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NON-POLAR (Al,B,In,Ga)N QUANTUM WELL AND HETEROSTRUCTURE
MATERIALS AND DEVICES

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit under 35 U.S.C. §119(e) of the following

co-pending and commonly-assigned United States Provisional Patent Application
Serial No. 60/372,909, entitled “NON-POLAR GALLIUM NITRIDE BASED THIN
FILMS AND HETEROSTRUCTURE MATERIALS,” filed on April 15, 2002, by
Michael D. Craven, Stacia Keller, Steven P. DenBaars, Tal Margalith, James S.
Speck, Shuji Nakamura, and Umesh K. Mishra, attorneys docket number 30794.95-
US-P1, which application is incorporated by reference herein.

This application is related to the following co-pending and commonly-
assigned United States Utility Patent Applications:

Serial No. --/---,---, entitled “NON-POLAR A-PLANE GALLIUM NITRIDE
THIN FILMS GROWN BY METALORGANIC CHEMICAL VAPOR
DEPOSITION,” filed on same date herewith, by Michael D. Craven and James S.
Speck, attorneys docket number 30794.100-US-U1; and

Serial No. --/---,---, entitled “DISLOCATION REDUCTION IN NON-
POLAR GALLIUM NITRIDE THIN FILMS,” filed on same date herewith, by
Michael D. Craven, Stacia Keller, Steven P. DenBaars, Tal Margalith, James S.
Speck, Shuji Nakamura, and Umesh K. Mishra, attorneys docket number 30794. 102-
US-Ul;

both of which applications are incorporated by reference herein.

1. Field of the Invention.
The invention is related to semiconductor materials, methods, and devices, and
more particularly, to non-polar (Al,B,In,Ga)N quantum well and heterostructure

materials and devices.
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2. Description of the Related Art.

(Note: This application references a number of different patents, applications
and/or publications as indicated throughout the specification by one or more reference
numbers. A list of these different publications ordered according to these reference
numbers can be found below in the section entitled “References.” Each of these
publications is incorporated by reference herein.)

Current state of the art (Al,B,In,Ga)N heterostructures and quantum well
structures employ c-plane (0001) layers. The total polarization of a III-N film
consists of spontaneous and piezoelectric polarization contributions, which both
originate from the single polar [0001] axis of the wurtzite nitride crystal structure.
Polarization discontinuities which exist at surfaces and interfaces within nitride
heterostructures are associated with fixed sheet charges, which in turn produce
electric fields. Since the alignment of these internal electric fields coincides with the
growth direction of the c-plane (0001) layers, the fields affect the energy bands of
device structures.

In quantum wells, the “tilted”” energy bands spatially separate electrons and
hole wave functions, which reduces the oscillator strength of radiative transitions and
red-shifts the emission wavelength. These effects are manifestations of the quantum
confined Stark effect (QCSE) and have been thoroughly analyzed for GaN/(Al,Ga)N
quantum wells. See References 1-8. Additionally, the large polarization-induced
fields are partially screened by dopants and impurities, so the emission characteristics
can be difficult to engineer accurately.

The internal fields are also responsible for large mobile sheet charge densities
in nitride-based transistor heterostructures. Although these large 2D electron gases
(2DEGs) are attractive and useful for devices, the polarization-induced fields, and the
2DEG itself, are difficult to control accurately.

Non-polar growth is a promising means of circumventing the strong
polarization-induced electric fields that exist in wurtzite nitride semiconductors.

Polarization-induced electric fields do not affect wurtzite nitride semiconductors
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grown in non-polar directions (i.e., perpendicular to the [0001] axis) due to the
absence of polarization discontinuities along non-polar growth directions.

Recently, two groups have grown non-polar GaN/(Al,Ga)N multiple quantum
wells (MQWs) via molecular beam epitaxy (MBE) without the presence of
polarization-induced electric fields along non-polar growth directions. Waltereit et al.
grew m-plane GaN/Aly ;GagsN MQWs on y-LiAlO; (100) substrates and Ng grew a-
plane GaN/Alyp 15GagssN MQW on r-plane sapphire substrates. See References 9-10.

Despite these results, the growth of non-polar GaN orientations remains

difficult to achieve in a reproducible manner.

SUMMARY OF THE INVENTION

The present invention describes a method for forming non-polar

(A1,B,In,Ga)N quantum well and heterostructure materials and devices. First, non-
polar (1120) a-plane GaN thin films are grown on a (1102) r-plane sapphire
substrate using metalorganic chemical vapor deposition (MOCVD). These non-polar
(1120) a-plane GaN thin films are templates for producing non-polar (Al,B,In,Ga)N

quantum well and heterostructure materials and devices thereon.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference numbers represent

corresponding parts throughout:

FIG. 1 is a flowchart that illustrates the steps of a method for forming non-
polar (A1,B,In,Ga)N quantum well and heterostructure materials and devices
according to a preferred embodiment of the present invention;

FIG. 2 illustrates the photoluminescence (PL) spectra of 5-period a-plane
Ing GaN/Ing 03GaN MQW structures with nominal well widths of 1.5 nm, 2.5 nm, and
5.0 nm measured at room temperature;

FIG. 3 illustrates the PL spectra of an a-plane Ing03Gag ¢7N/Ing 1GagoN MQW

structure with a nominal well width of 5.0 nm measured for various pump powers;
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FIG. 4(a) shows a 26- x-ray diffraction scan of the 10-period
Alg.4Gag ¢N/GaN superlattice, which reveals clearly defined satellite peaks; and
FIG. 4(b) illustrates the PL spectra of the superlattice characterized in FIG.

4(a).

DETAILED DESCRIPTION OF THE INVENTION

In the following description of the preferred embodiment, reference is made to
the accompanying drawings which form a part hereof, and in which is shown by way
of illustration a specific embodiment in which the invention may be practiced. It is to
be understood that other embodiments may be utilized and structural changes may be

made without departing from the scope of the present invention.

Overview
The purpose of the present invention is to provide a method for producing

non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices,

using non-polar (1120) a-plane GaN thin films as templates.
The growth of device-quality non-polar (1 120) a-plane GaN thin films on

(1102) r-plane sapphire substrates via MOCVD is described in co-pending and
commonly-assigned United States Provisional Patent Application Serial No.
60/372,909, entitled “NON-POLAR GALLIUM NITRIDE BASED THIN FILMS
AND HETEROSTRUCTURE MATERIALS,” filed on April 15, 2002, by Michael D.
Craven, Stacia Keller, Steven P. DenBaars, Tal Margalith, James S. Speck, Shuji
Nakamura, and Umesh K. Mishra, attorneys’ docket number 30794.95-US-P1, as well
as co-pending and commonly-assigned United States Utility Patent Application Serial
No. --/---,---, entitled “NON-POLAR A-PLANE GALLIUM NITRIDE THIN FILMS
GROWN BY METALORGANIC CHEMICAL VAPOR DEPOSITION,” filed on
same date herewith, by Michael D. Craven and James S. Speck, attorneys docket
number 30794.100-US-U1, both of which applications are incorporated by reference

herein.
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The present invention focuses on the subsequent growth of (Al,B,In,Ga)N
quantum wells and heterostructures on the (1 120) a-plane GaN layers. The
luminescence characteristics of these structures indicate that polarization-induced
electric fields do not affect their electronic band structure, and consequently,
polarization-free structures have been attained. The development of non-polar
(ALB,In,Ga)N quantum wells and heterostructures is important to the realization of
high-performance (Al,B,In,Ga)N-based devices which are unaffected by polarization-
induced electric fields.

Potential devices to be deposited on non-polar (1120) a-plane GaN layers
include laser diodes (LDs), light emitting diodes (LEDs), resonant cavity LEDs (RC-
LED:s), vertical cavity surface emitting lasers (VCSELSs), high electron mobility
transistors (HEMTs), heterojunction bipolar transistors (HBTs), heterojunction field

effect transistors (HFETS), as well as UV and near-UV photodetectors.

Process Steps
FIG. 1 is a flowchart that illustrates the steps of a method for forming non-

polar (A1,B,In,Ga)N quantum well and heterostructure materials and devices
according to a preferred embodiment of the present invention. The steps of this
method include the growth of “template” (1120) a-plane GaN layers, followed by the
growth of layers with differing alloy compositions for quantum wells and
heterostructures.

Block 100 represents loading of a sapphire substrate into a vertical, close-
spaced, rotating disk, MOCVD reactor. For this step, epi-ready sapphire substrates
with surfaces crystallographically oriented within +/- 2° of the sapphire r-plane '
(1120) may be obtained from commercial vendors. No ex-sitq preparations need be
performed prior to loading the sapphire substrate into the MOCVD reactor, although
ex-situ cleaning of the sapphire substrate could be used as a precautionary measure.

Block 102 represents annealing the sapphire substrate in-situ at a high

temperature (>1000°C), which improves the quality of the substrate surface on the

5



WO 03/089694 PCT/US03/11175

10

15

20

25

atomic scale. After annealing, the substrate temperature is reduced for the subsequent
low temperature nucleation layer deposition.

Block 104 represents depositing a thin, low temperature, low pressure, nitride-
based nucleation layer as a buffer layer on the sapphire substrate. Such layers are
commonly used in the heteroepitaxial growth of c-plane (0001) nitride
semiconductors. In the preferred embodiment, the nucleation layer is comprised of,
but is not limited to, 1-100 nanometers (nm) of GaN deposited at approximately 400-
900°C and 1 atm.

After depositing the nucleation layer, the reactor temperature is raised to a

high temperature, and Block 106 represents growing the epitaxial (1 120) a-plane

GaN layers to a thickness of approximately 1.5 pun. The high temperature growth
conditions include, but are not limited to, approximately 1100°C growth temperature,
0.2 atm or less growth pressure, 30 pumol per minute Ga flow, and 40,000 pmol per
minute N flow, thereby providing a V/III ratio of approximately 1300). In the
preferred embodiment, the precursors used as the group III and group V sources are
trimethylgallium and ammonia, respectively, although alternative precursors could be
used as well. In addition, growth conditions may be varied to produce different
growth rates, e.g., between 5 and 9 A per second, without departing from the scope of
the present invention.

Upon completion of the high temperature growth step, Block 108 represents

cooling the epitaxial (1120) a-plane GaN layers down under a nitrogen overpressure.

Finally, Block 110 represents non-polar (A1,B,In,Ga)N layers, with differing
alloy compositions and hence differing electrical properties, being grown on the non-
polar (1120) a-plane GaN layers. These non-polar (A1,B,In,Ga)N layers are used to
produce quantum wells and heterostructures.

The quantum wells employ alternating layers of different bandgap such that
“wells” are formed in the structure’s energy band profile. The precise number of
layers in the structure depends on the number of quantum wells desired. Upon

excitation, electrons and holes accumulate in the wells of the conduction and valence
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bands, respectively. Band-to-band recombination occurs in the well layers since the
density-of-states is highest at these locations. Thus, quantum wells can be engineered
according to the desired emission characteristics and available epitaxial growth
capabilities.

The nominal thickness and composition of the layers successfully grown on

the non-polar (1120) a-plane GaN layers include, but are not limited to:

8 nm Si-doped Ing g3GaN barrier
1.5,2.5, or 5 nm IngGaN well

Moreover, the above Blocks may be repeated as necessary. In one example,
Block 110 was repeated 5 times to form an MQW structure that was capped with GaN
to maintain the integrity of the (In,Ga)N layers. In this example, the layers
comprising the MQW structure were grown via MOCVD at a temperature of 825°C
and atmospheric pressure.

The luminescence characteristics of this structure indicate that polarization-
induced electric fields do not affect the band profiles, and the quantum wells can be
considered polarization-free. For example, FIG. 2 illustrates the photoluminescence
(PL) spectra of S-period a-plane Ing ;GaN/Ing 03GaN MQW structures with nominal
well widths of 1.5 nm, 2.5 nm, and 5.0 nm measured at room temperature. The peak
PL emission wavelength and intensity increase with increasing well width.

Further, FIG. 3 illustrates the PL spectra of an a-plane Ing 03Gag ¢7N/Ing.1 Gag oN
MQW structure with a nominal well width of 5.0 nm measured for various pump
powers. PL intensity increases with pump power as expected while the peak emission
wavelength is pump power independent, indicating that the band profiles are not
influenced by polarization-induced electric fields.

In addition to (In,Ga)N quantum wells, heterostructures containing

(A1,Ga)N/GaN superlattices may also be grown on the non-polar (1 120) a-plane GaN

layers. For example, heterostructures typically consist of two layers, most commonly
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(AlGa)N on GaN, to produce an electrical channel necessary for transistor operation.
The thickness and composition of the superlattice layers may comprise, but are not

limited to:

9 nm Aly4GaN barrier
11 nm GaN well

In one example, Block 110 was repeated 10 times to form a 10-period
Al 4Gag ¢N/GaN superlattice that was terminated with a 11 nm GaN well layer. The
superlattice was grown via MOCVD at conditions similar to those employed for the
underlying template layer: ~1100°C growth temperature, ~0.1 atm growth pressure,
38 umol/min Al flow, 20 pmol/min Ga flow, and 40,000 pmol/min N flow. The Al
flow was simply turned off to form the GaN well layers. Successful growth
conditions are not strictly defined by the values presented above. Similar to the
(In,Ga)N quantum wells, the luminescence characteristics of the superlattice
described above indicate that polarization fields do not affect the structure.

FIG. 4(a) shows a 20-o x-ray diffraction scan of the 10-period
Aly4Gag ¢N/GaN superlattice, which reveals clearly defined satellite peaks, while FIG.
4(b) illustrates the PL spectra of the superlattice characterized in FIG. 4(a). The
absence of polarization-induced fields was evidenced by the 3.45 eV (~360 nm) band
edge emission of the superlattice. The band edge emission did not experience the

subtle red-shift present in c-plane superlattices.
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- Conclusion

This concludes the description of the preferred embodiment of the present
invention. The following describes some alternative embodiments for accomplishing
the present invention.

For example, variations in non-polar (Al,In,Ga)N quantum wells and
heterostructures design and MOCVD growth conditions may be used in alternative
embodiments. Moreover, the specific thickness and composition of the layers, in
addition to the number of quantum wells grown, are variables inherent to quantum
well structure design and may be used in alternative embodiments of the present
invention.

Further, the specific MOCVD growth conditions determine the dimensions
and compositiqns of the quantum well structure layers. In this regard, MOCVD
growth conditions are reactor dependent and may vary between specific reactor
designs. Many variations of this process are possible with the variety of reactor
designs currently being using in industry and academia.

Variations in conditions such as growth temperature, growth pressure, V/III
ratio, precursor flows, and source materials are possible without departing from the
scope of the present invention. Control of interface quality is another important
aspect of the process and is directly related to the flow switching capabilities of
particular reactor designs. Continued optimization of the growth conditions will
result in more accurate compositional and thickness control of the integrated quantum
well layers described above.

In addition, a number of different growth methods other than MOCVD could
be used in the present invention. For example, the growth method could also be
molecular beam epitaxy (MBE), liquid phase epitaxy (LPE), hydride vapor phase
epitaxy (HVPE), sublimation, or plasma-enhanced chemical vapor deposition
(PECVD).

10
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Further, although non-polar a-plan GaN thin films are described herein, the
same techniques are applicable to non-polar m-plane GaN thin films. Moreover, non-
polar InN, AIN, and AlInGaN thin films could be created instead of GaN thin films.

Finally, substrates other than sapphire substrate could be employed for non-
polar GaN growth. These substrates include silicon carbide, gallium nitride, silicon,
zinc oxide, boron nitride, lithium aluminate, lithium niobate, germanium, aluminum
nitride, and lithium gallate.

In summary, the present invention describes a method for forming non-polar

(A1,B,In,Ga)N quantum well and heterostructure materials and devices. First, non-

polar (1120) a-plane GaN thin film layers are grown on a (1102) r-plane sapphire

substrate using MOCVD. These non-polar (1120) a-plane GaN layers comprise
templates for producing non-polar (Al,B,In,Ga)N quantum well and heterostructure
materials and devices.

The foregoing description of one or more embodiments of the invention has
been presented for the purposes of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise form disclosed. Many modifications
and variations are possible in light of the above teaching. It is intended that the scope
of the invention be limited not by this detailed description, but rather by the claims

appended hereto.

11
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WHAT IS CLAIMED IS:
1. A method for forming a nitride semiconductor device, comprising:

(a) growing one or more non-polar a-plane GaN layers on an r-plane substrate;

and
(b) growing one or more non-polar (Al,B,In,Ga)N layers on the non-polar a-
plane GaN layers.
2. The method of claim 1, wherein the substrate is a sapphire substrate.
3. The method of claim 1, wherein the substrate is selected from a group

comprising silicon carbide, gallium nitride, silicon, zinc oxide, boron nitride, lithium

aluminate, lithium niobate, germanium, aluminum nitride, and lithium gallate.

4. The method of claim 1, wherein the grown non-polar (Al,B,In,Ga)N

layers comprise at least one quantum well.

5. The method of claim 4, wherein the quantum well comprises an InGaN

quantum well.

6. The method of claim 4, wherein the quantum well is capped with GaN.

7. The method of claim 1, wherein the grown non-polar (Al,B,In,Ga)N

layers comprise at least one heterostructure.

8. The method of claim 7, wherein the heterostructure contains an

(Al,Ga)N/GaN superlattice.

12
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9. The method of claim 1, wherein the growing step (a) comprises:

(1) annealing the substrate;

(2) depositing a nitride-based nucleation layer on the substrate;

(3) growing the non-polar a-plane gallium nitride films on the nucleation
5 layer; and

(4) cooling the non-polar a-plane gallium nitride films under a nitrogen

overpressure.

10.  The method of claim 1, wherein the growing steps are performed by a
10  method selected from a group comprising metalorganic chemical vapor deposition
(MOCVD), molecular beam epitaxy (MBE), liquid phase epitaxy (LPE), hydride
vapor phase epitaxy (HVPE), sublimation, and plasma-enhanced chemical vapor

deposition (PECVD).

15 11. A device manufactured using the method of claim 1.

13
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