(19) World Intellectual Property **Organization** International Bureau (43) International Publication Date 1 April 2004 (01.04.2004) #### (10) International Publication Number WO 2004/026925 A1 - (51) International Patent Classification⁷: C08F 210/06, - (21) International Application Number: PCT/US2003/028873 (22) International Filing Date: 12 September 2003 (12.09.2003) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 60/411,778 17 September 2002 (17.09.2002) - (71) Applicant (for all designated States except US): DOW GLOBAL TECHNOLOGIES INC. [US/US]; Washington Street, 1790 Building, Midland, MI 48674 (US). - (72) Inventors; and - (75) Inventors/Applicants (for US only): ARRIOLA, Daniel, J. [US/US]; 2100 East Mier Road, Midland, MI 48642 (US). BOKOTA, Marilyn [US/US]; 4431 West Lange, Beaverton, MI 48612 (US). TIMMERS, Francis, J. [US/US]; 4605 Lund Drive, Midland, MI 48642 (US). - (74) Agent: DELINE, Douglas, N.; The Dow Chemical Company, Intellectual Property, P.O. Box 1967, Midland, MI 48641-1967 (US). - (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, YU, ZA, ZM, ZW. - (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). #### **Published:** - with international search report - before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette. (54) Title: IMPROVED PROCESS FOR MANUFACTURE OF POLYMERS (57) Abstract: A process for preparing interpolymers of ethylene and one or more C₃₋₈ olefin monomers comprising contacting a monomer mixture comprising ethylene and one or more C₃₋₈ olefin monomers with a catalyst composition comprising a Group 4 metal complex of a polyvalent, Lewis base ligand under addition polymerization conditions. #### IMPROVED PROCESS FOR MANUFACTURE OF POLYMERS #### Cross Reference Statement This application claims the benefit of U.S. Provisional Application No. 60/411,778, filed September 17, 2002. #### Background Of The Invention The present invention relates to a process for preparing olefin interpolymers having improved efficiency and capable of preparing polymers having increased molecular weights. The resulting interpolymers, including polypropylene, are well known commercially and may be usefully employed in the preparation of solid articles such as moldings, films, sheets and foamed objects by molding, extruding or other processes. The manufacture of olefin interpolymers by use of catalysts comprising Group 4 metal amide complexes and halide or alkyl metal derivatives thereof has been previously taught in US-A-5,312,938, US-A-5,597,935, US-A-5,861,352, US-A-5,880,302, US-A-6,020,444, and US-A-6,232,256, and elsewhere. In US-A-6,320,005 and US-A-6,103,657 certain transition metal amine donor complexes for use as components of olefin polymerization catalysts were disclosed. In WO 02/38628 additional description of such Group 4 metal complexes containing "spectator ligands" such as amino- substituted cyclic amine compounds were disclosed. 20 25 30 10 15 #### Summary Of The Invention According to the present invention there is now provided a process for preparing interpolymers of ethylene and one or more C_{3-8} olefin monomers comprising contacting a monomer mixture comprising ethylene and one or more C_{3-8} olefin monomers with a catalyst composition comprising a Group 4 metal complex of a polyvalent, Lewis base ligand under addition polymerization conditions. Preferably the ethylene is present in the polymerization in a minor amount sufficient to improve the molecular weight of the resulting interpolymer or to improve the efficiency of the polymerization process, and preferably to obtain both objectives, but not in an amount that substantially alters the tacticity of the resulting C_{3-8} interpolymer. In particular, it has been discovered that if a minor proportion of ethylene is present in such polymerizations, the resulting polymers possess substantially the same properties as a polymer in which no polymerized ethylene is present, but the same can be prepared having much improved molecular weights. Moreover, the process for preparing such interpolymers is more efficient, compared to processes in which ethylene is absent. Thus, according to one aspect of the invention, it is desired to utilize ethylene not for the preparation of elastomeric or amorphous copolymers, but rather in order to improve the molecular weight of the polymer and/or the catalytic efficiency of the polymerization process. In a further embodiment of the present invention there is provided a process for preparing interpolymers of ethylene and one or more C_{3-8} olefin monomers comprising contacting a monomer mixture comprising ethylene and one or more C_{3-8} olefin monomers, wherein said ethylene is present in the mixture in an amount from 0.1 to 10 percent based on total monomer weight, with a catalyst composition comprising a Group 4 metal complex of a polyvalent, Lewis base ligand under addition polymerization conditions: #### Detailed Description Of The Invention 5 10 15 20 25 30 All references to the Periodic Table of the Elements herein shall refer to the Periodic Table of the Elements, published and copyrighted by CRC Press, Inc., 1999. Also, any references to a Group or Groups shall be to the Groups or Groups reflected in this Periodic Table of the Elements using the IUPAC system for numbering groups. For purposes of United States patent practice, the contents of any patent, patent application, or publication referenced herein are hereby incorporated by reference in their entirety (or the equivalent US version thereof is so incorporated by reference), especially with respect to the disclosure of synthetic techniques and general knowledge in the art. The term "comprising" when used herein with respect to a composition, mixture or process is not intended to exclude the additional presence of any other compound, component or step. By the term "interpolymer" herein is meant any form of polymer, including graft or block polymers, that includes in polymerized form two or more monomers. By the term "random distribution" as used herein, is meant that the ethylene functionality resulting from polymerization of the ethylene monomer is distributed within each polymer chain in a random or nearly random, for example, non-block, manner (intrachain distribution). By the term "uniform distribution" is meant that the foregoing ethylene functionality is equally or nearly equally distributed among different polymer chains (that is, homogeneous interchain distribution). Quantification of ethylene content in the interpolymers of the invention may be achieved by the use of any suitable analytical technique, including ¹³C NMR-, and IR- spectroscopic analysis of the interpolymer. Interchain distribution within the interpolymers may be measured by a polymer fractionation technique, followed by analysis of the various polymer fractions, using one of the foregoing techniques. Examples of suitable fractionation techniques include Temperature Rising Elution Fractionation (TREF), Analytical Temperature Rising Elution Fractionation (ATREF) or high pressure liquid chromatography (HPLC). 5 10 15 20 25 30 TREF analysis is a well known method of fractionation that has been published in the open literature over the past 15 years. ATREF is a similar technique for fractional analysis of olefin polymers capable of fractionating semi-crystalline polymers as a function of crystallization temperature while simultaneously estimating the molecular weight of the fractions. It has been described in US-A-4,798,081, as well as in "Determination of Short-Chain Branching Distributions of Ethylene copolymers by Automated Analytical Temperature Rising Elution Fractionation" (Auto-ATREF), J. of Appl Pol Sci: Applied Polymer Symposium 45, 25-37 (1990). The primary difference between ATREF and TREF is that the ATREF technique is done on a small scale and fractions are not actually isolated. Instead, a typical liquid chromatographic (LC) mass detector, such as an infrared single frequency detector, is used to quantify the crystallinity distribution of a polymer as a function of elution temperature. This distribution can then be transformed to any number of alternative domains such as comonomer distribution. This transformed distribution can then be interpreted according to a structural variable like comonomer content. To obtain ATREF data, a commercially available viscometer especially adapted for LC analysis, such as a ViskotekTM is coupled with the IR mass detector. Together these two LC detectors can be used to calculate the intrinsic viscosity of the ATREF eluant. The viscosity average molecular weight of a given fraction can then be estimated using appropriate Mark Houwink constants, the corresponding intrinsic viscosity, and suitable coefficients to estimate the fractions concentration (dl/g) as it passes through the detectors. Thus, a typical ATREF report will provide the weight fraction polymer and viscosity average molecular weight as a function of elution temperature. The molecular weight partitioning factor, M_{pf} , characterizes the ratio of the average molecular weight of the fractions with high ethylene comonomer content to the average molecular weight of the fractions with low ethylene comonomer content. Higher and lower ethylene contents polymers are defined as being below or above the median elution temperature of the TREF concentration plot respectively. That is, the TREF data is divided into two parts of equal weight. M_{pf} is calculated from the following equation: $$\mathbf{M}_{\mathrm{pf}} = \frac{\sum\limits_{i=1}^{n} w_{i} \cdot M_{i}}{\sum\limits_{j=1}^{n} w_{j} \cdot M_{j}},$$ where: M_i is the viscosity average molecular weight and w_i is the normalized weight fraction as determined by ATREF for the n data points in the fractions below the median elution temperature. M_j is the viscosity average molecular weight and w_j is the normalized weight fraction as determined by ATREF for the m data points in the fractions above the median elution temperature. Only those weight fractions, w_i or w_j , which have associated viscosity average molecular weights greater than zero are used to calculate M_{pf} . For a valid calculation, it is required that n and m are greater than or equal to 3. 5 10 15 20 25 Randomness, or the distribution of monomer functionality within a chain, can be calculated based on the various reactivity ratios for the catalyst with respect to the various comonomers. For a polymerization of two monomers, as a most useful example, the reactivity ratios, r, for each monomer may be calculated based on two indices, i and j, where k_{ij} is the rate constant for the most recently incorporated monomer i, with incoming monomer i or j during catalysis, with the reactivity ratio defined according to the formula: $r_{ij}=k_{ij}/k_{ij}$. Thus, for two monomers, identified as 1 and 2, respectively, $r_{12}=k_{11}/k_{12}$ and $r_{21}=k_{22}/k_{21}$. A random distribution of monomers throughout the copolymer chain is achieved when $r_{12}*r_{21}$ is approximately equal to 1. Preferred interpolymers of the invention are those wherein the ethylene randomness meets the requirement of: $0.1 < r_{12}*r_{21} < 10.0$, more preferably $0.5 < r_{12}*r_{21} < 2$, most preferably $0.75 < r_{12}*r_{21} < 1.5$. Highly preferably, all comonomers are uniformly and randomly distributed within the polymer chains, or are nearly uniformly and randomly distributed. For a highly uniform polymer, the intrachain distribution or homogeneity of the polymer can also be determined using 13 C NMR spectroscopy, according to known techniques. As used herein the term "long chain branching" refers to pendant oligomeric, hydrocarbyl-, groups attached to the polymeric chain, which groups have a length greater than m-2 carbons, wherein m is the number of carbons in the largest α -olefin of the ethylene/ C_{3-8} olefin mixture. Long chain branching generally is thought to result from the reincorporation of addition polymerizable compounds generated as a result of β -hydride elimination, or other vinyl group generating process. Generally, the present invention does not result in the generation of substantial quantities of long chain branches. Several techniques for measuring the extent of long chain branching in a copolymer already exist. Principle analytical techniques include those based on ¹³C NMR analysis, optionally coupled with low angle laser light scattering or similar particle size measuring technique. Additionally, it is possible to arrive at an estimate of short chain branches, that is, branches due to the C₃₋₈ comonomer remnant, by preparation of a control copolymer using a labeled monomer, such as ¹³C enriched 1-octene or ethylene, under the assumption that a similar level of branch distribution will exist in copolymers made under comparative conditions utilizing unmodified monomers. The level of long chain branching is thereafter determined by subtraction. Preferred polymers according to the present invention contain less than 0.3 long chain branches per 10,000 carbons, preferably less than 0.1 long chain branches per 10,000 carbons. Most preferred olefin mixtures for use herein are mixtures of ethylene and propylene, containing from 0.5 to 5.0, most preferably from 0.5 to 1.0, weight percent ethylene. Uniquely, according to the present invention, it is believed, without wishing to be bound by such belief, that the ethylene in the monomer mixture does not operate as a chain transfer agent during the polymerization, thereby terminating the polymerization and reducing the molecular weight of the resulting polymers, as often occurs using other catalyst systems. Furthermore, it is believed that ethylene causes the rate of other chain transfer events to decrease, thereby resulting in production of higher molecular weight polymers compared to polymers formed in the absence of ethylene. Thus, the preparation of higher molecular weight polymers in a high efficiency process by adding a small quantity of ethylene to a polymerization mixture comprising one or more C_{3-8} olefins, especially propylene, is unexpected and contrary to the normal results achieved with catalyst compositions based on Group 4 metal complexes containing delocalized π -bonded ligand groups, especially metallocenes. Examples of suitable metal complexes of polyvalent ligands for use in the present invention include Group 4 metal derivatives, especially hafnium derivatives of hydrocarbylamine substituted heteroaryl compounds of the formula R¹HN-T-R² (I), said complexes corresponding to the formula: $$R^{1}$$ R^{2} (IA) wherein 5 10 15 20 25 30 R¹ is selected from alkyl, cycloalkyl, heteroalkyl, cycloheteroalkyl, aryl, and inertly substituted derivatives thereof containing from 1 to 30 atoms not counting hydrogen; T is a divalent bridging group of from 1 to 20 atoms other than hydrogen, preferably a mono- or di- C_{1-20} hydrocarbyl substituted methylene or silane group, and R^2 is a C_{6-20} heteroaryl group containing Lewis base functionality, especially a pyridin-2-yl- or substituted pyridin-2-yl group, and in the metal complex, M is the Group 4 metal, preferably hafnium, X is an anionic, neutral or dianionic ligand group, 5 10 15 20 25 x is a number from 0 to 5 indicating the number of such X groups, and bonds, optional bonds and electron donative interactions are represented by lines, dotted lines and arrows respectively. Preferred complexes are those wherein ligand formation results from hydrogen elimination from the amine group and optionally from the loss of one or more additional groups, especially from R². In addition, electron donation from the Lewis base functionality, preferably an electron pair, provides additional stability to the metal center. Preferred examples of the foregoing polyfunctional Lewis base compounds and the resulting metal complexes correspond to the formulas: $$R^{3}$$ R^{4} R^{5} R^{1} R^{1} R^{1} R^{2} R^{4} R^{5} R^{1} R^{5} R^{1} R^{6} R^{1} R^{6} R^{1} R^{6} R^{1} R^{6} R^{1} R^{6} R^{1} R^{1} R^{2} R^{4} R^{5} R^{5} R^{1} R^{1} R^{2} R^{4} R^{5} R^{5} R^{5} R^{1} R^{1} R^{2} R^{4} R^{5} R^{5} R^{1} R^{2} R^{4} R^{5} R^{5} R^{1} R^{2} R^{4} R^{5} R^{5} R^{1} R^{2} R^{5} R^{5} R^{5} R^{6} R^{1} R^{2} R^{5} R^{5} R^{5} R^{5} R^{5} R^{6} M, X, x, R¹ and T are as previously defined, R³, R⁴, R⁵ and R⁶ are hydrogen, halo, or an alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, aryl, or silyl group of up to 20 atoms not counting hydrogen, or adjacent R³, R⁴, R⁵ or R⁶ groups may be joined together thereby forming fused ring derivatives, and bonds, optional bonds and electron pair donative interactions are represented by lines, dotted lines and arrows respectively. More preferred examples of the foregoing difunctional Lewis base compounds and metal complexes correspond to the formula: wherein 5 10 15 20 M, X, x, R¹ and T are as previously defined, R^3 , R^4 , R^5 and R^6 are as previously defined, preferably R^3 , R^4 , and R^5 are hydrogen, or C_{1-4} alkyl, and R^6 is C_{6-20} aryl, most preferably naphthalenyl; R^a independently each occurrence is C_{1-4} alkyl, and a is 1-5, most preferably R^a in two ortho-positions is isopropyl or t-butyl; R^7 and R^8 independently each occurrence are hydrogen or a C_{1-20} alkyl or aryl group, most preferably one of R^7 and R^8 is hydrogen and the other is a C_{6-20} aryl group, especially a fused polycyclic aryl group, most preferably an anthracenyl group, and bonds, optional bonds and electron pair donative interactions are represented by lines, dotted lines and arrows respectively. Highly preferred polyfunctional Lewis base compounds and metal complexes for use herein correspond to the formula: $$(R^{b})_{b}$$ $$(R^{b})_{b}$$ $$(R^{b})_{b}$$ $$(R^{b})_{b}$$ $$(R^{c})_{c}$$ $$(H_{3}C)_{2}HC$$ wherein X each occurrence is halide, N,N-dimethylamido, or C_{1-4} alkyl, and preferably each occurrence X is methyl; R^b independently each occurrence is $C_{1\text{--}20}$ alkyl or aryl, or two adjacent R^b groups are joined together thereby forming a ring, and b is 1-5; and R^c independently each occurrence is C_{1-20} alkyl or aryl, or two adjacent R^c groups are joined together thereby forming a ring, and c is 1-5. Most highly preferred examples of metal complexes for use according to the present invention are complexes of the following formulas: $$(H_3C)_2HC \\ (H_3C)_2HC \\ (H_3C)_2HC \\ X_2 \\ and \\ (H_3C)_2HC \\ X_2$$ wherein X each occurrence is halide, N,N-dimethylamido, or C_{1-4} alkyl, and preferably each occurrence X is methyl. 5 10 15 20 25 Examples of metal complexes usefully employed according to the present invention include: [N-(2,6-di(1-methylethyl)phenyl)amido)(o-tolyl)(α -naphthalen-2-diyl(6-pyridin-2-diyl)methane)]hafnium dimethyl; [N-(2,6-di(1-methylethyl)phenyl)amido)(o-tolyl)(α -naphthalen-2-diyl(6-pyridin-2-diyl)methane)]hafnium di(N,N-dimethylamido); [N-(2,6-di(1-methylethyl)phenyl)amido)(o-tolyl)(α -naphthalen-2-diyl(6-pyridin-2-diyl)methane)]hafnium dichloride; [N-(2,6-di(1-methylethyl)phenyl)amido)(phenanthren-5-yl)(α-naphthalen-2-diyl(6-pyridin-2-diyl)methane)]hafnium dimethyl; $[N-(2,6-di(1-methylethyl)phenyl)amido)((henanthren-5-yl)(\alpha-naphthalen-2-diyl(6-pyridin-2-diyl)methane)]hafnium di(N,N-dimethylamido); and$ $[N-(2,6-di(1-methylethyl)phenyl)amido)(phenanthren-5-yl)(\alpha-naphthalen-2-diyl(6-pyridin-2-diyl)methane)]hafnium dichloride.$ Under the reaction conditions of the present invention, it has been discovered that the hydrogen of the 2-position of the α -naphthalene group substituted at the 6-position of the pyridin-2-yl group is subject to elimination, thereby uniquely forming metal complexes wherein the metal is covalently bonded to both the resulting amide group and to the 2-position of the α -naphthalenyl group, as well as stabilized by coordination to the pyridinyl nitrogen atom through the electron pair of the nitrogen atom. The foregoing metal complexes are conveniently prepared by standard metallation and ligand exchange procedures involving a source of the Group 4 metal and the neutral polyfunctional ligand source. The complexes may also be prepared by means of an amide elimination and hydrocarbylation process starting from the corresponding Group 4 metal tetraamide and a hydrocarbylating agent, such as trimethylaluminum, as disclosed in WO 02/38628. Other techniques may be used as well. 5 10 15 20 25 30 The resulting Group 4 metal complexes are activated to form the actual catalyst composition by combination with a cocatalyst, preferably an aluminoxane, a cation forming cocatalyst, or a combination thereof. The mixture of monomers may be contacted with the active catalyst composition according to any suitable polymerization conditions. Also, the quantity of ethylene during the polymerization may be varied or even eliminated, provided that during some portion of the polymerization a mixture comprising ethylene and one or more C₃₋₈ olefins is present. The process is characterized by use of temperatures typically from 25 to 50 °C and pressures from atmospheric to 10 MPa. Hydrogen may be employed as a chain transfer agent for molecular weight control according to known techniques if desired. Of course, if the objective of attaining polymers having increased molecular weight is desired, no chain transfer agent is employed. Suitable alumoxanes for use herein include polymeric or oligomeric alumoxanes, especially methylalumoxane, triisobutyl aluminum modified methylalumoxane, or isobutylalumoxane; neutral Lewis acid modified polymeric or oligomeric alumoxanes, such as the foregoing alkylalumoxanes modified by addition of a C₁₋₃₀ hydrocarbyl substituted Group 13 compound, especially a tri(hydrocarbyl)aluminum- or tri(hydrocarbyl)boron compound, or a halogenated (including perhalogenated) derivative thereof, having from 1 to 10 carbons in each hydrocarbyl or halogenated hydrocarbyl group, more especially a perfluorinated tri(aryl)boron compound or a perfluorinated tri(aryl)aluminum compound. The Group 4 metal complexes may also be rendered catalytically active by combination with a cation forming cocatalyst, such as those previously known in the art for use with Group 4 metal olefin polymerization complexes. Suitable cation forming cocatalysts for use herein include neutral Lewis acids, such as C₁₋₃₀ hydrocarbyl substituted Group 13 compounds, especially tri(hydrocarbyl)aluminum- or tri(hydrocarbyl)boron compounds and halogenated (including perhalogenated) derivatives thereof, having from 1 to 10 carbons in each hydrocarbyl or halogenated hydrocarbyl group, more especially perfluorinated tri(aryl)boron compounds, and most especially tris(pentafluoro-phenyl)borane; nonpolymeric, compatible, noncoordinating, ion forming compounds (including the use of such compounds under oxidizing conditions), especially the use of ammonium-, phosphonium-, oxonium-, carbonium-, silylium- or sulfonium- salts of compatible, noncoordinating anions, or ferrocenium-, lead- or silver salts of compatible, noncoordinating anions; and combinations of the foregoing cation forming cocatalysts and techniques. The foregoing activating cocatalysts and activating techniques have been previously taught with respect to different metal complexes for olefin polymerizations in the following references: EP-A-277,003, US-A-5,153,157, US-A-5,064,802, US-A-5,321,106, US-A-5,721,185, US-A-5,350,723, US-A-5,425,872, US-A-5,625,087, US-A-5,883,204, US-A-5,919,983, US-A-5,783,512, WO 99/15534, and WO99/42467. As in other similar polymerizations, it is highly desirable that the monomers and solvents employed be of sufficiently high purity that catalyst deactivation does not occur. Any suitable technique for monomer purification such as devolatilization at reduced pressures, contacting with molecular sieves or high surface area alumina, or a combination of the foregoing processes may be employed. 10 15 20 25 30 Purification of the resulting polymer to remove entrained catalyst and cocatalyst may also be desired by the practitioner. Such contaminants may generally be identified by residues of ash on pyrolysis of the polymer that are attributable to catalyst or cocatalyst metal values. A suitable technique for removing such compounds is by solvent extraction, for example, extraction utilizing hot, high boiling chlorinated solvents, acids or bases such as caustic followed by filtration. A support may be optionally present in the catalyst formulation especially in a gas phase or slurry polymerization. Suitable supports include any inert, particulate material, but most suitably is a metal oxide, preferably alumina, silica, or an aluminosilicate material. Suitable particle sizes are from 1 to 1000 µm, preferably from 10 to 100 µm. Most desired supports are calcined silica, which may be treated to reduce surface hydroxyl groups by reaction with a silane, or similar reactive compound. Any suitable means for including such support in the catalyst formulation may be used, such as by dispersing the components in a liquid and contacting the same with the support and thereafter drying, by spraying, or coating the support with such liquid and thereafter removing the liquid, or by coprecipitating the cocatalyst and a support material from a liquid medium. The polymerization is desirably carried out as a continuous polymerization, in which catalyst components, monomers, and optionally solvent, adjuvants, scavengers, and polymerization aids are continuously supplied to the reaction zone and polymer product continuously removed therefrom. Within the scope of the terms "continuous" and "continuously" as used in this context are those processes in which there are intermittent additions of reactants and removal of products at small regular intervals, so that, over time, the overall process is approximately continuous. 5 10 15 20 25 30 In one embodiment of operation, the polymerization is conducted in a continuous solution polymerization system, including such a system comprising one or more polymerization reactors. In another embodiment two reactors connected in series or parallel are employed. In one reactor a relatively high molecular weight product (Mw from 200,000 to 600,000, more preferably 300,000 to 500,000) is formed while in the second reactor a product of a relatively low molecular weight (Mw 50,000 to 2300,000) is formed. The final product is a blend of the two reactor effluents which are combined prior to devolatilization to result in a uniform blend of the two polymer products. Such a dual reactor process allows for the preparation of products having improved properties. In a preferred embodiment the reactors are connected in series, that is effluent from the first reactor is charged to the second reactor and fresh monomer, solvent and hydrogen is added to the second reactor. Reactor conditions are adjusted such that the weight ratio of polymer produced in the first reactor to that produced in the second reactor is from 20:80 to 80:20. In addition the temperature of the second reactor is controlled to produce the lower molecular weight product. The polymerization process of the present invention can also be employed to advantage in a gas phase copolymerization process. Such processes are used commercially on a large scale for the manufacture of polypropylene and ethylene/propylene copolymers. The gas phase process employed can be, for example, of the type which employs a mechanically stirred bed or a gas fluidized bed as the polymerization reaction zone. Preferred is the process wherein the polymerization reaction is carried out in a vertical cylindrical polymerization reactor containing a fluidized bed of polymer particles supported or suspended above a perforated plate, the fluidization grid, by a flow of fluidization gas. The gas employed to fluidize the bed comprises the monomer or monomers to be polymerized, and also serves as a heat exchange medium to remove the heat of reaction from the bed. The hot gases emerge from the top of the reactor, normally via a tranquilization zone, also known as a velocity reduction zone, having a wider diameter than the fluidized bed and wherein fine particles entrained in the gas stream have an opportunity to gravitate back into the bed. It can also be advantageous to use a cyclone to remove ultra-fine particles from the hot gas stream. The gas is then normally recycled to the bed by means of a blower or compressor and one or more heat exchangers to strip the gas of the heat of polymerization. A preferred method of cooling of the bed, in addition to the cooling provided by the cooled recycle gas, is to feed a volatile liquid to the bed to provide an evaporative cooling effect, 5 10 15 20 25 30 often referred to as operation in the condensing mode. The volatile liquid employed in this case can be, for example, a volatile inert liquid, for example, a saturated hydrocarbon having 3 to 8, preferably 4 to 6, carbon atoms. In the case that the monomer or comonomer itself is a volatile liquid, or can be condensed to provide such a liquid, this can suitably be fed to the bed to provide an evaporative cooling effect. The volatile liquid evaporates in the hot fluidized bed to form gas which mixes with the fluidizing gas. If the volatile liquid is a monomer or comonomer, it will undergo some polymerization in the bed. The evaporated liquid then emerges from the reactor as part of the hot recycle gas, and enters the compression/heat exchange part of the recycle loop. The recycle gas is cooled in the heat exchanger and, if the temperature to which the gas is cooled is below the dew point, liquid will precipitate from the gas. This liquid is desirably recycled continuously to the fluidized bed. It is possible to recycle the precipitated liquid to the bed as liquid droplets carried in the recycle gas stream. This type of process is described, for example in EP-89691; U.S. 4,543,399; WO-94/25495 and U.S. 5,352,749. A particularly preferred method of recycling the liquid to the bed is to separate the liquid from the recycle gas stream and to reinject this liquid directly into the bed, preferably using a method which generates fine droplets of the liquid within the bed. This type of process is described in WO-94/28032. The polymerization reaction occurring in the gas fluidized bed is catalyzed by the continuous or semi-continuous addition of catalyst. Such catalyst can be supported on an inorganic or organic support material as described above. The catalyst can also be subjected to a prepolymerization step, for example, by polymerizing a small quantity of olefin monomer in a liquid inert diluent, to provide a catalyst composite comprising catalyst particles embedded in olefin polymer particles. The polymer is produced directly in the fluidized bed by catalyzed copolymerization of the monomer and one or more comonomers on the fluidized particles of catalyst, supported catalyst or prepolymer within the bed. Start-up of the polymerization reaction is achieved using a bed of preformed polymer particles, which are preferably similar to the target polyolefin, and conditioning the bed by drying with inert gas or nitrogen prior to introducing the catalyst, the monomers and any other gases which it is desired to have in the recycle gas stream, such as a diluent gas, hydrogen chain transfer agent, or an inert condensable gas when operating in gas phase condensing mode. The produced polymer is discharged continuously or discontinuously from the fluidized bed as desired. The gas phase processes most suitable for the practice of this invention are continuous processes which provide for the continuous supply of reactants to the reaction zone of the reactor and the removal of products from the reaction zone of the reactor, thereby providing a steady- state environment on the macro scale in the reaction zone of the reactor. Products are readily recovered by exposure to reduced pressure and optionally elevated temperatures (devolatilization) according to known techniques. Typically, the fluidized bed of the gas phase process is operated at temperatures greater than 50°C, preferably from 60°C to 110°C, more preferably from 70°C to 110°C. A number of patents and patent applications describe gas phase processes which are adaptable for use in the process of this invention, particularly, U.S. Patents 4,588,790; 4,543,399; 5,352,749; 5,436,304; 5,405,922; 5,462,999; 5,461,123; 5,453,471; 5,032,562; 5,028,670; 5,473,028; 5,106,804; 5,556,238; 5,541,270; 5,608,019; 5,616,661; and EP applications 659,773; 692,500; 780,404; 697,420; 628,343; 593,083; 676,421; 683,176; 699,212; 699,213; 721,798; 728;150; 728,151; 728,771; 728,772; 735,058; and PCT Applications WO-94/29032, WO-94/25497, WO-94/25495, WO-94/28032, WO-95/13305, WO-94/26793, WO-95/07942, WO-97/25355, WO-93/11171, WO-95/13305, and WO-95/13306. The skilled artisan will appreciate that the invention disclosed herein may be practiced in the absence of any component which has not been specifically disclosed. The following examples are provided as further illustration of the invention and are not to be construed as limiting. Unless stated to the contrary all parts and percentages are expressed on a weight basis. The term "overnight", if used, refers to a time of approximately 16-18 hours, the term "room temperature", refers to a temperature of 20-25 °C, and the term "mixed alkanes" refers to a mixture of $C_{6.9}$ aliphatic hydrocarbons available under the trade designation Isopar E^{\oplus} , from Exxon Chemicals Inc. In the event the name of a compound herein does not conform to the structural representation thereof, the structural representation shall control. The synthesis of all metal complexes and the preparation of all screening experiments were carried out in a dry nitrogen atmosphere using dry box techniques. All solvents used were HPLC grade and were dried before use. #### **Examples** 5 10 15 20 25 # Example 1 Hafnium Complex Preparation $$(H_3C)_2HC$$ $$(H_3C)_2HC$$ $$(H_3C)_2HC$$ $$(H_3C)_2HC$$ $$(CH_3)_2$$ $$(CH_3)_2$$ $$(CH_3)_2$$ $$(CH_3)_2$$ $$(B)$$ To a 50 mL flask equipped with a stirrer in a glovebox at room temperature was added 20 ml of toluene and 483 mg (1.00 mmol) of (2,6-di(1-methylethyl)phenylamino)(o-tolyl)((α-naphthalenyl(6-pyridin-2-diyl))methane. Two equivalents of isobutyllithium were added followed by one equivalent of hafnium tetrachloride. The product, [N-(2,6-di(1-methylethyl)phenylamido)(o-tolyl)((α-naphthalen-2-diyl(6-pyridin-2-diyl))methane)]hafnium dichloride (A) was recovered by filtration and subjected to drying under dynamic vacuum. The dimethyl derivative, [N-(2,6-di(1-methylethyl)phenyl)amido)(o-tolyl)(α-naphthalen-2-diyl(6-pyridin-2-diyl)methane)]hafnium dimethyl (B), was prepared by contacting a toluene solution of the dichloride complex with two equivalents of methyllithium, filtering, removing the volatiles and recrystalizing from hexane. #### **Polymerization** 5 10 15 20 25 A 2 liter stirred, jacketed, polymerization reactor was charged with 400 g mixed alkanes solvent and 93 g propylene. Next, 1.5 μmole of catalyst (B) and 1.8 μmole cocatalyst (methyldi(octadecylammonium) tetrakis(pentafluorophenyl)borate) as 0.005 M solutions in toluene, along with isopropylaluminum modified methylalumoxane (PMAO-IP, available from Akzo, Inc., 45 μmol, based on Al, added as a scavenger) were premixed and added via a transfer line which was subsequently washed three times with 5 ml toluene. Hydrogen was added as a molecular weight control agent by differential pressure expansion from a 75 ml addition tank at 25 psi (345 kPa). In run 1, ethylene (5.3 g) was added. The reactor was heated to the polymerization temperature of 100 °C. After 21 minutes polymerization time, the resulting polymer solution was removed from the reactor into a nitrogen purged collection vessel containing 100 ml of isopropyl alcohol and 20 ml of a toluene solution containing 6.7 mg hindered phenol antioxidant (IrganoxTM 1010 available from Ciba Geigy Co.) and 13.4 mg of phosphorus stabilizer (IrgafosTM 168, available from Ciba Geigy Co.). The polymer solution was then dried in a vacuum oven under gradually increasing temperature and gradually decreasing pressure. The polymer was held at a final temperature of 140° C and a final pressure of 100 torr (13 kPa). Total drying time was 20 hours. Results are contained in Table 1. Table 1 | run | yield (g) | efficiency (g/µg Hf) | Mp | Mw | Mn | Mw/Mn | |-----|-----------|----------------------|-------|---------|---------|-------| | 1 | 63.4 | 0.237 | 136.7 | 639,000 | 198,000 | 3.2 | | 2* | 35.6 | 0.133 | 147.1 | 387,000 | 130,000 | 3.0 | ^{*} comparative not an example of the invention 5 #### **CLAIMS:** 5 15 20 1. A process for preparing interpolymers of ethylene and one or more C_{3-8} olefin monomers comprising contacting a monomer mixture comprising ethylene and one or more C_{3-8} olefin monomers with a catalyst composition comprising a Group 4 metal complex of a polyvalent, Lewis base ligand under addition polymerization conditions. 2. A process according to claim 1 wherein the metal complex corresponds to the formula: $$R^{1}$$ MX_{x} (IA) wherein 10 R¹ is selected from alkyl, cycloalkyl, heteroalkyl, cycloheteroalkyl, aryl, and inertly substituted derivatives thereof containing from 1 to 30 atoms not counting hydrogen; T is a divalent bridging group of from 1 to 20 atoms other than hydrogen, preferably a mono- or di- C_{1-20} hydrocarbyl substituted methylene or silane group, and R^2 is a C_{6-20} heteroaryl group containing Lewis base functionality, especially a pyridin-2-yl- or substituted pyridin-2-yl group, M is the Group 4 metal, preferably hafnium, X is an anionic, neutral or dianionic ligand group, x is a number from 0 to 5 indicating the number of such X groups, and bonds, optional bonds and electron donative interactions are represented by lines, dotted lines and arrows respectively. 3. A process according to claim 2 wherein the metal complex is selected from the group consisting of: $$(H_3C)_2HC \\ (H_3C)_2HC \\ (H_3C)_2HC \\ X_2 \\ and \\ (H_3C)_2HC \\ X_2$$ wherein X each occurrence is halide, N,N-dimethylamido, or C₁₋₄ alkyl. 4. A process according to claim 1 wherein a mixture comprising propylene and from 0.1 to 10 weight percent ethylene is copolymerized. # INTERNATIONAL SEARCH REPORT Internation pplication No PCT/US 03/28873 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C08F210/06 C08F4/642 According to International Patent Classification (IPC) or to both national classification and IPC #### B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C08F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) CHEM ABS Data, EPO-Internal | Category ° | Citation of document, with indication, where appropriate, of t | Relevant to claim No. | | | |---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--| | X | WO 02 38628 A (SYMYX TECHNOLOGI
16 May 2002 (2002-05-16)
cited in the application
page 86 -page 91; tables 5,6
page 98; example 11
page 112; example 16
page 73 -page 75
claims 54,82-84,88-90 | GIES INC) | 1-4 | | | Special ca | her documents are listed in the continuation of box C. ategories of cited documents: ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date | T* later document published after the interpretation or priority date and not in conflict wit cited to understand the principle or the invention X* document of particular relevance; the cannot be considered novel or cann | ernational filing date n the application but neory underlying the claimed invention | | | "L" docume
which
citatio
"O" docume
other i | ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but han the priority date claimed | "Y" document of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvi in the art. "&" document member of the same paten | ocument is taken alone claimed invention nventive step when the lore other such docu- | | | Date of the | actual completion of the international search | Date of mailing of the international se | earch report | | | 2 | 3 January 2004 | 09/02/2004 | | | | Name and r | mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 | Authorized officer Parry, J | | | PCT/US 03/28873 | | tion) DOCUMENTS CONSIDERED TO BE RELEVANT | | |------------|---|-----------------------| | Category ° | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. | | X | DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; SUGIMURA, KENJI ET AL: "Olefin polymerization catalysts for producing polyolefins with narrow molecular weight distribution" retrieved from STN Database accession no. 134:116329 XP002267944 abstract & JP 2001 011111 A (MITSUI CHEMICAL INDUSTRY CO., LTD., JAPAN) 16 January 2001 (2001-01-16) example 3 | 1-4 | | X | US 6 103 657 A (MURRAY REX EUGENE) 15 August 2000 (2000-08-15) cited in the application example 5C; table 2 | 1-4 | | P,X | WO 03 040201 A (DOW CHEMICAL CO; STEVENS JAMES C (US); VANDERLENDE DANIEL D (US)) 15 May 2003 (2003-05-15) page 91 -page 98; examples CATG, CATH, ,2,6; tables 2-6 page 118 -page 121; tables 18,19 | 1-4 | | P,X | WO 03 040202 A (DOW GLOBAL TECHNOLOGIES INC; BOSNYAK CLIVE (US); KARANDE SEEMA (US) 15 May 2003 (2003-05-15) figures 12G,1H,12J,2-6 page 67 -page 78; examples CATG,CATH,2-6; tables 2-7,10 | 1-4 | | Ρ,Χ | WO 03 040195 A (DOW GLOBAL TECHNOLOGIES INC ;PAINTER ROGER B (US); VOSEPJKA PAUL C) 15 May 2003 (2003-05-15) claim 6; table 1 | 1-4 | | | | | ## INTERNATIONAL SEARCH REPORT Information on patent family members PCT/US 03/28873 | Patent document
cited in search report | | Publication
date | | Patent family
member(s) | Publication date | |---|---|---------------------|--|---|--| | WO 0238628 | A | 16-05-2002 | AU
AU
EP
EP
WO
WO
US
US
US
US | 2566202 A
4151702 A
1334139 A2
1364974 A2
0238628 A2
0246249 A2
2002173419 A1
2002147288 A1
2002142912 A1
2002137845 A1
2002156279 A1
2002177711 A1 | 21-05-2002
18-06-2002
13-08-2003
26-11-2003
16-05-2002
13-06-2002
21-11-2002
10-10-2002
03-10-2002
26-09-2002
24-10-2002
28-11-2002 | | JP 2001011111 | Α | 16-01-2001 | NONE | | | | US 6103657 | A | 15-08-2000 | US US AT AU BR DE EP ES JP TW WO US US ZA | 2002065379 A1
6320005 B1
237622 T
735915 B2
8380698 A
9810213 A
69813556 D1
0993464 A1
2191946 T3
2001524162 T
467921 B
9901460 A1
6320002 B1
6265513 B1
2001034297 A1
9805782 A | 30-05-2002
20-11-2001
15-05-2003
19-07-2001
25-01-1999
02-10-2001
22-05-2003
19-04-2000
16-09-2003
27-11-2001
11-12-2001
14-01-1999
20-11-2001
24-07-2001
25-10-2001
21-01-1999 | | WO 03040201 | А | 15-05-2003 | WO
WO
WO
WO
US
US
US
US | 03040201 A1
03040202 A2
03040195 A1
03040233 A2
03040095 A2
03040442 A1
2003204017 A1
2003195299 A1
2003176611 A1
2003194575 A1 | 15-05-2003
15-05-2003
15-05-2003
15-05-2003
15-05-2003
30-10-2003
16-10-2003
16-10-2003
16-10-2003 | | WO 03040202 | A | 15-05-2003 | US
WO
WO
WO
WO
US
US
US | 2003204017 A1
03040201 A1
03040202 A2
03040195 A1
03040233 A2
03040095 A2
03040442 A1
2003195299 A1
2003176611 A1
2003195300 A1
2003194575 A1 | 30-10-2003
15-05-2003
15-05-2003
15-05-2003
15-05-2003
15-05-2003
15-05-2003
16-10-2003
16-10-2003
16-10-2003 | | WO 03040195 | Α | 15-05-2003 | US
WO | 2003204017 A1
03040201 A1 | 30-10-2003
15-05-2003 | ### INTERNATIONAL SEARCH REPORT Information on patent family members Internation population No PCT/US 03/28873 | Patent document cited in search report | | Publication
date | | Patent family member(s) | Publication date | | |--|---|---------------------|----|-------------------------|------------------|--| | WO 03040195 | A | | WO | 03040202 A2 | 15-05-2003 | | | | | | WO | 03040195 A1 | 15-05-2003 | | | | | | WO | 03040233 A2 | 15-05-2003 | | | | | | WO | 03040095 A2 | 15-05-2003 | | | | | | WO | 03040442 A1 | 15-05-2003 | | | | | | US | 2003195299 A1 | 16-10-2003 | | | | | | US | 2003176611 A1 | 18-09-2003 | | | | | | US | 2003195300 A1 | 16-10-2003 | | | | | | US | 2003194575 A1 | 16-10-2003 | |