TWO-PART DISPLAY AND TRANSFER REEL

Egbert P. Hoyle, Cortland, N. Y., assignor to The Cortland Line Company, Inc., Cortland, N. Y., a corporation of New York

Application March 3, 1949, Serial No. 79,431

6 Claims. (Cl. 242—124)

The present invention relates to a compact low-cost transparent coil display and transfer reel that requires but two simple sectional parts effectively disposed as a supplementary unit adapted to attractively exhibit or visibly stow a coil of high grade fishing line or the like stranded product whereby to offer such commodity for sale or use to the sporting goods trade. A minor rearrangement of my casing parts permits such container to be readily utilized as a strand transfer reel when it is desired to apply such previously stowed coil to a fishing rod.

One section of the reel may comprise a socketed hood or cover member preferably fabricated from relatively thin sheet stock cross-sectionally formed to include a cylindrical flange rim flange that is integrally spanned by an annulus of which its inner edge may be provided with perimetrically distributed cleating lug extensions arranged to assume alternative positions to allow my container to be used as a combined coil display or transfer reel.

The mated other casing component may include a hollow plug element of which one end is spanned by a flat circular head plate while the opposed plug end may be equipped with an outstanding rim flange of which one face normally serves to seat a stowed coil thereon. The perimetric region of such head plate is herein shaped to provide for localized wedge shaped beads or the like non-circular cam elements disposed to fall into interlocked registry with the respective cleating lugs when my superimposed container parts are manipulatively given a relative twist about a common axis. The present embodiment represents a material structural refinement over my similar three part prior Patent No. 2,438,808.

The object of the instant improvements is to provide for a simplified combined display and transfer reel of the indicated character having but two cooperating parts that may each be easily fabricated on a rapid productive scale at a low factory cost relative to that of a high grade fishing line coil which it is intended to encase. Embodied herein are also certain structural features organized to promote the end in view and all of which will hereinafter be explicitly set forth.

Reference is had to the accompanying one sheet of drawings which are illustrative of a preferred embodiment, in which drawings:

Fig. 1 shows a so-called exploded perspective view of my contained parts prior to their being cooperatively interlocked about an inserted coil.

Fig. 2 represents a cross-sectional view after being interlockedly assembled, an alternative reversed position of my cover part being depicted in dotted outline.

Fig. 3 is a base view of Fig. 2, and Fig. 4 is a top cover view thereof.

My improved style of coil container essentially comprises two separable parts that may respect transparent plastic sheet stock or the like materially be fabricated by simple moulding dies from material of less than .014" in gauge thickness. The base section 10 is purposely kept devoid of reinforcing ribs and shaped to provide for an inherently rigid, tubular cylindrical plug element 11 whose one or tip end is integrally bridged by a circular head plate 12. The opposite plug end is equipped with an integral brim flange 13 that lies in offset parallelism with said plate. The brim flange perimeter may be slightly countersunk at 14 to center my assembled hood part 24, said brim perimeter being purposely kept somewhat larger in diametral size than the hood to serve as an outstanding gripping agency. One or more holes 15 may be provided to vent an otherwise closed container, the bottom face of the brim flange having utlike projections such as 17 to inter-space a stack of such containers.

The perimetric tip region of my cylindrical plug element 11 may be inset radically with respect to the outer plug diameter to constitute a narrow transverse shoulder 19 above which the plug extremity is provided with one or more cam-shaped threads 20A, 20B, etc. distributed eccentrically about the plug axis and confined contiguous to the head plate 12, as shown. The apertured axial re-iron of such plate preferably has an open ended trunnion bushing 21 appended therethrough by which to rotatably mount my interlocked container parts while used as a transfer reel. When serving as a display reel, the fishing line coil 22 is intended to be stowed upon the upturned seating face of the brim flange 13 and the outer coil end arranged to feed through a hood slot such as 23.

Referring now in detail to my cup-shaped unitary hood section 24, this preferably comprises an apertured disc or annulus 25 whose outer perimeter may be formed integrally with the cylindrical flank or rim flange 26 as shown. The inner perimetric edge region of said annulus per se may be extended radically inward to provide for one or more tongues or cleating lugs 27 arranged to interlockingly cooperate in registry with the respective distributed eccentric cam elements 28A, 28B, etc. The non-circular inner bore of said annulus herein circumscribes the axis of the base section 10 and the several cleating lugs
2,545,145

27 initially provide for a radial clearance gap 28 prior to their wedge engagement. Such interposed gaps are progressively reduced when the complementary sections 10 and 24 are relatively rotated manually to bring the several lugs into tangential interlock with their respective registering cams 20A, 20B, etc.

When such rotative manipulation is reversed, the hood part 24 becomes freely separable from its mated base part 10. Thereupon the flank flange 26 may be interlockingly inverted into its alternative self-retaining dotted position 26' to serve as a transfer reel upon entering a pencil or the like trunnion means through the bushing 21. A structural feature of my reel embodiment resides in the use of a comparatively thin cleating lug 27 that may be confined to the gauge thickness of the non-ribbed plastic hood annulus 25 and still allow of progressively wedging the flank flange 26 into alternate stabilized positions, as described.

It will be apparent that my dual interlocking lug and cam means may be inversely disposed to have the lugs 27 carried by the base part 24 and thereby attain an identical result.

A split collar container is rendered pleasing in appearance and otherwise affords a neat protective jacket trim appropriate to present needs for selectively displaying and promoting the sale of strand goods by the use of but two light weight plastic parts that fully visualize the quality, finish, gauge size and other pertinent characteristics for selection by a prospective buyer or fishing line user.

The described embodiment will make apparent to those skilled in this art, the advantages afforded by my inherently simple and relatively cheap combined stowage and transfer reel, it being understood that certain structural changes may be resorted to in attaining a like end, all without departing from the spirit and scope of my invention as more particularly defined in the appended claims.

I claim:

1. A coil stowage container comprising two demountably nested parts that are relatively rotatable of which one such part consists of a tubular plug of which one end is disposed by a head plate and the opposite plug end has a circumferentially disposed annular clearance gap therebetween, the marginal region of the annular plug being inset radially from the plug perimeter and disposed with a plurality of relatively narrow cam elements distributed about the axis of said plug and the inner edge of the annular disc being provided with tongue-shaped cleating lugs arranged in cooperative registry with the respective cam elements to initially leave a radial clearance gap therebetween, said gaps being progressively reduced when said container parts are relatively rotated to bring the lugs into wedged tangential interlock with their respective cams.

2. A coil stowage container comprising two demountably nested parts that are relatively rotatable of which one such part consists of a tubular plug of which one end is disposed by a head plate and the opposite plug end has a circumferentially disposed annular clearance gap axially in substantial parallelism to said plate, and the other of which container parts comprises a bodily reversible cup-shaped hood including a rim flange that is laterally spaced from the annular plug and head plate perimeter which is integrally spaced from the plug inner edge and the outer edge of the cup-shaped hood including a rim flange spanned by an annular disc, and the other of which container parts comprises a bodily reversible cup-shaped hood including a rim flange spanned by an annular disc that is integrally spaced from the rim flange and head plate perimeter which is integrally spaced from the annular plug inner edge.

3. A stowage container comprising two demountably nested parts that are relatively rotatable of which one such part consists of a tubular plug of which one end is disposed by a head plate and the opposite plug end has a circumferentially disposed annular clearance gap therebetween, the marginal region of the annular plug being inset radially from the plug perimeter and disposed with a plurality of relatively narrow cam elements distributed about the axis of said plug and the inner edge of the annular disc being provided with tongue-shaped cleating lugs arranged in cooperative registry with the respective cam elements to initially leave a radial clearance gap therebetween, said gap being progressively reduced when said container parts are relatively rotated to bring the lugs into wedged tangential interlock with their respective cams.

4. A stowage container comprising two demountably nested parts that are relatively rotatable of which one such part consists of a tubular plug of which one end is disposed by a head plate and the other plug end has a circumferentially disposed annular clearance gap therebetween, the marginal region of the annular plug being inset radially from the plug perimeter and disposed with a plurality of relatively narrow cam elements distributed about the axis of said plug and the inner edge of the annular disc being provided with tongue-shaped cleating lugs arranged in cooperative registry with the respective cam elements to initially leave a radial clearance gap therebetween, said gap being progressively reduced when said container parts are relatively rotated to bring the lugs into wedged tangential interlock with their respective cams.

5. A ribless container comprising two demountably nested parts that are relatively rotatable and respectively formed from plastic sheet material substantially uniform in thickness of which one such part consists of a hollow cylindrical plug of which one end is integrally spaced from the container plug inner edge and is integrally spaced from the annular disc, and the other of which container parts comprises a cylindrical rim flange spanned by an annular disc wherein inner peripheral circumferences said head plate to leave an inter-space therebetween, and cooperating cam elements and lug elements inbuilt within such interspace and each carried respectively by a different container part and which cooperating elements tangentially interlock such dual parts when relatively rotated.

6. A ribless container comprising two demountably nested parts that are relatively rotatable about a common axis and respectively formed
from transparent plastic sheet material of which one such part consists of a hollow cylindrical plug of which one end is integrally spanned by a head plate having an axially centralized bushing aperture therethrough and the other plug end is provided with a rim flange, and the other of which container parts comprises a cup-shaped hood including a rim flange spanned by an annular disc whose inner perimeter encircles said head plate to leave an interspace therebetween, and cam elements and lug elements each carried respectively by a different container part, said elements being arranged within said interspace to wedgily interlock when the container parts are manipulatively rotated.

EGBERT P. HOYLE.

No references cited.