DUAL PHASE BLOOD FLOW SYSTEM AND METHOD OF OPERATION

Inventor: Vernon H. Troutner, St. Petersburg, Fla.

Assignee: Extracorporeal Medical Specialties, Inc., King of Prussia, Pa.

Filed: Sep. 24, 1982

Int. Cl. A61M 5/00

U.S. Cl. 604/5; 604/4; 128/DIG. 5; 210/321.2

Field of Search 604/4, 5; 128/DIG. 3; 210/321.2, 321.3

References Cited

U.S. PATENT DOCUMENTS
3,902,490 9/1975 Jacobsen et al. 604/5 X

4,401,431 8/1983 Arp 604/4

OTHER PUBLICATIONS

Primary Examiner—Edward M. Coven
Attorney, Agent, or Firm—Mark A. Hofer

ABSTRACT

A blood flow system for processing blood has two phases of operation, an arterial phase and a venous phase. During the arterial phase, the system is filled with blood through operation of an arterial blood pump. When a predetermined blood pressure level in the system is attained, the arterial blood pump is inactivated and a venous blood pump removes blood from the system for a given number of pump turns.

5 Claims, 4 Drawing Figures
FIG-3a

DIALYZER INLET PRESSURE

204

ARTERIAL PHASE VENOUS PHASE

FIG-3b

DIALYZER OUTLET PRESSURE

202

ARTERIAL PHASE VENOUS PHASE
DUAL PHASE BLOOD FLOW SYSTEM AND METHOD OF OPERATION

The present invention relates to dual phase blood flow systems and, in particular, to dual phase blood flow systems in which phase alteration is accomplished through pressure monitoring and blood pump cycle control.

Hemodialysis blood flow systems are employed as a therapeutic measure when a patient's kidneys no longer perform their blood purifying function by reason of disease, removal or other malfunction. Kidney failure results in the accumulation of toxic wastes in the patient's blood. Unless measures are taken to remove these wastes, the patient will experience potentially fatal uremic poisoning. Uremic poisoning may be prevented through the use of hemodialysis, by which blood is drawn from the patient and circulated through a dialyzer. In the dialyzer, the blood is separated from a specially treated dialysate fluid by a membrane which has pores of microscopic size through which waste products from the blood may pass. The microscopic pores are too small, however, to permit the passage of blood cells, proteins, and other essential elements of the blood through the membrane. The waste products thus diffuse into the dialysate fluid and are removed from the patient's blood. The purified blood is then returned to the patient's body.

Recent advances have led to the development of single needle hemodialysis systems, in which blood is extracted from and returned to the patient's body through a single needle with a Y-shaped junction. The patient is generally prepared for hemodialysis by the surgical implantation of an arteriovenous fistula, which joins an artery with a nearby vein. The diversion of arterial blood into the vein causes the vein to become enlarged, permitting relatively easy insertion of the single needle into the arterialized vein, through which an adequate blood flow for hemodialysis is developed. It has been found that fistula vessels are less traumatized by the single needle technique, and that patients benefit psychologically from the reduced number of venipunctures.

In a typical single needle hemodialysis system, blood is alternately cycled from and to the patient's circulatory system by a single blood pump, or by arterial and venous blood pumps, respectively. During the first, or arterial, phase of operation, blood is drawn from the patient and pumped into the dialysis system by the arterial blood pump. Blood is prevented from returning to the needle by the closure of a valve located between the outlet of the arterial pump and the needle, or through clamping action of the venous blood pump. Blood pressure within the system builds until a time at which the arterial pump is turned off, the valve is opened, or the venous pump in a two-pump system is turned on to pump the blood out of the dialysis system and back to the fistula. During this second, or venous, phase of operation, the pressure of the blood in the dialysis system drops substantially. Eventually a point is reached at which the venous pump is turned off, and the cycle repeats.

The cyclical changeover between the arterial and venous pumping phases of operation may be controlled by monitors which provide indications of pressure and/or time. For instance, the arterial pump may be activated until a monitor indicates that blood pressure at the outlet of the pump has attained a given high pressure threshold level. At that point, the venous pump is activated to return blood to the patient until a given low pressure threshold is reached. The system then cycles between the low and high pressure threshold levels. However, in pressure/pressure systems of the prior art, there is no direct monitoring of the volume of blood that is transported by the two pumps. Instead, the two pumps generally employ pump turn counters, which monitor the turns of each pump, and hence the amount of blood pumped during each cycle of operation. If the observed turns become too high or too low, one or both of the pressure thresholds at which the phase changeovers occur are adjusted to give the desired amount of blood pumped during each cycle. It is possible in such a system for widely varying pressure thresholds to be necessary. This is particularly likely when the capillaries in a capillary-type dialyzer become plugged, which can cause a change in the volume of blood transported without a change in pressure thresholds.

Alternatively, the two operating phases may be alternated as a function of time. The arterial phase, for example, may be continued for a first predetermined time period. Thereafter, the venous phase may be extended for a second, predetermined time period. When the two phases are properly timed, a steady inflow and outflow of blood may be maintained. However, the time monitoring system can result in the attainment of undesirable blood pressure levels if the capacities of the pumps are either not accurately known or become unstable with use.

In accordance with the principles of the present invention, a dual phase blood flow system is provided in which control of the changeover between the arterial and venous phases of pump operation is accomplished in a simple and reliable manner. A first, arterial pump is activated during the arterial phase to pump blood through a venous needle and into a blood processor. The arterial pump continues to operate until a pressure monitor indicates that blood pressure at the output of the arterial pump has attained a given threshold level. Upon attainment of the threshold level, a pump control system terminates the arterial phase and initiates a venous phase by activating a second, venous pump. The venous pump is activated for a given number of pump cycles. Since each pump cycle corresponds to the transmission of a given volume of blood, a predetermined amount of blood is pumped out of the blood processor through the needle and back to the patient's system during the venous phase of operation. After the venous pump has been activated for the prescribed number of cycles, the venous phase is terminated and the arterial phase resumes under control of the pump control system. The inventive system requires only a single pressure monitor for control of the arterial phase, which assures that undesirably high blood pressures will not be produced in the system, and provides a simple control technique for the venous phase, which assures that a desired amount of blood is taken from and returned to the patient's circulatory system during each cycle of operation. The control method is direct, in that it eliminates the need to adjust pressures to produce the proper number of pump turns per phase.

IN THE DRAWINGS

FIG. 1 illustrates the blood circulation path of a single needle hemodialysis system constructed in accordance with the principles of the present invention.
FIG. 2 illustrates in greater detail the control system for the venous blood pump of the arrangement of FIG. 1; and

FIGS. 3a and 3b graphically represent phases of operation of the arrangement of FIGS. 1 and 2.

Referring to FIG. 1, the blood flow path of a single needle hemodialysis system is shown, including a single needle 10 suitable for the transfer of blood from and to a patient. In FIG. 1, the arrows indicate the direction of the flow of blood through the system.

From the single needle 10, blood flows through the blood tubing 12 to a negative pressure pillow switch 14. The pillow switch 14 includes a pillow-like section of tubing 16 and a sensor or switch 18 which is responsive to a relaxation of pressure in the pillow-like section 16.

When the pillow pressure declines below a certain level the sensor or switch responds by initiating a system alarm as well as other procedures which interrupt the operation of the system.

From the pillow switch 14 the blood tubing is connected through an arterial roller blood pump 20. The arterial blood pump 20 is an open-ended roller type containing an open-ended tube located between the two ports. A silicon chip sensing element is bonded to the side of the tube, and contains a sensing diaphragm and piezoresistors. As the pressure within the tube changes, the diaphragm flexes, changing the resistance of the piezoresistors and resulting in an output voltage proportional to pressure. This output voltage is communicated to input/output (I/O) section 304 of controller 100 by way of a cable 106, which in turn applies the information to the microprocessor section 102 of the controller.

The I/O section 104 of the controller is coupled to the motor of arterial pump 20 by a power cable 148 and to the motor of venous pump 80 by a power cable 108. A power transistor, such as a Darlington transistor switch, may be employed in the I/O section to switch motor current. The I/O section is also connected to the arterial and venous pumps by wires 140 and 110, respectively. The wires 140 and 110 convey motor speed information to the controller from slot encoders, with the venous pump slot encoder being shown in FIG. 2. The slot encoder includes a slotted disc 120 mounted on the shaft of the pump motor, an optical detector 124 and a circuit board 122. As the disc 120 turns on the motor shaft, the slots 126 along the perimeter of the disc are sensed by optical detector 124 and are indicated by pulses produced by circuitry on circuit board 122. The pulses are applied to the controller 100 by way of wires 110, thereby providing the microprocessor with an indication of the motor speed of the venous pump. The slot encoder for the arterial pump operates in a similar manner.

In operation, the arterial blood pump 20 of FIG. 1 is activated by the controller 100 to begin withdrawing blood from the patient through the needle 10. The negative pressure pillow switch safeguards against the withdrawal of blood at too great a rate, as indicated by the development of a negative pressure at the switch. Withdrawal of blood at too great a rate by the arterial pump can lead to occlusion of the patient’s fistula, blood foaming or recirculation of purified blood at the needle junction. The pillow switch also guards against any blockage of blood flow in the fistula and needle, which condition activates a system shutdown.

The patient’s blood is pumped through the blood tubing 12, the arterial drip chamber 30, and into the dialyzer 40. The flow of blood is virtually unimpeded...
up to the dialyzer, at which point the pressure developed by the arterial pump forces the blood through the capillaries of the dialyzer. The dialyzer constitutes the only significant pressure drop between the arterial blood pump 20 and the accumulator bag. This pressure drop will vary with the type of dialyzer. FIG. 3a illustrates the typical inlet pressure of a capillary-type dialyzer. During the arterial phase of operation, when the arterial blood pump 20 is running, the dialyzer inlet pressure in this example is seen to remain substantially at 20 to 25 mm Hg relative to atmospheric pressure, which would be indicated on the arterial gauge 32.

At the outlet of the dialyzer, however, blood pressure remains substantially at 0 mm Hg (gage), as shown in FIG. 3b. This is because the purified blood is free to flow into the venous drip chamber 50, and then into the accumulator bag 70. The accumulator bag is initially empty, and easily fills with blood from the drip chamber, since the outside of the bag is referenced to atmospheric pressure. Thus, as the accumulator bag fills, it produces substantially no back pressure which would impede the flow of blood out of the dialyzer. Furthermore, since the accumulator bag is referenced to atmospheric pressure, the pressure sensing devices at the outlet side of the dialyzer, such as the venous pressure gage 54 and the pressure transducer 56, can indicate the accumulator bag pressure directly by being similarly referenced to atmospheric pressure.

The accumulator bag fills freely with blood until full, which may typically be a capacity of 70 ml., at which time its expansive limits are approached and the pressure in the accumulator bag and venous drip chamber begins to rise, as indicated at 202 in FIG. 3b. This rise in pressure is transmitted back to the inlet side of the dialyzer, as shown at 204 in FIG. 3a. The rise in pressure is indicated by both the arterial and venous mechanical gages 32 and 54, and is sensed by the solid state pressure transducer 56. The electrical signal produced by the transducer 56 on cable 106 begins to change, and the changing value is applied to the microprocessor 102.

The microprocessor responds to the attainment of a voltage indicative of a predetermined pressure in the venous drip chamber by stopping operation of the arterial blood pump 20 in FIG. 1 and initiating operation of the venous blood pump 80. In the example of FIG. 3b, the dialyzer outlet pressure at which the arterial pump is turned off is seen to be approximately 20 mm Hg. The positive pressure pillow switch 72 guards against the attainment of an unusually high venous pressure by shutting down the system if such pressures are approached.

When the venous blood pump 80 is activated, purified blood is withdrawn from the accumulator bag and returned to the patient's system. As the pump operates, the pump motor rotates the slotted disc 120, thereby causing the optical detector 124 to send a series of pulses to the microprocessor 102. The disc will generally rotate faster than the pump rollers turn by virtue of a system of gears. For instance, the pump may be geared so that the slotted disc 120 will rotate 49 times for each turn of the pump rollers. Thus, when the disc contains 20 slots as shown in FIG. 2, 980 pulses will be produced during one rotation of the pump rollers. By counting the pulses, the controller can accurately determine how many turns or fractions of a turn the pump rollers have completed, and, by knowing the size of the blood tubing segment used in the pump, the volume of blood moved by the pump can be precisely known. In the present example, it is desired to withdraw 40 ml. of blood from the accumulator bag and to return it to the patient. Assuming that one pump revolution corresponds to the transfer of 16 ml. of blood, it is seen that 2.5 pump turns are required to pump 40 ml. of blood. Two and one-half pump turns are indicated by 2450 pulses of the slot encoder. Therefore, the venous blood pump 80 will run until the controller 100 has counted 2450 pulses from its encoder, at which time the pump is stopped, the venous phase is terminated, and a new arterial phase begins.

As blood is returned to the patient the venous pressure at the outlet of the dialyzer rapidly falls back to zero mm Hg gage, as shown in FIG. 3b, as the accumulator bag quickly relaxes. At the same time, the blood pressure at the inlet side of the dialyzer drops back toward zero gage pressure since the arterial blood pump is turned off. This means that blood flow through the dialyzer occurs primarily during the arterial phase of the system, when the arterial blood pump is forcing blood through the dialyzer. Since the dialyzer pressure does not go below zero as the accumulator bag is emptied, undesirable negative transmembrane pressures are not produced in the system. While the blood is being returned to the patient during the venous phase, the air/foam detector 90 monitors the returning blood and alerts the controller 100 if an undesirable amount of air or foam is contained in the blood.

During succeeding arterial phases, the arterial blood pump 20 will fill the accumulator bag 70 after the pumping of only 40 ml. of blood, since the venous blood pump withdraws only 40 ml. of blood from the bag during each venous phase of operation. Thus, the two pumps will alternately transfer 40 ml. of blood into and out of the hemodialysis system, with the arterial phase being ended as a function of blood pressure, and the venous phase being ended as a function of pump turns corresponding to blood volume.

I claim:

1. A blood processing system for a patient comprising:

- means for withdrawing blood from said patient;
- a first arterial blood pump having an input coupled to said withdrawing means and an output at which a flow of blood is provided when said pump is activated;
- means for processing blood having an input coupled to the output of said arterial blood pump and an output at which a flow of processed blood is produced;
- a flexible blood accumulator having an inlet coupled to said output of said means for processing blood and having an output, said accumulator exhibiting a known blood capacity when full;
- a second venous blood pump having an input coupled to the output of said flexible bag accumulator, and an output;
- means, coupled to the output of said venous blood pump, for returning processed blood to said patient, wherein said blood processing system provides a given blood capacity that is at least equal to the blood processing capacity of the system.

2. The system of claim 1, wherein said blood processing system includes a monitor associated with said flexible bag accumulator for detecting the attainment of said given blood capacity; and

blood pump control means, coupled to said pumps and said monitor, for activating said venous blood pump upon detection of said given blood capacity,
and for activating said arterial blood pump after said venous blood pump has been activated for a given number of operating cycles.

2. A blood processing system for a patient comprising:
means for withdrawing blood from said patient;
a first arterial blood pump having an input coupled to said withdrawing means and an output at which a flow of blood is provided when said pump is activated;
means for processing blood having an input coupled to the output of said arterial blood pump and an output at which a flow of processed blood is produced;
a flexible blood accumulator having an inlet coupled to said output of said means for processing blood and having an output, said accumulator exhibiting a known blood capacity when full;
a second venous blood pump having an input coupled to the output of said flexible bag accumulator, and an output;
means, coupled to the output of said venous blood pump, for returning processed blood to said patient;
a pressure monitor associated with said flexible bag accumulator for detecting the blood pressure therein; and
blood pump control means, coupled to said pumps and said monitor, for activating said venous blood pump when said detected blood pressure of said blood processing system attains a pressure in the range of approximately 20 mmHg, and for activating said arterial blood pump after said venous blood pump has been activated for a given number of operating cycles.

3. The blood processing system of claims 1 or 2, wherein said monitor comprises a pressure transducer coupled between said dialyzer and said venous blood pump for measuring venous blood pressure.

4. The blood processing system of claims 1 or 2, further comprising:
means, coupled between said venous blood pump and said blood pump control means, for detecting operating cycles of said venous blood pump and communicating said operating cycle information to said control means.

5. The blood processing system of claim 4, wherein said blood pump control means includes a microprocessor, and wherein said operating cycle detecting means includes a slot encoder.

* * * * *