(19) 世界知的所有権機関
国際事務局

(43) 国際公開日

WO 2017/061622 A1

(21) 国際出願番号： PCT/JP20 10/080020
(22) 国際出願日： 2016年10月7日 (07.10.2016)
(25) 国際出願の言語： 日本語
(26) 国際公開の言語： 日本語
(30) 優先権データ：
特許 2015-199655 2015年10月7日 (07.10.2015) JP

出願人：株式会社デンソー (DENSO CORPORATION - TION) [JP;JP] ; 4488661 愛知県刈谷市昭和町1丁目1番地 Aichi (JP).

発明者：奥田英樹 (OKUDA, Hideki) ; 4488661 愛知県刈谷市昭和町1丁目1番地 株式会社デンソーニ Aichi (JP).

代理人：名古屋国際特許業務法人 (NAGOYA IN-TERNATIONAL PATENT FIRM); 4600003 愛知県

名古屋市中区築一丁目20番19号 名古ビル

(54) 発明の名称：表示方法、及び表示制御装置

(57) Abstract: This display control device for displaying at least one piece of medical support information on a display device is provided with an image acquisition unit, a position acquisition unit, an image display unit, an information acquisition unit and an information display unit. The image display unit displays a target image, which is an image in a position corresponding to the device position, on the display device (S240). The information acquisition unit acquires at least one piece of medical support information, which is associated with the acquisition position indicating the position of a medical device at the time said medical support information was acquired (S250, S260). On the basis of the acquisition position associated with the medical support information, the information display unit performs information display in which the acquired at least one piece of medical support information is displayed associated with the position on the target image displayed on the display device (S270-S290).

(70) 要約: 少なくとも1つ医療支援情報表示装置に表示する医療支援情報は、画像取得部と、位置取得部と、画像表示部と、情報表示部を備える。画像表示部は、機器位置に対応する位置での画像である対象画像を表示装置に表示する (S240)。情報取得部は、少なくとも1つ医療支援情報で、当該医療支援情報が取得された機器の位置を表示することに付随して取得された少なくとも1つ医療支援情報 (S250, S260) を情報表示装置部、その取得した少なくとも1つ医療支援情報で、当該医療支援情報が表示位置付けて表示された表示装置に表示される対象画像上の位置と対応付けて表示する情報表示装置を実行する (S270-S290)。
添付公開書類：
ML, MR, NE, SN, TD, TG)

一国際調査報告 (条約第21条(3))
明細書

発明の名称：表示方法、及び表示制御装置

関連出願の相互参照

[0001]本国際出願は、2015年10月7日に日本国特許庁に出願された日本国特許出願番号第2015-199655号に基づくものであって、その優先権の利益を主張するものであり、日本国特許出願番号第2015-199655号のすべての内容が参照により本明細書に組み入れられる。

技術分野

[0002]本開示は、医療支援情報を表示する技術に関する。

背景技術

[0003]医療行為としての手術の支援に必要な医療支援情報を、患者の患部の断層画像と、神経モニタリングの結果とを並列に表示する装置が提案されている（特許文献1参照）。

先行技術文献

特許文献

[0004]特許文献1：特表2010—516400号公報

発明の概要

[0005]特許文献1に記載された装置では、断層画像と神経モニタリングの結果とを並列に表示するだけである。発明者の詳細な検討の結果、その表示を視認した術者は、断層画像と神経モニタリングの結果とがどのような関係にあるのかを直ちに認識することが困難であるという課題が見出された。

[0006]つまり、従来の技術では、医療行為に必要な情報を術者に認識しづらいという課題があった。

そこで、本開示は、医療支援情報を表示する技術において、医療支援情報を術者に認識しやすくする技術を提供する。

[0007]本開示の特徴は、医療行為の支援に関する少なくとも1つの医療支援情報を表示制御装置が表示装置に表示する表示方法である。
この表示方法は、患者の患部を含む部位を撮影した少なくとも1つの画像を含むモダリティ画像を取得し、医療行為に用いる医療機器の現在位置である機器位置を繰り返し取得し、取得したモダリティ画像の中から、取得した機器位置に対応する位置での画像である対象画像を表示装置に表示し、少なくとも1つの医療支援情報を取得する。ここで言う少なくとも1つの医療支援情報とは、当該医療支援情報が取得された時点での医療機器の位置を表す取得位置と対応付けられた医療支援情報である。

[0008]さらに、取得した少なくとも1つの医療支援情報を、当該医療支援情報に対応付けられた取得位置に基づいて、表示装置に表示された対象画像上の位置と対応付けて表示する情報表示を実行する。

[0009]このような表示方法によれば、少なくとも1つの医療支援情報を、対象画像上の位置と対応付けて表示できる。このため、表示方法によれば、少なくとも1つの医療支援情報と対象画像との対応関係を、術者に認識させやすくできる。

[0010]しかも、表示方法によって表示される対象画像は、医療機器の現在位置である機器位置に対応する位置での画像である。このため、表示方法によれば、機器位置と医療支援情報との対応関係を、術者に認識させやすくなる。

[0011]この結果、表示方法によれば、医療支援情報を表示する技術において、医療支援情報を術者が認識しやすい技術を提供できる。

本開示の他の一態様は、少なくとも1つの医療支援情報を表示装置に表示する表示制御装置である。

[0012]このような表示制御装置は、モダリティ画像を取得する画像取得部と、機器位置を繰り返し取得する位置取得部と、対象画像を表示装置に表示する画像表示部を備える。表示制御装置は、更に、少なくとも1つの医療支援情報を取得する情報取得部と、少なくとも1つの医療支援情報を対象画像上の位置と対応付けて表示する情報表示を実行する情報表示部とを備える。

[0013]このような表示制御装置によれば、上述した表示方法と同様の効果を得ることができる。
なお、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。

図面の簡単な説明

[0014] [図1] 医療支援システムの概略構成を示すブロック図である。

[図2] 情報登録処理の処理手順を示すフローチャートである。

[図3] 情報表示処理の処理手順を示すフローチャートである。

[図4] 情報表示処理による表示の一例を示す説明図である。

[図5] 情報表示処理による分割線の設定の一例を示す説明図である。

[図6] 分割線の設定の変形例を示す説明図である。

[図7] 分割線の設定の変形例を示す説明図である。

[図8] 情報表示処理による表示の変形例を示す説明図である。

符号の説明

[0015] 1 …医療支援システム 3 …撮影装置 5 …記憶装置 10 …医療用ナビゲーション 12 …位置特定部 14 …レジストレーション部 20 …テパイス 30 …表示制御装置

32 …制御部 34 …ROM 36 …RAM 38 …CPU 40 …計時部 42 …記憶部 44 …入力受付部 50 …表示装置 60 …画像表示領域 64 …表示球 66, 67, 68 …分割線 70 …情報表示フレーム 72 …表示枠 74 …引き出し線

発明を実施するための形態

[0016] 以下に本開示の実施形態を図面と共に説明する。

[1 - 1. 医療支援システム]

図1に示す医療支援システム1は、患者の患部を含む部位を撮影した画像を表示すると共に、患者に対する術者の医療行為の支援に関する情報を表示するシステムである。

[0017] ここで言う医療行為には、患部を切開し治療的処置を施す手術を含む。ここで言う手術には、例えば、脳外科手術や心臓外科手術などの各種の手術を
含む。
本実施形態において、医療支援システム1が表示する画像はモダリティ画像である。

このモダリティ画像は、後述する撮影装置3で撮影された画像であり、患者的患部を含む部位を撮影した少なくとも1つの画像を含む画像である。このモダリティ画像に相当する画像として、患者の患部を含む部位の3次元画像が考えられる。3次元画像は、例えば、患者の患部を撮影した複数の断層画像によって構成される。

撮影装置3は、医療用画像診断装置である。医療用画像診断装置には、例えば、コンピュータ断層画像撮影装置（いわゆるCT装置）、核磁気共鳴画像撮影装置（いわゆるMRI）、X線撮影装置、医療用超音波検査装置、核医学診断装置（いわゆるPET検査装置）、内視鏡装置などを含む。

なお、撮影装置3で撮影されたモダリティ画像は、記憶装置5に記憶される。ここで言う記憶装置5は、例えば、記憶内容を読み書き可能に構成された周知の記憶装置である。

医療支援システム1は、医療用ナビゲーション10と、少なくとも1つのデバイス20と、表示装置50と、表示制御装置30とを備えている。

医療用ナビゲーション10は、術者による医療行為を支援する周知の装置であり、位置特定部12と、レジストレーション部14とを備える。

位置特定部12は、医療行為に用いる医療機器の実空間上の現在位置（以下、機器位置と称す）を特定する。ここで言う医療機器は、手術に用いる手術器具を含む。ここで言う手術器具には、例えば、メス、電気メス、撮子、鉗子、医療用の顕微鏡などを含む。

この位置特定部12が医療機器の位置を特定する方法としては、周知の方法を用いればよい。この医療機器の位置を特定する方法としては、例えば、予め用意されたマーカを医療機器の特定の位置に取り付け、医療行為が実施される空間において予め規定された基準位置から医療機器における特定の位置までのベクトルを医療機器の位置として特定することが考えられる。なお
、ベクトルの特定方法としては、例えば、医療行為が実施される空間に設置され、マーカを撮影した画像を画像処理することが考えられる。

[0023] レジストレーション部 14 は、モダリティ画像における座標と、医療行為が実施される空間上の座標を対応づける。この座標の対応付けは、モダリティ画像における座標系を、医療行為が実施される空間上の座標系へと変換する、周知のレジストレーションによって実現すればよい。

[0024] デバイス 2 0 は、医療行為に用いられる装置である。本実施形態におけるデバイス 2 0 は、神経機能監視装置、生体モニタリング装置、生体検査装置、空調装置、などである。さらに、デバイス 2 0 には、医療用ナビゲーション装置、コンピュータ断層画像撮影装置、核磁気共鳴画像撮影装置、X 線撮影装置、医療用超音波検査装置、核医学診断装置、内視鏡装置を含んでもよい。

[0025] ここで言う神経機能監視装置は、医療行為が実施されている患者の神経機能を検査・監視する周知の装置である。

ここで言う生体モニタリング装置は、医療行為が実施されている患者の生体情報モニタリングする周知の装置である。ここで言う生体情報は、いわゆるバイタルサインである。ここで言うバイタルサインには、例えば、心電図、心拍数、血圧、体温、呼吸、脈拍、酸素飽和度、心拍数、脳波、筋電、麻酔深度、運動誘発電位、体性感覚誘発電位などを含む。

[0026] ここで言う生体検査装置は、患者の病変部位の組織（即ち、細胞）に対して生体検査を行う周知の装置である。ここで言う生体検査とは、病変部位の組織を採取し監察することによって、病気の診断または病変の拡大の程度を調べる検査である。

[0027] 空調装置は、医療行為を実施する空間の空気調和を実行する装置であり、当該空間の温度、湿度、吹き出す風量などのデータを出力する。

表示装置 5 0 は、表示制御装置 3 0 からの情報を表示する装置である。この表示装置 5 0 として、周知の液晶ディスプレイが考えられる。

[0028] 表示制御装置 3 0 は、制御部 3 2 と、計時部 4 0 と、記憶部 4 2 と、入力
受付部 4 4 とを備えた周知の制御装置である。
制御部 3 2 は、R O M 3 4 , R A M 3 6 , C P U 3 8 を有した周知のマイクロコンピュータである。R O M 3 4 は、電源を切断しても記憶内容を保持する必要のあるデータやプログラムを記憶する。R A M 3 6 は、データを一時的に格納する。C P U 3 8 は、R O M 3 4 またはR A M 3 6 に記憶されたプログラムに従って処理を実行する。

[0029]　計時部 4 0 は、絶対時刻を計測する。記憶部 4 2 は、記憶内容を読み書き可能に構成された周知の不揮発性記憶装置である。
入力受付部 4 4 は、情報の入力を受け付ける周知の入力装置である。この入力受付部 4 4 には、キーボードやポインティングデバイス、スイッチ、マイクロホンなどの各種入力機器を含む。ここで言うポインティングデバイスには、タッチパッドやタッチパネルを含む。ここで言うタッチパネルは、表示装置 5 0 と一体に構成されていてもよい。

[0030]　制御部 3 2 のR O M 3 4 には、制御部 3 2 が情報登録処理を実行するための処理プログラムが格納されている。ここで言う情報登録処理とは、デバイス 2 0 からの情報が予め規定された規定状態を満たした場合に、当該情報のそれぞれを医療支援情報として、その規定状態を満たした時点での医療機器の位置である取得位置と対応付けて記憶する処理である。

[0031]　また、制御部 3 2 のR O M 3 4 には、制御部 3 2 が情報表示処理を実行するための処理プログラムが格納されている。ここで言う情報表示処理とは、機器位置に対応するモダリティ画像を表示すると共に、その機器位置から規定された領域内の取得位置と対応付けられた医療支援情報を見表示する処理である。

[1-2. 情報登録処理]
次に、制御部 3 2 が実行する情報登録処理について説明する。

[0032] この情報登録処理が起動されると、図 2 に示すように、制御部 3 2 は、各デバイス 2 0 からの情報を取得する (S 1 1 0)。このS 1 1 0 では、制御部 3 2 は、デバイス 2 0 のそれぞれから、神経機能のモニタリング結果、生
体情報、生体検査の結果などを取得する。

続いて、情報登録処理では、制御部３２は、医療用ナビゲーション１０の位置特定部１２で特定した機器位置を取得する（S１２０）。さらに、制御部３２は、S１１０で取得したデバイス２０からの情報のうち少なくとも１つが、予め規定された規定状態を表しているか否かを判定する（S１３０）。ここで言う規定状態とは、例えば、術者による医療行為の継続を禁止する閾値として予め規定された状態であり、デバイス２０からの情報ごとに規定されている。

S１３０では、例えば、神経機能のモニタリングの結果を示す信号電位が、予め規定された状態であることを示している場合、当該情報が規定状態を表しているものとすればよい。また、S１３０では、例えば、生体情報のそれぞれを示す信号電位が、予め規定された状態であることを示した場合、当該情報が規定状態を表しているものとすればよい。さらに、S１３０では、例えば、生体検査の結果、検査の対象とした細胞が病変であれば、当該情報が規定状態を表しているものとすればよい。

このS１３０での判定の結果、各デバイス２０からの全ての情報が規定状態を表していなければ（S１３０：ＮＯ）、制御部３２は、詳しくは後述するS１５０へと情報登録処理を移行させる。一方、S１３０での判定の結果、各デバイス２０からの情報のうち少なくとも１つの情報が規定状態であれば（S１３０：ＹＥＳ）、制御部３２は、情報登録処理をS１４０へと移行させる。

そのS１４０では、制御部３２は、デバイス２０から取得された情報であって規定状態を表している情報を医療支援情報として、記憶部４２に記憶する。ここで言う医療支援情報とは、術者による医療行為を支援する情報である。

具体的にS１４０では、制御部３２は、医療支援情報を、当該医療支援情報が取得された時点で医療機器の位置を表す取得位置（即ち、S１２０で取得した機器位置）に対応付けて記憶部４２に記憶する。なお、生体検査装
置での検査結果を医療支援情報として記憶部42に記憶する場合、当該医療支援情報対応付ける取得情報は、病変組織を取得した患部の部位である。

さらに、S140では、制御部32は、医療支援情報を、当該医療支援情報取得した時点での絶対時刻に対応付けて記憶部42に記憶する。なお、医療支援情報対応付ける絶対時刻は、計時部40で計測すればよい。

その後、制御部32は、情報登録処理をS110へと戻す。

ところで、各デバイス20からの全ての情報が規定状態を表していない場合に移行するS150では、制御部32は、情報登録処理を終了する登録終了指令を取得したか否かを判定する。このS150での判定の結果、登録終了指令を取得していなければ（S150:NO）、制御部32は、情報登録処理をS110へと戻す。

一方、S150での判定の結果、登録終了指令を取得していれば（S150:YES）、制御部32は、情報登録処理を終了する。なお、登録終了指令は、後述する情報表示処理の終了タイミングで取得されるものでもよいし、入力受付部44を介して取得されるものでもよい。

つまり、情報登録処理では、制御部32は、各デバイス20から取得した情報のうち、規定状態を表している情報を医療支援情報として、取得位置及び絶対時刻に対応付けて記憶する。

[1-3. 情報表示処理]
次に、制御部32が実行する情報表示処理について説明する。

この情報表示処理が起動されると、図3に示すように、まず、制御部32は、医療用ナビゲーション10のレジストレーション部14で医療行為が実施される空間上の座標との対応付けが実施されたモダリティ画像を取得する（S210）。続いて、情報表示処理では、制御部32は、医療用ナビゲーション10の位置特定部12で特定した機器位置を取得する（S220）。

さらに、制御部32は、S220で取得した機器位置を基点として、表示球を設定する（S230）。ここで言う表示球とは、医療行為が実施される実空間において予め規定された大きな探索領域である。この表示球の形状
の一例として、球体が考えられる。具体的にS230では、S220で取得した機器位置を中心として、球体に規定された表示球を設定してもよい。

[0044] 続いて、情報表示処理では、制御部32は、S210で取得したモダリティ画像の中から対象画像を取得し、その対象画像を表示装置50に出力する（S240）。ここで言う対象画像とは、S220で取得した機器位置に対応する位置での画像である。

[0045] 例えば、モダリティ画像が複数の断層画像を有している場合には、機器位置の位置で撮影した断層画像を対象画像とすることが考えられる。また、予め規定された基準位置から医療機器における特定の位置までのベクトルを機器位置として取得した場合には、その取得したベクトルに直交する断面での画像を、対象画像とすることが考えられる。

[0046] なお、対象画像を取得した表示装置50は、図4に示すように、当該表示装置50の画像表示領域60に対象画像を表示する。ここで言う画像表示領域60とは、表示装置50の表示面における一部分の領域であり、対象画像が表示される表示装置50の表示領域である。

[0047] 本実施形態において、対象画像の表示は、対象画像における機器位置62が、表示装置50の画像表示領域の中心に一致するように実行される。図4においては、開示内容を容易に理解できるように、表示球64を表示しているが、表示球64は表示されないともよい。

[0048] さらに、情報表示処理では、制御部32は、S230で設定した表示球内に位置することを表す取得位置と対応付けられた医療支援情報が存在するか否かを判定する（S250）。このS250での判定の結果、表示球内に位置することを表す取得位置と対応付けられた医療支援情報が存在しなければ（S250：N○）、制御部32は、詳しく後述するS300へと情報表示処理を移行させる。

[0049] 一方、S250での判定の結果、表示球内に位置することを表す取得位置と対応付けられた医療支援情報が存在していれば（S250：YES）、制御部32は、情報表示処理をS260へと移行させる。そのS260では、
制御部32は、表示球内に位置することを表す取得位置と対応付けられた全ての医療支援情報を記憶部42から取得する。

[0050]さらに、制御部32は、画像表示領域60に表示された対象画像に分割線66を設定する（S270）。分割線66とは、少なくとも1つの仮想的な直線である。このS270では、例えば、図5に示すように、分割線66のそれぞれが、対象画像上の表示球64の代表点を通過し、表示球64の周に直交するように設定される。なお、ここで言う表示球64の代表点とは、表示球64を代表する座標であり、例えば、表示球64の中心である。

[0051]図5においては、開示内容を容易に理解できるように、対象画像上に分割線66を図示しているが、情報表示処理においては、表示装置50に表示される対象画像に分割線66が表示されなくてもよい。

[0052]続いて、情報表示処理では、制御部32は、S260で取得した医療支援情報それぞれの表示様式を決定する様式制御を行い実行する（S280）。さらに、制御部32は、S260で取得した医療支援情報それぞれを、S280で決定した表示様式で表示装置50に出力する（S290）。そして、医療支援情報それぞれを取得した表示装置50は、その取得した医療支援情報を対象画像上の位置と対応付けて表示する情報表示を実行する。

[0053]具体的にS290では、制御部32は、情報表示フレーム70を医療支援情報ごとに表示する。ここで言う情報表示フレーム70とは、図4に示すように、表示枠72と、引き出し線74を有する。表示枠72とは、医療支援情報が表示される枠である。引き出し線74は、当該医療支援情報と対応付けられた取得位置に対応する対象画像上の位置まで当該表示枠72から延びる線である。

[0054]さらに、S290では、制御部32は、情報表示フレーム70を表示装置50に表示し、医療支援情報を表示する。具体的にS290では、S270で設定された分割線66と引き出し線74のそれぞれが非重複であり、かつ、引き出し線74同士が非重複となるように、情報表示フレーム70を表示する。この表示装置50での情報表示フレーム70の表示は、S280に
て決定された表示態様に従って実行される。

なお、S290では、制御部32は、情報表示フレーム70を医療支援情報のごとに異なる色で表示してもよいし、情報表示フレーム70を医療支援情報の種類ごとに異なる色で表示してもよい。図4においては、情報表示フレーム70を表示する色の違いを、線の種類（実線、破線、一点鎖線など）の違いによって表現している。

また、S280では、制御部32は、各医療支援情報に対応付けられた取得位置と、S220で取得した機器位置との相対位置に応じて、情報表示フレーム70の表示態様を決定する。表示態様の一例として、相対位置に応じて、情報表示フレーム70それぞれの表示枠の大きさを変更することが考えられる。具体的には、S220で取得した機器位置から、各医療支援情報に対応付けられた取得位置までの距離が長いほど、情報表示フレーム70の表示枠の大きさを小さくする。

S280では、制御部32は、更に、各医療支援情報に対応付けられた取得位置が、術者から見てS220で取得した機器位置よりも前方であるか手前側であるかを相対位置として、情報表示フレーム70の表示態様を決定する。この場合、各医療支援情報に対応付けられた取得位置が、術者から見て機器位置よりも手前側であれば、情報表示フレーム70の透過性を高くする。ここで言う透過性とは、光の透過の度合いであり、透過性が高いほど、光の透過度合いが高いことを意味する。

すなわち、S280及びS290では、表示球内に位置することを表す取得位置と対応付けられた医療支援情報のそれぞれを、各取得位置と機器位置との相対位置に基づいて決定した表示態様に従って表示する。

制御部32は、その後、情報表示処理をS300へと移行させる。

そのS300では、制御部32は、情報表示処理を終了する表示終了指令を取得したか否かを判定する。このS300での判定の結果、表示終了指令を取得していなければ（S300：NO）、制御部32は、情報登録処理をS220へと戻す。一方、S300での判定の結果、表示終了指令を取得し
ていれば（S 3 0 0 : Y E S）、制御部 3 2 は、情報表示処理を終了する。

つまり、情報表示処理では、制御部 3 2 は、機器位置に対応する対象画像を表示すると共に、機器位置を中心として表示球64を設定し、その表示球内に位置することを表す取得位置と対応付けられた全ての医療支援情報を取得する。そして、医療支援情報のそれぞれを表示装置50に表示する。

この医療支援情報の表示は、情報表示フレーム70の表示枠72を対象画像の周辺に表示することで実施される。さらに、情報表示処理における医療支援情報の表示では、情報表示フレーム70の表示検想を、各取得位置と機器位置との相対位置に基づいて決定し、その決定された表示検想に従って実行する。

そして、情報表示処理では、S 2 2 0 からS 3 0 0 までのステップが繰り返される。この間に機器位置が変化すると、情報表示処理では、機器位置の変化に併せて、画像表示領域60に表示する対象画像を変更する。更に、情報表示処理では、画像表示領域60に表示される対象画像に併せて、表示装置50に表示する医療支援情報の表示を変更する。

ここで言う医療支援情報の表示の変更とは、表示装置50に表示する医療支援情報そのものを変更すること、表示装置50に表示する医療支援情報（即ち、情報表示フレーム）の表示の検想を変更すること、表示装置50に表示する医療支援情報（即ち、情報表示フレーム）の表示の位置を変更することなどを含む。この医療支援情報の表示の位置の変更は、S 2 7 0 で設定された分割線66と引き出し線74のそれぞれとが非重複であり、かつ、引き出し線74同士が非重複となるように実現すればよい。[1-4.実施形態の効果]

（1-4a）以上説明したように、情報表示処理によれば、少なくとも1つの医療支援情報を対象画像上の位置と対応付けて表示できる。このため、情報表示処理によれば、少なくとも1つの医療支援情報と対象画像との対応関係を、術者に認識させやすくできる。

しかも、情報表示処理によって表示される対象画像は、機器位置に対応す
位置での画像である。このため、情報表示処理によれば、機器位置と取得位置との位置関係を、術者に認識させやすくできる。

この結果、情報表示処理によれば、医療支援情報を表示する技術において、医療支援情報を術者に認識しやすい技術を提供できる。

（1-4 b）情報表示処理では、引き出し線 74 のそれぞれと分割線 66 とが被重複であり、かつ、引き出し線 74 同士が被重複となるように、情報表示フレーム 70 を表示している。したがって、情報表示処理によれば、医療支援情報のそれぞれに対応する取得位置の対象画像上の位置を、術者に認識させやすくできる。

（1-4 c）また、情報表示処理では、機器位置から、各医療支援情報に対応付けられた取得位置までの距離が長いほど、情報表示フレーム 70 の表示枠 72 の大きさを小さくして表示している。すなわち、情報表示処理によれば、相対位置に応じて、表示枠の大きさを変更できる。この結果、情報表示処理によれば、医療支援情報に対応する取得位置と機器位置との相対位置を認識しやすくできる。

（1-4 d）さらに、情報表示処理では、各医療支援情報に対応付けられた取得位置が、術者から見て機器位置よりも手前側であれば、情報表示フレーム 70 の透過性を高くして表示している。

これにより、情報表示処理によれば、医療支援情報に対応する取得位置が、機器位置よりも術者から見て奥側であるか手前側であるかを術者に認識させることができる。さらに、情報表示処理によれば、透過性の度合いによって、機器位置から取得位置までの距離を術者に認識させることができる。

（1-4 e）情報表示処理において、医療支援情報ごとに情報表示フレーム 70 を異なる色で表示すれば、各医療支援情報を術者に認識させやすくすることができる。

また、情報表示処理において、医療支援情報の種類ごとに情報表示フレーム 70 の表示色を変えれば、術者は、表示装置 50 に表示された医療支援情報の種類を認識できる。
なお、情報表示処理では、機器位置としてのベクトルに直交する断面での画像を対象画像として表示装置50に表示している。このベクトルの向きは、医療機器における特定の位置までの基準位置からのベクトルの向きであり、術者の視線の向きに近似する。

したがって、情報表示処理によれば、術者が見やすい画像を対象画像として表示することができる、患者の患部の様子を術者に認識させやすくできる。

以下、本実示の実施形態について説明したが、本実示は上記実施形態に限定されるものではなく、本実示の要旨を逸脱しない範囲において、様々な形態にて実施することが可能である。

（2. 1）上記実施形態の情報表示処理におけるS270では、分割線66のそれぞれが、表示線64の代表点を通過し、表示線64の周に直交するように、分割線66を設定していたが、分割線66の設定方法は、これに限りるものではない。情報表示処理におけるS270では、図6、図7に示すように、対象画像に対して水平または垂直となるように分割線を設定してもよい。

この場合、図6に示すように、対象画像の水平軸と平行となるように1つの分割線67を設定し、対象画像の水平軸に直交する方向に複数の分割線68を設定してもよい。また、図7に示すように、対象画像の垂直軸と平行となるように1つの分割線68を設定し、対象画像の垂直軸に直交する方向に複数の分割線67を設定してもよい。

図6、図7においては、開示内容を容易に理解できるように、対象画像上に分割線67、68を図示しているが、情報表示処理においては、表示装置50に表示される対象画像に分割線67、68を表示しなくともよい。

（2. 2）ところで、上記実施形態の情報表示処理のS240では、対象画像として、モダリティ画像における1つの断面での画像を表示していたが、情報表示処理のS240で表示する対象画像は、これに限るものではない。例えば、図8に示すように、体軸断面、矢状断面、冠状断面、斜視画像の
それぞれを対象画像として表示してもよい。この場合、図8に示すように、各断面での画像を画像表示領域60に表示し、更に、各断面での画像に対して情報表示フレーム70を表示してもよい。

さらには、情報表示処理のS240では、体軸断面、矢状断面、冠状断面、斜視画像のうちのいずれか1つの画像を対象画像として表示してもよいし、患者の患部を撮影したその他の画像を表示してもよい。

すなわち、情報表示処理のS240では、互いに異なる断面での画像を、対象画像として表示装置50に表示してもよい。

（2.3）また、上記実施形態のS280では、態様制御の一例として、S220で取得した機器位置と、各医療支援情報に対応付けられた取得位置との相対位置に応じて、情報表示フレーム70それぞれの表示枠72の大きさを変更することを実行していたが、態様制御は、これに限るものではない。

例えば、S220で取得した機器位置と、各医療支援情報に対応付けられた取得位置との相対位置に応じて、情報表示フレーム70の色を変更することを、態様制御として実行してもよい。さらに、相対位置に応じて、情報表示フレーム70それぞれの表示枠72の大きさの変更と情報表示フレーム70の色の変更を組み合わせることを、態様制御として実行してもよい。

（2.4）なお、上記実施形態において医療用の顕微鏡を医療機器とする場合、情報登録処理のS120及び情報表示処理のS220では、その医療用の顕微鏡の焦点位置を機器位置として取得してもよい。

このように、医療用の顕微鏡の焦点位置を機器位置として取得すれば、その焦点位置に対応する画像を対象画像として表示でき、術者の視点が合う位置に一致する画像を対象画像として表示できる。この結果、医療支援システムによれば、対象画像を認識しやすくでき、医療支援情報との対象画像との関係も認識しやすくなる。

（2.5）上記実施形態の医療支援システム1は、医療用ナビゲーション10と、表示制御装置30を別の構成として記載していたが、医療支援シ
システム1の構成は、これに限るものではない。例えば、医療支援システム1においては、医療用ナビゲーション10が表示制御装置30を備えていてもよい。この場合、表示制御装置30は、位置特定部12とレジストレーション部14との機能を有していても良い。

なお、表示制御装置30を備える機器は、医療用ナビゲーション10に限るものではなく、例えば、神経機能検査装置や生体モニタリング装置が表示制御装置30を備えていてもよい。

さらに言えば、表示制御装置30は、撮影装置3で撮影されたモダリティ画像を直接取得してもよい。

(2. 6) 上記実施形態における制御部32が実行する機能の一部または全部は、一つあるいは複数のIC等によりハードウェア的に構成されていてもよい。

(2. 7) 上記実施形態においては、ROM 34にプログラムが格納されていたが、プログラムを格納する記憶媒体は、これに限るものではなく、半導体メモリなどの非遷移的実体的記憶媒体に格納されていてもよい。

(2. 8) また、制御部32は非遷移的実体的記録媒体に格納されたプログラムを実行する。このプログラムが実行されることで、プログラムに対応する方法が実現される。

(2. 9) 上記実施形態の構成の一部を省略した構想も本開示の実施形態である。また、上記実施形態と変形例とを適宜組み合わせて構成される構想も本開示の実施形態である。また、特許請求の範囲に記載した文言によって特定される技術思想に含まれるあらゆる構想も本開示の実施形態である。

[3. 対応関係]

情報表示処理におけるS210を実行することで得られる機能が画像取得部に相当する。S220を実行することで得られる機能が位置取得部に相当する。S240を実行することで得られる機能が画像表示部に相当する。S250，S260を実行することで得られる機能が情報取得部に相当する。S270～S290を実行することで得られる機能が情報表示部に相当する。
また、S_{230} を実行することで得られる機能が設定部に相当する。S_{270} を実行することで得られる機能が線設定部に相当する。S_{290} を実行することで得られる機能が表示実行部に相当する。
請求の範囲

[請求項1] 医療行為の支援に関する少なくとも1つの医療支援情報を表示制御装置（30）が表示装置（50）に表示する表示方法であって、

患者的患部を含む部位を撮影した少なくとも1つの画像を含むモダリティ画像を取得（S210）、

前記医療行為に用いる医療機器の現在位置である機器位置を繰り返し取得（S220）、

取得した前記モダリティ画像の中から、取得した前記機器位置に対応する位置での前記画像である対象画像を前記表示装置に表示（S240）、

前記少なくとも1つの医療支援情報を、当該医療支援情報が取得された時点ででの前記医療機器の位置を表す取得位置と対応付けられた前記少なくとも1つの医療支援情報を取得（S250, S260）、

取得した前記少なくとも1つの医療支援情報を、当該医療支援情報を対応付けられた取得位置に基づいて、前記表示装置に表示された前記対象画像上の位置に対応付けて表示する情報を表示を実行する（S270〜S290）、

表示方法。

[請求項2] 医療行為の支援に関する少なくとも1つの医療支援情報を表示装置（50）に表示する表示制御装置（30）であって、

患者的患部を含む部位を撮影した少なくとも1つの画像を含むモダリティ画像を取得する画像取得部（30, S210）と、

前記医療行為に用いる医療機器の現在位置である機器位置を繰り返し取得する位置取得部（30, S220）と、

前記画像取得部で取得したモダリティ画像の中から、前記位置取得部で取得した機器位置に対応する位置での前記画像である対象画像を前記表示装置に表示する画像表示部（30, S240）と、
前記少なくとも1つ以上の医療支援情報をあって、当該医療支援情報が
取得された時点での前記医療機器の位置を表す取得位置と対応付けら
れた前記少なくとも1つ以上の医療支援情報を取得する情報取得部（30
、S250、S260）と、

前記情報取得部で取得した少なくとも1つ以上の医療支援情報を、当該
医療支援情報を対応付けられた取得位置に従って、前記画像表示部
で表示装置に表示された前記対象画像上の位置と対応付けて表示する
情報表示を実行する情報表示部（30、S270〜S290）と

を備える表示制御装置。

[請求項3]

前記位置取得部で取得した機器位置を基点として設定された領域で
ある探索領域を設定する設定部（30、S230）を備え、

前記情報取得部は、

前記設定部で設定された探索領域内に位置することを表す前記取得
位置と対応付けられた前記少なくとも1つ以上の医療支援情報を取得する
請求項2に記載の表示制御装置。

[請求項4]

前記情報表示部は、

前記対象画像に、少なくとも1つの仮想的な直線である分割線を設
定する線設定部（30、S270）と、

前記少なくとも1つ以上の医療支援情報と、当該医療支援情報と対応付
けられた取得位置に対応する前記対象画像上の位置まで前記少なくとも
1つ以上の医療支援情報のそれぞれから延びる引き出し線とを表示する
ことで、前記情報表示を実行する表示実行部（30、S290）と

を備え、

前記表示実行部は、

前記線設定部で設定された分割線と前記引き出し線のそれぞれとが
非重複であり、かつ、前記引き出し線同士が非重複となるように、前
記情報表示を実行する、

請求項2または請求項3に記載の表示制御装置。
[請求項5] 前記線設定部は、
前記設定部で設定された探索領域の代表点を通過するように前記分割線を設定する、請求項4に記載の表示制御装置。

[請求項6] 前記線設定部は、
前記対象画像に対して水平または垂直となるように前記分割線を設定する、請求項4に記載の表示制御装置。

[請求項7] 前記表示実行部は、
前記位置取得部で取得した機器位置と前記取得位置との相対位置に応じて、前記情報表示フレームの色を変更するものを、前記態様制御裝置。

[請求項8] 前記表示実行部は、
前記情報表示フレームを、前記少なくとも1つの医療支援情報のそれぞれが表示される表示枠（72）と、当該表示枠からの引き出し線（74）を有した情報表示フレーム（70）を、前記少なくとも1つの医療支援情報ごとに表示することを、前記情報表示として実行する、請求項4から請求項6までのいずれか一項に記載の表示制御装置。

[請求項9] 前記表示実行部は、
前記情報表示フレームを、前記少なくとも1つの医療支援情報の種類ごとに異なる色で表示することを、前記情報表示として実行する、請求項7または請求項8に記載の表示制御装置。

[請求項10] 前記表示実行部は、
前記位置取得部で取得した機器位置と前記取得位置との相対位置に応じて、前記情報表示フレームの表示態様を制御する態様制御を、前記情報表示として実行する、請求項7から請求項9までのいずれか一項に記載の表示制御装置。

[請求項11] 前記表示実行部は、
前記位置取得部で取得した機器位置と前記取得位置との相対位置に応じて、前記情報表示フレームの色を変更することを、前記態様制御
として実行する、請求項 10 に記載の表示制御装置。

[請求項 12]
前記表示実行部は、
前記位置取得部で取得した機器位置と前記取得位置との相対位置に
応じて、前記表示枠の大きさを変更することを、前記機能制御として
実行する、請求項 10 または請求項 11 に記載の表示制御装置。

[請求項 13]
前記表示実行部は、
前記位置取得部で取得した機器位置から前記取得位置までの距離が
長いほど、前記表示枠の大きさを小さくすることを、前記機能制御と
して実行する、請求項 12 に記載の表示制御装置。

[請求項 14]
前記表示実行部は、
前記取得位置が、術者から見て前記機器位置よりも奥側であるか手
前側であるかを、前記相対位置として前記機能制御を実行する、請求
項 10 から請求項 13 までのいずれか一項に記載の表示制御装置。

[請求項 15]
前記表示実行部は、
前記取得位置が、術者から見て前記機器位置よりも手前側であれば
、前記情報表示フレームの透過程を高くすることを、前記機能制御と
して実行する、請求項 14 に記載の表示制御装置。

[請求項 16]
前記位置取得部は、
予め規定された基準位置から前記医療機器における特定の位置まで
のベクトルを、前記機器位置として取得し、
前記画像表示部は、
前記機器位置として取得したベクトルに直交する断面での前記画像
を、前記対象画像として前記表示装置に表示する、請求項 2 から請求
項 15 までのいずれか一項に記載の表示制御装置。

[請求項 17]
前記画像表示部は、
互いに異なる断面での前記画像のそれぞれを、前記対象画像として
前記表示装置に表示する、請求項 2 から請求項 16 までのいずれか一
項に記載の表示制御装置。
情報登録処理

各デバイスからの情報を取得

S110

機器位置を取得

S120

デバイスからの情報は規定状態？

YES

S140

NO

登録終了指令を取得？

YES

END

S130

NO

医療支援情報を取得位置とを対応付けて登録
FIG.3

情報表示処理

レジスト済の
モダリティ画像を取得

S210

機器位置の取得

S220

表示球の設定

S230

対象画像を表示

S240

表示球内に
医療支援情報あり？

S250

YES

表示球内の
医療支援情報を取得

S260

分割線を設定

S270

医療支援情報の
表示態様を決定

S280

医療支援情報を表示

S290

NO

表示終了指令を取得？

S300

YES

END
[図7]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

A61B 6/1 2 (2006.01) i, A61B 5/055 (2006.01) i, A61B 6/03 (2006.01) i, G06T 1/00 (2006.01) n

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A 61 B 6/ 12 , A 61 B 5 / 0 5 5 , A 61 B 6 / 0 3 , G 0 6 T 1 / 0 0

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996
Kokai Jitsuyo Shinan Koho 1971-2016
Jitsuyo Shinan Koho 1996-2016
Toroku Jitsuyo Shinan Koho 1994-2016

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X JP 2 0 0 0 - 2 6 2 5 1 8 A (Toshiba Corp),
A 2 6 September 2 0 0 0 (2 6 . 0 9 . 2 0 0 0),
fig . 4 0 , 4 1
& US 6 3 6 3 1 3 4 B 1
fig . 4 0 , 4 1

1-3, 16, 17
4-15

Date of the actual completion of the international search
17 November 2016 (17.11.16)

Date of mailing of the international search report
06 December 2016 (06.12.16)

Name and mailing address of the ISA/
Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku,
Tokyo 100-8915, Japan

Authorized officer

Telephone No.

Form PCT/ISA/210 (second sheet) (January 2015)
A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. A61B6/12 (2006.01), A61B5/055 (2006.01), A61B6/03 (2006.01), G06T1/00 (2006.01)

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. A61B6/12, A61B5/055, A61B6/03, G06T1/00

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカタログ</th>
<th>引用文献名及及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する文献の番号</th>
</tr>
</thead>
</table>

管理人：ベンテフファミリーに関する別紙を参照。

引文文献のカテゴリー

* A 特に関連のある文献ではなく、一般的な技術水準を示すもの
* M 国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
* L 有権者主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
* 保護口頭による開示、使用、展示等に言及する文献

国際調査を完了した日
17.11.2016

国際調査報告の発送日
06.12.2016