₆ is hydrogen or C₁-C₆ alkyl.

3. A compound according to claim 2, wherein Ar is phenyl mono- , di-, or trisubstituted with halogen, hydroxy, C₁-C₆ alkyl, or C₁-C₆ alkoxy, with the proviso that at least one of the positions on the phenyl group ortho to the point of attachment to the phthalazinamine ring is substituted.

4. A compound according to claim 3, wherein R₁ and R₂ are hydrogen.
5. A compound according to claim 4, wherein \(R_3 \) and \(R_4 \) are independently hydrogen or \(C_1-C_4 \) alkyl.

6. A compound of the formula:

\[
\begin{array}{c}
\text{R}_3 \text{N} \text{R}_4 \\
\text{N} \\
\text{A}_r
\end{array}
\]

or the pharmaceutically acceptable salts thereof wherein

\(A_r \) is phenyl mono, di-, or trisubstituted with halogen, hydroxy, \(C_1-C_6 \) alkyl, or \(C_1-C_6 \) alkoxy, with the proviso that at least one of the positions on \(A_r \) ortho to the point of attachment to the phthalazinamine ring is substituted; and

\(R_3 \) and \(R_4 \) are the same or different and represent

\(C_1-C_6 \) alkyl optionally substituted with halogen, hydroxy, or \(C_1-C_6 \) alkoxy; or

\(C_1-C_6 \) alkylaryl, where aryl is phenyl, 1- or 2-naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3-thienyl or 2-, 4-, or 5-pyrimidinyl, each of which is optionally mono- or disubstituted with halogen, hydroxy, \(C_1-C_6 \) alkyl, \(C_1-C_6 \) alkoxy; or \(C_1-C_6 \) alkyl-

\(Y \)-\(R_5 \), wherein \(Y \) is O, S NH, N(\(C_1-C_6 \) alkyl), and \(R_5 \) is hydrogen or \(C_1-C_6 \) alkyl.

7. A compound according to claim 6, wherein \(A_r \) is phenyl trisubstituted in the 2, 4, and 6 positions relative to the point of attachment to the phthalazinamine ring with \(C_1-C_3 \)

\(\text{alkyl.} \)

8. A compound according to claim 7, wherein \(A_r \) is 2,4,6-trimethylphenyl.
9. A compound of the formula:

\[
\begin{align*}
R_3 & \quad N \quad R_4 \\
& \quad \mid \\
R_6 & \quad N \quad Ar \\
& \quad \mid \\
& \quad R_1 \\
& \quad \mid \\
& \quad R_2
\end{align*}
\]

or the pharmaceutically acceptable salts thereof wherein

Ar is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, or 4- or 5-pyrimidinyl,

each of which is mono-, di-, or trisubstituted with halogen, hydroxy, C₁-C₆ alkyl, C₁-C₆ alkoxy with the proviso that at least one of the positions on Ar ortho to the point of attachment to the isoquinolinamine ring is substituted;

R₁ and R₂ are the same or different and represent hydrogen, C₁-C₆ alkyl, halogen, hydroxy, C₁-C₆ alkoxy, NH₂, NH(C₁-C₆ alkyl), N(C₁-C₆ alkyl)₂, NO₂, cyano, trifluoromethyl; and

R₃ and R₄ are the same or different and represent

C₁-C₆ alkyl optionally substituted with halogen, hydroxy, or C₁-C₆ alkoxy; or

C₁-C₆ alkylaryl, where aryl is phenyl, 1 or 2-naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3-thienyl or 2-, 4-, or 5-pyrimidinyl, each of which is optionally mono- or disubstituted with halogen, hydroxy, C₁-C₆ alkyl, C₁-C₆ alkoxy; or C₁-C₆ alkyl-Y-R₅, wherein Y is O, S NH, N(C₁-C₆ alkyl), and R₅ is hydrogen or C₁-C₆ alkyl; and

R₆ is hydrogen or C₁-C₆ alkyl.

10. A compound according to claim 9, wherein Ar is phenyl mono-, di-, or trisubstituted with halogen, hydroxy, C₁-C₆ alkyl, or C₁-C₆ alkoxy, with the proviso that at least one of the positions on the phenyl group ortho to the point of attachment to the isoquinolinamine ring is substituted.
11. A compound according to claim 10, wherein R₁ and R₂ are hydrogen.

12. A compound according to claim 11, wherein R₃ and R₄ are independently hydrogen or C₁-C₄ alkyl.

13. A compound of the formula:

```
\begin{align*}
R₃ & \quad \text{or the pharmaceutically acceptable salts thereof wherein} \\
Ar & \quad \text{is phenyl, 1- or 2- naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3- thienyl, or 4- or 5-pyrimidinyl,} \\
& \quad \text{each of which is mono-, di-, or trisubstituted with halogen, hydroxy, C₁-C₆ alkyl, C₁-C₆} \\
& \quad \text{alkoxy with the proviso that at least one of the positions on Ar ortho to the point of} \\
& \quad \text{attachment to the isoquinolinamine ring is substituted;} \\
R₃ & \quad \text{and R₄ are the same or different and represent} \\
& \quad \text{C₁-C₆ alkyl optionally substituted with halogen, hydroxy, or C₁-C₆ alkoxy; or} \\
& \quad \text{C₁-C₆ alkylaryl, where aryl is phenyl, 1-or 2-naphthyl, 2-, 3-, or 4-pyridinyl, 2- or 3-} \\
& \quad \text{thienyl or 2-, 4-, or 5-pyrimidinyl, each of which is optionally mono- or} \\
& \quad \text{disubstituted with halogen, hydroxy, C₁-C₆ alkyl, C₁-C₆ alkoxy; or C₁-C₆ alkyl-} \\
& \quad \text{Y-R₅, wherein Y is O, S NH, N(C₁-C₆ alkyl), and R₅ is hydrogen or C₁-C₆} \\
& \quad \text{alkyl; and} \\
& \quad \text{R₆ is hydrogen or C₁-C₆ alkyl.}
\end{align*}
```
14. A compound according to claim 13, wherein Ar is phenyl trisubstituted in the 2, 4, and 6 positions relative to the point of attachment to the isoquinolinamine ring with C₁-C₃ alkyl.

15. A compound according to claim 14, wherein Ar is 2,4,6-trimethylphenyl.

16. A compound according to claim 1, which is N-cyclopropylmethyl-N-propyl-1-(2,4,6-trimethylphenyl)-4-isoquinolinamine.

17. A compound according to claim 1, which is N-Cyclopropylmethyl-N-ethyl-1-(2,4,6-trimethylphenyl)-4-isoquinolinamine.

18. A compound according to claim 1, which is N-benzyl-N-propyl-1-(2,4,6-trimethylphenyl)-4-isoquinolinamine.

19. A compound according to claim 1, which is N-Cyclopropylmethyl-N-(2-methoxyethyl)-1-(2,4,6-trimethylphenyl)-4-isoquinolinamine.

20. A compound according to claim 1, which is N,N-Dipropyl-1-(2,4,6-trimethylphenyl)-4-isoquinolinamine.

21. A compound according to claim 1, which is N-Cyclopropylmethyl-N-propyl-3-methyl-1-(2,4,6-trimethylphenyl)-4-isoquinolinamine.

22. A compound according to claim 1, which is N-Cyclopropylmethyl-N-propyl-...
4-(2,4,6-trimethylphenyl)-1-phthalazinamine.

23. A compound according to claim 1, which is N-Cyclopropylmethyl-N-ethyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine.

24. A compound according to claim 1, which is N-Cyclopropylmethyl-N-methyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine.

25. A compound according to claim 1, which is N-Cyclopropylmethyl-N-(2-methoxyethyl)-4-(2,4,6-trimethylphenyl)-1-phthalazinamine.

26. A compound according to claim 1, which is N-Benzyl -N-ethyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine.

27. A compound according to claim 1, which is N-(2'-Chlorophenylmethyl-N-ethyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine.

28. A compound according to claim 1, which is N-(4'-Chlorophenylmethyl-N-ethyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine.

29. A compound according to claim 1, which is N-(2'- Tolymethyl)-N-ethyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine.

30. A compound according to claim 1, which is N-(2'- Methoxyphenylmethyl)-N-ethyl-4-(2,4,6-trimethylphenyl)-1-phthalazinamine.
31. A compound according to claim 1, which is N-(2'-Pyridylmethyl) -N-ethyl-4-(2,4,6-trimethylphenyl)-1-phenalazineamine.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D237/34 C07D217/22 C07D401/12 A61K31/50

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 20 21 195 A (ASPRO-NICOLAS) 12 November 1970 see page 1 - page 10; claims 22-28</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>GB 1 303 061 A (ASPRO-NICOLAS) 17 January 1973 see page 1 - page 5</td>
<td>1-6</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

X Patent family members are listed in annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the public knowledge of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle of the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"*" document member of the same patent family

Date of the actual completion of the international search

14 April 1998

Date of mailing of the international search report

29/04/1998

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer
Francois, J
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 2021195 A</td>
<td>12-11-70</td>
<td>BE 749824 A</td>
<td>30-10-70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 523890 A</td>
<td>15-06-72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2043504 A</td>
<td>19-02-71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1293565 A</td>
<td>18-10-72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 376916 B</td>
<td>16-06-75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3753988 A</td>
<td>21-08-73</td>
</tr>
<tr>
<td>GB 1303061 A</td>
<td>17-01-73</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>