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PC matches, update of the BHR is suppressed. Keeping loop iteration branches out of the BHR improves branch prediction training
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SUPPRESSING UPDATE OF A BRANCH HISTORY REGISTER BY LOOP-

ENDING BRANCHES

BACKGROUND

[0001] The present invention relates generally to the field of processors and in
particular to a method of improving branch prediction by suppressing the update of a
branch history register by a loop-ending branch instruction.

[0002] Microprocessors perform computational tasks in a wide variety of
applications. Improved processor performance is almost always desirable, to allow for
faster operation and/or increased functionality through software changes. In many
embedded applications, such as portable electronic devices, conserving power is also a
goal in processor design and implementation.

[0003] Many modern processors employ a pipelined architecture, where sequenﬁal
instructions, each having multiple execution steps, are overlapped in execution. For
improved performance, the instructions should flow continuously through the pipeline.
Any situation that causes instructions to stall in the pipeline can detrimentally influence
performance. If instructions are flushed from the pipeline and subsequently re-fetched,
both performance and power consumption suffer.

[0004] Most programs include conditional branch instructions, the actual branching
behavior of which is not known until the instruction is evaluated deep in the pipeline.
To avoid the stall that would result from waiting for actual evaluation of the branch
instruction, modern processors may employ some form of branch prediction, whereby
the branching behavior of conditional branch instructions is predicted early in the
pipeline. Based on the predicted branch evaluation, the processor speculatively fetches

(prefetches) and executes instructions from a predicted address — either the branch target
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address (if the branch is predicted to be taken) or the next sequential address after the

branch instruction (if the branch is predicted not to be taken). When the actual branch
behavior is determined, if the branch was mispredicted, the speculatively fetched
instructions must be flushed from the pipeline, and new instructions fetched from the
correct next address. Prefeteching instructions in response to an erroneous branch
prediction can adversely impact processor performance and power consumption.
Consequently, improving the accuracy of branch prediction is an important design goal.
[0005] Known branch prediction techniques include both static and dynamic
predictions. The likely behavior of some branch instructions can be statically predicted
by a programmer and/or compiler. One example of branch predictidn is an error
checking routine. Commonly code executes properly, and errors are rare. Hence, the
branch instruction implementing a “branch on error” function will evaluate “not taken”
a very high percentage of the time. Such an instruction may include a static branch
prediction bit in the op code, set by a programmer or compiler with knowledge of the
most likely outcome of the branch condition.

[0006] Dynamic prediction is generally based on the branch evaluation history (and
in some cases the branch prediction accuracy history) of the branch instruction being
predicted and/or other branch instructions in the same code. Extensive analysis of
actual code indicates that recent past branch evaluation patterns may be a good indicator
of the evaluation of future branch instructions.

[0007] One known form of dynamic branch prediction, depicted in Figure 1, utilizes
a Branch History Register (BHR) 100 to store the past r branch evaluations. In a simple
implementation, the BHR 30 comprises a shift register. The most recent branch
evaluation result is shifted in (for example, a 1 indicating branch taken and a O

indicating branch not taken), with the oldest past evaluation in the register being



WO 2006/091778 PCT/US2006/006531

3

displaced. A processor may maintain a local BHR 100 for each branch instruction.
Alternatively (or additionally), a BHR 100 may contain the recent past evaluations of all
conditional branch instructions, sometimes known in the art as a global BHR, or GHR.
As used herein, BHR refers to both local and global Branch History Registers.

[0008] As depicted in Figure 1, the BHR 100 may index a Branch Predictor Table
(BPT) 102, which again may be local or global. The BHR 100 may index the BPT 102
directly, or may be combined with other information, such as the Program Counter (PC)
of the branch instruction in BPT index logic 104. Other inputs to the BPT index logic
104 may additionally be utilized. The BPT index logic 104 may concatenate the inputs
(commonly known in the art as gselect), XOR the inputs (gshare), perform a hash
function, or combine or transform the inputs in a variety of ways.

[0009] As one example, the BPT 102 may comprise a plurality of saturation
counters, the MSBs of which serve as bimodal branch predictors. For example, each
table entry may comprise a 2-bit counter that assumes one of four states, each assigned a
weighted prediction value, such as:

[0010] 11 — Strongly predicted taken

[0011] 10 — Weakly predicted taken

[0012] 01 — Weakly predicted not taken

[0013] 00 — Strongly predicted not taken

[0014] The counter increments each time a corresponding branch instruction
evaluates “taken” and decrements each time the instruction evaluates “not taken.” The
MSB of the counter is a bimodal branch predictor; it will predict a branch to be either
taken or not taken, regardless of the strength or weight of the underlying prediction. A
saturation counter reduces the prediction error of an infrequent branch evaluation. A

branch that consistently evaluates one way will saturate the counter. An infrequent
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evaluation the other way will alter the counter value (and the strength of the prediction),
but not the bimodal prediction value. Thus, an infrequent evaluation will only
mispredict once, not twice. The table of saturation counters is an illustrative example
only; in general, a BHT may index a table containing a variety of branch prediction
mechanisms.

[0015] Regardless of the branch prediction mechanism employed in the BPT 102,
the BHR 100 — either alone or in combination with other information such as the branch
instruction PC — indexes the BPT 102 to obtain branch predictions. By storing prior
branch evaluations in the BHR 100 and using the evaluations in branch prediction, the
branch instruction being predicted is correlated to past branch behavior — its own past
behavior in the case of a local BHR 100 and the behavior of other branch instructions in
the case of a global BHR 100. This correlation may be the key to accurate branch
predictions, at least in the case of highly repetitive code.

[0016] Note that Figure 1 depicts branch evaluations being stored in the BHR 100 ~
‘that is, the actual evaluation of a conditional branch instruction, which may only be
known deep in the pipeline, such as in an execute pipe stage. While this is the ultimate
result, in practice, many high performance processors store the predicted branch
evaluation from the BPT 102 in the BHR 100, and correct the BHR 100 later as part of a
misprediction recovery operation if the prediction turns out to be erroneous. The
drawing figures do not reflect this implementation feature, for clarity.

[0017] A common code structure that may reduce the efficacy a branch predictor
employing a BHR 100 is the loop. A loop ends with a conditional branch instruction
that tests a loop-ending condition, such as whether an index variable that is incremented
each time through the loop has reached a loop-ending value. If not, execution branches

back to the beginning of the loop for another iteration, and another loop-ending
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conditional branch evaluation. With respect to an n-bit BHR 100, there are three cases
of interest regarding loops: the loop does not execute; the loop executes through m
iterations, where m < n; and the loop executes m times, where m >= n.

[0018] If the loop does not execute, a forward branch at the loop’s beginning
branches over the loop body, resulting in one taken branch evaluation. This has
minimal effect on the BHR 100, as the past branch evaluation history in the BHR 100 is
displaced by only one branch evaluation (indeed, the prediction accuracy may improve
by correlation with this branch evaluation).

[0019] If the loop executes through m iterations where m >= n, the “taken”
backwards branches of the loop-ending branch instruction saturate the BHR 100. That
is, at the end of the loop, an n-bit BHR will always contain precisely n-1 ones followed
by a single zero, corresponding to a long series of taken evaluations resulting from the
loop iterations, and ending with a single not-taken evaluation when the loop terminates.
This effectively destroys the efficacy of the BHR 100, as all correlations with prior
branch evaluations (for either a local or global BHR 100) are lost. In this case, the BHR
100 will likely map to the same BPT 102 entry for a given branch instruction
(depending on the other inputs to the BPT index logic 104), rather than to an entry
containing a branch prediction that reflects the correlation of the branch instruction to
prior branch evaluations.

[0020] Additionally, the saturated BHR 100 may increase aliasing in the BPT 102.
That is, all branch instructions following loops with many iterations will map to the
same BPT 102 entry, if the BHR 100 directly indexes the BPT 102. Even where the
BHR 100 is combined with other information, the chance of aliasing is increased. This
adversely impacts prediction accuracy not only for the branch instruction following the

loop, but also for all of the branch instructions that alias to its entry in the BPT 102.
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[0021] If the loop executes through m iterations where m < n, the BHR 100 is not

saturated and some prior branch evaluation history is retained. However, the bits
representing the prior branch evaluation history are displaced by m bit positions.
Particularly where m varies, this has two deleterious effects on branch prediction. First,
the branch instruction will map to a much larger number of entries in the BPT 102 to
capture the same correlation with prior branch evaluations, requiring a larger BPT 102
to support the same accuracy for the same number of branch instructions than would be
required without the loop-ending branch affecting the BHR 30. Second, the branch
predictors in the BPT 102 will take longer to “train,” increasing the amount of code that
must execute before the BPT 102 begins to provide accurate branch predictions.

[0022] As an example, consider an 8-bit BHR 100 and a code segment with branch
instructions A-H, followed by a loop, and then branch instruction X. Branch X strongly
correlates with the evaluation history of branches G and H. Various iterations of the
intervening loop will generate the BHR results presented in Table 1 below, at the time

of predicting X.

BHR comment

loop executed once (no initial forward or loop-
ending backward branch taken)

loop skipped (one initial forward branch taken)

2 iterations (loop-ending backward branch taken
once, then not taken)

3 iterations

4 iterations

5 iterations

G
H
1
1
1
1
1

QHi"|gl O ||| »
TiQ|HHl O | W
=IE|Q|H™ | |g] O
=l=EQl | |E -
olo|lo|o| o |~| =

6 iterations

Table 1: BHR 100 Contents Following Various Numbers of Loop Iterations

[0023] In this example, the desired correlation between the branch instruction X
being predicted and the prior evaluation of branches G and H is present in the BHR 100

in each case. However, it is in a different place in the BHR 100, and consequently each
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case will map to a different BPT 102 entry. This wastes BPT 102 space, increases

branch prediction training time, and increases the chances of aliasing in the BPT 102, all

of which reduce prediction accuracy.

SUMMARY

[0024] In one or more embodiments, the deleterious effects of storing loop-ending
branch instruction evaluations in a BHR are ameliorated by identifying loop-ending
branch instructions, and suppressing updating of the BHR in response to the loop-
ending instructions. Loop-ending instructions are identified in a variety of ways.

[0025] In one embodiment, a branch prediction method includes optionally
suppressing an update of a BHR upon execution of a branch instruction, in response to a
property of the branch instruction.

[0026] In another embodiment, a processor includes a branch predictor operative to
predict the evaluation of conditional branch instructions, and an instruction execution
pipeline operative to speculatively fetch and execute instructions based on a prediction
from the branch predictor. The processor also includes a BHR operative to store the
evaluation of conditional branch instructions, and a control circuit operative to suppress
storing the evaluation of a conditional branch instruction in response to a property of the
branch instruction.

[0027] In still another embodiment, a compiler or assembler operative to generate
instructions in response to program code includes a loop-ending branch instruction
marking function operative to indicate conditional branch instructions that terminate

code loops.
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BRIEF DESCRIPTION OF DRAWINGS
[0028]  Figure 1 is a functional block diagram of a prior art branch predictor circuit.
[0029] Figure 2 is a functional block diagram of a processor.
[0030]  Figure 3 is a flow diagram of a method of executing a branch instruction.
[0031] Figure 4 is a functional block diagram of a branch predictor circuit including

one or more Last Branch PC registers.

DETAILED DESCRIPTION

[0032] Figure 1 depicts a functional block diagram of a processor 10. The
processor 10 executes instructions in an instruction execution pipeline 12 according to
control logic 14. In some embodiments, the pipeline 12 may be a superscalar design,
with multiple parallel pipelines. The pipeline 12 includes various registers or latches
16, organized in pipe stages, and one or more Arithmetic Logic Units (ALU) 18. A
General Purpose Register (GPR) file 20 provides registers comprising the top of the
memory hierarchy.

[0033] The pipeline 12 fetches instructions from an instruction cache (I-cache) 22,
with memory address translation and permissions managed by an Instruction-side
Translation Lookaside Buffer ITLB) 24. When conditional branch instructions are
decoded early in the pipeline 12, a branch predictor 26 predicts the branch behavior, and
provides the prediction to an instruction prefetch unit 28. The instruction prefetch unit
28 speculatively fetches instructions from the instruction cache 22, at a branch target
address calculated in the pipeline 12 for “taken” branch predictions, or at the next
sequential address for branches predicted “not taken.” In either case, the prefetched

instructions are loaded into the pipeline 12 for speculative execution.
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[0034]  The branch predictor 26 includes a Branch History Register (BHR) 30, a

Branch Predictor Table (BPT) 32, BPT index logic 34, and BHR update logic 36. The
branch predictor 26 may additionally include one or more Last Branch PC registers 38,
described more fully herein below.

[0035] Data is accessed from a data cache (D—qache) 40, with memory address
translation and permissions managed by a main Translation Lookaside Buffer (TLB) 42.
In various embodiments, the ITLB 24 may comprise a copy of part of the TLB 42.
Alternatively, the ITLB 24 and TLB 42 may be integrated. Similarly, in various
embodiments of the processor 10, the I-cache 22 and D-cache 40 may be integrated, or
unified. Misses in the I-cache 22 and/or the D-cache 40 cause an access to main (off-
chip) memory 44, under the control of a memory interface 46.

[0036] The processor 10 may include an Input/Output (I/O) interface 46, controlling
access to various peripheral devices 50. Those of skill in the art will recognize that
numerous variations of the processor 10 are possible. For example, the processor 10
may include a second-level (L.2) cache for either or both the I and D caches 22, 40. In
addition, one or more of the functional blocks depicted in the processor 10 may be
omitted from a particular embodiment.

[0037] According to one or more embodiments, branch prediction accuracy is
improved by preventing loop-ending branches from corrupting one or more BHRs 30 in
the branch predictor 26. This process is depicted as a flow diagram in Figure 3. A
conditional branch instruction is decoded (block 52). A determination is made whether
the branch is a loop-ending branch (block 54). If not, the BHR 30 is updated to record
the branch evaluation (block 56), i.e., whether the branch instruction evaluated as
“taken” or “not taken.” Execution then continues (block 58) at the branch target address

or the next sequential address, respectively. If the branch is not a loop-ending branch,
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updating of the BHR 30 to record the branch evaluation of the loop-ending branch

instruction is suppressed (as indicated by the path from block 54 to block 58). In this
manner, loop iteration branches do not corrupt the contents of the BHR 30 by displacing
relevant branch evaluation history. The query (block 54) — ‘identifying a branch
instruction as a loop-ending branch instruction — may be accomplished in a variety of
ways.

[0038] Loops iterate by branching backwards from the end of the loop to the
beginning of the loop. According to one embodiment, every conditional branch
instruction with a branch target address less than the branch instruction address, or PC —
that is, a backwards branch — is assumed to be a loop-ending branch instruction, and is
prevented from updating the BHR 30. This embodiment offers the advantage of
simplicity. The branch instruction PC is compared to the branch target address (BTA)
when the branch instruction is actually evaluated in the pipeline, at the BHR 30 update
time. If BTA < PC, the BHR 30 is not updated. This embodiment suffers the
disadvantage of requiring an address comparison when the branch target address is
determined, and also that some backward branches that are not loop-ending branches
will not have their evaluations recorded in the BHR 30.

[0039]  Another way to detect a loop-ending branch is to recognize repeated
execution of the same branch instruction. In one embodiment, depicted in Figure 4, a
Last Branch PC (LBPC) register 38 stores the PC of the last branch instruction whose
evaluation was stored in the BHR 30. In the case of a simple loop, if the PC of a branch
instruction matches the LBPC 38 — that is, the branch instruction was the last branch
instruction evaluated — the branch instruction is assumed to be a loop-ending branch
instruction, and further update of the BHR 30 is suppressed. As discussed above with

respect to Fig. 1, while Fig. 4 depicts the contents of the LBPC 38 being compared to
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the actual branch evaluation in BHR update logic 36, in any given implementation, the
LBPC 38 may be compared to a predicted branch evaluation, with the BHR 30 being
corrected in the event of a misprediction. This embodiment stores only the first iteration
of the loop, displacing only one prior branch evaluation from the BHR 30. This
embodiment requires no compiler support, and the direction of the branch does not need
to be determined at the BHR 30 update time.

[0040] A loop may contain one or more nested loops, or may include other branches
within the loop. In this case, saturation of the BHR 30 by an inner loop may be
suppressed by the LBPC approach; however, the outer loop-ending branches will still be
stored in the BHR 30. In one embodiment, two or more LBPC registers 38 may be
provided, with the PCs of successively evaluated branch instructions stored in
corresponding LBPC registers (LBPCo, LBPC;, ... LBPCyy) 38. Updating of the BHR
30 may be suppressed if the PC of a branch instruction matches any of the LBPCn
registers 38.

[0041]  Loop-ending branch instructions may also be statically marked by a compiler
or assembler. In one embodiment, a compiler generates a particular type of branch
instruction that is only used for loop-ending branches, for example, “BRLP”. The
BRLP instruction is recognized, and the BHR 30 is never updated when a BRPE
instruction evaluates in an execution pipe stage. In another embodiment, a compiler or
assembler may embed a loop-ending branch indication in a branch instruction, such as
by setting one or more predefined bits in the op code. The loop-ending branch bits are
detected, and update of the BHR 30 is suppressed when that branch instruction
evaluates in an execute pipe stage. Static identification of loop-ending branches reduces
hardware and computational complexity by moving the loop-ending identification

function into the compiler or assembler.
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[0042] A conditional branch instruction has many properties, including for example
the branch instruction address or PC, the instruction type, and the presence, vel non, of
indicator bits in the op code. As used herein, properties of the branch operation, and/or
properties of the program that relate to the branch, are considered properties of the
branch instruction. For example, whether the branch instruction PC matches the
contents of one or more LBPC registers 38, and whether the branch target address is
forward or backward relative to the branch instruction PC, are properties of the branch
instruction.

[0043] Although the present invention has been described herein with respect to
particular features, aspects and embodiments thereof, it will be apparent that numerous
variations, modifications, and other embodiments are possible within the broad scope of
the present invention, and accordingly, all variations, modifications and embodiments
are to be regarded as being within the scope of the invention. The present embodiments
are therefore to be construed in all aspects as illustrative and not restrictive and all
changes coming within the meaning and equivalency range of the appended claims are

intended to be embraced therein.
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CLAIMS
What is claimed is:
1. A branch prediction method, comprising:

optionally suppressing an update of a Branch History Register (BHR) upon
execution of a branch instruction, in response to a property of the branch

instruction.

2. The method of claim 1 wherein the property of the branch instruction is that the

branch is backwards.

3. The method of claim 1 wherein the property of the branch instruction is that the

branch is a loop-ending branch.

4, The method of claim 3 wherein the PC of the branch instruction matches the
contents of a Last Branch PC (LBPC) register storing the PC of the last branch

instruction to update the BHR.

5. The method of claim 4 wherein the PC of the branch instruction matches the
contents of any of a plurality of LBPC registers storing PCs of the last plurality of

branch instruction to update the BHR.

6. The method of claim 3 wherein the the property of the branch instruction is that
the branch instruction is a unique branch instruction generated by a compiler for ending

branches.
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7. The method of claim 3 wherein the the propeity of the branch instruction is that
the branch instruction includes one or more bits indicating it is a loop-ending branch

instruction.

8. A processor, comprising:

a branch predictor operative to predict the evaluation of conditional branch
instructions;

an instruction execution pipeline operative to speculatively fetch and execute
instructions based on a prediction from the branch predictor;

a Branch History Register (BHR) operative to store the evaluation of conditional
branch instructions; and

a control circuit operative to suppress storing the evaluation of a conditional

branch instruction in response to a property of the branch instruction.

0. The processor of claim 8 further comprising a Last Branch PC (LBPC) register
operative to store the PC of a branch instruction that updates the BHR, and wherein the
control circuit is operative to suppress storing the evaluation of a conditional branch
instruction if the PC of the branch instruction matches the contents of the LBPC

register.

10.  The method of claim 9 further comprising a plurality of LBPC registers
operative to store PCs of a plurality of branch instruction that update the BHR, and

wherein the control circuit is operative to suppress storing the evaluation of a
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conditional branch instruction if the PC of the branch instruction matches the contents

of any LBPC register.

11.  The method of claim 8 wherein the control circuit is operative to suppress
storing the evaluation of a conditional branch instruction if the branch instruction

includes an indication that it is a loop-ending instruction.

12. The method of claim 11 wherein the indication that the branch instruction is a

loop-ending instruction is the instruction type.

13.  The method of claim 8 wherein the control circuit is operative to suppress
storing the evaluation of a conditional branch instruction if the branch instruction target

address is less than the branch instruction PC.

14. A compiler or assembler, comprising:
a compiler or assembler operative to generate instructions in response to
program code; and
a loop-ending branch instruction marking function operative to indicate

conditional branch instructions that terminate code loops.

15. The compiler or assembler of claim 14 wherein the loop-ending branch
instruction marking function is operative to generate a unique type of branch instruction

to end each loop.
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16. The compiler or assembler of claim 14 wherein the loop-ending branch
instruction marking function is operative to insert a loop-ending indicator in each

conditional branch instruction that ends a loop.

17.  The compiler or assembler of claim 16 wherein the loop-ending indicator
comprises one or more bits inserted in a predetermined filed in the conditional branch

instruction op code.

18. A method of branch prediction using a Branch History Register (BHR) storing
evaluations of previous conditional branch instructions, comprising:

detecting a loop-ending branch; and

suppressing an update of the BHR that would store the evaluation of the

associated branch instruction.

19.  The method of claim 18 wherein detecting a loop-ending branch comprises
detecting a match between the PC of the associated branch instruction and the contents
of a Last Branch PC (LBPC) register storing the PC of the last branch instruction to

update the BHR.

20. The method of claim 18 wherein detecting a loop-ending branch comprises
~ detecting a match between the PC of the associated branch instruction and the contents
of any of a plurality of LBPC registers storing PCs of the last plurality of branch

instruction to update the BHR.
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21.  The method of claim 18 wherein detecting a loop-ending branch comprises

decoding a unique branch instruction generated by a compiler for ending branches.

22.  The method of claim 18 wherein detecting a loop-ending branch comprises
detecting one or more bits in the associate branch instruction op code indicating itis a

loop-ending branch instruction.
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