(54) Title: NITROSATED AND NITROSYLATED CYCLOOXYGENASE-2 INHIBITORS, COMPOSITIONS AND METHODS OF USE

(57) Abstract: The present invention describes novel nitrosated and/or nitrosylated cyclooxygenase 2 (COX-2) inhibitors and novel compositions comprising at least one nitrosated and/or nitrosylated cyclooxygenase 2 (COX-2) inhibitor, and, optionally, at least one compound taht donates, transfers or releases nitric oxide, stimulates endogenous synthesis of nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor or is a substrate for nitric oxide synthase, and/or optionally, at least one therapeutic agent, such as, steroids, nonsteroidal antiinflammatory compounds (NSAID), 5-lipooxygenase (5-LO) inhibitors, leukotriene B4 (LTB4) receptor antagonists, leukotriene A4 (LTA4) hydrolase inhibitors, 5-HT agonists, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitors, H2 antagonists, antineoplastic agents, antplatelet agents, decongestants, diuretics, sedating or non-sedating anti-histamines, inducible nitric oxide synthase inhibitors, opioids, analgetics, Helicobacter pylori inhibitors, proton pump inhibitors, isoprostane inhibitors, and mixtures thereof. The present invention also provides novel compositions comprising at least one parent COX-2 inhibitor and at least one nitric oxide donor, and, optionally, at least one therapeutic agent. The present invention also provides kits and methods for treating inflammation, pain and fever; for treating and/or improving the gastrointestinal properties of COX-2 inhibitors; for facilitating wound healing; for treating and/or preventing renal toxicity; and for treating and/or preventing other disorders resulting from elevated levels of cyclooxygenase-2.
NITROSATED AND NITROSYLATED CYCLOOXYGENASE-2 INHIBITORS, COMPOSITIONS AND METHODS OF USE

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 60/171,623 filed December 23, 1999, and U.S. Provisional Application No. 60/226,085 filed August 18, 2000.

FIELD OF THE INVENTION

The present invention describes novel nitrosated and/or nitrosylated cyclooxygenase 2 (COX-2) inhibitors and novel compositions comprising at least one nitrosated and/or nitrosylated cyclooxygenase 2 (COX-2) inhibitor, and, optionally, at least one compound that donates, transfers or releases nitric oxide, stimulates endogenous synthesis of nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor or is a substrate for nitric oxide synthase, and/or at least one therapeutic agent. The present invention also provides novel compositions comprising at least one COX-2 inhibitor. The present invention also provides methods for treating inflammation, pain and fever; for treating and/or improving the gastrointestinal properties of COX-2 inhibitors; for facilitating wound healing; for treating and/or preventing renal toxicity; and for treating and/or preventing other disorders resulting from elevated levels of cyclooxygenase-2.

BACKGROUND OF THE INVENTION

Nonsteroidal anti-inflammatory compounds (NSAIDs) are widely used for the treatment of pain, inflammation, and acute and chronic inflammatory disorders such as osteoarthritis and rheumatoid arthritis. These compounds inhibit the activity of the enzyme cyclooxygenase (COX), also known as prostaglandin G/H synthase, which is the enzyme that converts arachidonic acid into prostanoids. The NSAIDs also inhibit the production of other prostaglandins, especially prostaglandin G₂, prostaglandin H₂ and prostaglandin E₂, thereby reducing the prostaglandin-induced pain and swelling associated with the inflammation process. The chronic use of NSAIDs has been associated with adverse effects, such as gastrointestinal ulceration and renal toxicity. The undesirable side effects are also due to the inhibition of prostaglandin in the affected organ.

Recently two isoforms of cyclooxygenase, encoded by two distinct genes (Kujubu et al, J. Biol. Chem., 266, 12866-12872 (1991)), have been identified – a
constitutive form, cyclooxygenase-1 (COX-1), and an inductive form, cyclooxygenase-2 (COX-2). It is thought that the antiinflammatory effects of NSAIDs are mediated by the inhibition of COX-2, whereas the side effects seem to be caused by the inhibition of COX-1. The NSAIDs currently on the market either inhibit both isoforms of COX with little selectivity for either isoform or are COX-1 selective. Recently compounds that are selective COX-2 inhibitors have been developed and marketed. These selective COX-2 inhibitors have the desired therapeutic profile of an antiinflammatory drug without the adverse effects commonly associated with the inhibition of COX-1. However, these compounds can result in dyspepsia and can cause gastropathy (Mohammed et al, N. Engl. J. Med., 340(25) 2005 (1999)).

97/36863, WO 98/03484, WO 98/41511, WO 98/41516, WO 98/43966, WO 99/14194, WO 99/14195, WO 99/23087, WO 99/41224 and WO 00/68215 assigned to Merck Frosst Canada & Co., and in WO 99/59635 assigned to Merck Sharp & Dohme Limited; and in U. S. Patent No. 5,380,738 assigned to Monsanto Company; and in WO 00/01380 assigned to A. Nattermann & Co.; and in WO 99/61016 assigned to Nippon Shinyaku Co. Ltd.; and in WO 99/33796 assigned to Nissin Food Products Co. Ltd.; and in WO 99/11605 assigned to Novartis AG; and in WO 98/33769 assigned to Nycomed Austria GMBH; and in U. S. Patent Nos. 6,077,869 and 6,083,969 and in WO 00/51685 assigned to Ortho-McNeil Pharmaceutical, Inc.; and in U. S. Patent No. 5,783,597 assigned to Ortho Pharmaceutical Corporation; and in WO 98/07714 assigned to Oxis International Inc.; and in WO 00/10993 assigned to Pacific Corporation; and in EP 0 937 722 A1 and in WO 98/50033, WO 99/05104, WO 99/35130 and WO 99/64415 assigned to Pfizer Inc.; and in WO 00/48583 assigned to Pozen Inc.; and in U. S. Patent No. 5,908,858 assigned to Sankyo Company Limited; and in WO 97/25045 assigned to SmithKline Beecham Corporation; and in U.S. Patent No. 5,399,357 assigned to Takeda Chemical Industries, Ltd.; and in WO 99/20589 assigned to The University of Sydney; and in U. S. Patent No. 5,475,021 and WO 00/40087 assigned to Vanderbilt University; and in WO 99/59634 assigned to Wakamoto Pharmaceutical Co. Ltd., the disclosures of each of which are incorporated by reference herein in their entirety.

There is still a need in the art for COX-2 inhibitor compounds that have gastroprotective properties, facilitate wound healing, decreased renal toxicity and dyspepsia, and that can be used at low dosages. The present invention is directed to these, as well as other, important ends.

SUMMARY OF THE INVENTION

The present invention provides novel nitrosated and/or nitrosylated COX-2 inhibitors, which are COX-2 inhibitors linked to at least one nitrogen monoxide group (NO), and/or at least one nitrogen dioxide group (NO₂) (i.e., nitrosylated and/or nitrosated group, respectively). The resulting compounds are potent analgesics, have antiinflammatory properties and have an unexpected potential for facilitating wound healing. The novel compounds also have unexpected properties in the treatment and/or prevention of renal toxicity. The COX-2 inhibitors can be nitrosated and/or nitrosylated through one or more sites, such as oxygen.
(hydroxyl condensation), sulfur (sulfhydryl condensation) and/or nitrogen. The COX-2 inhibitor can be, for example, a sulfonamide containing 1,5-diarylpypyrazole derivative, such as, for example, CELEBREX® (4-(5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide, Celecoxib). The COX-2 inhibitor can also be, for example, a methylsulfonylphenyl-furanone derivative, such as, for example, Rofecoxib (VIOXX®, 4-(4′-methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone). The present invention also provides compositions comprising such compounds in a pharmaceutically acceptable carrier.

The present invention is also based on the discovery that administering at least one nitrosated and/or nitrosylated COX-2 inhibitor and at least one nitric oxide donor reduces the gastrointestinal distress induced by COX-2 inhibitors. A nitric oxide donor is a compound that contains a nitric oxide moiety and which releases or chemically transfers nitric oxide to another molecule. Nitric oxide donors include, for example, S-nitrosothiols, nitrites, nitrates, N-oxo-N-nitrosamines, and substrates of the various isozymes of nitric oxide synthase. Thus, another aspect of the invention provides compositions comprising at least one COX-2 inhibitor that is substituted with at least one NO and/or NO₂ group (i.e., nitrosylated and/or nitrosated), and at least one compound that donates, transfers or releases nitric oxide as a charged species, i.e., nitrosonium (NO⁺) or nitroxy (NO⁻), or as the neutral species, nitric oxide (NO•), and/or stimulates endogenous production of nitric oxide or EDRF in vivo and/or is a substrate for nitric oxide synthase.

Yet another aspect of the invention provides compositions comprising at least one COX-2 inhibitor that is substituted with at least one NO and/or NO₂ group (i.e., nitrosylated and/or nitrosated), and, optionally, at least one compound that donates, transfers or releases nitric oxide as a charged species, i.e., nitrosonium (NO⁺) or nitroxy (NO⁻), or as the neutral species, nitric oxide (NO•), and/or stimulates endogenous production of nitric oxide or EDRF in vivo and/or is a substrate for nitric oxide synthase, and, optionally, at least one therapeutic agent, including but not limited to, steroids, nonsteroidal antiinflammatory compounds (NSAID), 5-lipoxygenase (5-LO) inhibitors, leukotriene B₄ (LTB₄) receptor antagonists, leukotriene A₄ (LTA₄) hydrolase inhibitors, 5-HT agonists, HMG CoA inhibitors, H₂ antagonists, antineoplastic agents, antiplatelet agents, decongestants,
diuretics, sedating or non-sedating anti-histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics, *Helicobacter pylori* inhibitors, proton pump inhibitors, isoprostane inhibitors, and the like.

Another aspect of the invention provides compositions comprising at least one parent COX-2 inhibitor and at least one compound that donates, transfers or releases nitric oxide as a charged species, i.e., nitrosonium (NO⁺) or nitroxy (NO⁻), or as the neutral species, nitric oxide (NO•), and/or stimulates endogenous production of nitric oxide or EDRF *in vivo* and/or is a substrate for nitric oxide synthase, and, optionally, at least one therapeutic agent, including but not limited to, steroids, nonsteroidal antiinflammatory compounds (NSAID), 5-lipoxygenase (5-LO) inhibitors, leukotriene B₄ (LTB₄) receptor antagonists, leukotriene A₄ (LTA₄) hydrolase inhibitors, 5-HT agonists, HMG CoA inhibitors, H₂ antagonists, antineoplastic agents, antiplatelet agents, decongestants, diuretics, sedating or non-sedating anti-histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics, *Helicobacter pylori* inhibitors, proton pump inhibitors, isoprostane inhibitors, and the like.

Yet another aspect of the present invention provides methods for treating and/or preventing inflammation, pain and fever; for treating and/or improving gastrointestinal properties of COX-2 inhibitors; for facilitating wound healing; for treating and/or preventing renal toxicity; and for treating and/or preventing COX-2 mediated disorders (i.e., disorders resulting from elevated levels of COX-2) in a patient in need thereof which comprises administering to the patient a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor compound, and, optionally, at least one compound that donates, transfers or releases nitric oxide as a charged species, i.e., nitrosonium (NO⁺) or nitroxy (NO⁻), or as the neutral species, nitric oxide (NO•), and/or stimulates endogenous production of nitric oxide or EDRF *in vivo* and/or is a substrate for nitric oxide synthase and/or stimulates endogenous production of NO or EDRF *in vivo* and/or is a substrate for nitric oxide synthase (i.e., NO donors). The method can optionally further comprise the administration of at least one therapeutic agent, such as, for example, steroids, nonsteroidal antiinflammatory compounds (NSAID), 5-lipoxygenase (5-LO) inhibitors, leukotriene B₄ (LTB₄) receptor antagonists,
leukotriene A₄ (LTA₄) hydrolase inhibitors, 5-HT agonists, 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) inhibitors, H₂ antagonists, antineoplastic
agents, antiplatelet agents, decongestants, diuretics, sedating or non-sedating anti-
histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics,

Helicobacter pylori inhibitors, proton pump inhibitors, isoprostane inhibitors, and
mixtures thereof. In this aspect of the invention, the methods can involve
administering nitrosated and/or nitrosylated COX-2 inhibitors, administering
nitrosated and/or nitrosylated COX-2 inhibitors and NO donors, administering
nitrosated and/or nitrosylated COX-2 inhibitors and therapeutic agents, or
administering nitrosated and/or nitrosylated COX-2 inhibitors, NO donors and
therapeutic agents. The nitrosated and/or nitrosylated COX-2 inhibitors, nitric
oxide donors, and/or therapeutic agents can be administered separately or as
components of the same composition in one or more pharmaceutically acceptable
carriers.

Another aspect of the present invention provides methods for treating
inflammation, pain and fever; for treating and/or improving the gastrointestinal
properties of COX-2 inhibitors; for facilitating wound healing; for treating and/or
preventing renal toxicity; and for treating and/or preventing other cyclooxygenase-
2 mediated disorders comprising administration of at least one parent COX-2
inhibitor and at least one nitric oxide donor, and, optionally, at least one
therapeutic agent.

Yet another aspect of the present invention provides kits comprising at least
one nitrosated and/or nitrosylated COX-2 inhibitor, and, optionally, at least one
compound that donates, transfers or releases nitric oxide as a charged species, i.e.,
nitrosonium (NO⁺) or nitroxy (NO⁻), or as the neutral species, nitric oxide (NO•),
and/or stimulates endogenous production of nitric oxide or EDRF in vivo and/or is
a substrate for nitric oxide synthase. The kit can further comprise at least one
therapeutic agent. The nitrosated and/or nitrosylated COX-2 inhibitor, the nitric
oxide donor and/or therapeutic agent, can be separate components in the kit or can
be in the form of a composition in one or more pharmaceutically acceptable
carriers.

Yet another aspect of the present invention provides kits comprising at least
one parent COX-2 inhibitor and at least one compound that donates, transfers or
releases nitric oxide as a charged species, i.e., nitrosonium (NO⁺) or nitroxy (NO⁻),
or as the neutral species, nitric oxide (NO•), and/or stimulates endogenous
production of nitric oxide or EDRF in vivo and/or is a substrate for nitric oxide
synthase. The kit can further comprise at least one therapeutic agent. The parent
COX-2 inhibitor, the nitric oxide donor and/or therapeutic agent, can be separate
components in the kit or can be in the form of a composition in one or more
pharmaceutically acceptable carriers.

These and other aspects of the present invention are explained in detail
herein.

BRIEF DESCRIPTION OF THE FIGURES

Fig. 1 shows the relaxation of rat aortic smooth muscle rings by (a)
isosorbide dinitrate (ISDN, open triangles); (b) Example 1a (non-nitrosated
compound, open circles); and (c) Example 1b (nitrosated compound, open squares).
The non-nitrosated compound of Example 1a did not relax the tissue. At higher
concentrations, the relaxation of the nitrosated compound of Example 1b was
similar to that obtained with ISDN. Total number of samples tested varied from a
minimum of 5 to a maximum of 12. In the x axis, log M corresponds to ten fold
increases of the test compound from 100 nM (10⁻⁷) to 100 μM (10⁻⁴). Results are
expressed as the mean ± standard error of the mean of the percentage of total
relaxation induced by 10 μM phenylephrine.

Fig. 2 shows the relaxation of rat aortic smooth muscle rings by (a)
isosorbide dinitrate (ISDN, open triangles); (b) Example 2a (non-nitrosated
compound, open squares); and (c) Example 2b (nitrosated compound, open circles).
The non-nitrosated compound of Example 2a did not relax the tissue. At higher
concentrations, the relaxation of the nitrosated compound of Example 2b was
comparable to that obtained with ISDN. Total number of samples tested varied
from a minimum of 6 to a maximum of 12. In the x axis, log M corresponds to ten fold
increases of the test compound from 100 nM (10⁻⁷) to 100 μM (10⁻⁴). Results are
expressed as the mean ± standard error of the mean of the percentage of total
relaxation induced by 10 μM phenylephrine.

Fig. 3 shows the relaxation of rat aortic smooth muscle rings by (a) S-
nitroso glutathione (GSNO, open triangles); (b) Example 3e (non-nitrosylated
compound, open squares); and (c) Example 3g (nitrosylated compound, open
circles). The non-nitrosylated compound of Example 3e did not relax the tissue. At higher concentrations, the relaxation of the nitrosylated compound of Example 3g was comparable to that obtained with GSNO. Total number of samples tested varied from a minimum of 4 to a maximum of 12. In the x axis, log M corresponds to ten fold increases of the test compound from 100 nM (10⁻⁷) to 100 µM (10⁻⁴). Results are expressed as the mean ± standard error of the mean of the percentage of total relaxation induced by 10 µM phenylephrine.

Fig. 4 shows the relaxation of rat aortic smooth muscle rings by (a) isosorbide dinitrate (ISDN, open circles); (b) Example 20c (non-nitrosated compound, open inverted triangles); and (c) Example 20d (nitrosated compound, open squares). The non-nitrosated compound of Example 20c did not relax the tissue. At higher concentrations, the relaxation of the nitrosated compound of Example 20d was comparable to that obtained with ISDN. Total number of samples tested varied from a minimum of 4 to a maximum of 16. In the x axis, log M corresponds to ten fold increases of the test compound from 100 nM (10⁻⁷) to 100 µM (10⁻⁴). Results are expressed as the mean ± standard error of the mean of the percentage of total relaxation induced by 10 µM phenylephrine.

Fig. 5 shows that anti-inflammatory effect of (a) Celecoxib (open bars); (b) Example 2a (non-nitrosated compound, horizontal stripped bars); and (c) Example 2b (nitrosated compound, hatched bars) using the carrageenan-induced paw edema test. Total samples, 5 for each concentration of test compound. The x axis corresponds to the dose of the test compounds in µmol/kg body weight of the rats. The y axis corresponds to the increase in the paw volume (mL). Results are expressed as the mean ± standard error of the change in paw volume. Data was analyzed by AVONA analysis followed by Student Newmann-Keuls post-hoc test.

DETAILED DESCRIPTION OF THE INVENTION

As used throughout the disclosure, the following terms, unless otherwise indicated, shall be understood to have the following meanings.

"NSAID" refers to a nonsteroidal anti-inflammatory compound or a nonsteroidal anti-inflammatory drug. NSAIDs inhibit cyclooxygenase, the enzyme responsible for the biosyntheses of the prostaglandins and certain autocoid inhibitors, including inhibitors of the various isozymes of cyclooxygenase (including but not limited to cyclooxygenase-1 and -2), and as inhibitors of both
cyclooxygenase and lipoxygenase.

"Cyclooxygenase-2 (COX-2) inhibitor" refers to a compound that selectively inhibits the cyclooxygenase-2 enzyme over the cyclooxygenase-1 enzyme. Preferably, the compound has a cyclooxygenase-2 IC₅₀ of less than about 0.5 µM, and also has a selectivity ratio of cyclooxygenase-2 inhibition over cyclooxygenase-1 inhibition of at least 50, and more preferably of at least 100. Even more preferably, the compound has a cyclooxygenase-1 IC₅₀ of greater than about 1 µM, and more preferably of greater than 20 µM. The compound can also inhibit the enzyme, lipoxygenase and/or phosphodiastase. Such preferred selectivity may indicate an ability to reduce the incidence of common NSAID-induced side effects.

"Parent COX-2 inhibitor" refers to a non-nitrosated and/or non-nitrosylated COX-2 inhibitor and includes those described in the prior art, including those described in the patents and publications cited herein, as well as the novel compounds described herein. "Parent COX-2 inhibitor" includes the compounds of formulas I to XVI before they are nitrosated and/or nitrosylated by the methods described herein.

"Therapeutic agent" includes any therapeutic agent that can be used to treat or prevent the diseases described herein. "Therapeutic agents" include, for example, steroids, nonsteroidal antiinflammatory compounds, 5-lipoxygenase inhibitors, leukotriene B₄ receptor antagonists, leukotriene A₄ hydrolase inhibitors, 5-HT agonists, 3-hydroxy-3-methylglutaryl coenzyme A inhibitors, H₂ antagonists, antineoplastic agents, antiplatelet agents, decongestants, diuretics, sedating or non-sedating anti-histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics, Helicobacter pylori inhibitors, proton pump inhibitors, isoprostane inhibitors, and the like. Although NO donors have therapeutic activity, the term "therapeutic agent" does not include the NO donors described herein, since NO donors are separately defined.

"Patient" refers to animals, preferably mammals, most preferably humans, and includes males and females, and children and adults.

"Therapeutically effective amount" refers to the amount of the compound and/or composition that is effective to achieve its intended purpose.

"Transdermal" refers to the delivery of a compound by passage through the skin and into the blood stream.
"Transmucosal" refers to delivery of a compound by passage of the compound through the mucosal tissue and into the blood stream.

"Penetration enhancement" or "permeation enhancement" refers to an increase in the permeability of the skin or mucosal tissue to a selected pharmacologically active compound such that the rate at which the compound permeates through the skin or mucosal tissue is increased.

"Carriers" or "vehicles" refers to carrier materials suitable for compound administration and include any such material known in the art such as, for example, any liquid, gel, solvent, liquid diluent, solubilizer, or the like, which is non-toxic and which does not interact with any components of the composition in a deleterious manner.

"Nitric oxide adduct" or "NO adduct" refers to compounds and functional groups which, under physiological conditions, can donate, release and/or directly or indirectly transfer any of the three redox forms of nitrogen monoxide (NO⁺, NO⁻, NO•), such that the biological activity of the nitrogen monoxide species is expressed at the intended site of action.

"Nitric oxide releasing" or "nitric oxide donating" refers to methods of donating, releasing and/or directly or indirectly transferring any of the three redox forms of nitrogen monoxide (NO⁺, NO⁻, NO•), such that the biological activity of the nitrogen monoxide species is expressed at the intended site of action.

"Nitric oxide donor" or "NO donor" refers to compounds that donate, release and/or directly or indirectly transfer a nitrogen monoxide species, and/or stimulate the endogenous production of nitric oxide or endothelium-derived relaxing factor (EDRF) in vivo and/or elevate endogenous levels of nitric oxide or EDRF in vivo. "NO donor" also includes compounds that are substrates for nitric oxide synthase.

"Alkyl" refers to a lower alkyl group, a haloalkyl group, a hydroxyalkyl group, an alkenyl group, an alkynyl group, a bridged cycloalkyl group, a cycloalkyl group or a heterocyclic ring, as defined herein. An alkyl group may also comprise one or more radical species, such as, for example a cycloalkylalkyl group or a heterocyclicalkyl group.

"Lower alkyl" refers to a branched or straight chain acyclic alkyl group comprising one to about ten carbon atoms (preferably one to about eight carbon
atoms, more preferably one to about six carbon atoms). Exemplary lower alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, neopentyl, iso-amyl, hexyl, octyl, and the like.

"Substituted lower alkyl" refers to a lower alkyl group, as defined herein, wherein one or more of the hydrogen atoms have been replaced with one or more R\(^{100}\) groups, wherein each R\(^{100}\) is independently a hydroxy, an oxo, a carboxyl, a carboxamido, a halo, a cyano or an amino group, as defined herein.

"Haloalkyl" refers to a lower alkyl group, an alkenyl group, an alkynyl group, a bridged cycloalkyl group, a cycloalkyl group or a heterocyclic ring, as defined herein, to which is appended one or more halogens, as defined herein. Exemplary haloalkyl groups include trifluoromethyl, chloromethyl, 2-bromobutyl, 1-bromo-2-chloro-pentyl, and the like.

"Alkenyl" refers to a branched or straight chain C\(_2\)-C\(_{10}\) hydrocarbon (preferably a C\(_2\)-C\(_4\) hydrocarbon, more preferably a C\(_2\)-C\(_6\) hydrocarbon) which can comprise one or more carbon-carbon double bonds. Exemplary alkenyl groups include propyl vinyl, buten-1-yl, isobutenyl, penten-1-yl, 2,2-methylbuten-1-yl, 3-methylbuten-1-yl, hexen-1-yl, hepten-1-yl, octen-1-yl, and the like.

"Lower alkenyl" refers to a branched or straight chain C\(_2\)-C\(_4\) hydrocarbon which can comprise one or two carbon-carbon double bonds.

"Substituted alkenyl" refers to a branched or straight chain C\(_2\)-C\(_{10}\) hydrocarbon (preferably a C\(_2\)-C\(_4\) hydrocarbon, more preferably a C\(_2\)-C\(_6\) hydrocarbon) which can comprise one or more carbon-carbon double bonds, wherein one or more of the hydrogen atoms have been replaced with one or more R\(^{100}\) groups, wherein each R\(^{100}\) is independently a hydroxy, an oxo, a carboxyl, a carboxamido, a halo, a cyano or an amino group, as defined herein.

"Alkynyl" refers to an unsaturated acyclic C\(_2\)-C\(_{10}\) hydrocarbon (preferably a C\(_2\)-C\(_4\) hydrocarbon, more preferably a C\(_2\)-C\(_6\) hydrocarbon) which can comprise one or more carbon-carbon triple bonds. Exemplary alkynyl groups include ethynyl, propynyl, butyn-1-yl, butyn-2-yl, pentyn-1-yl, pentyln-2-yl, 3-methylbutyn-1-yl, hexyn-1-yl, hexyn-2-yl, hexyn-3-yl, 3,3-dimethyl-butyn-1-yl, and the like.

"Bridged cycloalkyl" refers to two or more cycloalkyl groups, heterocyclic groups, or a combination thereof fused via adjacent or non-adjacent atoms. Bridged cycloalkyl groups can be unsubstituted or substituted with one, two or
three substituents independently selected from alkyl, alkoxy, amino, alkylamino, dialkylamino, hydroxy, halo, carboxyl, alkylcarboxylic acid, aryl, amide, ester, alkylcarboxylic ester, carboxamido, alkylcarboxamido, oxo and nitro. Exemplary bridged cycloalkyl groups include adamantyl, decahydroaphthyl, quinuclidyl, 2,6-dioxabicyclo[3.3.0]octane, 7-oxabicyclo[2.2.1]heptyl, 8-azabicyclo[3,2,1]oct-2-enyl and the like.

"Cycloalkyl" refers to a saturated or unsaturated cyclic hydrocarbon comprising from about 3 to about 10 carbon atoms. Cycloalkyl groups can be unsubstituted or substituted with one, two or three substituents independently selected from alkyl, alkoxy, amino, alkylamino, dialkylamino, arylamino, diarylamino, alkylarylamino, aryl, amidyl, ester, hydroxy, halo, carboxyl, alkylcarboxylic acid, alkylcarboxylic ester, carboxamido, alkylcarboxamido, oxo, alkylsulfanyl, and nitro. Exemplary cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, cyclohepta, 1,3-dienyl, and the like.

"Heterocyclic ring or group" refers to a saturated or unsaturated cyclic hydrocarbon group having about 2 to about 10 carbon atoms (preferably about 4 to about 6 carbon atoms) where 1 to about 4 carbon atoms are replaced by one or more nitrogen, oxygen and/or sulfur atoms. Sulfur may be in the thio, sulfanyl or sulfonyl oxidation state. The heterocyclic ring or group can be fused to an aromatic hydrocarbon group. Heterocyclic groups can be unsubstituted or substituted with one, two or three substituents independently selected from alkyl, alkoxy, amino, alkylthio, aryloxy, arylthio, arylalkyl, hydroxy, oxo, thial, halo, carboxyl, carboxylic ester, alkylcarboxylic acid, alkylcarboxylic ester, aryl, arylcarboxylic acid, arylcarboxylic ester, amidyl, ester, alkylcarbonyl, arylcarbonyl, alkylsulfanyl, carboxamido, alkylcarboxamido, arylcarboxamido, sulfonic acid, sulfonic ester, sulfonamido and nitro. Exemplary heterocyclic groups include pyrrolyl, 3-pyrrolinyl, 4,5,6-trihydro-2H-pyranyl, pyridinyl, 1,4-dihydropyridinyl, pyrazolyl, triazolyl, pyrimidinyl, pyrazidinyl, oxazolyl, thiazolyl, imidazolyl, indolyl, thiophenyl, furanyl, tetrahydrofuranyl, tetrazolyl, pyrrolinyl, pyrazolidinyl, oxazolidinyl 1,3-dioxolanyl, imidazolinyl, imidazolidinyl, pyrazolinyl, pyrazolidinyl, isoxazolyl, isothiazolyl, 1,2,3-oxadiazolyl, 1,2,3-triazolyl, 1,3,4-thiadiazolyl, 2H-pyranyl, 4H-pyranyl, piperidinyl, 1,4-dioxanyl, morpholinyl, 1,4-
dithianyl, thiomorpholinyl, pyrazinyl, piperazinyl, 1,3,5-triazinyl, 1,3,5-trithianyl, benzo(b)thiophenyl, benzimidazolyl, benzothiazolyl, quinolinyl, and the like.

"Heterocyclic compounds" refer to mono- and polycyclic compounds comprising at least one aryl or heterocyclic ring.

"Aryl" refers to a monocyclic, bicyclic, carbocyclic or heterocyclic ring system comprising one or two aromatic rings. Exemplary aryl groups include phenyl, pyridyl, naphthyl, quinolyl, tetrahydronaphthyl, furanyl, indanyl, indenyl, indoyl, and the like. Aryl groups (including bicyclic aryl groups) can be unsubstituted or substituted with one, two or three substituents independently selected from alkyl, alkoxy, alkylthio, amino, alkylamino, dialkylamino, arylamino, diarylamino, alkylarylamino, halo, cyano, alkylsulfinyl, hydroxy, carboxyl, carboxylic ester, alkylcarboxylic acid, alkylcarboxylic ester, aryl, arylcarboxylic acid, arylcarboxylic ester, alkylcarbonyl, arylcarbonyl, amidyl, ester, carboxamido, alkylcarboxamido, carbonyl, sulfonic acid, sulfinic ester, sulfonamido and nitro. Exemplary substituted aryl groups include tetrafluorophenyl, pentafluorophenyl, sulfonamide, alkylsulfonyl, arylsulfonyl, and the like.

"Cycloalkenyl" refers to an unsaturated cyclic C_2-C_10 hydrocarbon (preferably a C_2-C_8 hydrocarbon, more preferably a C_2-C_4 hydrocarbon) which can comprise one or more carbon-carbon triple bonds.

"Arylalkyl" refers to an aryl radical, as defined herein, attached to an alkyl radical, as defined herein. Exemplary arylalkyl groups include benzyl, phenylethyl, 4-hydroxybenzyl, 3-fluorobenzyl, 2-fluorophenylethyl, and the like.

"Arylalkenyl" refers to an aryl radical, as defined herein, attached to an alkenyl radical, as defined herein. Exemplary arylalkenyl groups include styryl, propenylphenyl, and the like.

"Cycloalkylalkyl" refers to a cycloalkyl radical, as defined herein, attached to an alkyl radical, as defined herein.

"Cycloalkylalkoxy" refers to a cycloalkyl radical, as defined herein, attached to an alkoxy radical, as defined herein.

"Cycloalkylalkythio" refers to a cycloalkyl radical, as defined herein, attached to an alklythio radical, as defined herein.

"Heterocyclicalkyl" refers to a heterocyclic ring radical, as defined herein, attached to an alkyl radical, as defined herein.
"Arylheterocyclic ring" refers to a bi- or tricyclic ring comprised of an aryl ring, as defined herein, appended via two adjacent carbon atoms of the aryl ring to a heterocyclic ring, as defined herein. Exemplary arylheterocyclic rings include dihydroindole, 1,2,3,4-tetra-hydroquinoline, and the like.

"Alkoxy" refers to R₃₅O⁻, wherein R₃₅ is an alkyl group, as defined herein (preferably a lower alkyl group or a haloalkyl group, as defined herein). Exemplary alkoxy groups include methoxy, ethoxy, t-butoxy, cyclopentyloxy, trifluoromethoxy, and the like.

"Aryloxy" refers to R₃₅O⁻, wherein R₃₅ is an aryl group, as defined herein. Exemplary aryloxy groups include napthyloxy, quinolylloxy, isoquinolinizinyloxy, and the like.

"Alkylthio" refers to R₃₅S⁻, wherein R₃₅ is an alkyl group, as defined herein.

"Arylalkoxy or alkoxaryl" refers to an alkoxy group, as defined herein, to which is appended an aryl group, as defined herein. Exemplary arylalkoxy groups include benzyloxy, phenylethoxy, chlorophenylethoxy, and the like.

"Alkoxyalkyl" refers to an alkoxy group, as defined herein, appended to an alkyl group, as defined herein. Exemplary alkoxyalkyl groups include methoxymethyl, methoxyethyl, isopropoxymethyl, and the like.

"Alkoxyhaloalkyl" refers to an alkoxy group, as defined herein, appended to a haloalkyl group, as defined herein. Exemplary alkoxyhaloalkyl groups include 4-methoxy-2-chlorobutyl and the like.

"Cycloalkoxy" refers to R₃₅O⁻, wherein R₃₅ is a cycloalkyl group or a bridged cycloalkyl group, as defined herein. Exemplary cycloalkoxy groups include cyclopropyloxy, cyclopentyloxy, cyclohexyloxy, and the like.

"Cycloalkylthio" refers to R₃₅S⁻, wherein R₃₅ is a cycloalkyl group or a bridged cycloalkyl group, as defined herein. Exemplary cycloalkylthio groups include cyclopropylthio, cyclopentylthio, cyclohexylthio, and the like.

"Haloalkoxy" refers to an alkoxy group, as defined herein, in which one or more of the hydrogen atoms on the alkoxy group are substituted with halogens, as defined herein. Exemplary haloalkoxy groups include 1,1,1-trichloroethoxy, 2-bromobutoxy, and the like.

"Hydroxy" refers to -OH.
"Oxo " refers to =O.
"Oxy" refers to -O⁻⁻R⁺, wherein R⁺ is an organic or inorganic cation.

"Organic cation" refers to a positively charged organic ion. Exemplary organic cations include alkyl substituted ammonium cations, and the like.

"Inorganic cation" refers to a positively charged metal ion. Exemplary inorganic cations include Group I metal cations such as for example, sodium, potassium, and the like.

"Hydroxalkyl" refers to a hydroxy group, as defined herein, appended to an alkyl group, as defined herein.

"Nitrate" refers to -O-NO₂.

"Nitrite" refers to -O-NO.

"Thionitrate" refers to -S-NO₂.

"Thionitrite" and "nitrosothiol" refer to -S-NO.

"Nitro" refers to the group -NO₂ and "nitrosated" refers to compounds that have been substituted therewith.

"Nitroso" refers to the group -NO and "nitrosylated" refers to compounds that have been substituted therewith.

"Nitrile" and "cyano" refer to -CN.

"Halogen" or "halo" refers to iodine (I), bromine (Br), chlorine (Cl), and/or fluorine (F).

"Amino" refers to -NH₂, an alkylamino group, a dialkylamino group, an arylamino group, a diarylamino group, an alkylarylamino group or a heterocyclic ring, as defined herein.

"Alkylamino" refers to R₉₉-NH⁻, wherein R₉₉ is an alkyl group, as defined herein. Exemplary alkylamino groups include methylamino, ethylamino, butylamino, cyclohexylamino, and the like.

"Arylamino" refers to R₉₉-NH⁻, wherein R₉₉ is an aryl group, as defined herein.

"Dialkylamino" refers to R₉₉R₉₉-N⁻, wherein R₉₉ and R₉₉ are each independently an alkyl group, as defined herein. Exemplary dialkylamino groups include dimethylamino, diethylamino, methyl propargylamino, and the like.

"Diaryl amino" refers to R₉₉R₉₉-N⁻, wherein R₉₉ and R₉₉ are each independently an aryl group, as defined herein.

"Alkylarylamino or arylalkylamino" refers to R₉₉R₉₉-N⁻, wherein R₉₉ is an alkyl
group, as defined herein, and \(R_{85} \) is an aryl group, as defined herein.

"Alkylarylalkylamino" refers to \(R_{86}R_{87}N^- \), wherein \(R_{86} \) is an alkyl group, as defined herein, and \(R_{87} \) is an arylalkyl group, as defined herein.

"Alkylcycloalkylamino" refers to \(R_{88}R_{89}N^- \), wherein \(R_{88} \) is an alkyl group, as defined herein, and \(R_{89} \) is a cycloalkyl group, as defined herein.

"Aminoalkyl" refers to an amino group, an alkylamino group, a dialkylamino group, an arylamino group, a diarylamino group, an alkylarylamino group or a heterocyclic ring, as defined herein, to which is appended an alkyl group, as defined herein. Exemplary aminoalkyl groups include dimethylaminopropyl, diphenylaminocyclopentyl, methylaminomethyl, and the like.

"Aminoaryl" refers to an aryl group to which is appended an alkylamino group, an arylamino group or an arylalkylamino group. Exemplary aminoaryl groups include anilino, N-methylanilino, N-benzylanilino, and the like.

"Thio" refers to \(-S-\).

"Sulfinyl" refers to \(-S(O)\) -.

"Methanthial" refers to \(-C(S)\) -.

"Thial" refers to \(=S\).

"Sulfonyl" refers to \(-S(O)\)_2 -.

"Sulfonic acid" refers to \(-S(O)_2 OR_{89}\), wherein \(R_{89} \) is a hydrogen, an organic cation or an inorganic cation, as defined herein.

"Alkylsulfonic acid" refers to a sulfonic acid group, as defined herein, appended to an alkyl group, as defined herein.

"Arylsulfonic acid" refers to a sulfonic acid group, as defined herein, appended to an aryl group, as defined herein.

"Sulfonic ester" refers to \(-S(O)_2 OR_{89}\), wherein \(R_{89} \) is an alkyl group, an aryl group or an aryl heterocyclic ring, as defined herein.

"Sulfonamido" refers to \(-S(O)_2 N(R_{83})(R_{84})\), wherein \(R_{83} \) and \(R_{84} \) are each independently a hydrogen atom, an alkyl group, an aryl group or an arylheterocyclic ring, as defined herein, or \(R_{83} \) and \(R_{84} \) when taken together are a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group, as defined herein.

"Alkylsulfonamido" refers to a sulfonamido group, as defined herein,
appended to an alkyl group, as defined herein.

"Arylsulfonamido" refers to a sulfonamido group, as defined herein, appended to an aryl group, as defined herein.

"Alkylthio" refers to \(R_{50}S^-\), wherein \(R_{50}\) is an alkyl group, as defined herein (preferably a lower alkyl group, as defined herein).

"Arylthio" refers to \(R_{50}S^-\), wherein \(R_{50}\) is an aryl group, as defined herein.

"Arylalkylthio" refers to an aryl group, as defined herein, appended to an alkylthio group, as defined herein.

"Alkylsulfinyl" refers to \(R_{50}-S(O)\)\(^-\), wherein \(R_{50}\) is an alkyl group, as defined herein.

"Alkylsulfonyl" refers to \(R_{50}-S(O)\)\(^2\)\(^-\), wherein \(R_{50}\) is an alkyl group, as defined herein.

"Alkylsulfonyloxy" refers to \(R_{50}-S(O)\)\(^2\)\(^-\)\(^O\)\(^-\), wherein \(R_{50}\) is an alkyl group, as defined herein.

"Arylsulfinyl" refers to \(R_{55}-S(O)\)\(^-\), wherein \(R_{55}\) is an aryl group, as defined herein.

"Arylsulfonyl" refers to \(R_{55}-S(O)\)\(^2\)\(^-\), wherein \(R_{55}\) is an aryl group, as defined herein.

"Arylsulfonyloxy" refers to \(R_{55}-S(O)\)\(^2\)\(^-\)\(^O\)\(^-\), wherein \(R_{55}\) is an aryl group, as defined herein.

"Amidyl" refers to \(R_{52}C(O)N(R_{6y})\)\(^-\) wherein \(R_{52}\) and \(R_{6y}\) are each independently a hydrogen atom, an alkyl group, an aryl group or an arylheterocyclic ring, as defined herein.

"Ester" refers to \(R_{51}C(O)O\)\(^-\) wherein \(R_{51}\) is a hydrogen atom, an alkyl group, an aryl group or an arylheterocyclic ring, as defined herein.

"Carbamoyl" refers to \(-O-C(O)N(R_{5y})(R_{6y})\), wherein \(R_{5y}\) and \(R_{6y}\) are each independently a hydrogen atom, an alkyl group, an aryl group or an arylheterocyclic ring, as defined herein, or \(R_{5y}\) and \(R_{6y}\) taken together are a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group, as defined herein.

"Carboxyl" refers to \(-C(O)OR_{7y}\) wherein \(R_{7y}\) is a hydrogen, an organic cation or an inorganic cation, as defined herein.

"Carbonyl" refers to \(-C(O)\)\(^-\).
"Alkylcarbonyl" refers to $R_a^\alpha C(O)\gamma$, wherein R_a^α is an alkyl group, as defined herein.

"Arylcarbonyl" refers to $R_{a^\alpha} C(O)\gamma$, wherein R_{a^α} is an aryl group, as defined herein.

"Arylalkylcarbonyl" refers to $R_{a^\alpha} R_{a^\beta} C(O)\gamma$, wherein R_{a^α} is an aryl group, as defined herein, and R_{a^β} is an alkyl group, as defined herein.

"Alkylarylcarbonyl" refers to $R_{a^\alpha} R_{a^\beta} C(O)\gamma$, wherein R_{a^α} is an aryl group, as defined herein, and R_{a^β} is an alkyl group, as defined herein.

"Heterocyclicalkylcarbonyl" refer to $R_{a^\alpha} C(O)\gamma$ wherein R_{a^α} is a heterocyclicalkyl group, as defined herein.

"Carboxylic ester" refers to $-C(O)OR_{a^\beta}$ wherein R_{a^α} is an alkyl group, an aryl group or an aryl heterocyclic ring, as defined herein.

"Alkylcarboxylic acid" and "alkylcarboxyl" refer to an alkyl group, as defined herein, appended to a carboxyl group, as defined herein.

"Alkylcarboxylic ester" refers to an alkyl group, as defined herein, appended to a carboxylic ester group, as defined herein.

"Arylcarboxylic acid" refers to an aryl group, as defined herein, appended to a carboxyl group, as defined herein.

"Arylcarboxylic ester" and "arylcarboxyl" refer to an aryl group, as defined herein, appended to a carboxylic ester group, as defined herein.

"Carboxamido" refers to $-C(O)N(R_{a^\alpha})(R_{a^\beta})$, wherein R_{a^α} and R_{a^β} are each independently a hydrogen atom, an alkyl group, an aryl group or an arylheterocyclic ring, as defined herein, or R_{a^α} and R_{a^β} when taken together are a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group, as defined herein.

"Alkylcarboxamido" refers to an alkyl group, as defined herein, appended to a carboxamido group, as defined herein.

"Arylcarboxamido" refers to an aryl group, as defined herein, appended to a carboxamido group, as defined herein.

"Urea" refers to $-N(R_{a^\alpha})(C(O)N(R_{a^\beta})(R_{a^\gamma})$ wherein R_{a^α}, R_{a^β} and R_{a^γ} are each independently a hydrogen atom, an alkyl group, an aryl group or an arylheterocyclic ring, as defined herein, or R_{a^α} and R_{a^γ} taken together are a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group, as defined
"Phosphoryl" refers to -P(Rₙ₋₁)(Rₙ₋₂)(Rₙ₋₃), wherein Rₙ₋₁ is a lone pair of electrons, thial or oxo, and Rₙ₋₂ and Rₙ₋₃ are each independently a covalent bond, a hydrogen, a lower alkyl, an alkoxy, an alkylamino, a hydroxy, an oxy or an aryl, as defined herein.

"Silyl" refers to -Si(Rₙ₋₁)(Rₙ₋₂)(Rₙ₋₃), wherein Rₙ₋₁, Rₙ₋₂, and Rₙ₋₃ are each independently a covalent bond, a lower alkyl, an alkoxy, an aryl or an arylalkoxy, as defined herein.

Compounds that donate, transfer or release nitric oxide species in vivo have been recognized as having a wide spectrum of advantages and applications. The present invention is based on the unexpected discovery of the effects of such compounds alone and together with one or more COX-2 inhibitors directly or indirectly linked with one or more nitric oxide moieties. Treatment or prevention of inflammation, pain and fever; treatment and/or improvement of the gastrointestinal properties of COX-2 inhibitors; facilitation of wound healing; and treatment and/or prevention of renal toxicity and cyclooxygenase-2 mediated disorders can be obtained by the use of the nitrosated and/or nitrosylated COX-2 inhibitors of the present invention; or by the use of the nitrosated and/or nitrosylated COX-2 inhibitors in conjunction with one or more compounds that donate, release or transfer nitric oxide and/or stimulate endogenous production of NO and/or EDRF in vivo and/or is a substrate for nitric oxide synthase, and, optionally, with one or more therapeutic agents.

In one embodiment, the present invention describes nitrosated and/or nitrosylated COX-2 inhibitors of Formula (I):
wherein:

when side b is a double bond, and sides a and c are single bonds, -X1-Y1-Z1-

is:

(a) -CR1(R5)-CR2(R6)-CR3(R5);
(b) -C(O)-CR4(R4)-CR5(R5);
(c) -CR6(R6)-CR7(R5)-C(O);
(d) -(CR8(R5))_k-O-C(O);
(e) -C(O)-O-(CR8(R5))_k;
(f) - CR9(R4)-NR10-CR11(R5);
(g) -CR12(R5)-NR13-C(O);
(h) -CR14=CR15-S-;
(i) -S-CR16=CR17-;
(j) -S-N=CR18-;
(k) -CR19=N-S-;
(l) -N=CR20-O-;
(m) -O-CR21=N-;
(n) -NR22-CR23=N-;
(o) -N=CR24-S-;
(p) -S-CR25=N-;
(q) -C(O)-NR26-CR27(R28);
(r) -R29N-CR30=C R31;
(s) -CR32=CR33-NR34;
(t) -O-N=CR35-;
(u) -CR36=N-O-;
(v) -N=N-S-;
(w) -S-N=N-;
(x) -R37N-CR38=N-;
(y) -N=CR39-NR40;
(z) -R39N-N=N-;
(aa) -N=N-NR41;
(bb) -CR42(R43)-O-CR44(R45);
(cc) -CR45(R46)-S-CR46(R47);
(dd) -CR48(R49)-C(O)-CR50(R51);
(ee) -CR\(^4\)(R\(^5\))-CR\(^5\)(R\(^6\))-C(S)-;
(ff) -(CR\(^3\)(R\(^5\)))\(_x\) O-C(S)-;
(gg) -C(S)-O-(CR\(^3\)(R\(^5\)))\(_x\);
(hh) -(CR\(^3\)(R\(^5\)))\(_x\)-NR\(^3\)-C(S)-;
(ii) -C(S)-NR\(^3\)-(CR\(^3\)(R\(^6\)))\(_x\);
(jj) -(CR\(^3\)(R\(^5\)))\(_x\)-S-C(O)-;
(kk) -C(O)-S-(CR\(^3\)(R\(^6\)))\(_x\);
(ll) -O-CR\(^4\)=CR\(^5\)-;
(mm) -CR\(^4\)=CR\(^5\)-O-;
(nn) -C(O)- NR\(^3\)-S-;
(oo) -S-NR\(^3\)-C(O)-;
(pp) -C(O)-NR\(^3\)-O-;
(qq) -O-NR\(^3\)-C(O)-;
(rr) -NR\(^3\)-CR\(^4\)=CR\(^5\)-;
(ss) -CR\(^4\)=N-NR\(^3\)-;
(tt) -NR\(^3\)-N=CR\(^4\)-;
(uu) -C(O)-NR\(^3\)-NR\(^3\)-;
(vv) -NR\(^3\)-NR\(^3\)-C(O)-;
(ww) -C(O)-O-NR\(^3\)-;
(xx) -NR\(^3\)-O-C(O)-;
(yy) -CR\(^4\)R\(^\varepsilon\)-CR\(^3\)R\(^\varepsilon\);
.zz) -C(O)- CR\(^4\)R\(^\varepsilon\)-
(aaa) -CR\(^4\)R\(^\varepsilon\)-C(O)-;
(bbb) -C(S)-CR\(^4\)R\(^\varepsilon\)-;
(ccc) -CR\(^4\)R\(^\varepsilon\)-C(S)-;
(ddd) -C(=NR\(^3\))-CR\(^3\)R\(^\varepsilon\); or
(eee) -CR\(^4\)R\(^\varepsilon\)-C(=NR\(^3\))-
when sides a and c are double bonds and side b is a single bond, -X\(^i\)-Y\(^i\)-Z\(^i\) is:
(a) =CR\(^4\)-O-CR\(^5\)=;
(b) =CR\(^4\)-NR\(^3\)-CR\(^5\)=;
(c) =N-S-CR\(^4\)=;
(d) =CR\(^4\)-S-N=;
(e) =N-O-CR\(^4\)=;
(f) =CR^4-O-N=;
(g) =N-S-N=;
(h) =N-O-N=;
(i) =N-NR^3-CR^5=;
(j) =CR^4-NR^2-N=;
(k) =N-NR^3-N=;
(l) =CR^4-S-CR^5=; or
(m) =CR^4-CR^4(R^4)-CR^5=;

R^1 is:

10 (a) -S(O)_2-CH_3;
(b) -S(O)_2-NR^4(D^3);
(c) -S(O)_2-N(D^3)-C(O)-CF_3;
(d) -S(O)-(NH)-NH(D^3);
(e) -S(O)-(NH)-N(D^3)-C(O)-CF_3;

15 (f) -P(O)(CH_3)NH(D^3);
(g) -P(O)(CH_2)_2;
(h) -C(S)-NH(D^3);
(i) -S(O)(NH)CH_3;
(j) -P(O)(CH_3)OD^1; or
(k) -P(O)(CH_2)NH(D^3);

R^2 is:

(a) hydrogen;
(b) halogen;
(c) methyl; or
(d) CH_2OH;

R^3 is:

(a) lower alkyl;
(b) cycloalkyl;
(c) mono-, di- or tri-substituted phenyl or naphthyl, wherein the

30 substituents are each independently:

(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl, preferably CF₃;
(7) lower alkyl;
(8) N₃;
(9) -CO₂D¹;
(10) -CO₂-lower alkyl;
(11) -(C(R³)(R⁴)ₙ)-OD¹;
(12) -(C(R³)(R⁴)ₙ)-O-lower alkyl;
(13) lower alkyl-CO₂-R⁵;
(14) -OD¹;
(15) haloalkoxy;
(16) amino;
(17) nitro;
(18) alkylsulfinyl; or
(19) heteroaryl;

(d) mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or the heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally, 1, 2, 3, or 4 additional N atoms; wherein the substituents are each independently:

(1) hydrogen;
(2) halo;
(3) lower alkyl;
(4) alkoxy;
(5) alkylthio;
(6) CN;
(7) haloalkyl, preferably CF₃;
(8) N₃;
(9) -(C(R³)(R⁴)ₙ)-OD¹;
(10) -(C(R³)(R⁴)ₙ)-O-lower alkyl; or
(11) alkylsulfinyl;
(e) benzo-heteroaryl which includes the benzo fused analogs of (d);
(f) -NR10 R11;
(g) -SR11;
(h) -OR11;
(i) -R11;
(j) alkenyl;
(k) alkynyl;
(l) unsubstituted, mono-, di-, tri- or tetra-substituted cycloalkenyl,

wherein the substituents are each independently:

(1) halo;
(2) alkoxy;
(3) alkylthio;
(4) CN;
(5) haloalkyl, preferably CF\textsubscript{3};
(6) lower alkyl;
(7) N\textsubscript{3};
(8) -CO\textsubscript{2}D1;
(9) -CO\textsubscript{2}-lower alkyl;
(10) -C(R10)(R11)-OD1;
(11) -C(R10)(R11)-O-lower alkyl;
(12) lower alkyl-CO\textsubscript{2} R12;
(13) benzyloxy;
(14) -O-(lower alkyl)-CO\textsubscript{2} R12;
(15) -O-(lower alkyl)-NR12 R13; or
(16) alkylsulfinyl;
(m) mono-, di-, tri- or tetra-substituted heterocycloalkyl group of 5, 6
or 7 members, or a benzo-heterocycle, wherein said heterocycloalkyl or
benzo-heterocycle contains 1 or 2 heteroatoms selected from O, S, or N and,
on optionally, contains a carbonyl group or a sulfonyl group, and wherein said
substituents are each independently:
(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl, preferably CF₃;
(7) N₃;
(8) -C(R¹⁾(R¹⁾)-OD¹;
(9) -C(R¹⁾(R¹⁾)-O-lower alkyl; or
(10) alkylsulfiny1;

(n) styryl, mono or di-substituted styryl, wherein the substituent are each independently:

(1) halo;
(2) alkoxy;
(3) alkylthio;
(4) CN;
(5) haloalkyl, preferably CF₃;
(6) lower alkyl;
(7) N₃;
(8) -CO₂D¹;
(9) -CO₂-lower alkyl;
(10) -C(R¹⁾(R¹⁾)-OD¹;
(11) -C(R¹⁾(R¹⁾)-O-lower alkyl;
(12) lower alkyl-CO₂-R¹²;
(13) benzyloxy;
(14) -O-(lower alkyl)-CO₂R¹²; or
(15) -O-(lower alkyl)-NR²⁵R¹³;

(o) phenylacetylene, mono- or di-substituted phenylacetylene, wherein the substituents are each independently:

(1) halo;
(2) alkoxy;
(3) alkylthio;
(4) CN;
(5) haloalkyl, preferably CF₃;
(6) lower alkyl;
(7) N₃;
(8) -CO₂D³;
(9) -CO₂-lower alkyl;
(10) -C(R₁²)(R₂³)-OD³;
(11) -C(R₁²)(R₂³)-O-lower alkyl;
(12) lower alkyl-CO₂-R₁²;
(13) benzyloxy;
(14) -O-(lower alkyl)-CO₂R₁²; or
(15) -O-(lower alkyl)-NR₁²R₂³;

(p) fluoroalkenyl;

(q) mono- or di-substituted bicyclic heteroaryl of 8, 9 or 10 members,
containing 2, 3, 4 or 5 heteroatoms, wherein at least one heteroatom resides on each
ring of said bicyclic heteroaryl, said heteroatoms are each independently O, S and
N and said substituents are each independently:

(1) hydrogen;
(2) halo;
(3) lower alkyl;
(4) alkoxy;
(5) alkylthio;
(6) CN;
(7) haloalkyl, preferably CF₃;
(8) N₃;
(9) -C(R₅)(R₆)-OD³; or
(10) -C(R₅)(R₆)-O-lower alkyl;

(r) K;

(s) aryl;
(t) arylalkyl;
(u) cycloalkylalkyl;
(v) -C(O)R₁¹;
(u) hydrogen;

(v) arylalkenyl;
(w) arylalkoxy;
(x) alkoxy;
(y) aryloxy;
(z) cycloalkoxy;
(aa) arylthio;
(bb) alkylthio;
(cc) arylalkylthio; or
(dd) cycloalkylthio;

R^3 is:

(a) hydrogen;
(b) haloalkyl, preferably CF_3;
(c) CN;
(d) lower alkyl;
(e) $-(C(R_p)(R_q))_p-U-V$;
(f) K;
(g) unsubstituted or substituted:

(1) lower alkyl-Q;
(2) lower alkyl-O- lower alkyl-Q;
(3) lower alkyl-S-lower alkyl-Q;
(4) lower alkyl-O-Q;
(5) lower alkyl-S-Q;
(6) lower alkyl-O-V;
(7) lower alkyl-S-V;
(8) lower alkyl-O-K; or
(9) lower alkyl-S-K;

wherein the substituent(s) reside on the lower alkyl group;

(h) Q;
(i) alkylcarbonyl;
(j) arylcarbonyl;
(k) alkylarylcarbonyl;
(l) arylalkylcarbonyl;
(m) carboxylic ester;
(n) carboxamido;
(o) cycloalkyl;
(p) mono-, di- or tri-substituted phenyl or naphthyl, wherein the
substituents are each independently:
(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl, preferably CF₃;
(7) lower alkyl;
(8) N₂;
(9) -CO₂D³;
(10) -CO₂-lower alkyl;
(11) -(C(R⁵)(R⁶))₂-OD³;
(12) -(C(R⁵)(R⁶))₂-O-lower alkyl;
(13) lower alkyl-CO₂-R⁵;
(14) -OD³;
(15) haloalkoxy;
(16) amino;
(17) nitro; or
(18) alkylsulfinyl;
(q) alkenyl;
(r) alkynyl;
(s) arylalkyl;
(t) lower alkyl-OD³;
(u) alkoxyalkyl;
(v) aminoalkyl;
(w) lower alkyl-CO₂R⁸;
(x) lower alkyl-C(O)NR¹⁰(R²⁰);
(y) heterocyclicalkyl; or
(z) heterocyclic ring-C(O)-;

R⁴, R⁵, R⁵ and R⁵ are each independently:

(a) hydrogen;
(b) amino;
(c) CN;
(d) lower alkyl;
(e) haloalkyl;
(f) alkoxy;
(g) alkylthio;
(h) Q;
(i) -O-Q;
(j) -S-Q;
(k) K;
(l) cycloalkoxy;
(m) cycloalkylthio;
(n) unsubstituted, mono-, or di-substituted phenyl or unsubstituted, mono-, or di-substituted benzyl, wherein the substituents are each independently:
(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl, preferably CF₃;
(7) N₃;
(8) Q;
(9) nitro; or
(10) amino;
(o) unsubstituted, mono-, or di-substituted heteroaryl or unsubstituted, mono-, or di-substituted heteroaryl methyl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or the heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally, 1, 2, 3, or 4 additional N atoms; said substituents are each independently:
(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl, preferably \(\text{CF}_j\);
(7) \(\text{N}_j\);
(8) \(-\text{C}(\text{R}^i)(\text{R}^i)-\text{OD}\);
(9) \(-\text{C}(\text{R}^i)(\text{R}^i)-\text{O-lower alkyl}\); or
(10) alkylsulfinyl

(p) \(-\text{CON}(\text{R}^s)(\text{R}^s)\);
(q) \(-\text{CH}_2\text{OR}^s\);
(r) \(-\text{CH}_2\text{OCN}\);
(s) unsubstituted or substituted:

(1) lower alkyl-Q;
(2) \(-\text{O-lower alkyl-Q}\);
(3) \(-\text{S-lower alkyl-Q}\);
(4) lower alkyl-O-lower alkyl-Q;
(5) lower alkyl-S-lower alkyl-Q;

(6) lower alkyl-O-Q;
(7) lower alkyl-S-Q;
(8) lower alkyl-O-K;
(9) lower alkyl-S-K;

(11) lower alkyl-S-V;

wherein the substituent(s) resides on the lower alkyl;

(t) cycloalkyl;
(u) aryl;
(v) arylalkyl;

(25) cycloalkylalkyl;
(x) aryloxy;
(y) arylalkoxy;
(z) arylalkylthio;
(aa) cycloalkylalkoxy;

(bb) heterocycloalkyl;
(cc) alkylsulfonyloxy;
(dd) alkylsulfonyl;
(ee) arylsulfonyl;
(ff) arylsulfonyloxy;
(gg) -C(O)R^{10};
(hh) nitro;
(ii) amino;
(jj) aminoalkyl;
(kk) -C(O)-alkyl-heterocyclic ring;
(ll) halo;
(mm) heterocyclic ring;
(nn) -CO_{2}D^{n};

(oo) carboxyl;
(pp) amidyl; or
(qq) alkoxyalkyl;
alternatively, R^{1} and R^{4} together with the carbons to which they are attached are:

(a) cycloalkyl;
(b) aryl; or
(c) heterocyclic ring;
alternatively, R^{1} and R^{5} or R^{5} and R^{6} taken together with the carbon to which they are attached are:

(a) cycloalkyl; or
(b) heterocyclic ring;
alternatively, R^{1} and R^{2}, R^{4} and R^{7}, or R^{6} and R^{5} when substituents on adjacent carbon atoms taken together with the carbons to which they are attached are:

(a) cycloalkyl;
(b) heterocyclic ring; or
(c) aryl;
R^{6} and R^{7} are each independently:
(a) hydrogen;
(b) unsubstituted, mono- or di-substituted phenyl; unsubstituted, mono- or di-substituted benzyl; unsubstituted, mono- or di-substituted heteroaryl; mono- or di-substituted heteroarylmethyl, wherein said substituents are each independently:
(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl, preferably CF₃;
(7) N₃;
(8) -C(R¹)(R²)-OD¹; or
(9) -C(R¹)(R²)-O-lower alkyl;

(c) lower alkyl;
(d) -CH₂OR⁸;
(e) CN;
(f) -CH₂CN;
(g) haloalkyl, preferably fluoroalkyl;

(h) -CON(R⁶)(R⁸);
(i) halo; or
(j) -OR⁸;

R⁸ is:
(a) hydrogen;
(b) K; or
(c) R⁸;

R⁵ is:
(a) lower alkyl;
(b) lower alkyl-CO₂D¹;
(c) lower alkyl-NHD¹;
(d) phenyl or mono-, di- or tri-substituted phenyl, wherein the

substituents are each independently:
(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) lower alkyl-CO₂D¹;
(6) lower alkyl-NH₂D¹;
(7) CN;
(8) CO₂D¹; or
(9) haloalkyl, preferably fluoroalkyl;
(e) benzyl, mono-, di- or tri-substituted benzyl, wherein the
substituents are each independently:
 (1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) lower alkyl-CO₂D¹;
(6) lower alkyl-NH₂D¹;
(7) CN;
(8) -CO₂D¹; or
(9) haloalkyl, preferably CF₃;
(f) cycloalkyl;
(g) K; or
(h) benzoyl, mono-, di-, or trisubstituted benzoyl, wherein the
substituents are each independently:
 (1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) lower alkyl-CO₂D¹;
(6) lower alkyl-NH₂D¹;
(7) CN;
(8) -CO₂D¹; or
(9) haloalkyl, preferably CF₃;
R¹⁰ and R¹⁰' are each independently:
 (a) hydrogen; or
 (b) R¹¹;
R^{ii} is:

(a) lower alkyl;
(b) cycloalkyl;
(c) unsubstituted, mono-, di- or tri-substituted phenyl or naphthyl,

wherein the substituents are each independently:

(1) halo;
(2) alkoxy;
(3) alkylthio;
(4) CN;
(5) haloalkyl, preferably CF$_3$;
(6) lower alkyl;
(7) N$_3$;
(8) -CO$_2$D;
(9) -CO$_2$-lower alkyl;
(10) -C(R$_{12}^{ii}$)(R$_{13}^{ii}$)-OD;
(11) -C(R$_{12}^{ii}$)(R$_{13}^{ii}$)-O-lower alkyl;
(12) lower alkyl-CO$_2$D;
(13) lower alkyl-CO$_2$R$_{12}^{ii}$;
(14) benzyloxy;
(15) -O-(lower alkyl)-CO$_2$D;
(16) -O-(lower alkyl)-CO$_2$R$_{12}^{ii}$ or
(17) -O-(lower alkyl)-NR$_{12}^{ii}$R$_{13}^{ii}$;

(d) unsubstituted, mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or said heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally 1, 2, or 3 additional N atoms, and wherein said substituents are each independently:

(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl, preferably CF₃;
(7) Nₓ;
(8) -C(R¹')(R²')-OD₁; or
(9) -C(R¹')(R²')-O-lower alkyl;

(e) unsubstituted, mono- or di-substituted benzoheterocycle, wherein
the benzoheterocycle is a 5, 6, or 7-membered ring which contains 1 or 2
heteroatoms independently selected from O, S, or N, and, optionally, a carbonyl
group or a sulfonyl group, wherein said substituents are each independently:

(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl, preferably CF₃;
(7) Nₓ;
(8) -C(R¹')(R²')-OD₁; or
(9) -C(R¹')(R²')-O-lower alkyl;

(f) unsubstituted, mono- or di-substituted benzocarbocycle, wherein
the carbocycle is a 5, 6, or 7-membered ring which optionally contains a carbonyl
group, wherein said substituents are each independently:

(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl, preferably CF₃;
(7) Nₓ;
(8) -C(R¹')(R²')-OD₁; or
(9) -C(R¹')(R²')-O-lower alkyl;

(g) hydrogen; or
(h) K

R¹² and R¹³ are each independently:

(a) hydrogen;
(b) lower alkyl; or
(c) aryl; or

R^{12} and R^{13} together with the atom to which they are attached form a saturated monocyclic ring of 3, 4, 5, 6 or 7 atoms;

R^{14} and R^{15} are each independently:

(a) hydrogen; or
(b) lower alkyl; or

R^{14} and R^{15} together with the atom to which they are attached form a carbonyl, a thial, or a saturated monocyclic ring of 3, 4, 5, 6 or 7 atoms;

D is:

(a) hydrogen or
(b) D;

D is:

(a) V; or
(b) K;

U is:

(a) oxygen;
(b) sulfur; or
(c) $-N(R_i)(R_j)$;

V is:

(a) $-NO_2$;
(b) $-NO_2$; or
(c) hydrogen

K is $-W_{as}E_c-(C(R_i)(R_j))_p-E_c-(C(R_i)(R_j))_r-W_d-(C(R_i)(R_j))_y-W_i-E_j-W_g-(C(R_i)(R_j))_z-U-$

wherein a, b, c, d, g, i and j are each independently an integer from 0 to 3;
p, x, y and z are each independently an integer from 0 to 10;

W at each occurrence is independently:

(a) $-C(O)$;
(b) $-C(S)$;
(c) $-T$;
(d) $-(C(R_i)(R_j))_n$;
(e) alkyl;
(f) aryl;
(g) heterocyclic ring;
(h) arylheterocyclic ring, or
(i) \((\text{CH}_2\text{CH}_2\text{O})_q\) ;

E at each occurrence is independently:
(a) \(-\text{T}^-\);
(b) alkyl;
(c) aryl;
(d) \(-\text{(C(R)}_j\text{(R)}_k\text{)}_h\) ;
(e) heterocyclic ring;
(f) arylheterocyclic ring; or
(g) \(-\text{(CH}_2\text{CH}_2\text{O})_q\) ;

h is an integer from 1 to 10;
q is an integer from 1 to 5;

R_s and R_t are each independently:
(a) hydrogen;
(b) alkyl;
(c) cycloalkoxy;
(d) halogen;
(e) hydroxy;
(f) hydroxyalkyl;
(g) alkoxyalkyl;
(h) arylheterocyclic ring;
(i) cycloalkylalkyl;
(j) heterocyclicalkyl;
(k) alkoxy;
(l) haloalkoxy;
(m) amino;
(n) alkylamino;
(o) dialkylamino;
(p) arylamino;
(q) diarylamino;
(r) alkylarylamino;
(s) alkoxyhaloalkyl;
(t) haloalkoxy;
(u) sulfonic acid;
(v) alkylsulfonic acid;
(w) arylsulfonic acid;
(x) arylalkoxy;
(y) alkylthio;
(z) arylthio;
(aa) cyano;
(bb) aminoalkyl;
(cc) aminoaryl;
(dd) alkoxy;
(ee) aryl;
(ff) arylalkyl;
(gg) carboxamido;
(hh) alkylcarboxamido;
(ii) arylcarboxamido;
(jj) amidyl;
(kk) carboxyl;
(ll) carbamoyl;
(mm) alkylcarboxylic acid;
(nn) arylcarboxylic acid;
(oo) alkylcarbonyl;
(pp) arylcarbonyl;
(qq) ester;
(rr) carboxylic ester;
(ss) alkylcarboxylic ester;
(tt) arylcarboxylic ester;
(uu) haloalkoxy;
(vv) sulfonamido;
(ww) alkylsulfonamido;
(xx) arylsulfonamido;
(yy) alkylsulfenyl,
(zz) alkylsulfonyloxy,
(aaa) arylsulfonyl,
(bbb) arylsulphonyloxy
(cbb) sulfonic ester;

5 (ddd) carbamoyl;
(eee) urea;
(ff) nitro; or
(ggg) -U-V; or

R_s and R_t taken together are:

10 (a) oxo;
(b) thial; or

R_s and R_t taken together with the carbon to which they are attached are:

(a) heterocyclic ring;
(b) cycloalkyl group; or

15 (c) bridged cycloalkyl group;

k is an integer from 1 to 2;
T at each occurrence is independently:

(a) a covalent bond,
(b) carbonyl,

20 (c) an oxygen,
(d) -S(O)_o; or
(e) -N(R)_o(R)_o;

o is an integer from 0 to 2;
Q is:

25 (a) -C(O)-U-D;
(b) -CO_2-lower alkyl;
(c) tetrazolyl-5-yl;
(d) -C(R')(R')(S-D);
(e) -C(R')(R')(O-D);

30 (f) -C(R')(R')(O-lower alkyl);

R_s is:

(a) a lone pair of electron;
(b) hydrogen; or
(c) lower alkyl;

R₂ is:

(a) hydrogen;
(b) alkyl;
(c) aryl;
(d) alkylcarboxylic acid;
(e) arylcarboxylic acid;
(f) alkylcarboxylic ester;
(g) arylcarboxylic ester;

(h) alkylcarboxamido;
(i) arylcarboxamido;
(j) alkylsulfanyl;
(k) alkylsulfonyl;
(l) alkylsulfonyloxy,

(m) arylsulfanyl;
(n) arylsulfonyl;
(o) arylsulphonyloxy;
(p) sulfonamido;
(q) carboxamido;
(r) carboxylic ester;
(s) aminoalkyl;
(t) aminaryl;
(u) -CH₂-C(U-V)(R₇)(R₈);
(v) a bond to an adjacent atom creating a double bond to that atom; or

(w) -(N₂O₂⁻)⁻·M⁺, wherein M⁺ is an organic or inorganic cation;

with the proviso that the compounds of Formula I must contain at least one nitrite, nitrate, thionitrite or thionitrate group.

In cases where R₂ and R₃ are a heterocyclic ring or R₄ and R₅, taken together with the carbon atoms to which they are attached are a heterocyclic ring, then R₅ can be a substituent on any disubstituted nitrogen contained within the radical where R₃ is as defined herein.

In cases where multiple designations of variables which reside in sequence are chosen as a "covalent bond" or the integer chosen is 0, the intent is to denote a
single covalent bond connecting one radical to another. For example, E₁ would denote a covalent bond, while E₂ denotes (E-E) and (C(R₁)(R₂))₂ denotes -C(R₁)(R₂)-C(R₁)(R₂)-.

Another embodiment of the present invention provides compounds of the

Formula (II):

wherein:

A-B is:

(a) N-C;
(b) C-N; or
(c) N-N;

when sides d and f are double bonds, and sides e and g are single bonds,

-X²-Y²-Z²- is:

(a) =CR¹=CR²=CR³;
(b) =N-CR²=CR³;
(c) =N-CR²=N;
(d) =CR¹-N=CR²;
(e) =CR¹-N=N;
(f) =N-N=CR²;
(g) =N-N=N;
(h) =CR¹-CR²=N; or
(i) =CR²-CR³=N;

R₁ and R² taken together are:
or R^γ and R^5 taken together with the carbon atoms to which they are attached are:

- (a) cycloalkyl; or
- (b) heterocyclic ring;

R^γ is:

- (a) hydrogen;
- (b) alkylthio;
- (c) alkylsulfinyl;
- (d) alkylsulfonyl;
- (e) cyano;
- (f) carboxyl;
- (g) amino;
- (h) lower alkyl;
- (i) haloalkyl;
- (j) hydroxy;
- (k) alkoxy;
- (l) haloalkoxy;
- (m) alkylarylalkylamino;
- (n) aminoalkyl;
- (o) aminoaryl;
- (p) sulfonamido;
(q) alkylsulfonamido;
(r) arylsulfonamido;
(s) heterocyclic ring;
(t) hydroxyalkyl; or
(u) nitro;

a is an integer from 1 to 3;

when sides e and g are double bonds, and sides d and f are single bonds,

\(-X^2-Y^2-Z^2-\) is:

(a) -CR\(^4\)=N-N=;
(b) -N=N-CR\(^4\)=;
(c) -CR\(^4\)=N-CR\(^6\)=;
(d) -N=CR\(^4\)-N=;
(e) -CR\(^3\)=CR\(^6\)=N=;
(f) -N=CR\(^4\)-CR\(^5\)=;
(g) -CR\(^4\)=CR\(^5\)-CR\(^7\)=; or
(h) -N=N-N=;

when side g is a double bond, and sides d, e and f are single bonds,

\(-X^2-Y^2-Z^2-\) is:

(a) -C(O)-O-CR\(^4\)=;
(b) -C(O)-NR\(^3\)-CR\(^4\)=;
(c) -C(O)-S-CR\(^3\)=; or
(d) -C(H)R\(^4\)-C(OH)R\(^5\)-N=;

when sides d is a double bond, and sides e, f and g are single bonds,

\(-X^2-Y^2-Z^2-\) is:

(a) =CR\(^4\)-O-C(O)-;
(b) =CR\(^4\)-NR\(^3\)-C(O)-;
(c) =CR\(^4\)-S-C(O)-; or
(d) =N-C(OH)R\(^4\)-C(H)R\(^5\)-;

when sides f is a double bond, and sides d, e and g are single bonds,

\(-X^2-Y^2-Z^2-\) is:

(a) -CH(R\(^6\))-CR\(^3\)=N-; or
(b) -C(O)-CR\(^4\)=CR\(^5\)-;

when sides e is a double bond, and sides d, f and g are single bonds,
-X^2-Y^2-Z^2- is:

(a) -N=CR^4-CH(R^5)-; or

(b) -CR^4=CR^5-C(O)-;

when sides \(d, e, f \) and \(g \) are single bonds,

-\(X^2-Y^2-Z^2- \) is:

(a) -\(C(O)-CR^4(R^5)-C(O)-\);

\(R^1, R^2, R^3, R^4, R^6, R^7 \) and \(R^8 \) are as defined herein;

with the proviso that the compounds of Formula II must contain at least one nitrite, nitrate, thionitrite or thionitrate group.

Another embodiment of the present invention provides compounds of the Formula (III):

\[
\begin{array}{c}
\text{III} \\
\end{array}
\]

wherein:

\(X^2 \) is:

(a) -\(C(O)-U-D^1 \);
(b) -\(\text{CH}_2-U-D^1 \);
(c) -\(\text{CH}_2-C(O)-\text{CH}_2 \);
(d) -\(\text{CH}_2-\text{CH}_2-C(O)-U-D^1 \);
(e) -\(\text{CH}_2-O-D^1 \); or
(f) -\(C(O)H \)

\(Y^2 \) is:

(a) -\((CR^5(R^8))^5-U-D^1 \);
(b) -\(\text{CH}_2 \);
(c) -\(\text{CH}_2OC(C(O)R^5) \); or
(d) -\(C(O)H \);

alternatively, \(X^2 \) and \(Y^2 \) taken together are -\(CR^6(R^8)-CR^8(R^8) \);
R²⁵, R²⁶, R³⁵ and R²⁷ are each independently:

(a) hydrogen;
(b) hydroxy;
(c) alkyl;
(d) alkoxy;
(e) lower alkyl-OD¹;
(f) alkylthio;
(g) CN;
(h) -C(O)R³⁵; or
(i) -OC(O)R³⁵;

R³⁴ is:

(a) hydrogen;
(b) lower alkyl; or
(c) alkoxy;

R³⁶ is:

(a) lower alkyl;
(b) alkoxy

(c) unsubstituted, mono-, di- or tri-substituted phenyl or pyridyl,

wherein the substituents are each independently:

(1) halo;
(2) alkoxy;
(3) haloalkyl;
(4) CN;
(5) -C(O)R³⁴;
(6) lower alkyl;
(7) -S(O)₂-lower alkyl; or
(8) -OD¹;

alternatively, R²⁵ and R³⁵ or R²⁶ and R³⁷ taken together are:

(a) oxo;
(b) thial;
(c) =CR³⁶R²⁷; or
(d) =NR³⁶;

R³⁶ and R³⁷ are each independently:
(a) hydrogen;
(b) lower alkyl;
(c) lower alkyl-OD;
(d) CN; or
(e) C(O)R^a;

R^a is:
(a) OD;
(b) alkoxy;
(c) lower alkyl; or
(d) unsubstituted, mono-, di- or tri-substituted phenyl or pyridyl,

wherein the substituents are each independently:
(1) halo;
(2) alkoxy;
(3) haloalkyl;
(4) CN;
(5) C(O)R^a;
(6) lower alkyl;
(7) S(O)_{n}-lower alkyl; or
(8) -OD;
R^1, R^2, R^3, R^5, R^f, U, D^1, o and k are as defined herein;

with the proviso that the compounds of Formula III must contain at least one nitrite, nitrate, thionitrite or thionitrate group.

Another embodiment of the present invention provides compounds of the Formula (IV)
X' and Z' are each independently:

(a) N; or
(b) CR21;

R^{22} is:

5

(a) -S(O)$_2$-CH$_3$;
(b) -S(O)$_2$-NR4(D1); or
(c) -S(O)$_2$-N(D1)-C(O)-CF$_3$;

R^{23} and R^{24} are each independently:

(a) hydrogen;
(b) lower alkyl;
(c) alkoxy;
(d) alkylthio;
(e) haloalkyl, preferably fluoroalkyl;
(f) haloalkoxy, preferably fluoroalkoxy;

15

(g) CN;
(h) -CO$_2$D1;
(i) -CO$_2$R14;
(j) lower alkyl-O-D1;
(k) lower alkyl-CO$_2$D1;
(l) lower alkyl-CO$_2$R14;
(m) halo;
(n) -O-D1;
(o) -N$_3$;
(p) -NO$_2$;
(q) -NR$_4$D1;
(r) -N(D1)C(O)R14;
(s) -NH$_2$;
(t) aryl;
(u) arylalkylthio;

25

(v) arylalkoxy;
(w) alkylamino;
(x) arylcoxy;
(y) alkylaryalkylamino;
(z) cycloalkylalkylamino; or
(aa) cycloalkylalkoxy;

R^{22} is:

(a) mono-, di- or tri-substituted phenyl or pyridinyl (or the N-oxide thereof), wherein the substituent are each independently:

(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) lower alkyl;
(7) haloalkyl, preferably fluoroalkyl;
(8) N;
(9) \(-\text{CO}_2\text{D}\)^{\text{3}};
(10) \(-\text{CO}_2\text{-lower alkyl}\);
(11) \(-\text{C}(\text{R}^{16})(\text{R}^{15})\text{-OD}^{\text{3}}\);
(12) \(-\text{OD}^{\text{3}}\);
(13) lower alkyl\(-\text{CO}_2\text{-R}^{14}\); or
(14) lower alkyl\(-\text{CO}_2\text{-D}^{\text{3}}\);

(b) \(-\text{T-C}(\text{R}^{23})(\text{R}^{24})\text{-(C}(\text{R}^{25})(\text{R}^{26})\text{)}\text{-C}(\text{R}^{27})(\text{R}^{28})\text{-U-D}^{\text{3}}\);

c)

(d) arylalkyl; or
(e) cycloalkylalkyl;

wherein:

R^{24} and R^{25} are each independently:

(a) hydrogen; or
(b) lower alkyl;
\(R^{29}, R^{30}, R^{25}, R^{27}, R^{28} \) are each independently:

(a) hydrogen; or

(b) lower alkyl; or

\(R^{25} \) and \(R^{27} \), or \(R^{27} \) and \(R^{28} \) together with the atoms to which they are attached

form a carbocyclic ring of 3, 4, 5, 6 or 7 atoms, or \(R^{28} \) and \(R^{25} \) are joined to form a covalent bond;

\(Y^5 \) is:

(a) \(CR^{29}R^{30} \);

(b) oxygen; or

(c) sulfur;

\(R^{29} \) and \(R^{30} \) are each independently:

(a) hydrogen;

(b) lower alkyl;

(c) \((CH_2)_n \) \(\text{OD} \);

(d) halo; or

\(R^{29} \) and \(R^{30} \) taken together are an oxo group;

\(s \) is an integer from 2 to 4;

\(R^\dagger, D^\dagger, T, U, K \) and \(o \) are as defined herein;

with the proviso that the compounds of Formula IV must contain at least one nitrite, nitrate, thionitrite or thionitrate group.

Another embodiment of the present invention provides compounds of the Formula (V):
wherein:

X^5 is:

5. (a) oxygen; or
 (b) sulfur;

R^{31} is:

(a) alkoxy;
(b) haloalkoxy preferably -OCH$_2$F, -OCHF$_2$, or -OCHF$_3$;
(c) alkylthio;
(d) haloalkyl, preferably CF$_3$;
(e) halo; or
(f) lower alkyl;

$R^{32}, R^{33}, R^{34}, R^{35}, R^{36}$ and R^{37} are each independently:

15. (a) hydrogen;
 (b) halo, preferably F or Cl;
 (c) lower alkyl;
 (d) cycloalkyl;
 (e) haloalkyl, preferably CF$_3$, CF$_2$H or CFH$_3$;
 (f) -OD$_1$;
 (g) -OR$_{25}$;
(h) -SD³;
(i) -SR³;
(j) -S(O)R³;
(k) -S(O)₂R³;

(l) unsubstituted, mono- or di-substituted benzyl, wherein the substituents are each independently:

1. haloalkyl, preferably CF₃;
2. CN;
3. halo;
4. lower alkyl;
5. -OR³;
6. -SR³;
7. -S(O)R³; or
8. -S(O)₂R³;

(m) phenyl or mono- or di-substituted phenyl, wherein the substituents are each independently:

1. haloalkyl, preferably CF₃;
2. CN;
3. halo;
4. lower alkyl;
5. -OR³;
6. -SR³;
7. -S(O)R³; or
8. -S(O)₂R³; or

R²⁵ together with R³³ form an oxo group; or
R³⁴ together with R³⁵ form an oxo group; or
R³⁶ together with R³⁷ form an oxo group; or

R²⁵ and R³³ are joined so that, together with the carbon atom to which they are attached, they form a saturated monocyclic ring of 3, 4, 5, 6 or 7 members, and, optionally, contain one heteroatom which is preferably oxygen; or

R³⁵ and R³⁴ are joined so that, together with the carbon atoms to which they are attached, they form a saturated or aromatic monocyclic ring of 3, 4, 5, 6 or 7 members; or
R35 and R36 are joined so that, together with the carbon atoms to which they are attached, they form a saturated or aromatic monocyclic ring of 3, 4, 5, 6 or 7 members; or

R34 and R35 are joined so that, together with the carbon atom to which they are attached, they form a saturated monocyclic ring of 3, 4, 5, 6 or 7 members, and optionally, contain one heteroatom which is preferably oxygen; or

R34 and R36 are joined so that, together with the carbon atoms to which they are attached, they form a saturated or aromatic monocyclic ring of 3, 4, 5, 6 or 7 members; or

R36 and R37 are joined so that, together with the carbon atom to which they are attached, they form a saturated monocyclic ring of 3, 4, 5, 6 or 7 members, and, optionally, contain one heteroatom which is preferably oxygen;

R38 and R39 are hydrogen or R38 and R39 when taken together are oxo;

R40, R41 and R42 are each independently:

(a) hydrogen;
(b) halo;
(c) lower alkyl;
(d) alkoxy;
(e) alkylthio;
(f) -S(O)-lower alkyl;
(g) haloalkyl, preferably CF\textsubscript{3};
(h) CN;
(i) -N\textsubscript{3};
(j) -NO\textsubscript{2};
(k) -SCF\textsubscript{3}; or
(l) -OCF\textsubscript{3};

R43 is:

(a) lower alkyl; or
(b) benzyl, optionally mono- or di-substituted, wherein the

substituents are each independently:

(1) haloalkyl, preferably CF\textsubscript{3};
(2) CN;
(3) halo; or
(4) lower alkyl;
 alternatively, X^6 and U taken together with the carbon atom to which they
 are attached form a 5-, 6-, or 7-membered heterocyclic ring;
 n at each occurrence is an integer from 0 to 1; and

 with the proviso that the compounds of Formula V must contain at least one
 nitrite, nitrate, thionitrite or thionitrate group.

 Another embodiment of the present invention provides compounds of
 the Formula (VI):

 \[
 \text{VI}
 \]

 wherein:

 X^6 is:
 (a) oxygen;
 (b) sulfur;
 (c) CH$_2$;
 (d) -S(O)$_2$;
 (e) -NH; or
 (f) -C(O);

 \[Z^6\] is:
 (a) K;
 (b) -C(O)CH$_3$; or
 (c) hydrogen;

 R65 is:
 (a) lower alkyl; or
(b) mono-, di-, tri-, tetra- or per-substituted lower alkyl, wherein the
substituent is halo, preferably fluoro;

\(R^6 \) is:

(a) mono or disubstituted aromatic ring of 5 atoms containing one O,
S or N atom, and, optionally, 1, 2 or 3 additional N atoms, wherein the substituents
are each independently:

1. hydrogen;
2. lower alkyl;
3. halo;
4. -O-lower alkyl;
5. -S-lower alkyl;
6. haloalkyl, preferably \(\text{CF}_3 \);
7. -COCH\(_3\); or
8. -S(\(\text{O} \))\(_2\)-lower alkyl;

(b) mono or disubstituted aromatic ring of 6 atoms containing 0, 1, 2,
3 or 4 nitrogen atoms, wherein the substituents are each independently:

1. hydrogen;
2. lower alkyl;
3. halo;
4. -O-lower alkyl;
5. -S-lower alkyl;
6. -O-haloalkyl;
7. -S-haloalkyl;
8. haloalkyl, preferably \(\text{CF}_3 \);
9. CN;
10. -N\(_3\);
11. -COCH\(_3\);
12. -S(\(\text{O} \))\(_2\)-lower alkyl;
13. alkynyl; or
14. cycloalkylalkyl;

(c) alkynyl;
(d) unsubstituted, mono-, di-, tri-, or tetra substituted phenyl or
naphthyl, wherein the substituents are each independently:
(1) halo;
(2) CN;
(3) haloalkyl, preferably CF₃;
(4) -Nᵢ;
(5) vinyl;
(6) acetylenyl;
(7) lower alkyl;
(8) alkoxy;
(9) haloalkoxy;
(10) alkylthio; or
(11) haloalkylthio;

(e) unsubstituted, mono-, di-, tri-, or tetra substituted benzoheteroaryl, wherein the substituents are each independently:

(1) halo;
(2) CN; or
(3) haloalkyl, preferably CF₃;

(f) substituted lower alkyl;
(g) substituted alkenyl;
(h) cycloalkyl; or

(i) lower alkyl-O-lower alkyl;

Rᵮ is:
(a) -C(O)-lower alkyl;
(b) -CN;
(c) -CO₂D¹;
(d) -CO₂-lower alkyl ester;
(e) -C(O)-NHD¹;
(f) -S(O)-lower alkyl;
(g) -S(O)₂-lower alkyl;
(h) -NO₂;
(i) haloalkyl, preferably CF₃;
(j) halo;
(k) K;
(l) -S(O)₈NRᵦᵨRᵩᵩ; or
(m) -S(O)₃NR⁺⁺⁺⁻R⁺⁺⁺⁺;

R⁺⁺⁺⁺ is:

(a) hydrogen; or
(b) lower alkyl; or

R⁺⁺⁺⁺ and R⁺⁺⁺⁺ taken together with the atoms to which they are attached form a 5, 6, or 7-membered unsubstituted, mono-, di-, or trisubstituted saturated or unsaturated cyclic ring optionally containing a -S(O)₂-group, wherein the substituents are each independently:

(a) oxo;
(b) lower alkyl;
(c) OD⁻; or
(d) =N-OD⁻;

R₁, R⁺⁺⁺⁺, R⁺⁺⁺⁺, R⁺⁺⁺⁺, K, D⁻ and o are as defined herein;

with the proviso that the compounds of Formula VI must contain at least one nitrite, nitrate, thionitrite or thionitrate group.

Another embodiment of the present invention provides compounds of Formula (VII):

\[\text{VII} \]

wherein:

\(X^7 \) is:

(a) oxygen;
(b) sulfur;
(c) -NR⁺⁺⁺⁺;
(d) -N-O-R⁺⁺⁺⁺; or
(e) -N-NR⁺⁺⁺⁺R⁺⁺⁺⁺;
\(\gamma \) is:

(a) hydrogen;
(b) halo;
(c) lower alkyl;
(d) alkenyl; or
(e) alkynyl;

\(Z' \) is:

(a) -C(O)-;
(b) oxygen;
(c) -S(O)\(_n\)-;
(d) -NR\(^{93}\)-; or
(e) covalent bond;

\(R^{93} \) is:

(a) \(R^3 \); or
(b) \(R^4 \);

\(R^{50} \) and \(R^{50'} \) are each independently:

(a) hydrogen;
(b) halo;
(c) lower alkyl;
(d) aryl;
(e) arylalkyl;
(f) cycloalkyl;
(g) cycloalkylalkyl;
(h) -OD\(^3\);
(i) lower alkyl-OD\(^3\);
(j) carboxamido;
(k) amidyl; or
(l) K;

\(R^{51} \) is:

(a) lower alkyl;
(b) alkenyl;
(c) cycloalkyl;
(d) cycloalkylalkyl;
(e) aryl;
(f) arylalkyl;
(g) heterocyclic ring; or
(h) lower alkyl-heterocyclic ring;

R²⁸ and R²⁹ are each independently:
 (a) lower alkyl;
 (b) cycloalkyl;
 (c) cycloalkylalkyl;
 (d) aryl;
 (e) arylalkyl;
 (f) heterocyclic ring; or
 (g) heterocyclicalkyl;

R³⁵ is:
 (a) hydrogen; or
 (b) lower alkyl;

R¹, R², R⁴, K, D¹ and o are as defined herein;
with the proviso that the compounds of Formula VII must contain at least
one nitrite, nitrate, thionitrite or thionitrate group.

Another embodiment of the present invention provides compounds of the

Formula (VIII):

\[\text{VIII} \]

wherein:

X⁸ is:
 (a) oxygen;
 (b) sulfur;
 (c) NR; or
 (d) -CR⁵⁸R⁵⁹;
A₁, A₂, A₃, and A₄ are each independently carbon or nitrogen, with the proviso that at least two of A₁, A₂, A₃, and A₄ are carbon atoms;

R₅₄ is:

(a) haloalkylalkyl, preferably fluoroalkylalkyl;

(b) halo;

(c) alkylthio;

(d) alkoxy;

(e) -NO₂;

(f) CN;

(g) lower alkyl-CN;

(h) heterocyclic ring;

(i) lower alkyl;

(j) arylalkyl;

(k) cycloalkyl; or

(l) phenyl or mono- or di-substituted phenyl, wherein the substituents are each independently:

(1) alkylthio;

(2) nitro; or

(3) alkylsulfonyl;

R₅₅ is:

(a) -CO₂D⁺;

(b) -C(O)-N(R')(R₅);

(c) -CO₂-lower alkyl;

(d) -C(O)-N(D⁺)-S(O)₂-(C(R)(R₅))ₚ-U-V; or

(e) -CO₂-lower alkyl-U-V;

R₅₆ is:

(a) hydrogen;

(b) phenyl;

(c) thiényl;

(d) alkynyl;

(e) alkenyl; or

(f) alkyl;

R₇ is:
(a) hydrogen;
(b) lower alkyl;
(c) arylalkyl;
(d) alkoxy;
(e) aryloxy;
(f) arylalkoxy;
(g) haloalkyl;
(h) haloalkoxy;
(i) alkylamino;
(j) arylamino;
(k) arylalkylamino;
(l) nitro;
(m) sulfonamido;
(n) carboxamido;
(o) aryl;
(p) -C(O)-aryl; or
(q) -C(O)-alkyl;

alternatively, \(R_e \) and the monocyclic ring radical of which \(A^1, A^2, A^3, \) and \(A^4 \) comprise four of the six atoms are:

(a) naphthyl;
(b) quinolyl;
(c) isoquinolyl;
(d) quinoliziny1;
(e) quinoxalinyl; or
(f) dibenzofury1;

\(R^{20} \) and \(R^{29} \) are each independently:

(a) hydrogen;
(b) lower alkyl;
(c) lower alkyl-phenyl;
(d) haloalkyl, preferably fluoroalkyl;
(e) halo;
(f) -NO2;
(g) CN;
(h) lower alkyl-CN;
(i) alkoxy;
(j) alkylthio; or
(k) alkenyl;
alternatively, R^{39} and R^{99} taken together along with the atoms to which they are attached are cycloalkyl;
R^{8}, R^{9}, R', R'', D', U, V, a and p are as defined herein;
with the proviso that the compounds of Formula VIII must contain at least one nitrite, nitrate, thionitrite or thionitrate group.

Another embodiment of the present invention provides compounds of the Formula (IX):

\[
\begin{align*}
\text{IX} \\
\end{align*}
\]

wherein:
X' is $-\text{C}(\text{O})\cdot U\cdot D'$ and Y' is $-\text{CH}_2\cdot \text{CR}^8(\text{R}^{99})\cdot U\cdot D^9$; or
X' is $-\text{CH}_2\cdot \text{CR}^8(\text{R}^{99})\cdot U\cdot D'$ and Y' is $-\text{C}(\text{O})\cdot U\cdot D^9$; or
X' and Y' taken together are:
(a) $-\text{C}(\text{O})\cdot \text{O}\cdot \text{CR}^4(\text{R}^{84})\cdot \text{CR}^8(\text{R}^{99})$;
(b) $-(\text{CR}^4(\text{R}^{84}))_k\cdot \text{CR}^8(\text{R}^{99})$;
(c) $-\text{C}(\text{O})\cdot -(\text{CR}^4(\text{R}^{84}))_k\cdot \text{CR}^8(\text{R}^{99})$;
(d) $-(\text{CR}^4(\text{R}^{84}))_k\cdot \text{CR}^8(\text{R}^{99})\cdot \text{C}(\text{O})$; or
(e) $-\text{C}(\text{O})\cdot \text{CR}^4(\text{R}^{84})\cdot \text{CR}^8(\text{R}^{99})$;
wherein X' is the first carbon atom of a, b, c, d and e;
R', R'', R''', R'''', U, D' and k are as defined herein;
with the proviso that the compounds of Formula IX contain at least one nitrite, nitrate, thionitrite or thionitrate group.
Another embodiment of the present invention provides compounds of the Formula (X):

\[
\begin{align*}
& R^1 & R^2 \\
\end{align*}
\]

wherein:

when side \(h, k, \) and \(j \) are single bonds, and side \(i \) and \(l \) are a double bond, \(-\)

\[
X^{10}Y^{10}Z^{10}\text{ - is:}
\]

(a)

\[
\begin{align*}
& N & k & N \\
\end{align*}
\]

or

(b)

when sides \(i, k \) and \(l \) are single bonds, and sides \(h \) and \(j \) are double bonds, \(-\)

\[
X^{10}Y^{10}Z^{10}\text{ - is:}
\]
when side h and j are single bonds, and side k and i is a single or a double bond, $-X^{10} - Y^{10} - Z^{10} -$ is:

(a) $-$

(b) $-$

P^{10} is:

(a) -$N=;$

(b) -$NR^2;$

(c) -O; or

(d) -S; or

Q^{10} and Q^{10} are each independently:

(a) $CR^{10};$ or

(b) nitrogen;

$A^{10} - B^{10} - C^{10} - D^{10}$ is:

(a) -$CR'=CR^5-CR^5=CR^5;$

(b) -$CR'(R^6)-CR^5(R^6)-CR^4(R^6)-C(O);$

(c) -$CR^4(R^6)-CR^5(R^6)-C(O)-CR^4(R^6);$
(d) -CR^4(R^5)-C(O)-CR^4(R^6)-CR^5(R^7)-;
(e) -C(O)-CR^4(R^6)-CR^5(R^7)-CR^4(R^8)-;
(f) -CR^4(R^6)-CR^5(R^7)-C(O)-;
(g) -CR^4(R^6)-C(O)-CR^5(R^7)-;
(h) -C(O)-CR^4(R^6)-CR^5(R^7)-;
(i) -CR^4(R^6)-CR^5(R^7)-O-C(O)-;
(j) -CR^4(R^6)-O-C(O)-CR^5(R^7)-;
(k) -O-C(O)-CR^4(R^6)-CR^5(R^7)-;
(l) -CR^4(R^6)-CR^5(R^7)-C(O)-O-;
(m) -CR^4(R^6)-C(O)-O-CR^5(R^7)-;
(n) -C(O)-O-CR^4(R^6)-CR^5(R^7)-;
(o) -CR^{12}(R^{13})-O-C(O)-;
(p) -C(O)-O-CR^{12}(R^{13})-;
(q) -O-C(O)-CR^{12}(R^{13})-;
(r) -CR^{12}(R^{13})-C(O)-O-;
(s) -N=CR^4-CR^6=CR^5-;
(t) -CR^6=CR^4=CR^5-;
(u) -CR^4=CR^5-N=CR^5-;
(v) -CR^4=CR^5-CR^5=N-;
(w) -N=CR^4-CR^6=N-;
(x) -N=CR^4-N=CR^6-;
(y) -CR^4=N=CR^6=N-;
(z) -S-CR^4=N-;
(aa) -S-N=CR^6-;
(bb) -N=N-NR^3-;
(cc) -CR^5=N-S-;
(dd) -N=CR^4-S-;
(ee) -O-CR^4=N-;
(ff) -O-N=CR^4-; or
(gg) -N=CR^4-O-;
-A^{10..}-B^{10..}-D^{10..} is:
(a) -CR^4=CR^5-CR^5-;
(b) -CR^4(R^6)-CR^5(R^7)-CR^4(R^8)-;
(c) -C(O)-CR^4(R^4^*)-CR^5(R^5^*)-;
(d) -CR^4(R^4^*)-CR^5(R^5^*)-C(O)-;
(e) -N=CR^4-CR^5=;
(g) -N=N-CR^4=;
(h) -N=N-NR^3=;
(i) -N=N=N=;
(j) -N=CR^4-NR^3=;
(k) -N=CR^4-N=;
(l) -CR^4=N-NR^3=;

(m) -CR^4=N-N=;
(n) -CR^4=N-CR^5=;
(o) -CR^4=CR^5-NR^3=;
(p) -CR^4=CR^5-N=;
(q) -S-CR^4=CR^5=;

(r) -O-CR^4=CR^5;
(s) -CR^4=CR^5-O-;
(t) -CR^4=CR^5-S-;
(u) -CR^4=N-S-;
(v) -CR^4=N-O-;

(w) -N=CR^4-S-;
(x) -N=CR^4-O-;
(y) -S-CR^4=N-;
(z) -O-CR^4=N-;
(aa) -N=N-S-;

(bb) -N=N-O-;
(cc) -S-N=N-;
(dd) -O-N=N-;
(ee) -CR^4=CR^5-S;
(ff) -CR^4(R^4^*)-CR^5(R^5^*)-S-;

(gg) -CR^4(R^4^*)-CR^5(R^5^*)-O-;
(hh) -S-CR^4(R^4^*)-CR^5(R^5^*)-;
or
(ii) -O-CR^4(R^4^*)-CR^5(R^5^*)-;

R^4^* and R^5^* are each independently:
(a) lower alkyl;
(b) haloalkyl, preferably fluoroalkyl;
(c) alkoxy;
(d) alkylthio;
(e) lower alkyl-OD;
(f) -C(O)H;
(h) -(CH₂)ₙ-CO₂-lower alkyl;
(i) -(CH₂)ₙ-CO₂D;
(j) -O-(CH₂)ₙ-S-lower alkyl;
(k) -(CH₂)ₙ-S-lower alkyl;
(l) -S(O)₂-lower alkyl;
(m) -(CH₂)ₙ-NR₁₂R₁₃; or
(n) -C(O)N(R₈)(R₉);

R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, T, D, q are as defined herein;

with the proviso that the compounds of Formula X must contain at least one nitrite, nitrate, thionitrite or thionitrate group.

Another embodiment of the present invention provides compounds of the Formula (XI):

![Chemical Structure](image)

wherein:

X₁ is:
(a) oxygen; or
(b) CH₂;
Y is:
 (a) oxygen;
 (b) -H;
 (c) -N-OD;
 (d) -N-O-lower alkyl;
 (e) -N-O-aryl;
 (f) -N-C(O)-O-lower alkyl;
 (g) -N-N(R')(R''); or
 (h) -N-N(R')-S(O)_2-lower alkyl;

R^2, R^3, R^4 and R^5 are each independently:
 (a) hydrogen;
 (b) lower alkyl;
 (c) alkoxy;
 (d) halo;
 (e) CN;
 (f) OD;
 (g) aryloxy;
 (h) -NR^15R^15;
 (i) -CF;
 (j) -NO;
 (k) alkylthio;
 (l) -S(O)_2-lower alkyl;
 (m) -C(O)N(R')(R'');
 (n) -CO_2D;

R^6 is:
 (a) hydrogen;
 (b) lower alkyl;
 (c) alkenyl;
 (d) alkoxyalkyl; or
 (e) cycloalkylalkyl;

R', R', R', o, K and D' are as defined herein;
with the proviso that the compounds of Formula XI must contain at least one nitrite, nitrate, thionitrite or thionitrate group.

Another embodiment of the present invention provides compounds of the Formula (XII):

wherein:

\(X^{12} \) is:

10 (a)

(b)

or

(c) \(NR^{71} \);

\(Y^{12} \) is:
(e) \(-\text{NR}^7(\text{R}^{76})\);
(f) hydrogen; or
(g) K;

\(Z^{72}\) is:

(a)

(b) \(\text{R}^{67}\);
R^{57} is:

(a) hydrogen;
(b) lower alkyl;
(c) lower alkyl-OD1;
(d) -OD1;
(e) haloalkyl; or
(f)

\[
\begin{align*}
 & \text{(CH}_2\text{p)}
 & \text{R}^{75}
\end{align*}
\]

R^{68} is:

(a) lower alkyl;
(b) halo;
(c) alkoxy
(d) haloalkyl;
(e) alkylthio;
(f) haloalkylthio;
(g) -OCH$_2$-
(h) unsubstituted, mono-, or di-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or said heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally 1, 2, or 3 additional N atoms, and wherein said substituents are each independently:

(1) halo; or
(2) lower alkyl

(i) -S(O)$_n$-lower alkyl;
(j) -S(O)$_n$-lower haloalkyl;
(k) amino;
(l) alkylamino;
(m) dialkylamino;
(n) -N(H)SO₂-lower alkyl;
(o) N(H)SO₂-lower haloalkyl;
(p) nitro;
(q) cyano;
(r) -CO₂D¹;
(s) carboxylic ester;
(t) lower alkyl-OD¹;
(q) carboxamide; or
(r) -C(O)N(R¹¹)D¹;

R⁹ is:
(a) lower alkyl;
(b) hydrogen;
(c) alkoxy
(d) mono-, di-, tri, tetra- or penta-substituted phenyl, wherein the substituent are each independently:

(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) alkylthio;
(5) -S(O)₆-lower alkyl;
(6) lower alkyl;
(7) haloalkyl;
(8) -CO₂D¹;
(9) -lower alkyl-CO₂D¹;
(10) -OD¹;
(11) -lower alkyl-OD¹; or
(12) haloalkoxy;

(e) mono-, di-, or tri-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or the heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally, 1, 2, 3, or 4 additional N atoms; wherein the substituents are each independently:
(1) hydrogen;
(2) halo;
(3) lower alkyl;
(4) alkoxy;
(5) alkylthio;
(6) aryloxy;
(7) arylthio;
(8) -CO₂R¹;
(9) -C(O)NH(R¹)
(10) haloalkyl; or
(11) -OD¹;

R²₀ is:
(a) lower alkyl;
(b) hydrogen; or
(c) mono- or di-substituted phenyl, wherein the substituent are each independently:
(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) haloalkyl; or
(5) lower alkyl;

R²¹ is:
(a) benzoyl, or mono-, or disubstituted benzoyl, wherein the substituents are each independently:
(1) halo;
(2) lower alkyl; or
(3) alkoxy;
(b) benzyl, mono- or disubstituted benzyl, wherein the substituents are each independently:
(1) halo;
(2) lower alkyl; or
(3) alkoxy;
(c) lower alkyl-pyridinyl, or unsubstituted, mono-, or disubstituted
pyridinyl, wherein the substituents are each independently:

(1) halo;
(2) lower alkyl; or
(3) alkoxy;
(d) -C(O)-pyridinyl, or mono-, or disubstituted -C(O)-pyridinyl

wherein the substituents are each independently:

(1) halo;
(2) lower alkyl; or
(3) alkoxy;
(e) hydrogen;
(f) aryl;
(g) cycloalkyl;
(h) cycloalkylalkyl;

R^7 is:

(a) lower alkenyl-CO_2D; or
(b) K;

R^7 is unsubstituted or mono substituted lower alkyl, wherein the substituents are each independently:

(a) hydroxy;
(b) alkoxy;
(c) nitro;
(c) -NH_2;
(d) alkylamino;
(e) dialkylamino;
(f) carboxyl;
(g) carboxylic ester; or
(h) carboxamide;

R^7 is:

(a) hydrogen;
(b) lower alkyl; or
(c) -C(O)R^7;

R^7 is:

(a) lower alkyl;
(b) haloalkyl
(c) substituted lower alkyl;
(d) cycloalkyl;
(e) unsubstituted, mono-, di- or tri-substituted phenyl or naphthyl,

wherein the substituents are each independently:

(1) halo;
(2) alkoxy;
(3) -S(O)_e-lower alkyl;
(4) hydroxy;
(5) -S(O)_e-haloalkyl;
(6) lower alkyl;
(7) haloalkyl;
(8) -CO_2D^i;
(9) -CO_2-lower alkyl;
(10) -S(O)_2NR^f(D^j);
(11) -lower alkyl-O-lower alkyl;
(12) -CN;
(13) lower alkyl-OD^i;
(14) arylalkoxy;
(15) -C(O)NR^f(D^j); or
(16) aryl;

(f) mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is selected from S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or the heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally, 1, 2, 3, or 4 additional N atoms; wherein the substituents are each independently:

(1) halo;
(2) alkoxy;
(3) -S(O)_e-lower alkyl;
(4) hydroxy;
(5) -S(O)_e-haloalkyl;
(6) lower alkyl;
(7) haloalkyl;
(8) \(-\text{CO}_2\text{D}^1\);
(9) \(-\text{CO}_2\text{-lower alkyl}\);
(10) \(-\text{S(O)}_2\text{NR}^a\text{(D}^1)\);
(11) \(-\text{lower alkyl-O-lower alkyl}\);
(12) \(-\text{N(D}^1\text{)S(O)}_2\text{-lower alkyl}\);
(13) lower alkyl-\text{OD}^1;
(14) \(-\text{N(D}^1\text{)S(O)}_2\text{-haloalkyl}\);
(15) \(-\text{C(O)NR}^a\text{(D}^1)\); or
(16) ary1;

\(R^{26}\) is:
(a) alkyl;
(b) substituted alkyl;
(c) alkyl-\(\text{N(D}^1\text{)S(O)}_2\text{-aryl}\);
(d) substituted alkyl-cycloalkyl;
(e) substituted alkyl-heterocyclic ring; or
(f) arylalkoxy;

\(R^{27}\) is:
(a) \(-\text{OD}^1\);
(b) alkoxy; or
(c) \(-\text{NR}^{26}\text{R}^{27}\);

\(R^{28}\) and \(R^{29}\) are each independently:
(a) hydrogen;
(b) hydroxy;
(c) alkoxy;
(d) lower alkyl; or
(e) substituted lower alkyl; or

\(R^{28}\) and \(R^{29}\) taken together with the nitrogen to which they are attached form a heterocyclic ring;

\(R^{30}\) and \(R^{31}\) are each independently:
(a) hydrogen;
(b) lower alkyl; or
(c) halo;
R^{39} and R^{69} are each independently:
(a) hydrogen; or
(b) lower alkyl; or

R^{69} and R^{89} taken together with the carbon to which they are attached form a
cycloalkyl ring;
m is an integer from 0 to 6;
D', R^1, R^5, R^{12}, K, X^5, a, p and o are as defined herein; and
with the proviso that the compounds of Formula XII must contain at least
one nitrite, nitrate, thionitrite or thionitrate group.

Another embodiment of the present invention provides compounds of the

Formula (XIII):

![Formula XIII](image)

wherein:

X^{13} and Y^{13} are each independently:
(a) =C(H)-; or
(b) =N-;

R^{39} is:
(a) lower alkyl;
(b) lower alkyl-OD';
(c) alkenyl;
(d) lower alkyl-CN;
(e) lower alkyl-CO_2D';
(f) aryl;
(g) heterocyclic ring; or

R^{89} is:
(a) mono-, di- or tri-substituted phenyl, wherein the substituents are
each independently:

(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl;
(7) lower alkyl;
(8) -CO₂D⁶;
(9) -CO₂-lower alkyl;
(10) lower alkyl-OD¹;
(11) lower alkyl-NR¹²R¹³;
(12) lower alkyl-CO₂D⁶; or
(13) -OD¹;

(b) mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or the heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally, 1, 2, 3, or 4 additional N atoms; wherein the substituents are each independently:

(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl;
(7) lower alkyl;
(8) -CO₂D⁶;
(9) -CO₂-lower alkyl;
(10) lower alkyl-OD¹;
(11) lower alkyl-NR¹²R¹³;
(12) lower alkyl-CO₂D⁶; or
(13) -OD¹;
D', R', R"', and R"" are as defined herein; and
with the proviso that the compounds of Formula XIII must contain at least
one nitrite, nitrate, thionitrite or thionitrate group.

Another embodiment of the present invention provides compounds of the

Formula (XIV):

\[\text{XIV} \]

wherein:

\(X^{14} \) is:

10 (a) -C(O)-; or
 (b) -C(S)-;

\(Y^{14} \) is:

(a) -O-; or
(b) -S-;

\(A^{14} \to B^{14} \to D^{14} \) is:

(a) -CR'=CR''-CR'''=CR''''-
(b) -CR'(R')-CR'(R')-C(O)-;
(c) -CR'(R')-C(O)-CR'(R')-;
(d) -C(O)-CR'(R')-CR'(R')-;
(e) -CR'(R')-O-C(O)-;
(f) -C(O)-O-CR'(R')-;
(g) -O-C(O)-CR'(R')-;
(h) -S-N=CR'-;
(i) -O-N=CR'-;
(j) -CR'(R')-NR=NR-C(O)-;
(k) -C(O)-NR=CR'(R')-;

25
(l) -NR₃-C(O)-CR⁴(R₅)-;
(m) -CR⁴(R₅)-S-C(O)-;
(n) -C(O)-S-CR⁴(R₅)-;
(o) -S-C(O)-CR⁴(R₅)-;
(p) -CR²=CR⁶-C(O)-;
(q) -C(O)-CR⁴=CR⁶⁻;
(r) -O-CR⁴=CR⁶⁻;
(s) -S-CR⁴=CR⁶⁻;
(t) -NR₃=CR²⁻;
(u) -S-NR³-C(O)-;
(v) -O-NR³-C(O)-; or
(w) -NR³-N=CR⁴⁻;

R¹, R², R³, R⁴, R⁵, R⁶ and R⁷ are as defined herein; and
with the proviso that the compounds of Formula XIV must contain at least
one nitrite, nitrate, thionitrite or thionitrate group.

Another embodiment of the present invention provides compounds of the
Formula (XV):

![Formula XV](image)

wherein:

X¹⁵ is:

(a) -C(O)-;
(b) -CH₂⁻;
(c) -CH(OH)-;
(d) -C=N-O-lower alkyl-;
(e) -O⁻;
(f) -S(O)₂⁻;
(g) -NR²⁺; or
(g) covalent bond;

\(Y^{15} \) is:

(a) aryl; or
(b) cycloalkyl;

\(Z^{15} \) is:

(a) hydrogen;
(b) alkyl;
(c) haloalkyl;
(d) cycloalkyl;
(e) alkoxy;
(f) alkylthio;
(g) cycloalkylalkylthio;
(h) cycloalkylalkoxy;
(i) \(-\text{OD}^1\);
(j) halo;
(k) cyano;
(l) \(-\text{C(O)OD}^1\);
(m) \(-\text{C(O)-lower alkyl}\);

\(R^{16} \) is:

(a) hydrogen;
(b) lower alkyl;
(c) \(-\text{C(O)-lower alkyl}\); or
(d) K;

\(R^1, D^1, K \) and \(o \) are as defined herein; and

with the proviso that the compounds of Formula XV contain at least one nitrite, nitrate, thionitrite or thionitrate group.
Another embodiment of the present invention provides compounds of the Formula (XVI):

\[\text{XVI} \]

wherein:

- \(X^{16} \) is:
 - (a)

\[\text{or} \]

- (b)

\[\text{Y}^{16} \text{ is:} \]
 - (a) hydrogen;
 - (b) halogen;
 - (c) methyl; or
 - (d) ethyl;
Z^{ii} is:

(a) hydrogen; or
(b) methyl;

R^{ii} is:

5 (a) chloro; or
(b) fluoro;

R^{ii} and $R^{i'i}$ are each independently:

(a) hydrogen; or
(b) fluoro;

10 R^{iii} is:

(a) chloro;
(b) fluoro;
(c) hydrogen;
(d) methyl;
(e) ethyl;
(f) methoxy;
(g) ethoxy; or
(i) hydroxy;

R^{iv} is:

20 (a) chloro;
(b) fluoro;
(c) trifluoromethyl; or
(d) methyl;

R^{v} is:

25 (a) lower alkyl;
(b) lower alkenyl;
(c) alkoxy; or
(d) alkylthio;

K and X^{ii} are as defined herein; and

30 with the proviso that the compounds of Formula XVI must contain at least
one nitrite, nitrate, thionitrite or thionitrate group.

Compounds of the present invention that have one or more asymmetric
carbon atoms may exist as the optically pure enantiomers, pure diastereomers,
mixtures of enantiomers, mixtures of diastereomers, racemic mixtures of
enantiomers, diastereomeric racemates or mixtures of diastereomeric racemates.
The present invention includes within its scope all such isomers and mixtures
thereof.

Another aspect of the present invention provides processes for making the
novel compounds of the invention and to the intermediates useful in such
processes. The reactions are performed in solvents appropriate to the reagents and
materials used are suitable for the transformations being effected. It is understood
by one skilled in the art of organic synthesis that the functionality present in the
molecule must be consistent with the chemical transformation proposed. This will,
on occasion, necessitate judgment by the routinier as to the order of synthetic
steps, protecting groups required, and deprotection conditions. Substituents on the
starting materials may be incompatible with some of the reaction conditions
required in some of the methods described, but alternative methods and
substituents compatible with the reaction conditions will be readily apparent to one
skilled in the art. The use of sulfur and oxygen protecting groups is well known for
protecting thiol and alcohol groups against undesirable reactions during a
synthetic procedure and many such protecting groups are known and described
by, for example, Greene and Wuts, *Protective Groups in Organic Synthesis*, Third

The chemical reactions described herein are generally disclosed in terms of
their broadest application to the preparation of the compounds of this invention.
Occasionally, the reactions may not be applicable as described to each compound
included within the disclosed scope. The compounds for which this occurs will be
readily recognized by one skilled in the art. In all such cases, either the reactions
can be successfully performed by conventional modifications known to one skilled
in the art, e.g., by appropriate protection of interfering groups, by changing to
alternative conventional reagents, by routine modification of reaction conditions,
and the like, or other reactions disclosed herein or otherwise conventional, will be
applicable to the preparation of the corresponding compounds of this invention. In
all preparative methods, all starting materials are known or readily prepared from
known starting materials.

The compounds of Formulas (I), (II), (III), (IV), (V), (VI), (VII), (VIII), (IX),

84
5,552,422 and in WO 96/06840, WO 96/21667, WO 96/31509, WO 99/12930, WO 00/08024 and WO 00/26216 for the parent compounds of Formula (X); and in U.S. Patent Nos. 5,776,967, 5,824,699 and 5,830,911 and in WO 98/04527 for the parent compounds of Formula (XI); and in U.S. Patent Nos. 5,750,558 and 5,756,531 and in WO 97/41100, WO 98/05639, WO 98/21195, WO 98/57924, WO 99/05104 and WO 99/35130 for the parent compounds of Formula (XII); and in WO 99/61436 for the parent compounds of Formula (XIII); and in WO 00/10993 for the parent compounds of Formula (XIV); and in WO 98/32732 for the parent compounds of Formula (XV); and in WO 97/09977, WO 99/11605 and WO 99/41224 for the parent compounds of Formula (XVI); the disclosures of each of which are incorporated by reference herein in their entirety. The parent COX-2 inhibitor compounds can then be nitrosated and/or nitrosylated through one or more sites such as oxygen, sulfur and/or nitrogen using the methods described in the examples herein and using conventional methods known to one skilled in the art. For example, known methods for nitrosating and nitrosylating compounds are described in U.S. Patent Nos. 5,380,758 and 5,703,073; WO 97/27749; WO 98/19672; and Oae et al, *Org. Prep. Proc. Int.*, 15(3):165-198 (1983), the disclosures of each of which are incorporated by reference herein in their entirety. The methods of nitrosating and/or nitrosylating the compounds described in the examples herein and in these references can be applied by one skilled in the art to produce any of the nitrosated and/or nitrosylated COX-2 inhibitors described herein.

The compounds of the present invention include the parent COX-2 inhibitors, including those described herein, which have been nitrosated and/or nitrosylated through one or more sites such as oxygen (hydroxyl condensation), sulfur (sulphydryl condensation) and/or nitrogen. The nitrosated and/or nitrosylated COX-2 inhibitors of the present invention donate, transfer or release a biologically active form of nitrogen monoxide (i.e., nitric oxide).

Nitrogen monoxide can exist in three forms: NO- (nitroxyll), NO• (uncharged nitric oxide) and NO+ (nitrosonium). NO• is a highly reactive short-lived species that is potentially toxic to cells. This is critical because the pharmacological efficacy of NO depends upon the form in which it is delivered. In contrast to the nitric oxide radical (NO•), nitrosonium (NO+) does not react with O2 or O2• species, and functionalities capable of transferring and/or releasing NO+ and
NO- are also resistant to decomposition in the presence of many redox metals. Consequently, administration of charged NO equivalents (positive and/or negative) is a more effective means of delivering a biologically active NO to the desired site of action.

Compounds contemplated for use in the present invention (e.g., nitrosated and/or nitrosylated COX-2 inhibitors) are, optionally, used in combination with nitric oxide and compounds that release nitric oxide or otherwise directly or indirectly deliver or transfer a biologically active form of nitrogen monoxide to a site of its intended activity, such as on a cell membrane in vivo.

The term "nitric oxide" encompasses uncharged nitric oxide (NO•) and charged nitrogen monoxide species, preferably charged nitrogen monoxide species, such as nitrosonium ion (NO⁺) and nitroxyl ion (NO⁻). The reactive form of nitric oxide can be provided by gaseous nitric oxide. The nitrogen monoxide releasing, delivering or transferring compounds have the structure F-NO, wherein F is a nitrogen monoxide releasing, delivering or transferring moiety, and include any and all such compounds which provide nitrogen monoxide to its intended site of action in a form active for its intended purpose. The term "NO adducts" encompasses any nitrogen monoxide releasing, delivering or transferring compounds, including, for example, S-nitrosothiols, nitrites, nitrates, S-nitrothiols, sydnonimines, 2-hydroxy-2-nitrosohydrazines, (NONOates), (E)-alkyl-2-[(E)-hydroxyimino]-5-nitro-3-hexene amines or amides, nitrosoamines, furoxans as well as substrates for the endogenous enzymes which synthesize nitric oxide. The "NO adducts" can be mono-nitrosylated, poly-nitrosylated, mono-nitrosated and/or poly-nitrosated at a variety of naturally susceptible or artificially provided binding sites for biologically active forms of nitrogen monoxide.

One group of NO adducts is the S-nitrosothiols, which are compounds that include at least one -S-NO group. These compounds include S-nitroso-polypeptides (the term "polypeptide" includes proteins and polyamino acids that do not possess an ascertained biological function, and derivatives thereof); S-nitrosylated amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof); S-nitrosylated sugars; S-nitrosylated, modified and unmodified, oligonucleotides (preferably of at least 5, and more preferably 5-200 nucleotides); straight or branched, saturated or
unsaturated, aliphatic or aromatic, substituted or unsubstituted S-nitrosylated hydrocarbons; and S-nitroso heterocyclic compounds. S-nitrosothiols and methods for preparing them are described in U.S. Patent Nos. 5,380,758 and 5,703,073; WO 97/27749; WO 98/19672; and Oae et al, *Org. Prep. Proc. Int.*, 15(3):165-198 (1983), the disclosures of each of which are incorporated by reference herein in their entirety.

Another embodiment of the present invention is S-nitroso amino acids where the nitroso group is linked to a sulfur group of a sulfur-containing amino acid or derivative thereof. Such compounds include, for example, S-nitroso-N-acetylcysteine, S-nitroso-captopril, S-nitroso-N-acetylpenicillamine, S-nitroso-homocysteine, S-nitroso-cysteine, S-nitroso-glutathione, S-nitroso-cysteiny1-glycine, and the like.

Suitable S-nitrosylated proteins include thiol-containing proteins (where the NO group is attached to one or more sulfur groups on an amino acid or amino acid derivative thereof) from various functional classes including enzymes, such as tissue-type plasminogen activator (TPA) and cathepsin B; transport proteins, such as lipoproteins; heme proteins, such as hemoglobin and serum albumin; and biologically protective proteins, such as immunoglobulins, antibodies and cytokines. Such nitrosylated proteins are described in WO 93/09806, the disclosure of which is incorporated by reference herein in its entirety. Examples include polynitrosylated albumin where one or more thiol or other nucleophilic centers in the protein are modified.

Other examples of suitable S-nitrosothiols include:

(i) \(\text{HS}(\text{C}(R_x)(R_y))_{m\text{SNO}} \);
(ii) \(\text{ONS}(\text{C}(R_x)(R_y))_{n\text{SNO}} \); and
(iii) \(\text{H}_2\text{N}-\text{CH}(\text{CO}_2\text{H})-\text{(CH}_2\text{)}_{m\text{SNO}}-\text{C(O)NH-CH(CH}_2\text{SNO)}-\text{C(O)NH-CH}_2\text{CO}_2\text{H}) \);

wherein \(m \) is an integer from 2 to 20; \(R_x \) and \(R_y \) are each independently a hydrogen, an alkyl, a cycloalkoxy, a halogen, a hydroxy, an hydroxyalkyl, an alkoxyalkyl, an arylheterocyclic ring, a cycloalkylalkyl, a heterocyclicalkyl, an alkoxy, a haloalkoxy, an amino, an alkylamino, a dialkylamino, an arylamino, a diarylamino, an alkylarylamino, an alkoxyhaloalkyl, a haloalkoxy, a sulfonic acid, a sulfonic ester, an alkylsulfonic acid, an arylsulfonic acid, an arylalkoxy, an alkylthio, an arylthio, a cyano, an aminoalkyl, an aminoaryl, an alkoxy, an aryl, an arylalkyl, a carboxamido, a alkylcarboxamido, an arylcarboxamido, an amidyl, a
carboxyl, a carbamoyl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxyl, an arylcarboxyl, an ester, a carboxylic ester, an alkylcarboxylic ester, an arylcarboxylic ester, a haloalkoxy, a sulfonamido, an alkylsulfonamido, an arylsulfonamido, an alkylsulfonyl, an alkylsulfonicyloxy, an arylsulfonicyloxy, a carbamoyl, a urea, a nitro, -T-Q-, or (C(R)(R))_2-T-Q_ or R_ and R_ taken together are an oxo, a methanthial, a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group; Q is -NO or -NO; and T is independently a covalent bond, a carbonyl, an oxygen, -S(O)_n- or -N(R)_2, wherein o is an integer from 0 to 2, R_ is a lone pair of electrons, a hydrogen or an alkyl group; R_ is a hydrogen, an alkyl, an aryl, an alkylcarboxylic ester, an alkylcarboxylic ester, an alkylcarboxamido, an alkylcarboxylamido, an alkylsulfiny1, an alkylsulfonamido, an alkylsulfonicyloxy, an alkylsulfonicyloxy, an alkylsulfinic, a sulfonamido, a carboxylic ester, an aminoalkyl, an aminoaryl, -CH(C(T-Q)(R)(R))_2- or -(N_2O_2)-M^+, wherein M^+ is an organic or inorganic cation; with the proviso that when R_ is -CH(C(T-Q)(R)(R))_2- or -(N_2O_2)-M^+; then "T-Q" can be a hydrogen, an alkyl group, an alkoxyalkyl group, an amidooalkyl group, a hydroxy group or an aryl group.

In cases where R_ and R_ are a heterocyclic ring or taken together R_ and R_ are a heterocyclic ring, then R_ can be a substituent on any disubstituted nitrogen contained within the radical wherein R_ is as defined herein.

Nitrosothiols can be prepared by various methods of synthesis. In general, the thiol precursor is prepared first, then converted to the S-nitrosothiol derivative by nitrosation of the thiol group with NaNO_2 under acidic conditions (pH is about 2.5) which yields the S-nitroso derivative. Acids which can be used for this purpose include aqueous sulfuric, acetic and hydrochloric acids. The thiol precursor can also be nitrosylated by reaction with an organic nitrite such as tert-butyl nitrite, or a nitrosonium salt such as nitrosonium tetrafluoroborate in an inert solvent.

Another group of NO adducts for use in the present invention, where the NO adduct is a compound that donates, transfers or releases nitric oxide, include compounds comprising at least one ON-O-, ON-N- or ON-C- group. The compounds that include at least one ON-O-, ON-N- or ON-C- group are preferably ON-O-, ON-N- or ON-C-polypeptides (the term "polypeptide" includes proteins.
and polyamino acids that do not possess an ascertained biological function, and
derivatives thereof; ON-O-, ON-N- or ON-C-amino acids (including natural and
synthetic amino acids and their stereoisomers and racemic mixtures); ON-O-, ON-
N- or ON-C-sugars; ON-O-, ON-N- or ON-C- modified or unmodified
oligonucleotides (comprising at least 5 nucleotides, preferably 5-200 nucleotides);
ON-O-, ON-N- or ON-C- straight or branched, saturated or unsaturated, aliphatic
or aromatic, substituted or unsubstituted hydrocarbons; and ON-O-, ON-N- or
ON-C-heterocyclic compounds.

Another group of NO adducts for use in the present invention include
nitrates that donate, transfer or release nitric oxide, such as compounds comprising
at least one $\text{O}_2\text{N-O-}$, $\text{O}_2\text{N-N-}$, $\text{O}_2\text{N-S-}$ or $\text{O}_2\text{N-C-}$ group. Preferred among these
compounds are $\text{O}_2\text{N-O-}$, $\text{O}_2\text{N-N-}$, $\text{O}_2\text{N-S-}$ or $\text{O}_2\text{N-C-}$ polypeptides (the term
"polypeptide" includes proteins and also polyamino acids that do not possess an
ascertained biological function, and derivatives thereof); $\text{O}_2\text{N-O-}$, $\text{O}_2\text{N-N-}$, $\text{O}_2\text{N-S-}$
or $\text{O}_2\text{N-C-}$ amino acids (including natural and synthetic amino acids and their
stereoisomers and racemic mixtures); $\text{O}_2\text{N-O-}$, $\text{O}_2\text{N-N-}$, $\text{O}_2\text{N-S-}$ or $\text{O}_2\text{N-C-sugars;}
\text{O}_2\text{N-O-}$, $\text{O}_2\text{N-N-}$, $\text{O}_2\text{N-S-}$ or $\text{O}_2\text{N-C-}$ modified and unmodified oligonucleotides
(comprising at least 5 nucleotides, preferably 5-200 nucleotides); $\text{O}_2\text{N-O-}$, $\text{O}_2\text{N-N-}$,
$\text{O}_2\text{N-S-}$ or $\text{O}_2\text{N-C-}$ straight or branched, saturated or unsaturated, aliphatic or
aromatic, substituted or unsubstituted hydrocarbons; and $\text{O}_2\text{N-O-}$, $\text{O}_2\text{N-N-}$, $\text{O}_2\text{N-S-}$
or $\text{O}_2\text{N-C-}$ heterocyclic compounds. Preferred examples of compounds comprising
at least one $\text{O}_2\text{N-O-}$, $\text{O}_2\text{N-N-}$, $\text{O}_2\text{N-S-}$ or $\text{O}_2\text{N-C-}$ group include isosorbide dinitrate,
isosorbide mononitrate, clonitrate, erythrityl tetranitrate, mannotol hexanitrate,
nitroglycerin, pentaerythritol tetranitrate and pentritrol. Preferred are those –S-
NO$_2$ compounds that are polypeptides or hydrocarbons with a pair or pairs of
thiols that are sufficiently structurally proximate, i.e., vicinal, that the pair of thiols
will be reduced to a disulfide. Compounds which form disulfide species release
nitroxyl ion (NO$^-$) and uncharged nitric oxide (NO$^\bullet$). Compounds where the thiol
groups are not sufficiently close to form disulfide bridges generally provide nitric
oxide as the NO$^-$ form and not as the uncharged NO$^\bullet$ form.

Another group of NO adducts are N-oxo-N-nitrosoamines that donate,
transfer or release nitric oxide and are represented by the formula: $\text{R}^1\text{R}^2-(\text{O-M})-$
NO, where R^1 and R^2 are each independently a polypeptide, an amino acid, a sugar,
a modified or unmodified oligonucleotide, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted hydrocarbon, or a heterocyclic group, and where M⁺ is an organic or inorganic cation, such as, for example, an alkyl substituted ammonium cation or a Group I metal cation.

The present invention is also directed to compounds that stimulate endogenous NO or elevate levels of endogenous endothelium-derived relaxing factor (EDRF) in vivo or are substrates for nitric oxide synthase. Such compounds include, for example, L-arginine, L-homoarginine, and N-hydroxy-L-arginine, including their nitrosated and nitrosylated analogs (e.g., nitrosated L-arginine, nitrosylated L-arginine, nitrosated N-hydroxy-L-arginine, nitrosylated N-hydroxy-L-arginine, nitrosated L-homoarginine and nitrosylated L-homoarginine), precursors of L-arginine and/or physiologically acceptable salts thereof, including, for example, citrulline, ornithine or glutamine, inhibitors of the enzyme arginase (e.g., N-hydroxy-L-arginine and 2(S)-amino-6-boronoheptanoic acid) and the substrates for nitric oxide synthase, cytokines, adenosin, bradykinin, calreticulin, bisacodil, and phenolphthalein. EDRF is a vascular relaxing factor secreted by the endothelium, and has been identified as nitric oxide (NO) or a closely related derivative thereof (Palmer et al, Nature, 327:524-526 (1987); Ignarro et al, Proc. Natl. Acad. Sci. USA, 84:9265-9269 (1987)).

Another embodiment of the present invention provides compositions comprising at least one parent COX-2 inhibitor and at least one compound that donates, transfers or releases nitric oxide, or elevates levels of endogenous EDRF or nitric oxide, or is a substrate for nitric oxide synthase. The parent COX-2 inhibitors includes any of those described in the prior art, including those described in the patents and publications cited herein, as well as the novel compounds described herein.

The present invention is also based on the discovery that compounds and compositions of the present invention may also be used in conjunction with other therapeutic agents for co-therapies, partially or completely, in place of other conventional antiinflammatory compounds, such as, for example, together with steroids, NSAIDs, 5-lipoxygenase (5-LO) inhibitors, leukotriene B₄ (LTB₄) receptor antagonists, leukotriene A₄ (LTA₄) hydrolase inhibitors, 5-HT agonists, HMG-CoA inhibitors, H₂ receptor antagonists, antineoplastic agents, antiplatelet agents,
decongestants, diuretics, sedating or non-sedating anti-histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics, \textit{Helicobacter pylori} inhibitors, proton pump inhibitors, isoprostane inhibitors, and mixtures thereof.

Leukotriene A\textsubscript{4} (LTA\textsubscript{4}) hydrolase inhibitors refers to compounds that selectively inhibit leukotriene A\textsubscript{4} hydrolase with an IC\textsubscript{50} of less than about 10\textmu M, and more preferably with an IC\textsubscript{50} of less than about 1 \textmu M. Suitable LTA\textsubscript{4} hydrolase inhibitors include, but are not limited to, RP-64966, \((S,S)-3\text{-amino-4-(4-benzyl-
oloxophenyl)-2-hydroxybutyric~acid~benzyl~ester~(Scripps~Res.~Inst.)}, \text{ N-(2(R)-(cyclohexylmethyl)-3-(hydroxycarbamoyl)propionyl)-L-alanine~(Searle}), \text{ 7-(4-ureidobenzyl)heptanoic~acid~(Rhone-Poulenc~Rorer),~and~3~(3-(1E,3E-tetradecadienyl)-2-oxirany1)benzoic~acid~lithium~salt~(Searle), and mixtures thereof.}

Suitable LTB\textsubscript{1} receptor antagonists include, but are not limited to, etselen, linazolast, ontazolast; WAY 121006 (American Home Products); Bay-x-1005 (Bayer); Bi-RM-270 (Boehringer Ingleheim); CGS-25019C (Ciba Geigy); ETH-615 (Leo Denmark); MAFP (Merck); TMK-688 (Terumo); T-0757 (Tanabe); LY 213024, LY 210073, LY 223982, LY 233469, LY 255283, LY 264086, LY 292728 and LY 293111 (Eli Lilly); ONO-LB457, ONO-4057, and ONO-LB-448 (ONO), S-2474, calcitrol (Shionogi); PF 10042 (Perdu Frederick); Pfizer 105696 (Pfizer Inc.); RP 66153 (Rhone-Poulenc); SC-53228, SC-41930, SC-50605, SC-51146 and SC-53228 (Searle); SB-201146 and SB-209247 (SmithKline Beecham); SKF-104493 (SmithKline & French); SM 15178 (Sumitomo); TMK-688 (Terumo); BPC 15, (Warner Lambert); and mixtures thereof. The preferred LTB\textsubscript{1} receptor antagonists are calcitrol, etselen, Bay-x-1005, CGS-25019C, ETH-615, LY-293111, ONO-4057 and TMK-688, and mixtures thereof.

Suitable 5-LO inhibitors include, but are not limited to, A-76745, 78773 and ABT761 (Abbott compounds); Bay-x-1005 (Bayer); CMI-392 (Cytomed); E-3040 (Eisai); EF-40 (Scotia Pharmaceutical); F-1322 (Fujirebio); ML-3000 (Merckle); PF-5901 (Purdue Frederick); R-840 (3M Pharmaceuticals); rilopirox, flobufen, linasolast, lonapolene, masprocol, ontasolast, tenidap, zileuton, pranlukast, tepoxalin, rilopirox, flezelastine hydrochloride, enazadrem phosphate, and bunaprolast, and mixtures thereof. Suitable 5-LO inhibitors are also described more fully in WO 97/29776 assigned to G. D. Searle & Co.

Suitable 5-HT agonists, include, but are not limited to, rizatriptan,
sumatriptan, naratriptan, zolmitriptan, eleptiptan, almotriptan, ergot alkaloids. ALX 1323, Merck L 741604 SB 220453 and LAS 31416. Suitable 5-HT agonists are described more fully in WO 0025779, assigned to Merck & Co., Inc and in WO 00/48583, assigned to Pozen Inc. 5-HT agonists refers to a compound that is an agonist to any 5-HT receptor, including but not limited to, 5-HT_{1b} agonists and 5-HT_{1d} agonists.

Suitable steroids, include, but are not limited to, budesonide, dexamethasone, corticosterone, prednisolone, and the like. Suitable steroids are described more fully in the literature, such as in the Merck Index on CD-ROM, Twelfth Edition, Version 12:1, 1996.

Suitable HMG CoA inhibitors, include, but are not limited to, reductase and synthase inhibitors, such as, for example, squalene synthetase inhibitors, benzodiazepine squalene synthase inhibitors, squalene epoxidase inhibitors, acylcoenzyme A, bile acid sequestrants, cholesterol absorption inhibitors, and the like. Suitable NSAIDs, include, but are not limited to, acetaminophen, aspirin, diclofenac, ibuprofen, ketoprofen, naproxen and the like. Suitable NSAIDs are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw-Hill, 1995, Pgs. 617-657; and the Merck Index on CD-ROM, Twelfth Edition, Version 12:1, 1996.

Suitable H\textsubscript{2} receptor antagonists, include, but are not limited to, cimetidine, ranitidine, and the like. Suitable H\textsubscript{2} receptor antagonists are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw-Hill, 1995, Pgs. 901-915; and the Merck Index on CD-ROM, Twelfth Edition, Version 12:1, 1996.

Suitable antineoplastic agents, include but are not limited to, 5-FU-fibrinogen, acanthifolic acid, aminothiadiazole, altretamine, anaxirone, aclarubicin and the like. Suitable antineoplastic agents are also described more fully in U. S. Patent No. 6,025,353 and WO 00/38730 assigned to G. D. Searle & Co.

Suitable antiplatelet agents, include but are not limited to, aspirin, ticlopidine, dipyridamole, clopidogrel, glycoprotein IIb/IIIa receptor antagonists, and the like.

Suitable decongestants include, but are not limited to, phenylephrine, phenylpropanolamine, pseudoephedrine, oxymetazoline, ephinephrine,
naphazoline, xylometazoline, propylhexedrine, levo-desoxyephedrine, and the like.

Suitable antitussives include, but are not limited to, codeine, hydrocodone, caramiphen, carbetapentane, dexamethorphan, and the like.

Suitable proton pump inhibitors, include, but are not limited to, omeprazole, lansoprazole, rabeprazole, pantoprazole, and the like. Suitable proton pump inhibitors are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw-Hill, 1995, Pgs. 901-915; and the Merck Index on CD-ROM, Twelfth Edition, Version 12:1, 1996.

The compounds and compositions of the present invention, may also be used in combination therapies with opioids and other analgesics, including, but not limited to, narcotic analgesics, Mu receptor antagonists, Kappa receptor antagonists, non-narcotic (i.e. non-addictive) analgesics, monoamine uptake inhibitors, adenosine regulating agents, cannabinoid derivatives, neurokinin 1 receptor antagonists, Substance P antagonists, neurokinin-1 receptor antagonists, sodium channel blockers, N-methyl-D-aspartate receptor antagonists, and mixtures thereof. Preferred combination therapies would be with morphine, meperidine, codeine, pentazocine, buprenorphine, butorphanol, dezocine, meptazinol, hydrocodone, oxycodone, methadone, Tramadol ((+) enantiomer), DuP 747, Dynorphine A, Enadoline, RP-60180, HN-11608, E-2078, ICI-204448, acetaminophen (paracetamol), propoxyphene, nalbuphine, E-4018, filenadol, mirtentanil, amitriptyline, DuP631, Tramadol ((-) enantiomer), GP-531, acadesine, AKI-1, AKI-2, GP-1683, GP-3269, 4030W92, tramadol racemate, Dynorphine A, E-2078, AXC3742, SNX-111, ADL2-1294, ICI-204448, CT-3, CP-99,994, CP-99,994, and mixtures thereof.

The compounds and compositions of the present invention can also be used in combination with inducible nitric oxide synthase (iNOS) inhibitors. Suitable iNOS inhibitors are disclosed in U. S. Patent Nos. 5,132,453 and 5,273,875, and in WO 97/38977 and WO 99/18960, the disclosures of each of which are incorporated by reference herein in their entirety.

The present invention is also based on the discovery that the administration of a therapeutically effective amount of the compounds and compositions described herein is effective for treating inflammation, pain (both chronic and acute), and fever, such as, for example, analgesic in the treatment of pain, including
, but not limited to headaches, migraines, postoperative pain, dental pain, muscular pain, and pain resulting from cancer; as an antipyretic for the treatment of fever, including but not limited to, rheumatic fever, symptoms associated with influenza or other viral infections, common cold, low back and neck pain, dysmenorrhea, headache, toothache, sprains, strains, myositis, neuralgia, synovitis; arthritis, including but not limited to rheumatoid arthritis, degenerative joint disease (osteoarthritis), spondyloarthropathies, gouty arthritis, systemic lupus erythematosus and juvenile arthritis. For example, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor of the present invention. In another embodiment, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor and at least one compound that donates, transfers or releases nitric oxide, or elevates levels of endogenous EDRF or nitric oxide, or is a substrate for nitric oxide synthase. In yet another embodiment, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor, and, at least one therapeutic agent, including but not limited to, steroids, nonsteroidal antiinflammatory compounds (NSAID), 5-lipoxygenase (5-LO) inhibitors, leukotriene B₄ (LTB₄) receptor antagonists, leukotriene A₄ (LTA₄) hydrolase inhibitors, 5-HT agonists, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitors, H₂ antagonists, antineoplastic agents, antiplatelet agents, decongestants, diuretics, sedating or non-sedating anti-histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics, Helicobacter pylori inhibitors, proton pump inhibitors, isoprostane inhibitors, and, optionally, at least one compound that donates, transfers or releases nitric oxide, or elevates levels of endogenous EDRF or nitric oxide, or is a substrate for nitric oxide synthase. The compounds can be administered separately or in the form of a composition.

Another embodiment of the invention provides methods for decreasing and/or preventing gastrointestinal disorders and improving the gastrointestinal properties of the parent COX-2 inhibitor (i.e., non-nitrosated and/or non-nitrosylated COX-2 inhibitor) by administering to the patient in need thereof a therapeutically effective amount of the compounds and/or compositions described herein. Such gastrointestinal disorders refer to any disease or disorder of the upper
gastrointestinal tract (e.g., esophagus, stomach, duodenum and jejunum) including, for example, inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome, ulcerative colitis, peptic ulcers, stress ulcers, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison syndrome, gastroesophageal reflux disease, bacterial infections (including, for example, a Helicobacter Pylori associated disease), short-bowel (anastomosis) syndrome, hypersecretory states associated with systemic mastocytosis or basophilic leukemia and hyperhistaminemia, and bleeding peptic ulcers that result, for example, from neurosurgery, head injury, severe body trauma or burns. For example, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor of the present invention. In another embodiment, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor and at least one compound that donates, transfers or releases nitric oxide, or elevates levels of endogenous EDRF or nitric oxide, or is a substrate for nitric oxide synthase. In yet another embodiment, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor and at least one therapeutic agent, including but not limited to, steroids, nonsteroidal antiinflammatory compounds (NSAID), 5-lipoxygenase (5-LO) inhibitors, leukotriene B₄ (LTB₄) receptor antagonists, leukotriene A₄ (LTA₄) hydrolase inhibitors, 5-HT agonists, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitors, H₂ antagonists, antineoplastic agents, antiplatelet agents, decongestants, diuretics, sedating or non-sedating anti-histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics, Helicobacter pylori inhibitors, proton pump inhibitors, isoprostane inhibitors, and, optionally, at least one compound that donates, transfers or releases nitric oxide, or elevates levels of endogenous EDRF or nitric oxide, or is a substrate for nitric oxide synthase. The compounds can be administered separately or in the form of a composition.

Yet another embodiment of the invention provides methods for facilitating wound healing (such as, for example, ulcer healing) by administering to the patient in need thereof a therapeutically effective amount of the compounds and/or compositions described herein. Wound refers to, and includes, any lesion that is characterized by loss of tissue, and, includes, but is not limited to, ulcers, cuts,
bears, and the like. Ulcers refers to lesions of the upper gastrointestinal tract lining that are characterized by loss of tissue, and, include, but are not limited to, gastric ulcers, duodenal ulcers, gastritis, and the like. For example, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor of the present invention. In another embodiment, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor and at least one nitric oxide donor. In yet another embodiment, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor and at least one therapeutic agent, and, optionally, at least one nitric oxide donor. The compounds can be administered separately or in the form of a composition.

Another embodiment of the invention provides methods to decrease or reverse renal and other toxicities (such as, for example, kidney toxicity) by administering to a patient in need thereof a therapeutically effective amount of the compounds and/or compositions described herein. For example, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor of the present invention. In another embodiment, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor and at least one nitric oxide donor. In yet another embodiment, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor and at least one therapeutic agent, and, optionally, at least one nitric oxide donor. The compounds can be administered separately or in the form of a composition.

Another embodiment of the invention provides methods to treat or prevent disorders resulting from elevated levels of COX-2 by administering to a patient in need thereof a therapeutically effective amount of the compounds and/or compositions described herein. For example, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor of the present invention. In another embodiment, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor and at least one compound that donates, transfers or releases nitric oxide, or elevates levels of endogenous EDRF or nitric
oxide, or is a substrate for nitric oxide synthase. In yet another embodiment, the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-2 inhibitor and at least one therapeutic agent, including but not limited to, steroids, a nonsteroidal antiinflammatory compounds (NSAID), 5-lipooxygenase (5-LO) inhibitors, leukotriene B\(_4\) (LTB\(_4\)) receptor antagonists, leukotriene A\(_4\) (LTA\(_4\)) hydrolase inhibitors, 5-HT agonists, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitors, H\(_2\) antagonists, antineoplastic agents, antiplatelet agents, decongestants, diuretics, sedating or non-sedating anti-histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics, *Helicobacter pylori* inhibitors, proton pump inhibitors, isoprostane inhibitors, and, optionally, at least one compound that donates, transfers or releases nitric oxide, or elevates levels of endogenous EDRF or nitric oxide, or is a substrate for nitric oxide synthase. The compounds can be administered separately or in the form of a composition.

Disorders resulting from elevated levels of COX-2 (e.g., COX-2 mediated disorders) include, but are not limited to, for example, angiogenesis, arthritis, asthma, bronchitis, menstrual cramps, premature labor, tendinitis, bursitis; skin-related conditions, such as, for example, psoriasis, eczema, surface wounds, burns and dermatitis; post-operative inflammation including from ophthalmic surgery, such as, for example, cataract surgery and refractive surgery, and the like; treatment of neoplasia, such as, for example, brain cancer, bone cancer, epithelial cell-derived neoplasia (epithelial carcinoma), such as, for example, basal cell carcinoma, adenocarcinoma, gastrointestinal cancer, such as, for example, lip cancer, mouth cancer, esophageal cancer, small bowel cancer and stomach cancer, colon cancer, liver cancer, bladder cancer, pancreas cancer, ovary cancer, cervical cancer, lung cancer, breast cancer and skin cancer, such as squamous cell and basal cell cancers, prostate cancer, renal cell carcinoma, and other known cancers that effect epithelial cells throughout the body, benign and cancerous tumors, growths, polyps, adenomatous polyps, including, but not limited to, familial adenomatous polyposis, fribrosis resulting from radiation therapy, and the like; treatment of inflammatory processes in diseases, such as, for example, vascular diseases, migraine headaches, periarteritis nodosa, thyroiditis, aplastic anemia, Hodgkin's disease, sclerodema, rheumatic fever, type I diabetes, neuromuscular junction.
disease including myasthenia gravis, white matter disease including multiple sclerosis, sarcoidosis, nephrotic syndrome, Behcet’s syndrome, polymyositis, gingivitis, nephritis, hypersensitivity, swelling occurring after injury, myocardial ischemia, and the like; treatment of ophthalmic diseases and disorders, such as, for example, retinitis, retinopathies, uveitis, ocular photophobia, acute injury to the eye tissue, glaucoma, inflammation of the eye and elevation of intraocular pressure and the like; treatment of pulmonary inflammation, such as, for example, those associated with viral infections and cystic fibrosis, and the like; treatment of certain central nervous system disorders, such as, for example, cortical dementias including Alzheimer’s disease, vascular dementia, multi-infarct dementia, presenile dementia, alcoholic dementia, senile dementia, and central nervous system damage resulting from stroke, ischemia and trauma, and the like; treatment of allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis; treatment of inflammations and/or microbial infections including, for example, inflammations and/or infections of the eyes, ears, nose, throat, and/or skin; treatment and/or prevention of cardiovascular disorders, such as, for example, coronary artery disease, aneurysm, arteriosclerosis, atherosclerosis, including, but not limited to, cardiac transplant atherosclerosis, myocardial infarction, ischemia, embolism, stroke, thrombosis, hypertension, venous thrombosis, thromboembolism, thrombotic occlusion and reclusion, restenosis, angina, unstable angina, shock, heart failure, coronary plaque inflammation, bacterial-induced inflammation, such as, for example, Chlamydia-induced inflammation, viral induced inflammation, inflammation associated with surgical procedures, such as, for example, vascular grafting, coronary artery bypass surgery, revascularization procedures, such as, for example, angioplasty, stent placement, endarterectomy, vascular procedures involving arteries, veins, capillaries, and the like; treatment and/or prevention of urinary and/or urological disorders, such as, for example, incontinence and the like; treatment and/or prevention of endothelial dysfunctions, such as, for example, diseases accompanying these dysfunctions, endothelial damage from hypercholesterolemia, endothelial damage from hypoxia, endothelial damage from mechanical and chemical noxae, especially during and after drug, and mechanical reopening of stenosed vessels, for example, following percutaneous transluminal angiography
(PTA) and percutaneous transluminal coronary angiography (PTCA), endothelial
5 damage in postinfarction phase, endothelium-mediated reocclusion following
bypass surgery, blood supply disturbances in peripheral arteries, as well as,
10 cardiovascular diseases, and the like; preservation of organs and tissues, such as,
for example, for organ transplants, and the like; inhibition and/or prevention of
activation, adhesion and infiltration of neutrophils at the site of inflammation;
inhibition and/or prevention of platelet aggregation. The compounds and
compositions of the present invention can also be used as a pre-anesthetic
medication in emergency operations to reduce the danger of aspiration of acidic
gastric contents.

When administered in vivo, the compounds and compositions of the present
15 invention can be administered in combination with pharmaceutically acceptable
carriers and in dosages described herein. When the compounds and compositions
of the present invention are administered as a mixture of at least one nitrosated
and/or nitrosylated COX-2 inhibitor and at least one nitric oxide donor and/or
therapeutic agent, they can also be used in combination with one or more
additional compounds which are known to be effective against the specific disease
state targeted for treatment. The nitric oxide donors, therapeutic agents and/or
other additional compounds can be administered simultaneously with,
subsequently to, or prior to administration of the nitrosated and/or nitrosylated
COX-2 inhibitor.

Another embodiment of the present invention provides methods for treating
inflammation, pain and fever; for treating and/or improving the gastrointestinal
25 properties of COX-2 inhibitors; for facilitating wound healing; for treating and/or
preventing renal toxicity; and for treating and/or preventing other cyclooxygenase-
2 mediated disorders comprising administration of at least one parent COX-2
inhibitor and at least one nitric oxide donor, and, optionally, at least one
therapeutic agent. For example, the patient can be administered a therapeutically
effective amount of at least one parent COX-2 inhibitor of the present invention and
at least one nitric oxide donor. In yet another embodiment, the patient can be
20 administered a therapeutically effective amount of at least one parent COX-2
inhibitor, at least one nitric oxide donor and at least one therapeutic agent. The
compounds can be administered separately or in the form of a composition.
The compounds and compositions of the present invention can be administered by any available and effective delivery system including, but not limited to, orally, bucally, parenterally, by inhalation spray, by topical application, by injection, transdermally, or rectally (e.g., by the use of suppositories) in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles, as desired. Parenteral includes subcutaneous injections, intravenous, intramuscular, intrasternal injection, or infusion techniques.

Transdermal compound administration, which is known to one skilled in the art, involves the delivery of pharmaceutical compounds via percutaneous passage of the compound into the systemic circulation of the patient. Topical administration can also involve the use of transdermal administration such as transdermal patches or iontophoresis devices. Other components can be incorporated into the transdermal patches as well. For example, compositions and/or transdermal patches can be formulated with one or more preservatives or bacteriostatic agents including, but not limited to, methyl hydroxybenzoate, propyl hydroxybenzoate, chlorocresol, benzalkonium chloride, and the like. Dosage forms for topical administration of the compounds and compositions can include creams, sprays, lotions, gels, ointments, eye drops, nose drops, ear drops, and the like. In such dosage forms, the compositions of the invention can be mixed to form white, smooth, homogeneous, opaque cream or lotion with, for example, benzyl alcohol 1% or 2% (wt/wt) as a preservative, emulsifying wax, glycerin, isopropyl palmitate, lactic acid, purified water and sorbitol solution. In addition, the compositions can contain polyethylene glycol 400. They can be mixed to form ointments with, for example, benzyl alcohol 2% (wt/wt) as preservative, white petrolatum, emulsifying wax, and tenox II (butylated hydroxyanisole, propyl gallate, citric acid, propylene glycol). Woven pads or rolls of bandaging material, e.g., gauze, can be impregnated with the compositions in solution, lotion, cream, ointment or other such form can also be used for topical application. The compositions can also be applied topically using a transdermal system, such as one of an acrylic-based polymer adhesive with a resinous crosslinking agent impregnated with the composition and laminated to an impermeable backing.

Solid dosage forms for oral administration can include capsules, tablets, effervescent tablets, chewable tablets, pills, powders, sachets, granules and gels. In
such solid dosage forms, the active compounds can be admixed with at least one
inert diluent such as sucrose, lactose or starch. Such dosage forms can also
comprise, as in normal practice, additional substances other than inert diluents,
e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets,
effervescent tablets, and pills, the dosage forms can also comprise buffering agents.
Soft gelatin capsules can be prepared to contain a mixture of the active compounds
or compositions of the present invention and vegetable oil. Hard gelatin capsules
can contain granules of the active compound in combination with a solid,
pulverulent carrier such as lactose, saccharose, sorbitol, mannitol, potato starch,
corn starch, amylopectin, cellulose derivatives of gelatin. Tablets and pills can be
prepared with enteric coatings.

Liquid dosage forms for oral administration can include pharmaceutically
acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert
diluents commonly used in the art, such as water. Such compositions can also
comprise adjuvants, such as wetting agents, emulsifying and suspending agents,
and sweetening, flavoring, and perfuming agents.

Suppositories for vaginal or rectal administration of the compounds and
compositions of the invention, such as for treating pediatric fever and the like, can
be prepared by mixing the compounds or compositions with a suitable
nonirritating excipient such as cocoa butter and polyethylene glycols which are
solid at room temperature but liquid at rectal temperature, such that they will melt
in the rectum and release the drug.

Injectable preparations, for example, sterile injectable aqueous or oleaginous
suspending agents, wetting agents and/or suspending agents. The sterile injectable
preparation can also be a sterile injectable solution or suspension in a nontoxic
parenterally acceptable diluent or solvent, for example, as a solution in 1,3-
butanediol. Among the acceptable vehicles and solvents that can be used are
water, Ringer’s solution, and isotonic sodium chloride solution. Sterile fixed oils
are also conventionally used as a solvent or suspending medium.

The compositions of this invention can further include conventional
excipients, i.e., pharmaceutically acceptable organic or inorganic carrier substances
suitable for parenteral application which do not deleteriously react with the active
compounds. Suitable pharmaceutically acceptable carriers include, for example, water, salt solutions, alcohol, vegetable oils, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, surfactants, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, petroethral fatty acid esters, hydroxymethyl-cellulose, polyvinylpyrrolidone, and the like. The pharmaceutical preparations can be sterilized and if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavoring and/or aromatic substances and the like which do not deleteriously react with the active compounds. For parenteral application, particularly suitable vehicles consist of solutions, preferably oily or aqueous solutions, as well as suspensions, emulsions, or implants. Aqueous suspensions may contain substances which increase the viscosity of the suspension and include, for example, sodium carboxymethyl cellulose, sorbitol and/or dextran. Optionally, the suspension may also contain stabilizers.

The composition, if desired, can also contain minor amounts of wetting agents, emulsifying agents and/or pH buffering agents. The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulations can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like.

Various delivery systems are known and can be used to administer the compounds or compositions of the present invention, including, for example, encapsulation in liposomes, microbubbles, emulsions, microparticles, microcapsules and the like. The required dosage can be administered as a single unit or in a sustained release form.

The bioavailability of the compositions can be enhanced by micronization of the formulations using conventional techniques such as grinding, milling, spray drying and the like in the presence of suitable excipients or agents such as phospholipids or surfactants.

The preferred methods of administration of the nitrosated and/or
nitrosylated COX-2 inhibitor compositions or the parent COX-2 inhibitor for the
treatment of gastrointestinal disorders are orally, bucally or by inhalation. The
preferred methods of administration for the treatment of inflammation and
microbial infections are orally, bucally, topically, transdermally or by inhalation.

The compounds and compositions of the present invention can be
formulated as pharmaceutically acceptable salt forms. Pharmaceutically acceptable
salts include, for example, alkali metal salts and addition salts of free acids or free
bases. The nature of the salt is not critical, provided that it is pharmaceutically-
acceptable. Suitable pharmaceutically-acceptable acid addition salts may be
prepared from an inorganic acid or from an organic acid. Examples of such
inorganic acids include, but are not limited to, hydrochloric, hydrobromic,
hydroiodic, nitric, carbonic, sulfuric and phosphoric acid and the like. Appropriate
organic acids include, but are not limited to, aliphatic, cycloaliphatic, aromatic,
heterocyclic, carboxylic and sulfonic classes of organic acids, such as, for example,
formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric,
ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic,
anthranilic, mesylic, salicylic, p-hydroxybenzoic, phenylacetic, mandelic, embonic
(pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic,
toluenesulfonic, 2-hydroxyethanesulfonic, sulfanilic, stearic, algenic, β-
hydroxybutyric, cyclohexylaminosulfonic, galactaric and galacturonic acid and the
like. Suitable pharmaceutically-acceptable base addition salts include, but are not
limited to, metallic salts made from aluminum, calcium, lithium, magnesium,
potassium, sodium and zinc or organic salts made from primary, secondary and
tertiary amines, cyclic amines, N,N'-dibenzylethlenediamine, chloroprocaine,
choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and
procaine and the like. All of these salts may be prepared by conventional means
from the corresponding compound by reacting, for example, the appropriate acid
or base with the compound.

While individual needs may vary, determination of optimal ranges for
effective amounts of the compounds and/or compositions is within the skill of the
art. Generally, the dosage required to provide an effective amount of the
compounds and compositions, which can be adjusted by one of ordinary skill in the
art, will vary depending on the age, health, physical condition, sex, diet, weight,
extent of the dysfunction of the recipient, frequency of treatment and the nature and scope of the dysfunction or disease, medical condition of the patient, the route of administration, pharmacological considerations such as the activity, efficacy, pharmacokinetic and toxicology profiles of the particular compound used, whether a drug delivery system is used, and whether the compound is administered as part of a drug combination.

The amount of a given nitrosated and/or nitrosylated COX-2 inhibitor or the parent COX-2 inhibitor which will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques, including reference to Goodman and Gilman, supra; The Physician’s Desk Reference, Medical Economics Company, Inc., Oradell, N.J., 1995; and Drug Facts and Comparisons, Inc., St. Louis, MO, 1993. The precise dose to be used in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided by the physician and the patient’s circumstances.

The amount of nitric oxide donor in a pharmaceutical composition can be in amounts of about 0.1 to about 10 times the molar equivalent of the COX-2 inhibitor. The usual daily doses of nitrosated and/or nitrosylated COX-2 inhibitors are about 0.001 mg to about 140 mg/kg of body weight per day, preferably 0.005 mg to 30 mg/kg per day, or alternatively about 0.5 mg to about 7 g per patient per day. For example, inflammations may be effectively treated by the administration of from about 0.01 mg to 50 mg of the compound per kilogram of body weight per day, or alternatively about 0.5 mg to about 3.5 g per patient per day. The compounds may be administered on a regimen of up to 6 times per day, preferably 1 to 4 times per day, and most preferably once per day. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems and are in the same ranges or less than as described for the commercially available compounds in the Physician’s Desk Reference, supra.

The present invention also provides pharmaceutical kits comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compounds and/or compositions of the present invention, including, at least, one or more of the COX-2 inhibitors optionally substituted with at least one NO and/or NO₃ group, described herein and one or more of the NO donors described herein.
Associated with such kits can be additional therapeutic agents or compositions (e.g., steroids, NSAIDs, 5-lipoxygenase (5-LO) inhibitors, leukotriene B₄ (LTB₄) receptor antagonists and leukotriene A₄ (LTA₄) hydrolase inhibitors, 5-HT agonists, HMG-CoA inhibitors, H₂ antagonists, antineoplastic agents, antiplatelet agents, decongestants, diuretics, sedating or non-sedating anti-histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics, Helicobacter pylori inhibitors, proton pump inhibitors, isoprostane inhibitors, and the like), devices for administering the compositions, and notices in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products which reflects approval by the agency of manufacture, use or sale for humans.

EXAMPLES

The following non-limiting examples further describe and enable one of ordinary skill in the art to make and use the present invention. In each of the examples, flash chromatography was performed on 40 micron silica gel (Baker).

Example 1: 4-[5-(4-Chlorophenyl)-3-[(nitrooxy)methyl]-3-hydropyrazolyl] benzenesulfonamide.

1a. 4-[5-(4-Chlorophenyl)-3-(hydroxymethyl)-3-hydropyrazolyl] benzenesulfonamide.

This compound was synthesized as described by Penning et al, J. Med. Chem., 40: 1347-1365 (1997), (the disclosure of which is incorporated by reference herein in its entirety), Example 14a. ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, J = 8.7 Hz, 2H), 7.39 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 6.54 (s, 1H), 4.79 (s, 2H).

1b. 4-[5-(4-Chlorophenyl)-3-[(nitroxy)methyl]-3-hydropyrazolyl] benzenesulfonamide.

To a solution of the product of Example 1a (348 mg, 0.95 mmol) in EtOAc (10 mL) was added over 5 minutes at room temperature a mixture of HNO₃ (85 μl, fuming 90%) in acetic anhydride (400 μL). The reaction was stirred for 15 minutes at room temperature. The mixture was poured into excess aqueous Na₂CO₃. The aqueous layer was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated. The residue was chromatographed on silica gel eluting with 2:1 Hex:EtOAc to give 210 mg (54%) of the title compound. ¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H), 7.34 (d, J = 8.5
Hz, 2H), 7.15 (d, J = 8.5 Hz, 2H), 6.61 (s, 1H), 5.55 (s, 2H), 4.97 (s, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 146.2, 143.8, 142.4, 141.2, 135.4, 130.0, 129.2, 128.2, 127.6, 127.5, 125.1, 109.2, 67.8.

Example 2: 4-{5-[(Nitrooxy)methyl]-3-phenylisoxazol-4-yl}benzenesulfonamide.

2a. 4-{5-(Hydroxymethyl)-3-phenylisoxazol-4-yl}benzenesulfonamide.

This compound was synthesized as described in patent application WO 96/25405, (the disclosure of which is incorporated by reference herein in its entirety), Example 10. 1H NMR (300 MHz, DMSO-d$_6$) δ 7.80 (d, J = 8.3 Hz, 2H), 7.32–7.45 (mult, 9H), 5.71 (t, J = 5.3 Hz, 1H), 4.52 (d, J = 4.5 Hz, 2H); 13C NMR (75 MHz, DMSO-d$_6$) δ 69.5, 160.7, 143.5, 132.6, 130.1, 129.8, 128.8, 128.3, 128.2, 126.0, 115.2, 53.3; mass spectrum (API-TIS), m/z 331 (M$^+$).

2b. 4-{5-[(Nitrooxy)methyl]-3-phenylisoxazol-4-yl}benzenesulfonamide.

Concentrated HNO$_3$ (40 μL, 0.90 mmol) was added to stirred solution of acetic anhydride (200 μL, 2.1 mmol) in EtOAc (0.3 mL) at 0 °C via a syringe and stirred for 5 minutes at 0 °C. The product of Example 2a (0.1 g, 0.3 mmol) in EtOAc (0.1 mL) was then added and stirred for 5 minutes at 0 °C. The resulting mixture was then subjected to preparative thin layer chromatography (PTLC) eluting with 1:1 Hex:EtOAc to give the title compound (65 mg, 57%) as an oil. The oil was dissolved in CH$_2$Cl$_2$ (5 mL) and solvent was evaporated slowly overnight at room temperature to give the title compound as white crystals. mp 47–50 °C. 1H-NMR (300 MHz, CDCl$_3$) δ 7.96 (d, J = 8.4 Hz, 2H), 7.30–7.45 (mult, 7H), 5.49 (s, 2H), 4.89 (br s, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 161.4, 160.5, 142.3, 133.0, 130.4, 130.3, 128.9, 128.4, 127.2, 127.1, 119.5, 62.7; mass spectrum (API-TIS), m/z 376 (M$^+$).

Example 3: 2-{1-Methyl-4-(nitrosothio)-4-piperidyl}ethyl 3-(N-{4-(5-methyl-3-phenylisoxazol-4-yl)phenyl}sulfonyl)carbamoyl)propanoate citrate salt

3a. Ethyl 2-{1-methyl-4-piperidylidene)acetate

A solution of n-BuLi (1.6M in Hex, 58.7 mL, 93.6 mmol) was added to a stirred solution of triethyl phosphonoacetate (17.5 g, 78.0 mmol) in THF (30 mL) at -78 °C under N$_2$. The resulting brownish solution was stirred for 30 min and then a solution of 4-N-methylpiperidine (8.8 g, 78.0 mmol) in THF (20 mL) was added. The cold bath was removed and the mixture was stirred at room temperature for 2 hours. Water (250 mL) was added and the mixture was extracted with EtOAc (3
x100 mL). The combined organic extracts were dried over Na$_2$SO$_4$. The solvent was evaporated to afford the title compound (13.2 g, 92%). 1H NMR (300 MHz, CDCl$_3$) δ 5.64 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.00 (t, J = 5.1 Hz, 10H), 2.32-2.53 (mult, 5H), 2.29 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 1.664, 158.6, 114.2, 59.5, 56.7, 56.1, 45.7, 36.7, 29.3, 14.2.

3b. Ethyl 2-[(1-methyl-4-(phenylmethylthio)piperidyl)acetaate

The product of Example 3a (13.2 g, 72.01 mmol) and benzyl mercaptan (8.4 mL, 72.01 mmol) in piperidine (35 mL) were heated at 100 °C for 12 hours and then cooled to room temperature. Water (50 mL) was added and the aqueous layer was extracted with EtOAc (3 x 100 mL). The combined organic layers were dried over Na$_2$SO$_4$. The solvent was evaporated and the residue was purified by chromatography on silica gel eluting with 1:9 MeOH:CH$_2$Cl$_2$ to afford the title compound (11.7 g, 53%) as a viscous liquid. 1H NMR (300 MHz, CDCl$_3$) δ 7.18-7.34 (mult, 5H), 4.17 (q, J = 7.1 Hz, 2H), 3.71 (s, 2H), 2.64 (s, 2H), 2.46-2.54 (mult, 4H), 2.29 (s, 3H), 1.83-1.95 (mult, 4H), 1.29 (t, J = 7.1 Hz, 3H).

3c. 2-[(1-Methyl-4-(phenylmethylthio)-4-piperidyl)ethan-1-ol

A solution of diisobutylaluminium hydride in hexane (83 mL, 83 mmol) was added to a stirred solution of the product of Example 3b (11.7 g, 38.74 mmol) in THF (40 mL) at -78 °C under N$_2$. The cold bath was removed and the mixture was stirred for 1.5 hours. Solid Na$_2$SO$_4$•10H$_2$O (3 g) was added portionwise with stirring until a thick precipitate was formed. 10% MeOH in CH$_2$Cl$_2$ (100 mL) was added and the mixture was filtered. The solid was washed with additional 10% MeOH in CH$_2$Cl$_2$ (100 mL) and the solvent was evaporated. The residue was chromatographed on silica gel eluting with 1:9 MeOH:CH$_2$Cl$_2$ to give the title compound (5.2 g, 50.6%) as a solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.20-7.35 (mult, 5H), 3.86 (t, J = 6.4 Hz, 2H), 3.66 (s, 2H), 2.50-2.57 (mult, 4H), 2.29 (s, 3H), 1.88 (t, J = 6.5 Hz, 2H), 1.65-1.84 (mult, 4H).

3d. 2-[(1-Methyl-4-(nitrosothio)-4-piperidyl)ethan-1-ol

The product of Example 3c (7.8 g, 29.38 mmol) was dissolved in THF (50 mL) and cooled to -78 °C and liquid NH$_3$ (~100 mL) was added. Small pieces of metallic sodium (2 g) were added until the blue color persisted for 10 minutes. Solid NH$_4$Cl (~ 5 g) was added to discharge the color and the cold bath was removed and ammonia was evaporated (12 hours). Ether (100 mL) was added to the pale yellow
solid and HCl in Et₂O (10 mL) was added until the solution became acidic. The mixture was left in a freezer for 30 min. The solid which formed was removed by filtration and washed with Et₂O (50 mL). The residue was triturated with MeOH (100 mL) and undissolved solid was removed by filtration. The solvent was concentrated to 25 mL and concentrated HCl (2 mL) was added. 90% t-BuONO (3.1 mL, 23.7 mmol) was added via syringe. The resulting olive green solution was stirred at room temperature for 20 minutes and then poured onto crushed ice (5 g). 10% Na₂CO₃ (10 mL) was added and the mixture was extracted with EtOAc (3 x 50 mL). The combined organics were dried over Na₂SO₄ and concentrated to give the title compound (3.6 g, 60%) as a green oil. ¹H NMR (300 MHz, CDCl₃) δ 3.88 (t, J = 6.9 Hz, 2H), 2.25-2.95 (mult, 13H), 2.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 62.5, 58.5, 57.8, 51.5, 46.1, 36.4.

3e. 4-[5-(Methyl)-3-phenylisoxazol-4-yl]benzenesulfonamide.

This compound was synthesized as described in patent application WO 96/25405, Example 1, the disclosure of which is incorporated by reference herein in its entirety. mp 170 °C. ¹H NMR (300 MHz, CD₃CN) δ 7.90 (d, J = 8.4 Hz, 2 H), 7.39–7.49 (mult, 7 H), 5.48 (s, 2 H), 2.50 (s, 2 H); mass spectrum (API-TIS), m/z 315 (MH⁺).

3f. 2-[1-Methyl-4-(nitrosothio)-4-piperidyl]ethyl 3-(N-{[4-(5-methyl-3-phenylisoxazol-4-yl)phenyl]sulfonyl}carbamoyl)propanoate.

To a stirred solution of the product of Example 3d (0.21 g, 1.03 mmol), the product of Example 3e (0.43 g, 1.03 mmol), and 4-(dimethylamino)pyridine (DMAP, 0.05 g) in CH₂Cl₂ (10 mL) was added solid DCC (0.34 g, 164 mmol). The solution was stirred for 24 hours at room temperature. The precipitate which formed was removed by filtration and the filtrate was concentrated under reduced pressure. The crude product was chromatographed on silica gel eluting with 1:1 EtOAc:Hex followed by 1:9 MeOH:CH₂Cl₂. This gave the title compound (178 mg, 29 %) as a green foam. ¹H-NMR (300 MHz, CDCl₃) δ 7.94 (d, J = 8.2 Hz, 2H), 7.22–7.39 (mult, 7H), 4.47–4.57 (mult, 2H), 3.56–3.60 (mult, 2H), 3.15–3.25 (mult, 2H), 2.45–2.90 (mult, 10H), 2.42 (s, 6H); ¹³C-NMR (75 MHz, CDCl₃) δ 178.5, 173.4, 167.1, 161.0, 143.0, 133.5, 129.7, 129.5, 128.6, 128.5, 128.4, 126.7, 114.9, 60.0, 56.2, 51.7, 45.5, 41.0, 33.9, 31.8, 30.3, 11.6; mass spectrum (API-TIS), m/z 601 (MH⁺).

3g. 2-[1-Methyl-4-(nitrosothio)-4-piperidyl]ethyl 3-(N-{[4-(5-methyl-3-phenyl
isoxazol-4-yl[phenylsulfonyl]carbamoyl]propanoate Citrate Salt.

Citic acid (65 mg, 0.34 mmol) in MeOH (0.2 mL) was added to the product of Example 3f (170 mg, 0.28 mmol) dissolved in EtOAc (0.8 mL) and MeOH (0.4 mL). The green solution was left to crystallize at -20 °C for 48 hours. The solvent was decanted and the solid was dried under reduced pressure for 16 hours to give the title compound (124 mg, 55%) as shiny, olive green crystals. mp 82-84 °C (decom). 1H-NMR (300 MHz, CDCl₃) δ 8.16 (d, J = 8.4 Hz, 2H), 7.52-7.60 (mult, 7H), 4.43 (t, J = 6.4 Hz, 2H), 3.15-3.25 (mult, 2H), 2.50-2.99 (mult, 22H); mass spectrum (API-TIS), m/z 601 (MH⁺).

Example 4: (2-{1-[(4-Chlorophenyl)methyl]-5-bromo-2-methylnindol-3-y1}ethyl)nitroxy

4a. 2-{1-[(4-Chlorophenyl)methyl]-5-bromo-2-methylnindol-3-y1}ethan-1-ol

A solution of indomethacin (10 g, 28 mmol) in THF (90 mL) was immersed in an ice bath to maintain an internal temperature of 10-15 °C. To this solution was added BF₃·Et₂O (30 mL, 230 mmol) over 5 min, resulting in the formation of a precipitate. Sodium borohydride (4.2 g, 110 mmol) was added portionwise over 10 min resulting in vigorous effervescence. After gas evolution subsided the flask was stoppered and allowed to warm to room temperature. After 1 hour the pressure was vented through a needle. The heterogeneous mixture was stirred for 6 hours. The mixture was cooled in an ice bath and was quenched by adding saturated NaHCO₃. To break the resultant emulsion the mixture was made acidic with 1N HCl and extracted with a 3:1 mixture of Et₂O:Hexane (270 mL). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated. The residue was taken up in a 3:1 mixture of hot Hex:EtOAc (80 mL). Upon cooling to room temperature, crystals began to form. Crystallization was completed by cooling to -20 °C. The solid was removed by filtration, washed with cold 3:1 Hex:EtOAc (2 X 25), Hexane (1 X 25) and dried in vacuo. This gave the title compound (4.5 g, 49%) as a white solid. ¹H-NMR (300 MHz, CDCl₃) δ 7.24 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 9.1 Hz, 1H), 7.03 (d, J = 3.5 Hz, 1H), 6.87 (d, J = 8.3 Hz, 2H), 6.78 (dd, J = 2.4 and 8.7 Hz, 1H), 5.23 (s, 2H), 3.86 (s, 3H), 3.84 (t, J = 6.5 Hz, 2H), 2.99 (t, J = 6.5 Hz, 2H), 2.29 (s, 3H); mass spectrum (API-TIS) m/z 330 (MH⁺). Anal calcéd for C₁₉H₁₉ClNO₂: C, 69.19; H, 6.11; N, 4.25; Cl, 10.75. Found: C, 68.98; H, 6.30; N, 4.08; Cl, 10.60.

4b. 3-(2-Bromoethyl)-1-[(4-chlorophenyl)methyl]-5-bromo-2-methylnindole
To the product of Example 4a (160 mg, 0.5 mmol) in toluene (1 mL) was added PBr₃ (17 μL, 0.18 mmol). The reaction mixture was heated to 100 °C for 10 min then cooled to room temperature. The mixture was partitioned between EtOAc and 1N HCl. The aqueous layer was extracted with EtOAc (1 X 10). The combined organic layers were washed with H₂O (1 X 10), brine (2 X 10), dried over Na₂SO₄, and evaporated. This gave the title compound (170 mg, 87%) which solidified on standing. This material was used in the next reaction without further purification. ¹H-NMR (300 MHz, CDCl₃) δ 7.24 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 9.1 Hz, 1H), 6.99 (d, J = 2.4 Hz, 1H), 6.86 (d, J = 8.4 Hz, 2H), 6.78 (dd, J = 2.4 and 8.8 Hz, 1H), 5.23 (s, 2H), 3.87 (s, 3H), 3.56 (t, J = 7.5 Hz, 2H), 3.28 (t, J = 7.5 Hz, 2H), 2.29 (s, 3H).

4c. (2-[1-{(4-Chlorophenyl)methyl]-5-methoxy-2-methylindol-3-yl}ethyl)nitrooxy

The product of Example 4b (170 mg, 0.43 mmol) was dissolved in CH₂CN (6 mL). Addition of AgNO₃ (85 mg, 0.5 mmol) caused immediate formation of a precipitate. After 20 min, the reaction mixture was filtered through Celite and concentrated. The residue was purified by chromatography on silica gel eluting with 5:1 Hex:EtOAc. This gave the title compound (90 mg, 56%) as a white crystalline solid. mp 94-95 °C. ¹H-NMR (300 MHz, CDCl₃) δ 7.23 (d, J = 8.5 Hz, 2H), 7.07 (d, J = 8.9 Hz, 1H), 6.99 (d, J = 2.4 Hz, 1H), 6.86 (d, J = 8.4 Hz, 2H), 6.79 (dd, J = 2.4 and 8.4 Hz, 1H), 5.23 (s, 2H), 4.60 (t, J = 7.2 Hz, 2H), 3.87 (s, 3H), 3.14 (t, J = 7.3 Hz, 2H), 2.28 (s, 3H); mass spectrum (API-TIS): m/z 375 (MH⁺). Anal calcd for C₁₉H₁₉ClN₂O₂: C, 60.88; H, 5.11; N, 7.47; Cl, 9.46. Found: C, 60.89; H, 5.23; N, 7.36; Cl, 9.58.

Example 5: 1-[3-(4-Fluorophenyl)-7-(nitrooxymethyl)(3a-hydroimidazolo[1,2-a]pyridin-2-yl)]-4-(methylsulfonyl)benzene

5a. 1-[3-(4-Fluorophenyl)-7-(hydroxymethyl)(3a-hydroimidazolo[1,2-a]pyridin-2-yl)]-4-(methylsulfonyl)benzene

This compound was prepared according to a procedure described in patent application WO 96/31509, (the disclosure of which is incorporated by reference herein in its entirety), Example 15. ¹H-NMR (300 MHz, CDCl₃) δ 7.80-7.87 (m, 5H), 7.40-7.46 (m, 2H), 7.20-7.33 (m, 3H), 6.82-6.86 (t, 2H, J = 7.0 Hz), 5.11 (s, 2H), 3.04 (s, 3H); mass spectrum (API-TIS) m/z 397 (MH⁺).
5b. 1-[3-(4-Fluorophenyl)-7-(nitrooxymethyl)(3a-hydroimidazolo[1,2-a]pyridin-2-yl])-4-(methylsulfonyl)benzene

A suspension of the product of Example 5a (210 mg, 0.52 mmol) was added to an ice-cold mixture of acetic anhydride (393 µL, 4.16 mmol) and nitric acid (110 µL, 2.61 mmol). The resulting mixture was allowed to warm up to 10 °C and stirred for 1 hour. The mixture was then diluted with methylene chloride, washed with cold saturated sodium bicarbonate solution and brine, dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was suspended in hexane/ethyl acetate (2:1) mixture and filtered to give 230 mg (99 % yield) of the title compound as a yellow-orange solid. m.p. 145-147 °C. 1H-NMR (300 MHz, CDCl3) δ 8.07-8.12 (d, 1 H, J = 7.0 Hz), 7.82-7.56 (m, 4 H), 7.48-7.56 (m, 2 H), 7.32-7.39 (m, 2 H), 6.95-7.01 (t, 1 H, J = 7.0 Hz), 5.96 (s, 2 H), 3.12 (s, 3 H).

Example 6: Ethyl 6-chloro-8-[nitrooxy)methyl]-2-(trifluoromethyl)-2H-chromene-3 carboxylate

6a. Ethyl 6-chloro-8-formyl-2-(trifluoromethyl)-2H-chromene-3 carboxylate

This compound was synthesized as described in patent application WO 98/47890, (the disclosure of which is incorporated by reference herein in its entirety), Example 76. 1H-NMR (300 MHz, CDCl3) δ 10.39 (s, 1H), 7.79 (s, 1H), 7.69 (s, 1H), 7.40 (s, 1H), 5.86 (q, J = 6.6 Hz, 1H), 4.31-4.44 (m, 2H), 1.37 (t, J = 7.1 Hz, 3H); 13C-NMR (75 MHz, CDCl3) δ 186.3, 163.0, 153.5, 134.4, 134.1, 130.1, 128.4, 125.0, 124.8, 121.8, 121.0, 119.2, 71.1 (q, JCF = 134 Hz), 62.0, 14.1.

6b. Ethyl 6-chloro-8-(hydroxymethyl)-2-(trifluoromethyl)-2H-chromene-3 carboxylate

Na(OAc)2BH (2.4 g, 11.2 mmol) was added to a stirred solution of the product of Example 6a (1.5 g, 4.5 mmol) in CH2Cl2 (50 mL) and the resulting solution was stirred at room temperature for 3 days. The solution was poured into water (100 mL), the CH2Cl2 layer was separated and the aqueous layer was extracted with CH2Cl2 (2 x 25 mL). The combined organic layers were dried over Na2SO4. The solvent was evaporated under reduced pressure and the crude material was chromatographed on silica gel eluting with EtOAc:Hexane (1:5) to give the title compound (1.2 g, 79%) as a white solid. mp 98-100 °C. 1H-NMR (300 MHz, CDCl3) 7.66 (s, 1H), 7.41 (d, J = 2.3 Hz, 1H), 7.16 (d, J = 2.4 Hz, 1H), 5.76 (q, J = 6.7 Hz, 1H), 4.71 (d, J = 5.5 Hz, 2H), 4.26-4.70 (mult, 2H), 2.06-2.10 (br mult, 1H),
6c. Ethyl 6-chloro-8-[(nitrooxy)methyl]-2-(trifluoromethyl)-2H-chromene-3-carboxylate

Fuming HNO₃ (340 µL, 3.6 mmol) was added to a stirred solution of acetic anhydride (1.12 mL, 11.8 mmol) in EtOAc (10 mL) at 0 °C via syringe. The mixture was allowed to stir for 5 min at 0 °C. The product of Example 6b (0.5 g, 1.49 mmol) in EtOAc (10 mL) was then added and stirred for 15 min at 0 °C. The reaction mixture was poured into ice cold saturated NaHCO₃ (25 mL) and shaken well. The organic layer was separated and dried over Na₂SO₄. The solvent was evaporated under reduced pressure to afford a viscous oil which was dissolved in hexane (15 mL). The resulting solution was left in a freezer at -20 °C for 12 hours to give the title compound (0.44 g, 77%). mp 53 °C. ^1H-NMR (300 MHz, CDCl₃) δ 7.65 (s, 1H), 7.34 (d, J = 2.4 Hz, 1H), 7.25 (d, J = 2.4 Hz, 1H), 5.78 (q, J = 6.6 Hz, 1H), 5.46 (s, 2H), 4.28-4.38 (mult, 3H), 1.35 (t, J = 7.1 Hz, 3H); ^13C-NMR (75 MHz, CDCl₃) δ 163.0, 150.0, 135.0, 133.0, 130.0, 127.6, 125.0, 121.8, 121.1, 120.8, 118.8, 71.3 (q, Jₑₑ = 133 Hz), 68.0, 61.8, 14; mass spectrum (API-TIS) m/z 399 (M+NH₄⁺). Anal. Calcd for C₁₄H₁₁ClF₃O₆; C, 44.06; H, 2.90; F, 14.93; Cl, 9.29; N, 3.67. Found: C, 44.00; H, 2.85; F, 14.83; Cl, 9.14; N, 3.57.

Example 7: 2-[1-{(4-Chlorophenyl)carbonyl}-5-methoxy-2-methylindol-3-yl]-N-(2-methyl-2-(nitrosothio)propyl)acetamide

7a. 2-[1-{(4-Chlorophenyl)carbonyl}-5-methoxy-2-methylindol-3-yl]-N-(2-methyl-2-sulfanylpropyl)acetamide

A solution of indomethacin (3.6 g, 10 mmol) and Et₂N (1.5 mL, 11 mmol) in THF (50 mL) was cooled to 0 °C. i-Butyl chloroformate (1.5 mL, 11 mmol) was added dropwise and the reaction was allowed to stir for 20 min. To the resulting solution was added a slurry of 1-amino-2-methyl-2-propanethio.HCl (1.4 g, 10 mmol) and Et₂N (1.5 mL, 11 mmol) in DMF (20 mL). The reaction mixture was kept cold for 2 hours, warmed to room temperature and stirred for 1 hour. The mixture was partitioned between Et₂O and dilute HCl. The organic layer was separated and washed with saturated NaHCO₃, brine, filtered and dried over Na₂SO₄.
Evaporation of the solvent gave a residue which was recrystallized from EtOAc to give the title compound (1.1 g, 25%) as a white solid. mp 177-178 °C. \(^1\)H-NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.67 (d, \(J = 8.5\) Hz, 2H), 7.48 (d, \(J = 8.4\) Hz, 2H), 6.92 (d, \(J = 2.3\) Hz, 1H), 6.91 (d, \(J = 9.0\) Hz, 1H), 6.71 (dd, \(J = 2.5\) and 9.1 Hz, 1H), 6.10 (br t, \(J = 6.3\) Hz, 1H), 3.83 (s, 3H), 3.69 (s, 2H), 3.27 (d, \(J = 6.3\) Hz, 2H), 2.42 (s, 3H), 1.36 (s, 1H), 1.26 (s, 6H); mass spectrum (API-TIS) \(m/z\) 445(447) MH\(^+\) (1-Cl).

7b. 2-[1-[(4-Chlorophenyl)carbonyl]-5-methoxy-2-methylindol-3-yl]-N-(2-methyl-2-(nitrosothio)propyl)acetamide

The product of Example 7a (25 mg, 0.056 mmol) was dissolved in CH\(_2\)Cl\(_2\) (1 mL) and cooled to 0 °C. A solution of \(t\)-BuONa (7.5 \(\mu\)L, 0.056 mmol) in CH\(_2\)Cl\(_2\) was added dropwise. The reaction mixture was allowed to warm to room temperature with stirring for 30 min. Evaporation of the solvent gave the title compound (25 mg, 100%) as a green crystalline solid. mp 122-125 °C dec. \(^1\)H-NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.64 (d, \(J = 8.5\) Hz, 2H), 7.51 (d, \(J = 8.4\) Hz, 2H), 6.84 (d, \(J = 9.1\) Hz, 1H), 6.82 (d, \(J = 2.5\) Hz, 1H), 6.78 (dd, \(J = 2.5\) and 9.1 Hz, 1H), 5.96 (br t, \(J = 6.4\) Hz, 1H), 3.97 (d, \(J = 6.4\) Hz, 2H), 3.79 (s, 3H), 3.67 (s, 2H), 2.32 (s, 3H), 1.78 (s, 6H); mass spectrum (API-TIS) \(m/z\) 491(493) M+NH\(^+\) (1-Cl).

Example 8: Ethyl (2Z)-3-(4-chlorophenyl)-3-[4-(methylsulfonyl)phenyl]-2-[2-(nitrooxy)ethyl]prop-2-enoate

8a. Ethyl (2Z)-3-(4-chlorophenyl)-2-(2-hydroxyethyl)-3-[4-(methylsulfonyl)phenyl] prop-2-enoate

This compound was synthesized as described in U.S. Patent No. 5,807,873, (the disclosure of which is incorporated by reference herein in its entirety), Example 64. mp 126 °C. \(^1\)H-NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.93 (dd, \(J = 1.75\) and 8.3 Hz, 2H), 7.46 (dd, \(J = 1.78\) and 6.7 Hz, 2H), 7.25-7.30 (mult, 2H), 7.04-7.09 (mult, 2H), 4.01 (q, \(J = 7.1\) Hz, 2H), 3.76 (t, \(J = 6.2\) Hz, 2H), 3.09 (s, 3H), 2.62 (t, \(J = 6.1\) Hz, 2H), 0.97 (t, \(J = 7.1\) Hz, 3H); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 170.2, 145.6, 144.6, 140.0, 139.5, 134.2, 132.7, 130.3, 129.9, 128.5, 127.6, 61.3, 61.1, 44.4, 35.0, 13.6; mass spectrum (API-TIS) \(m/z\) 409 (MH\(^+\)), 426 (MNH\(^+\)). Anal. Calcd for C\(_{25}\)H\(_{21}\)ClO\(_3\)S: C, 58.75; H, 5.18; Cl, 8.67; S, 7.84. Found: C, 58.64; H, 5.02; Cl, 8.80; S, 7.79.

8b. Ethyl (2Z)-3-(4-chlorophenyl)-3-[4-(methylsulfonyl)phenyl]-2-[2-(nitrooxy)ethyl]prop-2-enoate

A suspension of the product of Example 8a (2.02 g, 4.95 mmol) in CHCl\(_3\) (20
mL) was added dropwise to a mixture of acetic anhydride (3.71 mL, 4.04 g, 39.6 mmol) and 90% fuming nitric acid (1.03 mL, 1.56 g, 24.8 mmol) at -12 °C. The resultant solution was stirred at -12 °C for 1 hour. CH₂Cl₂ (30 mL) was added, washed with ice cold saturated NaHCO₃, dried over Na₂SO₄ and filtered.

Evaporation of the solvent gave a residue that was recrystallized from 1:2 Hexane:CH₂Cl₂ to give the title compound (1.82 g, 82 %) as a white solid. mp 127-128 °C. ¹H-NMR (300 MHz, CDCl₃) δ 7.97 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 7.8 Hz, 2H), 7.27-7.31 (mult, 2H), 7.03-7.08 (mult, 2H), 4.59 (t, J = 6.4 Hz, 2H), 4.02 (q, J = 7.1 Hz, 2H), 3.09 (s, 3H), 2.76 (t, J = 6.4 Hz, 2H), 0.98 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.8, 147.6, 145.3, 140.5, 139.2, 134.6, 129.9, 129.8, 129.4, 128.7, 128.0, 70.8, 61.4, 44.5, 29.9, 13.6; mass spectrum (API-TIS) m/z 471 (MNH₄⁺). Anal. Calcd for C₂₀H₂₂ClNO₅S: C, 52.92; H, 4.44; N, 4.09; Cl, 7.81; S, 7.06. Found: C, 52.91; H, 4.35; N, 2.93; Cl, 7.89; S, 7.20.

Example 9: (2Z)-3-(4-Chlorophenyl)-3-[4-(methylsulfonyl)phenyl]-2-[2-(nitrooxy)ethyl]prop-2-enoic acid

9a. (2Z)-3-(4-Chlorophenyl)-2-(hydroxyethyl)-3-[4-(methylsulfonyl)phenyl]prop-2-enoic acid

NaOH (6.4 mL of 1.5 N, 0.38 g, 9.6 mmol) was added dropwise to a solution of the product of Example 8a (3.62 g, 8.87 mmol) in EtOH (80 mL) at 0 °C. The resultant pale yellow solution was stirred at room temperature for 2 hours. The residue, after evaporation of the solvent, was dissolved in water and washed with EtOAc. Crushed ice was added to the aqueous layer which was then acidified with 10% HCl to ~pH=4 and extracted with EtOAc. The organic layer was dried over Na₂SO₄ and filtered. Evaporation of the solvent gave a residue that was recrystallized from EtOAc:Hex:CH₂Cl₂ to give the title compound (2.79 g, 82 %) as a white solid. mp 144-145 °C. ¹H-NMR (300 MHz, CDCl₃/MeOH-d₄) δ 7.98 (d, J = 7.1 Hz, 2H), 7.53 (d, J = 7.0 Hz, 2H), 7.29-7.32 (mult, 2H), 7.16-7.19 (mult, 2H), 3.71 (t, J = 6.9 Hz, 2H), 3.15 (s, 3H), 2.56 (t, J = 6.8 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.1, 147.4, 145.1, 141.4, 141.2, 134.9, 134.3, 131.4, 131.3, 129.4, 128.7, 61.3, 61.3, 44.3, 36.3; mass spectrum (API-TIS) m/z 363 (M-H₂O), 381 (MH⁺), 398 (MNH₄⁺). Anal. Calcd for C₁₈H₁₄ClO₅S: C, 56.77; H, 4.50; Cl, 9.31; S, 8.42. Found: C, 56.64; H, 4.44; Cl, 9.40; S, 8.18.

9b. (2Z)-3-(4-Chlorophenyl)-3-[4-(methylsulfonyl)phenyl]-2-[2-(nitrooxy)ethyl]
prop-2-enoic acid

A suspension of the product of Example 9a (1.37 g, 3.66 mmol) in CHCl₃ (54 mL) was added dropwise to a mixture of acetic anhydride (2.72 mL, 2.94 g, 28.8 mmol) and 90% fuming nitric acid (0.76 mL, 1.14 g, 18.0 mmol) at -12 °C. The resultant solution was stirred at -12 °C for 30 min. CH₂Cl₂ (25 mL) was added, washed with water, dried over Na₂SO₄ and filtered. Evaporation of the solvent gave a residue that was recrystallized from EtOAc:Hexane:CH₂Cl₂ to give the title compound (0.9 g, 59 %) as a white solid. mp 143-144 °C. ¹H-NMR (300 MHz, CDCl₃) δ 7.98 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.27-7.32 (mult, 2H), 7.07-7.11 (mult, 2H), 4.61 (t, J = 6.3 Hz, 2H), 3.10 (s, 3H), 2.78 (t, J = 6.3 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 172.8, 150.9, 145.4, 140.7, 138.7, 135.1, 129.8, 129.7, 129.0, 128.1, 127.7, 70.8, 44.5, 30.0; mass spectrum (API-TIS) m/z 443 (MNH⁺). Anal. Calcd for C₁₉H₁₆ClNO₅S: C, 50.77; H, 3.79; N, 3.29; Cl, 8.33; S, 7.53. Found: C, 50.87; H, 3.67; N, 3.13; Cl, 8.26, S, 7.43.

Example 10: (2Z)-3-(4-Chlorophenyl)-2-(2-hydroxyethyl)-N-[2-methyl-2-(nitrosothio)propyl]-3-[4-(methylsulfonylethoxy)phenyl]prop-2-enamide

10a. (2Z)-3-(4-Chlorophenyl)-N-(2-methyl-2-sulfanylpropyl)-3-[4-(methylsulfonylethoxy)phenyl]-2-[2-(1,1,2,2-,tetramethyl-1-silapropoxy)ethyl]prop-2-enamide

To a solution of the product of Example 9a (0.5 g, 1.32 mmol) and imidazole (0.18 g, 2.63 mmol) in dry THF (10 mL) was added a solution of t-butyldimethyl-chlorosilane (0.4 g, 2.63 mmol) in dry THF (10 mL) dropwise at room temperature. The resulting white suspension was stirred at room temperature for 16 hours. The reaction mixture was partitioned between EtOAc and saturated NaHCO₃. The organic layer was separated, washed with 10% HCl, dried over Na₂SO₄, filtered and concentrated in vacuo to give 1:1 mono:disilylated product as a white foam which was used in the next step without further purification. Mass spectrum (API-TIS) m/z 495 and 609 (MH⁺). The entire white foam was dissolved in THF (10 mL).

Bis(2-oxo-3-oxazolidinyl)phosphonic chloride (0.70 g, 1.58 mmol) and 4-(dimethylamino)pyridine (0.16 g, 1.32 mmol) were added at room temperature. After 5 min, 1-amino-2-methyl-2-propanethiol (0.15 g, 1.41 mmol) in THF (2 mL) was added dropwise. The resulting pale yellow solution was stirred at room
temperature for 2.5 hours. Evaporation of the solvent gave a residue that was chromatographed on silica gel eluting with 1:1 EtOAc:Hexane to give the title compound (0.28 g, 37%) as a white foam. \(^1\)H-NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.90 (d, \(J = 8.3\) Hz, 2H), 7.56 (d, \(J = 8.3\) Hz, 2H), 7.29 (d, \(J = 8.4\) Hz, 2H), 7.15 (d, \(J = 6.7\) Hz, 2H), 5.91 (t, \(J = 6.2\) Hz, 1H), 3.77 (t, \(J = 5.9\) Hz, 2H), 3.15 (d, \(J = 6.2\) Hz, 2H), 3.09 (s, 3H), 2.64 (t, \(J = 5.9\) Hz, 2H), 1.28 (s, 1H), 1.11 (s, 6H), 0.96 (s, 9H), 0.99 (s, 6H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 170.2, 145.9, 140.2, 139.8, 139.4, 137.9, 134.4, 130.9, 129.1, 127.4, 60.4, 60.4, 53.5, 52.7, 44.6, 44.5, 35.0, 29.9, 26.1, 19.1, 18.4, 14.3, -5.2; mass spectrum (API-TIS) \(m/z\) 582 (MH\(^+\)). Anal. Calcd for C\(_{29}\)H\(_{45}\)ClNO\(_{5}\)Si: C, 57.76; H, 6.92; N, 2.41. Found: C, 57.79; H, 6.67; N, 2.30.

10b. (2Z)-3-(4-Chlorophenyl)-2-(2-hydroxyethyl)-N-(2-methyl-2-sulfanylpropyl)-3-[4-(methylsulfonyl)phenyl]prop-2-enamide

To a solution of the product of Example 10a (225 mg, 0.39 mmol) in THF (13 mL) was added dropwise trifluoroacetic acid (129 \(\mu\)L, 1.67 mmol) at 0 °C. To this was added tetrabutylammonium fluoride (385 \(\mu\)L of 1M solution in THF, 0.39 mmol) dropwise. The resultant solution was gradually warmed to room temperature and stirred for 25 hours. The reaction mixture was partitioned between EtOAc (50 mL) and ice cold 1% HCl. The organic layer was separated, dried over Na\(_2\)SO\(_4\) and filtered. The solvent was evaporated and the residue was chromatographed on silica gel eluting with 5% MeOH:CH\(_2\)Cl\(_2\) to give the title compound (175 mg, 97%) as a white foam. \(^1\)H-NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.93 (d, \(J = 8.2\) Hz, 2H), 7.47 (d, \(J = 8.2\) Hz, 2H), 7.28 (d, \(J = 8.5\) Hz, 2H), 7.16 (d, \(J = 8.4\) Hz, 2H), 6.05 (t, \(J = 6.1\) Hz, 1H), 3.72 (t, \(J = 5.7\) Hz, 2H), 3.14 (d, \(J = 6.1\) Hz, 2H), 3.09 (s, 3H), 2.59 (t, \(J = 5.7\) Hz, 2H), 1.36 (s, 1H), 1.16 (s, 6H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 171.1, 145.8, 141.1, 140.0, 138.8, 137.3, 134.7, 130.5, 130.4, 129.2, 127.8, 61.0, 52.9, 44.7, 44.6, 34.9, 30.0; mass spectrum (API-TIS) \(m/z\) 468 (MH\(^+\)).

10c. (2Z)-3-(4-Chlorophenyl)-2-(2-hydroxyethyl)-N-(2-methyl-2-(nitrosothio)propyl)-3-[4-(methylsulfonyl)phenyl]prop-2-enamide

To a solution of t-butyl nitrite (0.2 mL of 90% solution, 158 mg, 1.53 mmol) in 1:1 MeOH:CH\(_2\)Cl\(_2\) (1.2 mL) was added dropwise a solution of the product of Example 10b (156 mg, 0.33 mmol) in 1:1 MeOH:CH\(_2\)Cl\(_2\) (2 mL) at 0 °C. The resultant solution was stirred at 0 °C in the dark for 30 min. Additional t-butyl nitrite (0.15 mL of 90% solution, 118 mg, 1.15 mmol) was added and the resultant
green solution was stirred at 0 °C for a further 30 min and then at room temperature for 20 min. The volatiles were removed in vacuo and the residue was chromatographed on silica gel eluting with 1:1 EtOAcCH₂Cl₂ to give the title compound (96 mg, 58%) as a green solid. mp 150-153 °C. ¹H-NMR (300 MHz, CDCl₃) δ 7.90 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.24 (dd, J = 1.9 and 6.6 Hz, 2H), 7.09-7.12 (mult, 2H), 6.40 (br t, J = 6.3 Hz, 1H), 3.86 (d, J = 6.3 Hz, 2H), 3.66 (t, J = 5.9 Hz, 2H), 3.09 (s, 3H), 2.54 (t, J = 5.8 Hz, 2H), 1.67 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 145.8, 141.2, 139.8, 138.8, 136.9, 134.5, 130.5, 130.3, 129.0, 127.6, 60.5, 56.5, 44.5, 34.7, 26.8; mass spectrum (API-TIS) m/z 467 (M-NO), 497 (MH⁺).

Example 11: 1-[5-methyl-1-(2-methyl-2-(nitrosothio)propyl)pyrrol-2-yl]-4-(methylsulfonyl)benzene

11a. 1-(4-Methylthiophenyl)pentane-1,4-dione

4-(Methylthio)benzaldehyde (20 mL, 150 mmol), 3-benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride (7 g, 30 mmol), methyl vinyl ketone (15 mL, 180 mmol), and Et₃N (21 mL, 150 mmol) were placed in a flask and immersed in an oil bath at 80 °C. The initial purple colored solution became orange over 30 min. The solution was cooled to room temperature, EtOAc (30 mL) was added to precipitate the thiazolium salt which was removed by filtration. The filter cake was washed with hot EtOAc (2 x 30 mL). The combined mother liquor and washes were concentrated to give 43 g of residue. The residue was taken up in hot 1:1 Hexane:EtOAc (100 mL), which upon cooling deposited a solid. This solid was isolated on a glass frit and washed with hot 4:1 Hexane:EtOAc (50 mL). From this hot wash was deposited the title compound (16.4 g, 49%) as a tan solid. mp 72-73 °C. ¹H-NMR (300 MHz, CDCl₃) δ 7.88 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 3.22 (t, J = 6.5 Hz, 2H), 2.87 (t, J = 6.2 Hz, 2H), 2.51 (s, 3H), 2.24 (s, 3H); mass spectrum (API-TIS) m/z 223 (MH⁺). Anal. Calcd. for C₁₂H₁₄O₂S: C, 64.84; H, 6.35; S, 14.42. Found C, 64.68; H, 6.19; S, 14.24.

11b. 1-[4-(Methylsulphonyl)phenyl]pentane-1,4-dione

The product of Example 11a (16.4 g, 74 mmol) was dissolved in CH₂Cl₂ (300 mL) and cooled to 0 °C. Solid 70% m-chloroperbenzoic acid (37 g, 150 mmol) was added portionwise over 5 min. After complete addition the cold bath was removed and the reaction mixture was allowed to warm to room temperature with stirring for 3 hours. The precipitate that had formed was removed by filtration and washed
with CH$_2$Cl$_2$ (2 x 50 mL). The combined organic filtrates were washed with 1M Na$_2$CO$_3$ dried over Na$_2$SO$_4$ and concentrated. The residue was partitioned between EtOAc (200 mL) and 1M Na$_2$CO$_3$ (50 mL). The solid was kept with the aqueous layer and the mixture was extracted with EtOAc (50 mL). The aqueous layer was filtered to give the title compound (8.9 g) after drying in vacuo. The combined organic layers were washed with water, brine, dried over Na$_2$SO$_4$ and concentrated to give additional title compound (6.5 g). Overall yield of the title compound was 15.4 g, 82%. mp 132-133 °C. 1H-NMR (300 MHz, CDCl$_3$) δ 8.15 (d, J = 8.4 Hz, 2H), 8.05 (d, J = 8.3 Hz, 2H), 3.27 (t, 6.6 Hz, 2H), 3.07 (s, 3H), 2.93 (t, J = 6.4 Hz, 2H), 2.26 (s, 3H); mass spectrum (API-TIS) m/z 255 (MH$^+$). Anal. Calcd. for C$_{12}$H$_8$O$_2$S: C, 56.68; H, 5.55; S, 12.61. Found: C, 56.39; 5.40; S, 13.36.

11c. 1-[5-Methyl-1-(2-methyl-2-sulfanylpropyl)pyrrol-2-yl]-4-(methylsulfonyl) benzene

The product of Example 11b (2 g, 7.9 mmol), NaOAc (1.3 g, 16 mmol), and 1-amino-2-methyl-2-propanethiol.HCl (1.2 g, 8.7 mmol) were added to HOAc (15 mL) and heated to 80 °C for 3 hours. The reaction mixture was cooled to room temperature and the HOAc was removed at reduced pressure. The residue was partitioned between EtOAc (40 mL) and 1N Na$_2$CO$_3$ (15 mL). The organic layer was separated and washed with 1N Na$_2$CO$_3$, brine, then dried over Na$_2$SO$_4$ and concentrated. The residue was crystallized from hot MeOH (5 mL) to give the title compound (1.6 g, 63%) as an orange-tan solid. mp 124-126 °C. 1H-NMR (300 MHz, CDCl$_3$) δ 7.93 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 6.22 (d, J = 3.6 Hz, 1H), 6.03 (d, J = 3.6 Hz, 1H), 4.24 (br, 2H), 3.08 (s, 3H), 2.41 (s, 3H), 1.55 (s, 1H), 1.04 (s, 6H); mass spectrum (API-TIS) m/z 324 (MH$^+$).

11d. 1-[5-Methyl-1-(2-methyl-2-(nitrosothio)propyl)pyrrol-2-yl]-4-(methylsulfonyl) benzene

The product of Example 11c (100 mg, 0.31 mmol) was dissolved in CH$_2$Cl$_2$ and cooled to 0 °C. A solution of t-BuONO (40 mL, 31 mmol) in CH$_2$Cl$_2$ (1 mL) was added dropwise. After complete addition the reaction mixture was warmed to room temperature and allowed to stir 1 hour. The solvent was evaporated and the residue was chromatographed on silica gel eluting with 2:1 Hexane:EtOAc. This gave a 1:3 mixture of starting material and desired product (67 mg, 61%). A small fraction of this mixture was reacted with t-BuONO to give the title compound as a
dark foam. 1H-NMR (300 MHz, CDCl$_3$) δ 7.89 (d, J = 8.5 Hz, 2H), 7.44 (d, J = 8.5 Hz, 2H), 6.22 (d, J = 3.6 Hz, 1H), 6.05 (d, J = 3.5 Hz, 1H), 4.60-5.00 (br, 2H), 3.15 (s, 3H), 2.39 (s, 3H), 1.6-2.0 (br s, 6H); mass spectrum (API-TIS) m/z 353 (MH$^+$).

Example 12: 3-[4-{1-Methyl-1-(nitrosothio)ethyl]-2-oxo-1,3-oxazolidin-3 yl] propyl (2Z)-4-acetyloxy-2-(4-fluorophenyl)-3-[4 (methylsulfonyl) phenyl]but-2-enoate

12a. 3-(4-Fluorophenyl)-4-[4-(methylsulfonyl)phenyl]-5-hydrofuran-2-one

This compound was synthesized as described in patent EP 0 788 476 B1, (the disclosure of which is incorporated by reference herein in its entirety), lactone 11.

mp 163 °C. 1H-NMR (300 MHz, CDCl$_3$) δ 7.94 (d, J = 8.6 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 7.38-7.43 (mult, 2H), 7.06-7.27 (mult, 2H), 5.18 (s, 2H), 3.08 (s, 3H); 3C NMR (75 MHz, CDCl$_3$) δ 172.5, 165.0, 161.7, 153.7, 142.2, 136.3, 131.4, 131.3, 128.6, 128.3, 128.0, 125.3, 125.2, 116.4, 116.1, 70.5, 44.4; mass spectrum (API-TIS) m/z 333 (MH$^+$), 350 (MNH$^+$). Anal. Calcd for C$_r$H$_t$FO$_s$S: C, 61.44; H, 3.94; F, 5.72; S, 9.65. Found: C, 61.24; H, 3.89; F, 5.70; S, 9.52.

12b. 1-{[(1Z)-2-(4-Fluorophenyl)-3-hydroxy-1-(hydroxymethyl)prop-1-enyl]-4- (methylsulfonyl)benzene

A solution of diisobutylaluminium hydride (70.2 mL, 1M solution in THF, 9.98 g, 70.2 mmol) was added dropwise to a solution of the product of Example12a (4.68 g, 14.1 mmol) in THF (190 mL) at 0 °C. After stirring for 30 min at 0 °C and then 1 hour at room temperature, the mixture was cooled to 0 °C. Additional DIBAL (30 mL, 1M solution in THF, 4.27 g, 30 mmol) was added dropwise and stirred for 1 hour at room temperature. This reaction mixture was poured into a solution of 1M sodium potassium tartrate (200 mL) containing MeOH (50 mL). The aqueous mixture was extracted with EtOAc. The organic layer was dried over Na$_2$SO$_4$ and filtered. The solvent was removed in vacuo to give the title compound (4.7 g, 99%) as a colorless oil. 1H-NMR (300 MHz, MeOH-d$_4$) δ 7.73 (d, J = 8.5 Hz, 2H), 7.35 (d, J = 8.5 Hz, 2H), 7.07-7.12 (mult, 2H), 6.85-6.91 (mult, 2H), 4.64 (s, 2H), 4.62 (s, 2H), 3.06 (s, 3H); mass spectrum (API-TIS) m/z 337 (MH$^+$), 354 (MNH$^+$).

12c. (2Z)-3-(4-Fluorophenyl)-4-hydroxy-2-[4-(methylsulfonyl)phenyl]but-2-enyl acetate

Acetic anhydride (1.33 mL, 1.4 g, 14.0 mmol) was added dropwise to a solution of the product of Example 12b (4.7 g, 14.0 mmol), DMAP (56 mg, 0.46
mmol) and triethylamine (5.89 mL, 42.3 mmol) in CH₂Cl₂ (600 mL) at room temperature. The mixture was stirred for 1 hour at room temperature, washed with water and dried over Na₂SO₄. The residue, after evaporation of the solvent, was chromatographed on silica gel eluting with 1:1 to 3:2 EtOAc:Hexane to give the title compound (1.31 g, 25%) as a colorless oil, followed by its regio-isomer, (2Z)-2-(4-fluorophenyl)-4-hydroxy-3-[4-(methylsulfonyl)phenyl]but-2-enyl acetate (1.37 g, 26%) also as a colorless oil. (2Z)-3-(4-fluorophenyl)-4-hydroxy-2-[4-(methylsulfonyl)phenyl]but-2-enyl acetate: ¹H-NMR (300 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 7.02-7.06 (mult, 2H), 6.80-6.86 (mult, 2H), 5.17 (s, 2H), 4.63 (s, 2H), 3.01 (s, 3H), 1.99 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 163.6, 160.4, 145.9, 143.6, 139.0, 135.6 (J_HPC = 3.4 Hz), 134.3, 131.0, 130.9, 130.5, 127.3, 115.5, 115.2, 64.4, 63.4, 44.5, 21.0; mass spectrum (API-TIS) m/z 396 (MNH₄⁺).

(2Z)-2-(4-Fluorophenyl)-4-hydroxy-3-[4-(methylsulfonyl)phenyl]but-2-enyl acetate: ¹H-NMR (300 MHz, CDCl₃) δ 7.70 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 6.82-6.97 (mult, 4H), 5.16 (s, 2H), 4.61 (s, 2H), 2.99 (s, 3H), 1.99 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 163.4, 160.1, 146.8, 141.0, 138.5, 136.7, 134.7 (J_HPC = 3.5 Hz), 131.0, 130.9, 130.1, 126.9, 115.4, 115.1, 64.4, 62.8, 44.3, 20.8; mass spectrum (API-TIS) m/z 396 (MNH₄⁺).

12d. (2Z)-3-(4-Fluorophenyl)-2-[4-(methylsulfonyl)phenyl]-4-oxobut-2-enyl acetate

A mixture of the product of Example 12c (1.31 g, 3.47 mmol) and MnO₂ (6.96 g, 80 mmol) in CH₂Cl₂ (175 mL) was stirred for 16 hours at room temperature and then filtered through a pad of Celite. The filtrate was dried over Na₂SO₄ filtered and concentrated in vacuo to give the title compound (0.81 g, 62%) as yellow solid. ¹H-NMR (300 MHz, CDCl₃) δ 10.39 (s, 1H), 7.79 (d, J = 10.3 Hz, 2H), 7.31 (d, J = 12.2 Hz, 2H), 6.88-6.91 (mult, 4H), 5.45 (s, 2H), 3.02 (s, 3H), 2.00 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 190.9, 170.4, 164.1, 160.8, 149.6, 143.9, 141.3, 140.3, 132.4, 132.3, 130.0, 129.9, 127.4, 115.7, 115.5, 62.1, 44.4, 20.7; mass spectrum (API-TIS) m/z 394 (MNH₄⁺).

12e. (2Z)-4-Acetyloxy-2-(4-fluorophenyl)-3-[4-(methylsulfonyl)phenyl]but-2-enolic acid

To a solution of the product of Example 12d (0.81 g, 2.15 mmol) and 2-methyl-2-butene (28.9 mL, 19.1 g, 273 mmol) in t-butanol (170 mL), was added a
solution of NaClO₃ (4.87 g, 53.9 mmol) and NaH₂PO₄ (4.80 g, 40.1 mmol) in water (10 mL). The mixture was stirred for 2 hours at room temperature. The residue, after evaporation of the solvent, was dissolved in pH = 7 buffer solution (250 mL) and extracted with EtOAc. The aqueous layer was acidified with 10% HCl (~pH = 4-5) and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄ and filtered. The residue after evaporation of the solvent was recrystallized from EtOAc:Hex:CH₂Cl₂ to give the title compound (0.31 g, 37%) as a white solid. mp 187 °C. ¹H-NMR (300 MHz, THF-d₈) δ 7.87 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 8.1 Hz, 2H), 7.21-7.25 (mult, 2H), 6.97-7.03 (mult, 2H), 5.35 (mult, 2H), 3.08 (s, 3H), 1.97 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.8, 169.7, 165.2, 162.0, 144.9, 142.2, 141.9, 137.7, 133.9 (J_CF = 3.5 Hz), 133.2, 133.1, 131.6, 128.4, 116.3, 116.0, 65.9, 44.5, 20.8; mass spectrum (API-TIS) m/z 333 (M-HOAc), 410 (M+NH₄⁺). Anal. Calcd for C₁₃H₁₅NO₃S·1/2 H₂O: C, 56.85; H, 4.52; F, 4.73; S, 7.99. Found: C, 56.83; H, 4.45; F, 5.07; S, 7.94.

12f. 2-Amino-3-methyl-3-[(2,4,6-trimethoxyphenyl)methylthio]butanoic acid

A suspension of 2-amino-3-methyl-3-sulfanylbutanoic acid (D-penicillamine) (5.0 g, 34 mmol) in CH₂Cl₂ (150 mL) was cooled to 0 °C. Trifluoroacetic acid (54 mL, 703 mmol) was added dropwise over a period of 5 min. Then 2,4,6-trimethoxybenzyl alcohol (6.64 g, 34 mmol) in CH₂Cl₂ (137 mL) was added dropwise at 0 °C with stirring. Stirring was continued for 1 hour at 0 °C and then for 2 hours at room temperature. The solvent was removed in vacuo and the residue was dried under high vacuum for 3 hours. The crude red solid was recrystallized from 1:1:1 CH₂Cl₂/MeOH/THF to give the title compound (10.5 g, 95%) as a white solid. ¹H-NMR (300 MHz, CDCl₃) δ 6.10 (s, 2H), 3.84 (s, 6H), 3.76 (s, 3H), 3.40-4.10 (m, 3H), 1.69 (s, 3H), 1.23 (s, 3H); mass spectrum (API-TIS) m/z 330 (MH⁺).

12g. 2-Amino-3-methyl-3-[(2,4,6-trimethoxyphenyl)methylthio]butan-1-ol

To a stirred solution of the product of Example 12f (10.5 g, 32 mmol) in THF (80 mL) was added dropwise lithium aluminum hydride (1 M in THF, 64 mL, 64 mmol) at 0 °C under nitrogen. The resulting solution was stirred at 0 °C for 1 hour and then at room temperature for 2 hours. The excess reducing agent was destroyed by careful portionwise addition of Na₂SO₄·10H₂O at 0 °C. The granular white precipitate was filtered and washed with 30% methanol in CH₂Cl₂. The combined filtrate was dried over Na₂SO₄, filtered and evaporated to give the title
compound (7.6 g, 76 %) as a yellow oil which was used for the next step without further purification. \(^1\)H-NMR (300 MHz, CDCl\(_3\)) \(\delta 6.10\) (s, 2H), 3.85 (s, 6H), 3.81 (s, 3H), 3.74 (s, 2H), 3.60–3.80 (mult, 2H), 3.37–3.43 (mult, 1H), 2.93–2.98 (mult, 1H), 1.45 (s, 3H), 1.30 (s, 3H); mass spectrum (API-TIS) \(m/z\) 316 (MH\(^+\)).

12h. 4-{1-Methyl-1-[(2,4,6-trimethoxyphenyl)methylthio]ethyl}-1,3-oxazolidin-2-one

A mixture of K\(_2\)CO\(_3\) (0.33 g, 2.4 mmol) and diethylcarbonate (50 mL) and the product of Example 12g (7.6 g, 24 mmol) was heated at 100 °C for 24 hours. Excess diethylcarbonate was evaporated and the resultant light brown slurry was cooled to room temperature, diluted with CH\(_2\)Cl\(_2\) and filtered to remove the K\(_2\)CO\(_3\). The filtrate was evaporated and the residue was chromatographed on silica gel eluting with 1:1 EtOAc:Hexane to give the title compound 2.6 g (32 %) as a viscous yellow oil. \(^1\)H-NMR (300 MHz, CDCl\(_3\)) \(\delta 6.13\) (s, 2H), 6.07 (bs, 1H), 4.30–4.40 (mult, 1H), 4.25–4.28 (mult, 1H), 4.03–4.08 (mult, 1H), 3.86 (s, 6H), 3.83 (s, 2H), 3.81 (s, 3H), 1.32 (s, 3H), 1.27 (s, 3H); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta 160.7, 159.5, 158.7, 106.3, 90.9, 66.5, 59.5, 56.0, 55.5, 47.1, 23.8, 22.3, 20.3; mass spectrum (API-TIS) \(m/z\) 342 (MH\(^+\)), 359 (MNH\(_4\))\(^+\).

12i. 3-Bromo-1-(1,1,2,2-tetramethyl-1-silapropoxy)propane

\(t\)-Butyldimethylchlorosilane (17.4 g, 115 mmol) in dry THF (50 mL) was added dropwise to a solution of 1,3-bromopropanol (16 g, 115 mmol) and imidazole (7.85 g, 115 mmol) in dry THF (50 mL) at room temperature. The resulting white suspension was stirred at room temperature for 16 hours. The reaction mixture was diluted with EtOAc (200 mL), washed with water, brine, dried over Na\(_2\)SO\(_4\), filtered, and concentrated \(\textit{in vacuo}\) at room temperature to give the title compound 28.5 g (98%) as a colorless volatile liquid. \(^1\)H-NMR (300 MHz, CDCl\(_3\)) \(\delta 3.74\) (t, \(J = 5.7\) Hz, 2H), 3.52 (t, \(J = 6.5\) Hz, 2H), 2.02–2.06 (mult, 2H), 0.90 (s, 9H), 0.07 (s, 6H); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta 60.6, 35.7, 30.8, 26.1, -5.2.

12j. 4-{1-Methyl-1-[(2,4,6-trimethoxyphenyl)methylthio]ethyl}-3-[3-(1,1,2,2-tetramethyl-1-silapropoxy)propyl]-1,3-oxazolidin-2-one

NaH (0.84 g, 35.3 mmol) was added portionwise to a solution of the product of Example 12h (8.03 g, 23.5 mmol) in dry DMF (25 mL) under nitrogen at 0 °C. The resulting suspension was stirred at 0 °C for 20 min to give a brown red solution. The product of Example 12i (7.14 g, 28.2 mmol) in DMF (7 mL) was
added dropwise and stirred at room temperature for 16 hours and then the solvent was evaporated. The residue was treated with 1:1 EtOAc:water and the organic layer was separated. The aqueous layer was extracted with EtOAc and the combined organic phases were washed with water, dried over Na₂SO₄, and filtered.

Evaporation of the solvent left a residue that was chromatographed on silica gel eluting with 5% to 25% EtOAc:Hexane to give the title compound 6.2 g (51%) as a white foam. ¹H-NMR (300 MHz, CDCl₃) δ 6.11 (s, 2H), 4.38-4.42 (mult, 1H), 4.05-4.11 (mult, 1H), 3.93-3.96 (mult, 1H), 3.83 (s, 6H), 3.80 (s, 3H), 3.77 (s, 2H), 3.65 (t, J = 6.1 Hz, 2H), 3.58-3.71 (mult, 1H), 3.34-3.44 (mult, 1H), 1.66-1.96 (mult, 2H), 1.56 (s, 3H), 1.24 (s, 3H), 0.89 (s, 9H), 0.04 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 160.7, 159.5, 158.7, 107.0, 90.8, 65.7, 61.7, 60.6, 55.9, 55.4, 48.3, 42.6, 30.3, 26.8, 26.0, 22.2, 20.4, 18.4, -5.3; mass spectrum (API-TIS) m/z 514 (MH⁺).

12k. 3-(3-Hydroxypropyl)-4-(1-methyl-1-sulfanylethyl)-1,3-oxazolidin-2-one

The product of Example 12j (5.0 g, 9.75 mmol) was treated with water (4.0 mL), phenol (4.0 g), anisole (4.0 mL) and finally trifluoroacetic acid (49 mL). The resultant solution was stirred at room temperature for 1 hour. The volatiles were evaporated to give a yellow oil. The crude yellow oil was chromatographed on silica gel eluting with 1:1 EtOAc:Hexane to give the title compound 1.4 g (66%) as a pale yellow oil. ¹H-NMR (300 MHz, CDCl₃) δ 4.30-4.35 (mult, 2H), 3.50-3.82 (mult, 5H), 2.80-2.95 (bs, 1H), 1.83-1.89 (mult, 2H), 1.78 (s, 1H), 1.42 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 160.5, 65.8, 65.4, 59.2, 47.2, 42.2, 30.1, 29.0, 28.0; mass spectrum (API-TIS) m/z 220 (MH⁺), 237 (MNH⁺). Anal. Calcd for C₉H₁₈NO₅S: C, 49.29; H, 7.81; N, 6.39. Found: C, 48.99; H, 7.71; N, 6.04.

12l. 3-(3-Hydroxypropyl)-4-[1-methyl-1-(nitrosothio)ethyl]-1,3-oxazolidin-2-one

To a solution of t-BuONO (1.67 mL of 90% solution, 1.32 g, 12.8 mmol) in CH₂Cl₂ (10 mL) was added dropwise a solution of the product of Example 12k (1.4 g, 6.4 mmol) in CH₂Cl₂ (16 mL) at 0 °C. The resulting green solution was stirred at 0 °C for 1 hour and then at room temperature for 20 min in the dark. Evaporation of the solvent gave a residue that was chromatographed on silica gel eluting with 1:1 EtOAc:CH₂Cl₂ to 5% MeOH:CH₂Cl₂ to give the title compound 0.98 g (62%) as a green oil. ¹H-NMR (300 MHz, CDCl₃) δ 4.61-4.66 (mult, 1H), 4.36-4.46 (mult, 2H), 3.42-3.75 (mult, 4H), 2.30-2.45 (br s, 1H), 1.97 (s, 3H), 1.96 (s, 3H), 1.74-1.80 (mult, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 160.2, 65.3, 63.3, 59.3, 58.8, 42.3, 29.8, 25.4, 25.0;
mass spectrum (API-TIS) m/z 219 (M-NO), 249 (MH⁺), 266 (MNH₂⁺). Anal. Calcd for C₁₅H₂₁N₂O₅S: C, 43.54; H, 6.50; N, 11.28. Found: C, 43.61; H, 6.59; N, 10.99.

12m. 3-[4-[1-Methyl-1-(nitrosothio)ethyl]-2-oxo-1,3-oxazolidin-3-yl]propyl (2Z)-4-acetoxy-2-(4-fluorophenyl)-3-[4-(methylsulfonyl)phenyl]but-2-enoyl phosponic chloride (0.14 g, 0.32 mmol) and 4-(dimethylamino)pyridine (19.0 mg, 0.16 mmol) were added to a solution of the product of Example 12l (100 mg, 0.40 mmol) and the product of Example 12e (61 mg, 0.16 mmol) in THF (2 mL) at 0 °C. The resulting solution was stirred at 0 °C for 1 hour and then at room temperature for 20 hours. Evaporation of the solvent gave a residue that was chromatographed on silica gel eluting with 1:1 EtOAc:CH₂Cl₂ to give the title compound 68 mg (70%) as a green foam. ¹H-NMR (300 MHz, CDCl₃) δ 7.78 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 6.99-7.03 (mult, 2H), 6.82-6.88 (mult, 2H), 5.17 (s, 2H), 4.53-4.57 (mult, 1H), 4.36-4.43 (m, 2H), 4.25 (t, J = 6.1 Hz, 2H), 3.64-3.74 (mult, 1H), 3.18-3.28 (mult, 1H), 3.02 (s, 3H), 1.95 (s, 3H), 1.91 (s, 3H), 1.87 (s, 3H), 1.85-2.06 (mult, 2H); mass spectrum (API-TIS) m/z 593 (M-NO), 623 (MH⁺), 640 (MNH₂⁺).

Example 13: (2Z)-3-(4-Fluorophenyl)-3-[N-methyl-N-[2-methyl-2-(nitrosothio)propyl]carbamoyl]-2-[4-(methylsulfonyl)phenyl]prop-2-enyl acetate

13a. (2Z)-3-(4-Fluorophenyl)-3-[N-methyl-N-[2-methyl-2-sulfanylpropyl]carbamoyl]-2-[4-(methylsulfonyl)phenyl]prop-2-enyl acetate

Bis(2-oxo-3-oxazolidinyl)phosphonic chloride (0.242 g, 0.55 mmol) was added to a solution of the product of Example 12e (0.18 g, 0.46 mmol), triethylamine (0.62 mL, 0.45 g, 4.4 mmol) and 4-(dimethylamino)pyridine (56 mg, 0.46 mmol) in THF (6 mL) at room temperature. After 5 min, 1-amino-2-methyl-2-thiopropane (85.6 mg, 0.55 mmol) was added. The resulting mixture was stirred at room temperature for 16 hours. The reaction mixture was diluted with EtOAc (50 mL), washed with water, brine, dried over Na₂SO₄, and filtered. Evaporation of the solvent gave a residue that was chromatographed on silica gel eluting with 2% MeOH:CH₂Cl₂ to give the title compound (189 mg, 83%) as a white foam. mp 45-47 °C. ¹H-NMR (300 MHz, DMSO-d₆) δ 7.44 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.08-7.11 (mult, 4H), 4.95-5.05 (br s, 2H), 3.60 (s, 2H), 3.21 (s, 3H), 3.14 (s, 3H), 2.86 (s, 1H), 1.95 (s, 3H), 1.33 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 170.6, 170.2, 160.9, 143.9, 141.0, 139.8, 132.7, 131.3, 131.2, 130.6, 127.6, 116.1, 115.8, 65.5, 60.6, 46.5, 44.6,
39.4, 31.7, 21.0; mass spectrum (API-TIS) m/z 494 (MH+).

13b. (2Z)-3-(4-Fluorophenyl)-3-[N-methyl-N-[2-methyl-2-(nitrosothio)propyl]carbamoyl]-2-[4-(methylsulfonfyl)phenyl]prop-2-enyl acetate

To a solution of t-BuONO (141 μL of 90% solution, 111 mg, 1.08 mmol) in CH₂Cl₂ (1.4 mL) was added dropwise a solution of the product of Example 13a (163 mg, 0.33 mmol) in CH₂Cl₂ (4.3 mL) at 0 °C. The resulting green solution was stirred at 0 °C for 15 min and at room temperature and then for 15 min in the dark. The residue, after evaporation of the solvent, was chromatographed on silica gel eluting with 1:1 to 2:1 EtOAc:CH₂Cl₂ to give the title compound 60 mg (35 %) as a green foam. mp 37-38 °C. ¹H-NMR (300 MHz, CDCl₃) δ 7.80 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 7.04-7.08 (mult, 2H), 6.85-6.90 (mult, 2H), 4.96 (s, 2H), 4.25 (s, 2H), 3.04 (s, 3H), 2.95 (s, 3H), 2.04 (s, 3H), 1.92 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 170.6, 170.5, 164.2, 160.9, 143.7, 140.6, 139.8, 133.0, 131.2, 131.1, 130.5, 130.2, 127.5, 116.1, 115.8, 65.4, 58.2, 57.8, 44.5, 39.3, 27.9, 20.9; mass spectrum (API-TIS) m/z 493 (M-NO), 523 (M⁺), 540 (MNH⁺).

Example 14: 2-[1-Methyl-4-(nitrosothio)-4-piperidyl]ethyl (2Z)-3-(4-acetyloxy-2-(4-fluorophenyl)-3-[4-(methylsulfonfyl)phenyl]but-2-enoate

14a. 2-[1-Methyl-4-(nitrosothio)-4-piperidyl]ethyl (2Z)-3-(4-acetyloxy-2-(4-fluorophenyl)-3-[4-(methylsulfonfyl)phenyl]but-2-enoate

DCC (0.11 g, 0.53 mmol) in CH₂Cl₂ (5 mL) was added dropwise to a stirred solution of the product of Example 12e (0.21 g, 0.53 mmol), 2-[1-methyl-4-(nitrosothio)-4-piperidyl]ethan-1ol (prepared as described in Patent Application WO/025776, (the disclosure of which is incorporated by reference herein in its entirety) Example 13d, 0.132 g, 0.64 mmol) and 4-(dimethylamino)pyridine (33 mg, 0.27 mmol) in CH₂Cl₂ (5 mL) at room temperature. The resulting suspension was stirred at room temperature for 16 hours then the precipitate was filtered and washed with CH₂Cl₂ (10 mL). The combined organic phase was dried over Na₂SO₄ and filtered. The residue after evaporation of the solvent was chromatographed on silica gel eluting with 2% MeOH:CH₂Cl₂ to give the title compound 13 mg (4%) as a green oil. ¹H-NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 9.1 Hz, 2H), 6.94-6.98 (mult, 2H), 6.81-6.86 (mult, 2H), 5.15 (s, 2H), 4.42 (t, J = 6.7 Hz, 2H), 3.00 (s, 3H), 2.68 (t, J = 6.8 Hz, 2H), 2.30 (s, 3H), 2.15-2.43 (mult, 8H), 1.93 (s, 3H); mass spectrum (API-TIS) m/z 549 (M-NO), 579 (M⁺).
Example 15: (3Z)-4-(4-Chlorophenyl)-3-(ethoxycarbonyl)-4-[4-(methylsulfonyl)phenyl]but-3-enopic acid

15a. (3Z)-4-(4-Chlorophenyl)-3-(ethoxycarbonyl)-4-[4-(methylsulfonyl)phenyl]but-3-enopic acid

This compound was synthesized as described in U. S. Patent No. 5,807,873, (the disclosure of which is incorporated by reference herein in its entirety), Example 63. 1H-NMR (300 MHz, CDCl3) δ 7.96 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 4.03 (q, J = 7.1 Hz, 2H), 3.45 (s, 2H), 3.10 (s, 3H), 0.97 (t, J = 7.1 Hz, 3H); mass spectrum (API-TIS) m/z 377 (M-CO2), 423 (M+H'), 440 (MNH3'), 445 (MNa').

15b. 2-Bromo-1-(1,1,2,2-tetramethyl-1-silapropoxy)ethane

t-Butyldimethylchlorosilane (21.7 g, 144 mmol) in dry THF (50 mL) was added dropwise to a solution of 1,2-bromoethanol (18 g, 144 mmol) and imidazole (9.81 g, 144 mmol) in dry THF (50 mL) at room temperature. The resulting white suspension was stirred at room temperature for 16 hours. The reaction mixture was diluted with EtOAc (200 mL), washed with water, brine, dried over Na2SO4, filtered and concentrated in vacuo at room temperature to give the title compound 33.2 g (96%) as a colorless liquid. 1H-NMR (300 MHz, CDCl3) δ 3.89 (t, J = 6.5 Hz, 2H), 3.39 (t, J = 6.6 Hz, 2H), 0.90 (s, 9H), 0.10 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 63.7, 60.5, 33.4, 26.0, 21.2, 14.3, -5.1.

15c. 4-[1-Methyl-1-[(2,4,6-trimethoxyphenyl)methylthio]ethyl]-3-[2-(1,1,2,2-tetramethyl-1-silapropoxy)ethyl]-1,3-oxazolidin-2-one

NaH (1.6 g, 66.7 mmol) was added portionwise to a solution of the product of Example 12h (15.3 g, 44.9 mmol) in dry DMF (50 mL) under nitrogen at 0 °C. The resulting suspension was stirred at 0 °C for 20 min to give a brown red solution. The product of Example 15b (12.9 g, 53.8 mmol) in DMF (10 mL) was added dropwise and stirred at room temperature for 16 hours. The solvent was evaporated. The residue was partitioned with 1:1 EtOAc:water and the organic layer was separated. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with water, dried over Na2SO4 and filtered. The residue after evaporation of the solvent was chromatographed on silica gel eluting with 1:1 EtOAc:Hexane to give the title compound (18 g, 80%) as a white foam. 1H-NMR (300 MHz, CDCl3) δ 6.12 (s, 2H), 4.38-4.47 (mult, 1H), 4.09-4.21
(mult, 3H), 3.83 (s, 9H), 3.79 (s, 2H), 3.71-3.79 (mult, 2H), 3.42-3.53 (m, 1H), 1.50 (s, 3H), 1.29 (s, 3H), 0.95 (s, 9H), 0.08 (s, 6H); 13C NMR (75 MHz, CDCl$_3$) δ 160.8, 159.7, 158.9, 106.5, 90.9, 65.9, 62.3, 60.5, 56.0, 55.5, 48.6, 47.5, 26.4, 26.0, 22.6, 21.2, 20.3, 18.3, 14.4, -5.3; mass spectrum (API-TIS) m/z 500 (MH$^+$).

15d. 3-(2-Hydroxyethyl)-4-(1-methyl-1-sulfonylthethyl)-1,3-oxazolidin-2-one

The product of Example 15c (14.9 g, 29.8 mmol) was treated with water (11.8 mL), phenol (11.8 g), anisole (11.8 mL) and finally trifluoroacetic acid (147 mL). The resultant solution was stirred at room temperature for 1 hour and then the solvent was evaporated to give a yellow oil which was chromatographed on silica gel eluting with 1:1 EtOAc:Hexane to give the title compound 4.2 g (69%) as a pale yellow oil. 1H-NMR (300 MHz, CDCl$_3$) δ 4.33-4.43 (mult, 2H), 3.72-3.92 (mult, 4H), 3.50-3.59 (mult, 1H), 2.55-2.80 (br s, 1H), 1.78 (s, 1H), 1.41 (s, 6H); 13C NMR (75 MHz, CDCl$_3$) δ 160.6, 66.2, 66.0, 60.4, 48.3, 47.6, 29.0, 27.8; mass spectrum (API-TIS) m/z 206 (MH$^+$), 223 (MNH$_2$$^+$). Anal. Calcd for C$_9H_{15}NO_5$S: C, 46.81; H, 7.37; N, 6.82. Found: C, 46.81; H, 7.11; N, 6.61.

15e. 3-(2-Hydroxyethyl)-4-[1-methyl-1-(nitrosothio)ethyl]-1,3-oxazolidin-2-one

To a solution of t-butyl nitrite (4.45 mL of 90% solution, 3.5 g, 34.1 mmol) in CH$_2$Cl$_2$ (28 mL) was added dropwise a solution of the product of Example 15d (3.88 g, 18.9 mmol) in CH$_2$Cl$_2$ (58 mL) at 0 °C. The resulting green solution was stirred at 0 °C for 1 hour and then at room temperature for 20 min in the dark. The residue after evaporation of the solvent was chromatographed on silica gel eluting with 1:1 EtOAc:CH$_2$Cl$_2$ to 5% MeOH:CH$_2$Cl$_2$ to give the title compound 3.7 g (84 %) as a green oil. 1H-NMR (300 MHz, CDCl$_3$) δ 4.70-4.74 (mult, 1H), 4.41-4.52 (mult, 2H), 3.77-3.89 (mult, 3H), 3.44-3.50 (mult, 1H), 1.99 (s, 3H), 1.96 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 160.4, 65.8, 63.9, 60.0, 59.3, 48.1, 25.7, 24.8; mass spectrum (API-TIS) m/z 205 (M-NO), 235 (MH$^+$), 252 (MNH$_2$$^+$). Anal. Calcd for C$_9H_{14}N_2O_5$S: C, 41.02; H, 6.02; N, 11.96. Found: C, 41.30; H, 5.87; N, 11.68.

15f. (3Z)-4-(4-Chlorophenyl)-3-(ethoxycarbonyl)-4-[4-(methylsulfonyl)phenyl]but-3-enoic acid

DCC (32 mg, 0.155 mmol) in CH$_2$Cl$_2$ (0.5 mL) was added dropwise to a stirred solution of the product of Example 15a (66 mg, 0.155 mmol), the product of Example 15e (36 mg, 0.154 mmol) and 4-(dimethylamino)pyridine (19 mg, 0.155 mmol) in CH$_2$Cl$_2$ (2 mL) at 0 °C. The resulting suspension was stirred at 0 °C for 15
min and then at room temperature for 1.5 hours. The precipitate was filtered and washed with CH₂Cl₂ (5 mL). The combined organic phases were dried over Na₂SO₄ and filtered. The residue after evaporation of the solvent was chromatographed on silica gel eluting with 1:3 EtOAc:CH₂Cl₂ to give the title compound 69 mg (70%) as a green solid. mp 40-42 °C. ¹H-NMR (300 MHz, CDCl₃) δ 7.96 (d, J = 6.7 Hz, 2H), 7.39 (d, J = 6.6 Hz, 2H), 7.28-7.31 (m, 2H), 7.04-7.07 (m, 2H), 4.69-4.73 (m, 1H), 4.01-4.47 (m, 2H+2H+1H), 3.98 (q, J = 7.1 Hz, 2H), 3.42-3.50 (m, 1H), 3.37 (s, 2H), 3.09 (s, 3H), 1.96 (s, 3H), 1.93 (s, 3H), 0.93 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.7, 168.3, 159.1, 149.3, 145.6, 149.7, 139.4, 134.6, 130.0, 128.6, 128.0, 126.9, 65.4, 62.6, 61.3, 61.3, 59.1, 44.5, 44.3, 37.9, 25.2, 25.1, 13.6; mass spectrum (API-TIS) m/z 609 (M-NO), 639 (M⁺H), 659 (MNH⁺). Anal. Calcd for CₙHₘClN₂O₅S₂: C, 52.62; H, 4.89; N, 4.38; Cl, 5.55; S, 10.03. Found: C, 52.40; H, 4.98; N, 4.17; Cl, 5.68, S, 9.80.

Example 16: 3-Methyl-N-[(4-(5-methyl-3-phenylisoxazol-4-yl)phenyl)sulfonyl]-3-(nitrosothio)butanamide

16a. 3-Methyl-N-[(4-(5-methyl-3-phenylisoxazol-4-yl)phenyl)sulfonyl]-3-[(2,4,6-trimethoxyphenyl)methylthiobutanamide

3-Methyl-3-[(2,4,6-trimethoxyphenyl)methylthio]butanoic acid (prepared as described in patent application WO 97/34871, (the disclosure of which is incorporated by reference herein in its entirety), Example 1a, 1.05 g, 3.37 mmol) was added to a stirred solution of 4-(5-methyl-3-phenylisoxazol-4-yl)benzene sulfonamide (prepared as described by Talley et. al., J. Med. Chem. 43, 775 (2000), (the disclosure of which is incorporated by reference herein in its entirety), 0.85 g, 2.70 mmol), 4-(dimethylamino)pyridine (0.1 g) in THF (30 mL). The resulting solution was stirred at room temperature for 15 min and then solid DCC (0.84 g, 4.04 mmol) was added. The reaction mixture was stirred at room temperature for 3 hours, the solid was then removed by filtration. The filtrate was concentrated and the residue was chromatographed on silica gel eluting with 1:1 EtOAc:Hexane to give the title compound (0.92 g, 56%) as a white solid. mp 138-140 °C. ¹H-NMR (300 MHz, CDCl₃) δ 9.98 (s, 1H), 7.93 (d, J = 8.4 Hz, 2H), 7.25-7.42 (m, 7H), 6.20 (s, 2H), 3.92 (s, 6H), 3.83 (s, 3H), 3.79 (s, 2H), 2.54 (s, 2H), 2.45 (s, 3H), 1.20 (s, 6H); ¹³C-NMR (75 MHz, CDCl₃) δ 168.8, 167.3, 161.0, 158.5, 138.0, 136.1, 129.8, 129.7, 128.9, 128.7, 128.4, 114.5, 105.2, 91.1, 56.1, 55.4, 47.3, 43.8, 29.0, 21.1, 11.7; mass spectrum (API-TIS) m/z 611 (MH⁺).
16b. 3-Methyl-N-[(4-(5-methyl-3-phenylisoxazol-4-yl)phenyl)sulfonyl]-3-sulfanylbutanamide

The product of Example 16a (0.6 g, 0.98 mmol) in CH₂Cl₂ (5 mL) was added to a stirred solution of cysteine (1.1 g, 9.07 mmol) in TFA (5 mL) and the resulting pale yellow solution was stirred at room temperature for 1 hour. Crushed ice (~3 g) was added and the mixture neutralized with concentrated NH₄OH (8 mL). The aqueous mixture was extracted with EtOAc (3 x 25 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to give the title compound (0.4 g, 95%) as a viscous oil. This material was used in the next reaction without further purification. mp 138-140 °C. ¹H-NMR (300 MHz, CDCl₃) δ 8.05 (d, J = 8.3 Hz, 2H), 7.30-7.40 (mult, 7H), 2.57 (s, 2H), 2.49(s, 3H), 2.09 (s, 1H), 1.37 (s, 6H); ¹³C-NMR (75 MHz, CDCl₃) δ 168.5, 167.5, 161.1,137.6, 136.3, 130.0, 129.7, 128.8,128.7, 128.4, 128.1, 114.4, 52.0, 42.0, 32.4, 11.7; mass spectrum (API-TIS), m/z 431 (M⁺).

16c. 3-Methyl-N-[(4-(5-methyl-3-phenylisoxazol-4-yl)phenyl)sulfonyl]-3-(nitrosothio)butanamide

A few drops of HCl in ether was added to a stirred solution of product of Example 16b (0.4 g, 0.93 mmol) in CH₂Cl₂ (5 mL) and MeOH (5 mL). t-BuONO (90%, 120 mL, 0.93 mmol) was then added. The resulting olive green solution was stirred at room temperature for 15 min under nitrogen. Cold water (25 mL) was added and the product was extracted into EtOAc (2 x 25 mL). The organic layer was dried over Na₂SO₄ and concentrated. Flash chromatography of the residue on silica gel eluting with 1:1 EtOAc/Hexane gave the title compound (0.32 g, 75%) as a green foam. ¹H-NMR (300 MHz, CDCl₃) δ 9.38 (s, 1H), 7.96 (d, J = 8.4 Hz, 2H), 7.28-7.43 (mult, 7H), 3.22 (s, 2H), 2.52 (s, 3H), 1.98 (s, 6H); ¹³C-NMR (75 MHz, CDCl₃) δ 167.8, 167.6, 161.1, 137.4, 136.2, 130.0, 129.8, 128.7,128.5, 128.0, 114.4, 53.6, 48.3, 27.8, 11.6; mass spectrum (API-TIS), m/z 460 (M⁺).

Example 17: 2-Methyl-2-(nitrosothio)propyl-5-(4-chlorophenyl)-1-(4-sulfamoylphenyl)pyrazole-3-carboxylate

17a. Methyl 5-(4-chlorophenyl)-1-(4-sulfamoylphenyl)pyrazole-3-carboxylate

This compound was prepared as described in Penning et. al. J. Med. Chem. 40, 1347-1365 (1997), (the disclosure of which is incorporated by reference herein in its entirety), Compound 3a. mp 186 °C. ¹H-NMR (300 MHz, DMSO-d₆) δ 7.89 (d, J = 8.6 Hz, 2H), 7.6-7.4 (m, 6H), 7.32 (d, J = 8.6 Hz, 2H), 7.21 (s, 1H), 3.87 (s, 3H); mass
spectrum (API-TIS) m/z 392 (MH+).

17b. 5-(4-Chlorophenyl)-1-(4-sulfamoylphenyl)pyrazole-3-carboxylic acid

A stirred mixture of the product of Example 17a (9.75 g, 24.9 mmol), aqueous NaOH (1.5 N, 60 mL), and THF (200 mL) was heated to reflux for 5 hours. The reaction mixture was concentrated on a rotary evaporator. The residue was partitioned between EtOAc (200 mL) and 2N aqueous HCl (100 mL). The organic layer was separated and washed with water, dried over Na₂SO₄, filtered, and concentrated to give a solid material. Crystallization from EtOH/THF (1:1) gave the title compound (8.8 g, 90%) as an off-white solid. mp 203 °C. ¹H NMR (300 MHz, DMSO-d₆) δ 8.02 (d, J = 8.4 Hz, 2H), 7.7-7.6 (m, 4H), 7.45 (d, J = 8.4 Hz, 2H), 7.28 (s, 1H); mass spectrum (API-TIS) m/z 378 (MH+).

17c. 2-methyl-2-sulfanylpropan-1-ol

To 2-methylpropanal (3.53 g, 49 mmol) in carbon tetrachloride (30 ml) was added sulfur monochloride (2 ml, 25 mmol) and the reaction mixture was stirred at 55 °C for 2 hours. After cooling to room temperature, the volatiles were evaporated in vacuo to give 2-[(1,1-dimethyl-2-oxoethyl)disulfanyl]-2-methylpropanal. The disulfide (17.5 g, 85.7 mmol) was dissolved in THF (100 ml) and LiAlH₄ (86 ml, 1M/THF) was added slowly. After stirring at room temperature for 1 hour, the mixture was poured onto ice, treated with 3N HCl (150 ml) and then extracted with EtOAc. The organic extracts were dried over sodium sulfate and the volatiles were evaporated to yield 12.8 g (71%) of the title compound as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 3.44 (s, 2H), 2.25 (brs, 1H), 1.63 (s, 1H), 1.36 (s, 6H); ¹³C NMR (CDCl₃) 73.3, 46.3, 28.3.

17d. 2-methyl-2-(nitrosothio)propan-1-ol

To a solution of the product Example 17c (4.4 g, 41.5 mmol) in CH₂Cl₂ (50 ml) was added t-BuONO (5.5 ml, 41.5 mmol). The reaction mixture was stirred at room temperature for 10 minutes and the volatiles were evaporated in vacuo at 40 °C to give 4.6 g (82%) of the title compound as a dark green oil. ¹H NMR (300 MHz, CDCl₃) δ 4.17 (s, 2H), 1.95 (brs, 1H), 1.90 (s, 6H); ¹³C NMR (CDCl₃) 70.5, 57.7, 25.1.

17e. 2-Methyl-2-(nitrosothio)propyl-5-(4-chlorophenyl)-1-(4-sulfamoylphenyl) pyrazole-3-carboxylate

To a stirred solution of the product of Example 17b (3.78 g, 10.0 mmol), the product of Example 17d (1.35 g, 10.0 mmol), 1-[3-(dimethylamino)propyl]-3-
ethylcarbodiimide hydrochloride (3.83 g, 20.0 mmol), and 4-
(dimethylamino)pyridine (10 mg) in DMF (80 mL) was added triethylamine (2.79
mL, 20.0 mmol). After being stirred at room temperature for 4 hours, the mixture
was diluted with EtOAc (200 mL), washed with 1N HCl, water, dried over Na₂SO₄,
filtered, and concentrated. Chromatography of the residue on silica gel eluting
with 1:4 EtOAc:Hexane gave the title compound (0.20 g, 4%) as a green solid. mp
153 °C (dec). ¹H NMR (300 MHz, DMSO-d₆) δ 7.88 (d, J = 8.6 Hz, 2H), 7.55-7.49 (m,
4H), 7.32 (d, J = 8.6 Hz, 2H), 7.20 (s, 1H), 3.32 (s, 2H), 1.82 (s, 6H); mass spectrum
(API-TIS) m/z 495 (MH⁺). Anal. Calcd. for C₃₉H₄₉ClN₉O₅S₂: C, 48.53; H, 3.87; N,
11.32; Cl, 7.16; S, 12.96. Found: C, 48.79; H, 4.12; N, 11.50; Cl, 6.81; S, 12.76.

Example 18: 4-(4-Fluorophenyl)-5-[4-(methylsulfonyl)phenyl]-2-(4-
[nitroxy)methyl]phenyl)methyl)-2-hydroxyopyridazin-3-one

18a. 4-(4-Fluorophenyl)-5-[4-(methylsulfonyl)phenyl]-2-benzyl-2-
hydropyrazin-3-one

This compound was synthesized as described in patent application WO
99/10331, (the disclosure of which is incorporated by reference herein in its
entirety), Example 10. m.p. 151-153 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, J =
8.4 Hz, 2H), 7.83 (m, 1H), 7.53 (m, 2H), 7.31 (m, 5H), 7.15 (m, 2H), 6.93 (m, 2H), 5.93
(s, 2H), 3.02 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 164.3, 161.0, 159.5, 140.5, 138.7,
13706, 135.8, 132.5, 132.4, 129.9, 129.1, 128.6, 128.1, 127.7, 115.2, 115.2, 56.1, 44.2;
mass spectrum (API-TIS) m/z 435 (MH⁺).

18b. 4-(4-Fluorophenyl)-5-[4-(methylsulfonyl)phenyl]-2-hydroxyopyridazin-3-one

To the product of Example 18a (74 mg, 0.17 mmol) in toluene (20 mL) was
added AlBr₃ (140 mg, 0.52 mmol). The reaction mixture was heated at 90 °C for 15
minutes and then cooled to 0 °C. The reaction mixture was then poured into ice
cold water, acidified with 1 N HCl and extracted with ethyl acetate (2 x 50 mL).
The combined extracts were washed with water (2 x 25 mL) and brine (1 x 25 mL),
dried over Na₂SO₄ and filtered. Evaporation of the solvent gave a residue that was
purified by column chromatography on silica gel eluting with 5% methanol in
CH₂Cl₂ to give the title compound (45 mg, 76%). ¹H NMR (300 MHz, CDCl₃) δ 7.8-
7.9 (m, 3H), 7.35 (d, J = 9 Hz, 2 H), 7.2 (m, 2 H), 7.0 (t, J = 9 Hz, 2 H), 3.05 (s, 3 H);
LRMS (APIMS) m/z 345 (M + H)⁺.

18c. Methyl 4-[(5-(4-fluorophenyl)-4-[4-(methylsulfonyl)phenyl]-6-oxohydro-
pyridazinyl|methyl|benzoate

The product of Example 18b (210 mg, 0.61 mmol) was dissolved in anhydrous DMF (3 mL) and then K₂CO₃ (336 mg, 2.44 mmol) was added. To this reaction mixture was added methyl 4-(bromomethyl)benzoate (140 mg, 0.61 mmol) and the mixture was stirred at room temperature overnight. The reaction mixture was diluted with water (25 mL) and extracted with ethyl acetate (2 x 50 mL). The combined extracts were washed with water (4 x 50 mL), brine (1 x 25 mL), and dried over sodium sulfate. Evaporation of the solvent gave a residue that was purified by column chromatography on silica gel eluting with 1:1 EtOAc:Hexane to give the title compound (210 mg, 70%) as a colorless foam.

\[^1H\text{-NMR} (300 \text{ MHz, CDCl}_3) \delta 8.02 (d, J = 7.8 \text{ Hz, 2H}), 7.86 (d, J = 8.5 \text{ Hz, 2H}), 7.84 (s, 1H), 7.58 (d, J = 7.8 \text{ Hz, 2H}), 7.32 (t, J = 7.9 \text{ Hz, 2H}), 7.15 (t, J = 6.8 \text{ Hz, 2H}), 6.94 (t, J = 8.2 \text{ Hz, 2H}), 5.43 (s, 2H), 3.89 (s, 3H), 3.03 (s, 3H); ^13C\text{-NMR} (75 \text{ MHz, CDCl}_3) \delta 166.7, 164.5, 159.5, 140.8, 140.7, 140.4, 138.8, 137.4, 137.3, 132.5, 132.4, 132.0, 129.9, 129.0, 128.3, 127.8, 127.4, 115.3, 55.8, 52.1, 44.3; \text{mass spectrum (API-TIS) m/z 493 (MH}^+\text{)}.\]

18d. 4-(4-Fluorophenyl)-2-[4-(hydroxymethyl)phenyl]-5-[4-(methylsulfonyl)phenyl]-2-hydroxypyridazin-3-one

The product of Example 18c (190 mg, 0.386 mmol) was dissolved in anhydrous CH₂Cl₂ (10 mL). The solution was cooled to 0 °C and 1M DIBAL-H (1.05 mL) was added dropwise under nitrogen atmosphere. The reaction mixture was stirred at 0 °C for 30 minutes and then at room temperature for 15 minutes. It was then quenched with ice cold water, acidified with 1 N HCl, and extracted with CH₂Cl₂ (2 x 50 mL). The combined extracts were washed water (2 x 25 mL), brine (1 x 25 mL) and then dried over Na₂SO₄. Evaporation of the solvent gave a residue that was purified by column chromatography on silica gel eluting 5% methanol in CH₂Cl₂ to give the title compound (100 mg, 54 %) as a colorless foam.

\[^1H\text{-NMR} (CDCl}_3 \delta 7.86 (d, J = 8.2 \text{ Hz, 2H}), 7.82 (s, 1H), 7.52 (d, J = 7.8 \text{ Hz, 2H}), 7.34 (d, J = 7.9 \text{ Hz, 2H}), 7.29 (d, J = 8.1 \text{ Hz, 2H}), 7.14 (t, J = 7.6 \text{ Hz, 2H}), 6.93 (t, J = 8.5 \text{ Hz, 2H}), 5.38 (s, 2H), 4.65 (s, 2H), 3.03 (s, 3H); ^13C\text{-NMR} (300 \text{ MHz, CDCl}_3) \delta 164.4, 161.1, 159.5, 140.9, 140.7, 140.5, 138.8, 137.2, 135.1, 132.4, 129.9, 129.4, 127.7, 127.6, 115.6, 115.3, 64.8, 55.9, 44.3; \text{mass spectrum (API-TIS) m/z 465 (MH}^+\text{)}.\]

18e. 4-(4-Fluorophenyl)-5-[4-(methylsulfonyl)phenyl]-2-[(4-[(nitroxy)methyl]phenyl]methyl]-2-hydroxypyridazin-3-one
The product of Example 18d (30 mg, 0.065 mmol) was dissolved in anhydrous ethyl acetate (0.5 mL). In a separate flask the nitration mixture was prepared by adding successively acetic anhydride (472 μL, 5.20 mmol) and fuming nitric acid (137 μL, 3.25 mmol) at 0 °C. From this mixture, 65 μL was added to the above solution cooled to 0 °C. The reaction mixture was stirred at 0 °C for 5 minutes and quenched with water and then extracted with ethyl acetate. The organic layer was separated, washed with water, brine, and dried over Na₂SO₄. Evaporation of the solvent gave a residue that was purified by preparative thin layer chromatography (0.25 mm thick silica gel plate) using 6:4 EtOAc:Hexane to give the title compound (5.5 mg, 17%) as a white solid. mp 78-87 °C. ¹H-NMR (300 MHz, CDCl₃) δ 7.86 (d, J = 8.2 Hz, 2H), 7.84 (s, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.15 (t, J = 6.4 Hz, 2H), 6.95 (t, J = 8.6 Hz, 2H), 5.41 (s, 2H), 5.40 (s, 2H), 3.04 (s, 3H); mass spectrum (API-TIS) m/z 510 (MH⁺).

Example 19: 4-(Methylsulfonfonyl)-1-(1-[2-nitrooxy]ethyl)-4-benzylpyrazol-5-yl]benzene

19a. 1-(4-Methylthiophenyl)-3-phenylpropan-1-one

To a stirred solution of 4-(methylthio)benzonitrile (25.0 g, 0.17 mol) in THF (100 mL) under N₂ atmosphere was added phenethylmagnesium chloride (1.0 M in THF, 210 mL, 0.21 mol). The solution was heated to reflux for 4 hours, cooled to 0 °C, and quenched carefully with water (10 mL). The resulting slurry was treated with 6 N hydrochloric acid (200 mL) and stirred at room temperature overnight. The THF was evaporated from the mixture, and the residue was extracted with EtOAc (2 x 300 mL). The combined organic extracts were washed with 2M Na₂CO₃, dried over Na₂SO₄, filtered, and concentrated to give a solid material. Recrystallization from EtOAc-Hex (1:4) afforded the title compound (41.5 g, 96%) as greenish plates. mp 105 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, J = 8.5 Hz, 2H), 7.32-7.19 (m, 7H), 3.24 (t, J = 6.8 Hz, 2H), 3.06 (t, J = 6.8 Hz, 2H), 2.50 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 198.2, 145.8, 141.3, 133.2, 128.48, 128.42, 128.38, 126.1, 125.0, 40.2, 30.2, 14.7; mass spectrum (API-TIS) m/z 257 (M+H).

19b. Mixture of 2-[3-(4-methylthiophenyl)-4-benzylpyrazolyl]ethan-1-ol and 2-[5-(4-methylthiophenyl)-4-benzylpyrazolyl]ethan-1-ol

To a stirred solution of the product of Example 19a (850 mg, 3.3 mmol) in THF (8 mL) at -78 °C under N₂ atmosphere was added lithium diisopropylamide.
(1.5 M in cyclohexane, 2.66 mL, 4.0 mmol) dropwise. After 30 min, a solution of HCO₂Et (0.32 mL, 4.0 mmol) in THF (1 mL) was added, and the reaction was allowed to gradually warm to room temperature and stirred overnight. The mixture was poured into 1 N HCl (10 mL), and extracted with EtOAc (2 x 20 mL). The combined organic extracts were washed with saturated NaHCO₃ (10 mL), dried over Na₂SO₄, filtered, and concentrated to give an off-white solid (905 mg). A stirred solution of this solid and 2-hydroxyethylhydrazine (0.37 mL, 5.00 mmol) in EtOH (15 mL) was heated to reflux under N₂ for 3 hours, and then concentrated. The residue was dissolved in EtOAc (50 mL), washed with 1N HCl, dried over Na₂SO₄, filtered, and concentrated. The residue was chromatographed on silica gel eluting with EtOAc to give two regioisomeric pyrazoles as an inseparable mixture (0.81 g, 75% over two steps). Ratio of isomers 3:2 as judged by the proton NMR. ¹H NMR (300 MHz, CDCl₃) δ 7.53-7.09 (m, ArH), 4.17 (t, J = 4.5 Hz), 4.08 (t, J = 4.5 Hz), 3.98 (t, J = 5.0 Hz), 3.96 (s), 3.91 (t, 5.0 Hz), 3.71 (s), 2.51 (s), 2.49 (s); mass spectrum (API-TIS) m/z 325 (M+H).

19c and 19d. 1-[1-(2-Hydroxyethyl)-4-benzylpyrazol-5-yl]-4-[(methylsulfonyl)benzene and 1-[1-(2-Hydroxyethyl)-4-benzylpyrazol-3-yl]-4-(methylsulfonyl)benzene

The product of Example 19b (810 mg, 2.50 mmol) was dissolved in MeOH (15 mL), and treated with oxone (4.61 g, 7.50 mmol) and water (10 ml). The slurry was stirred at room temperature for 30 min. The reaction mixture was poured into water (20 mL), neutralized with aqueous Na₂CO₃ and extracted with EtOAc (50 mL x 2). The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated. The residue was chromatographed on silica gel eluting with EtOAc to give first compound Example 19c (450 mg, 50%) followed by Example 19d (260 mg, 29%). Physical data for Example 19c: Rf 0.47 (EtOAc, silica gel). mp 96 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, J = 8.6 Hz, 2H), 7.81 (d, J = 8.6 Hz, 2H), 7.31-7.17 (m, 6H), 4.23 (t, J = 4.5 Hz, 2H), 4.03 (t, J = 4.5 Hz, 2H), 4.00 (s, 2H), 3.05 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 147.7, 139.9, 139.1, 138.8, 131.8, 128.6, 128.3, 128.0, 127.4, 126.3, 118.6, 61.6, 54.0, 44.4, 30.7; mass spectrum (API-TIS) m/z 357 (M+H). Anal. calcd for C₉H₁₇N₂O₃S: C, 64.02; H, 5.66; N, 7.86; S, 9.00. Found: C, 63.80; H, 5.76; N, 8.10; S, 8.98. Physical data for Example 19d: Rf 0.38 (EtOAc, silica gel). mp 68 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.41 (s,
1H), 7.25-7.14 (m, 3H), 7.06 (d, J = 7.2 Hz, 2H), 4.07 (t, J = 4.6 Hz, 2H), 3.93 (t, J = 4.6 Hz, 2H), 3.72 (s, 2H), 3.09 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 140.5, 140.3, 139.6, 139.5, 135.3, 130.9, 128.3, 128.1, 127.5, 126.0, 119.1, 61.3, 51.1, 44.2, 29.8; mass spectrum (API-TIS) m/z 357 (M+H). Anal. calcd for C19H27N2O3S: C, 64.02, H, 5.66; N, 7.86, S, 9.00. Found: C, 64.18; H, 5.87; N, 7.79; S, 8.94.

19e. 4-(Methylsulfonyl)-1-[1-[2-(nitoxy)ethyl]-4-benzylpyrazol-5-y1]benzene

Fuming HNO3 (90%, 1 mL) was added to Ac2O (5 mL) at 0 °C, and the resulting mixture was stirred for 10 minutes. The product of Example 19d (235 mg, 0.66 mmol) in EtOAc (6 mL) was added, and the solution was stirred at 0 °C for 5 min. The mixture was poured into ice-cooled saturated NaHCO3 (10 mL), extracted with EtOAc (2 X 20 mL). The combined organic extracts were repeatedly washed with brine, dried over Na2SO4, filtered, and concentrated to afford the title product as oil (259 mg, 96%). 1H NMR (300 MHz, CDCl3) δ 8.02 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.24-7.18 (m, 4H), 7.06 (m, 2H), 4.77 (t, J = 5.0 Hz, 2H), 4.31 (t, J = 5.0 Hz, 2H), 3.72 (s, 2H), 3.10 (s, 3H); mass spectrum (API-TIS) m/z 402 (M+H).

Example 20: 4-{1-Cyclohexyl-3-[(nitroxy)methyl]pyrazol-5-yl}-1-methylsulfonyl) benzene

20a. Methyl (2Z)-2-hydroxy-4-(4-methylthiophenyl)-4-oxobut-2-enoate

Dimethyloxalate (26 g, 180.7 mmol) was added to a stirred suspension of sodium methoxide (9.75 g, 180.7 mmol) in dry toluene (200 mL) at 0 °C. The white suspension was stirred for 15 min at 0 °C. A solution of 4'- (methylthio)acetophenone (15 g, 90.4 mmol) in dry toluene (150 mL) was then added dropwise over 15 min giving a yellow suspension which was stirred for 2 hours at room temperature. The thick yellow suspension was transferred to a 2 liter flask and stirred vigorously with 10% HCl (250 mL) and EtOAc (200 mL) to dissolve all the solids present. The organic layer was separated and the aqueous layer was extracted with EtOAc (100 mL). The combined organic extracts were washed with water (250 mL), dried over Na2SO4 and the solvent was evaporated under reduced pressure to give thick brown oil. The brown oil was dissolved in CH2Cl2 (25 mL) and hexane (125 mL) and left in a freezer at −20 °C for 16 hours to give the title compound (18 g, 79%) as orange color solid. mp 81 °C. 1H-NMR (300 MHz, CDCl3) δ 7.83 (d, J = 8.6 Hz, 2H), 7.23 (d, J = 8.6 Hz, 2H), 6.97 (s, 1H), 3.89 (s, 3H), 2.47 (s, 3H); 13C-NMR (75 MHz, CDCl3); mass spectrum (API-TIS) m/z 253
(MH')

20b. Methyl-1-cyclohexyl-5-(4-methylthiophenyl)pyrazole-3-carboxylate.

A mixture of the product of Example 20a (1.98 g, 7.8 mmol) and cyclohexylhydrazine hydrochloride (1.54 g, 10.2 mmol) in methanol (40 mL) was heated at 70 °C for 3 hours and cooled to room temperature. The mixture was made basic with 10% Na₂CO₃ and extracted with EtOAc (3 x 25 mL). The organic extracts were dried over Na₂SO₄ and the solvent was evaporated under reduced pressure to give a thick oil. The oil was dissolved in CH₂Cl₂ (4 mL) and hexane (20 mL) and left in a freezer at -10 °C for 16 hours to give the title compound (2.2 g, 85%) as a white solid. mp 84 °C. ¹H-NMR (300 MHz, CDCl₃) δ 7.33 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.3 Hz, 2H), 6.76 (s, 1H), 4.08–4.13 (mult, 1H), 3.93 (s, 3H), 2.54 (s, 3H), 2.07–2.20 (mult, 2H), 1.80–1.95 (mult, 4H), 1.62–1.72 (mult, 1H), 1.20–1.30 (mult, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 163.1, 143.6, 142.3, 140.1, 129.4, 126.4, 126.2, 108.8, 58.7, 51.9, 33.1, 25.5, 24.8, 15.3; mass spectrum (API-TIS), m/z 331 (MH').

Anal. calcd for C₂₅H₂₆N₂O₃S: C, 65.43; H, 6.71; N, 8.48; S, 9.70 Found: C, 65.28; H, 6.66; N, 8.47; S, 9.61.

20c. 1-Cyclohexyl-5-(4-methylthiophenyl)pyrazole-3-yl)methan-1-ol.

A solution of lithium aluminum hydride (2 mL at 1 M, 2 mmol) was added to a stirred solution of the product of Example 20b (0.7 g, 2.1 mmol) in THF (15 mL) at 0 °C. The resulting clear solution was stirred at room temperature for 1 hour. Solid Na₂SO₄·10H₂O (2 g) was added in small portions with stirring until a thick precipitate formed. Methanol in CH₂Cl₂ (10%, 50 mL) was added and the mixture was filtered. The solid was washed with additional methanol in CH₂Cl₂ (10%, 50 mL) and the combined filtrates were evaporated to give the title compound (0.61 g, 95%) as a white solid. mp 97 °C. ¹H-NMR (300 MHz, CDCl₃) δ 7.31 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.3 Hz, 2H), 6.20 (s, 1H), 4.71 (d, J = 4.8 Hz, 2H), 4.00–4.15 (mult, 1H), 2.53 (s, 3H), 1.65–2.10 (mult, 7H), 1.15–1.30 (mult, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 151.0, 143.2, 139.3, 129.3, 127.5, 126.3, 104.1, 59.0, 57.7, 33.2, 25.6, 25.1, 15.4; mass spectrum (API-TIS) m/z 303 (MH').

20d. 4-[1-Cyclohexyl-3-(hydroxymethyl)pyrazol-5-yl]-1-(methylsulfonyl)benzene

The product of Example 20c (0.6 g, 2.0 mmol) was dissolved in a mixture of MeOH (20 mL) and water (8 mL) and cooled to 0 °C. Solid oxone (3 g) was added and the resulting suspension was stirred at 0 °C for 1 hr. Water (25 mL) and 15%
NH₂OH (25 mL) were added. The mixture was extracted with EtOAc (3 x 25 mL) and the organic extracts were dried over Na₂SO₄. The solvent was evaporated under reduced pressure to give white solid which was recrystallized from CH₂Cl₂ (5 mL) and hexane (20 mL) to give the title compound (0.62 g, 94%) as a white solid. mp 148 °C. ¹H-NMR (300 MHz, CDCl₃) δ 8.03 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 8.3 Hz, 2H), 6.31 (s, 1H), 4.73 (s, 2H), 3.90–4.10 (mult, 1H), 3.13 (s, 3H), 2.45 (s, 1H, OH), 1.66–2.05 (mult, 7H), 1.10–1.25 (mult, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 151.4, 141.7, 140.4, 136.5, 129.7, 127.9, 105.0, 59.0, 58.2, 44.4, 33.3, 25.6, 25.0; mass spectrum (API-TIS), m/z 335 (MH⁺).

20e. 4-[1-Cyclohexyl-3-(nitrooxy)methyl]pyrazol-5-yl]-1-(methylsulfonyl)benzene

Fuming HNO₃ (0.76 mL, 18 mmol) was added to Ac₂O (2.7 mL, 28.8 mmol) at 0 °C via syringe and stirred for 5 min at 0 °C. The mixture was then transferred with a pasteur pipette to a stirred suspension of the product of Example 20d (1.2 g, 3.6 mmol) in EtOAc (40 mL) at room temperature and the mixture was stirred for 45 minutes at room temperature. Cold saturated NaHCO₃ (40 mL) was added and shaken well in a separatory funnel. The organic layer was separated and dried over Na₂SO₄. The solvent was evaporated under reduced pressure to afford a viscous oil which was dissolved in CH₂Cl₂ (5 mL) and hexane (25 mL). The resulting clear solution was left in a freezer at -10 °C for 4 hours to give title compound (1.05 g, 77%) as a yellow solid. mp 104 °C. ¹H-NMR (300 MHz, CDCl₃) δ 8.05 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 6.39 (s, 1H), 5.50 (s, 2H), 3.95–4.10 (mult, 1H), 3.13 (s, 3H), 1.60–2.10 (mult, 7H), 1.15–1.30 (mult, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 143.1, 142.1, 140.7, 136.0, 129.8, 127.9, 107.3, 68.6, 58.6, 44.4, 33.3, 25.5, 25.0; mass spectrum (API-TIS), m/z 380 (MH⁺). Anal. calcd for C₁₇H₂₀N₂O₅S: C, 53.81; H, 5.58; N, 11.07; S, 8.45 Found C, 53.55; H, 5.55; N, 10.83; S, 8.36.

Example 21: Assay for Ovine COX-1 and COX-2 activity

The ovine COX-1 and COX-2 activities and the measurement of the prostaglandin products synthesized were performed using the COX Inhibitor Screening Assay (Cayman Chemical, Ann Arbor, MI, which also contained the Prostaglandin Screening EIA Kit, used for prostaglandin quantification). The test compounds were dissolved at 50 times the highest final reaction concentration in DMSO or any other suitable solvent as stock solutions. These stock solutions were then diluted in the same solvent. Eight glass test tubes (13 x 100 mm) were placed
in a 37°C water bath. To each test tube was added 950 μL of reaction buffer (0.1 M Tris-HCl, pH 8.0, containing 5 mM EDTA, and 2 mM phenol), 10 μL of 100 M heme solution, and 10 μL (5 units) of either ovine COX-1 or COX-2 and the resulting mixture was incubated with the enzyme for 2 minutes. Twenty μL of the solvent was added to one tube (100% initial activity or solvent control) and 20 μL of each dilution of the test compound was added to one tube each. Each tube was vortexed immediately after the addition. The enzyme was incubated with the inhibitor for 3.5 minutes at 37°C. The enzymatic reaction was then initiated by the addition of 10 μL of freshly prepared 10 mM arachidonic acid (neutralized with KOH), vortexed and then incubated for 2 minutes at 37°C. The reaction was terminated by the addition of 50 μL of 1 M HCl, vortexed and placed at room temperature. One hundred microliters of a saturated stannous chloride solution (50 mg/mL of 0.1 M HCl) was added and the reaction mixture was allowed to stand at room temperature for at least 5 minutes.

The prostaglandins (PG) produced in the reactions were assayed, after a 2,000-fold dilution, using the Prostaglandin Screening EIA Kit (Cayman Chemical, Ann Arbor, MI). The assay contains an antibody with broad specificity for all the prostaglandin families (PGF, PGE, PGD, and thromboxane B-type) synthesized in the COX-1/COX-2 reactions. The synthesized prostaglandin competes with a PG-tagged acetylcholine esterase tracer for binding to the PG antibody. Binding of synthesized PG lowers the colorimetric development of the Ellman's Reagent (computed as %B/B₀). The actual amount of synthesized PG was interpolated from a standard curve using known amounts of supplied prostaglandin E2 (PGE₂) concentration vs. %B/B₀). The data generated were the mean ± standard deviation of triplicate wells in the EIA for a single reaction at a given inhibitor concentration. A plot of % of control (i.e., the solvent control without inhibitor) vs. test compound inhibitor concentration for both isoenzymes was used to determine the IC₅₀'s for COX-1 and COX-2 for that test compound. The IC₅₀ for the compounds are given in Table 1.
TABLE 1

<table>
<thead>
<tr>
<th>Test Compound</th>
<th>COX-1</th>
<th>COX-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC₅₀(µM)</td>
<td>IC₅₀(µM)</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>0.18</td>
<td>0.35</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>34</td>
<td>0.34</td>
</tr>
<tr>
<td>Example 1a</td>
<td>100</td>
<td>3.3</td>
</tr>
<tr>
<td>Example 1b</td>
<td>190</td>
<td>10</td>
</tr>
<tr>
<td>Example 2a</td>
<td>No inhibition up to 300</td>
<td>24</td>
</tr>
<tr>
<td>Example 2b</td>
<td>No inhibition up to 300</td>
<td>1.2</td>
</tr>
<tr>
<td>Example 3e</td>
<td>62</td>
<td>0.006</td>
</tr>
<tr>
<td>Example 3g</td>
<td>No inhibition up to 300</td>
<td>70</td>
</tr>
<tr>
<td>Example 5a</td>
<td>No inhibition up to 300</td>
<td>12</td>
</tr>
<tr>
<td>Example 5b</td>
<td>No inhibition up to 300</td>
<td>33</td>
</tr>
</tbody>
</table>

The NSAID, indomethacin, did not show selectivity for either COX-1 or COX-2. Celecoxib, a selective COX-2 inhibitor, used as a control, was selective for COX-2. The results show that the nitrosated compounds (i.e., Examples 1b, 2b and 5b) have similar COX-2 selectivity as their parent non-nitrosated compound (i.e., Example 1a, 2a and 5a respectively). Hence, nitrosation did not effect the COX-2 inhibition properties. The results show that the nitrosylated compound (i.e., Example 3g) was not as potent as the parent non-nitrosylated compound (i.e., Example 3e). The nitrosylation of the sulfonamide group on the parent COX-2 inhibitor probably effected the COX-2 inhibition properties of the nitrosylated compound.

Example 22: Assay for Human COX-1 and COX-2 activity

The human COX-1 and COX-2 activities and the measurement of the prostaglandin products synthesized were performed using the COX Inhibitor Screening Assay (Cayman Chemical, Ann Arbor, MI, which also contained the Prostaglandin Screening EIA Kit, used for prostaglandin quantification). The test compounds were dissolved at 50 times the highest final reaction concentration in DMSO or any other suitable solvent as stock solutions. These stock solutions were then diluted in the same solvent. Eight glass test tubes (13 x 100 mm) were placed
in a 25 °C water bath. To each test tube was added 950 μL of reaction buffer (0.1 M Tris-HCl, pH 8.0, containing 5 mM EDTA, and 2 mM phenol), 10 μL of 100 M heme solution, and 10 μL (5 units) of either human COX-1 or COX-2 and the resulting mixture incubated with the enzyme for 2 minutes. Twenty μL of the solvent was added to one tube (100% initial activity or solvent control) and 20 μL of each dilution of the test compound was added to one tube each. Each tube was vortexed immediately after the addition. The enzyme was incubated with the inhibitor for 20 minutes at 25 °C. The enzymatic reaction was then initiated by the addition of 10 μL of freshly prepared 10 mM arachidonic acid (neutralized with KOH), vortexed and then incubated for 2 minutes (or, in some cases as indicated, 30 seconds) at 37 °C. The reaction was terminated by the addition of 50 μL of 1 M HCl, vortexed and placed at room temperature. One hundred microliters of a saturated stannous chloride solution (50 mg/mL of 0.1 M HCl) was added and the reaction mixture was allowed to stand at room temperature for at least 5 min.

The prostaglandins (PG) produced in the reactions were assayed, after a 2,000-fold dilution, using the Prostaglandin Screening EIA Kit (Cayman Chemical, Ann Arbor, MI). The assay contains an antibody with broad specificity for all the prostaglandin families (PGF, PGE, PGD, and thromboxane B-type) synthesized in the COX-1/COX-2 reactions. The synthesized prostaglandin competes with a PG-tagged acetylcholine esterase tracer for binding to the PG antibody. Binding of synthesized PG lowers the colorimetric development of the Ellman’s Reagent (computed as %B/B0). The actual amount of synthesized PG was interpolated from a standard curve using known amounts of supplied prostaglandin E2 (PGE2) (PGE2 concentration vs. %B/B0). The data generated were the mean ± standard deviation of triplicate wells in the EIA for a single reaction at a given inhibitor concentration. A plot of % of control (i.e., the solvent control without inhibitor) vs. test compound inhibitor concentration for both isoenzymes was used to determine the IC50’s for COX-1 and COX-2 for that test compound, when IC50’s were calculated. The % inhibition for selected concentrations of inhibitors tested are given in Table 2.
TABLE 2

<table>
<thead>
<tr>
<th>Test Compound</th>
<th>COX-1 Inhibition (% at 100 µM)</th>
<th>COX-2 Inhibition (% at 10 µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 2a</td>
<td>0<sup>a</sup></td>
<td>65</td>
</tr>
<tr>
<td>Example 2b</td>
<td>0<sup>a</sup></td>
<td>100</td>
</tr>
<tr>
<td>Example 4a</td>
<td>89<sup>b</sup></td>
<td>69<sup>b</sup></td>
</tr>
<tr>
<td>Example 4b</td>
<td>49<sup>b</sup></td>
<td>91<sup>b</sup></td>
</tr>
<tr>
<td>Example 19d</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>Example 19e</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Example 20d</td>
<td>16</td>
<td>34</td>
</tr>
<tr>
<td>Example 20e</td>
<td>0</td>
<td>37</td>
</tr>
</tbody>
</table>

^a = Ovine COX-1
^b = 30 second incubation with arachidonic acid substrate

The results show that the nitrosated compounds (i.e., Examples 2b, 5b, 19e and 20e) have similar or slightly improved COX-2 selectivity compared to their parent non-nitrosated compound (i.e., Example 2a, 4a, 19d and 20d, respectively). Hence, nitrosation did not effect the COX-2 inhibition properties and might improve the COX-2 inhibition properties.

Example 23: Preparation of rat aortic smooth muscle rings

Male Sprague-Dawley rats (Charles River Laboratories (Wilmington, MA) were euthanized by intraperitoneal injection of a high dose of sodium pentobarbitone (80-100 mg/kg). The thoracic aorta was rapidly excised and immediately placed in a Petri dish containing warm (37 °C) oxygenated (95% O₂ and 5% CO₂) Kreb’s buffer (composition per millimolar: NaCl (119); KCl (4.69); CaCl₂·H₂O (2.52); MgSO₄·7H₂O (0.57); NaHCO₃ (25); NaH₂PO₄·H₂O (1.01) and glucose (11.1). Under a stereoscopic dissecting microscope, the aorta was cleaned, freed from adhering fat and connective tissues. The tissue was cut into ring segments, each approximately 2-3 mm in length.

For experiments to measure relaxation of the tissue under various conditions, a stainless steel tissue holder and an U-shaped stainless steel wire were inserted into the lumen of the aortic ring. The tissue holder anchored the ring at
the bottom of the organ bath whereas the end of the U-shaped steel wire was tied with fine silk thread so that it connected to the FT-202 transducer. The tissue holder and the steel wire along with the aortic ring were then suspended in a 5-mL double-jacketed temperature-controlled glass organ bath (Radnoti Glass Technology, Inc., Monrovia, CA) filled with fresh Kreb's buffer. A mixture of 95% O₂ and 5% CO₂ was bubbled through a porous sintered disc at the bottom of the bath. The rings were given an initial resting tension of 1.5 g and the preparation was allowed to equilibrate at the initial tension for about 90 minutes. During this equilibration period, the bath fluid was changed every 15 minutes and replaced with fresh prewarmed (37 °C) Kreb's buffer. The isometric tension of the aortic muscle at rest and its response to different stimuli were recorded on a Power Macintosh 6100 computer via a MacLab 8/S computer interface (CB Sciences, Inc, Milford, MA) after an initial amplification through a low-noise ETH-400 bioamplifier (CB Sciences, Inc, Milford, MA). Contractile responsiveness of the tissue strips was established with 10 μM phenylephrine, and the strips were incubated with the drug for 20 minutes to establish a steady level of contraction. To test the relaxation effects, test compounds were added to the phenylephrine-precontracted strips in the tissue bath at cumulative concentrations of 0.1 μM to 0.1 mM. Concentration of test compounds was increased only after relaxation at the previous concentration had reached a plateau level.

Example 24: Relaxation of aortic smooth muscle ring by Example 1

The tissue was prepared according to Example 23. The percent contraction of phenylephrine-contracted aortic smooth muscle rings induced by isosorbide dinitrate (ISDN), Example 1a and Example 1b (nitrate) was measured. Fig. 1 shows that the parent non-nitrosated compound, Example 1a, did not relax the aortic ring. The nitrosated compound, Example 1b, induced the relaxation of the aortic ring. The observed relaxation was more potent than that obtained by the nitrate compound, isosorbide dinitrate.

Example 25: Relaxation of aortic smooth muscle ring by Example 2

The tissue was prepared according to Example 23. The percent contraction of phenylephrine-contracted aortic smooth muscle rings induced by isosorbide dinitrate (ISDN), Example 2a and Example 2b (nitrate) was measured. Fig. 2 shows that the parent non-nitrosated compound, Example 2a, did not relax the
aortic ring. The nitrosated compound, Example 2b, induced the relaxation of the aortic ring. The observed relaxation was similar to that obtained by the nitrate compound, isosorbide dinitrate.

Example 26: Relaxation of aortic smooth muscle ring by Example 3

The tissue was prepared according to Example 23. The percent contraction of phenylephrine-contracted aortic smooth muscle rings induced by S-nitrosoglutathione (GSNO), Example 3e and Example 3h (nitrosothiol) was measured. Fig. 3 shows that the parent non-nitrosylated compound, Example 3e, did not relax the aortic ring. The nitrosylated compound, Example 3h, induced the relaxation of the aortic ring. The observed relaxation was similar to that obtained by the nitrosothiol compound, S-nitrosoglutathione.

Example 27: Relaxation of aortic smooth muscle ring by Example 20

The tissue was prepared according to Example 23. The percent contraction of phenylephrine-contracted aortic smooth muscle rings induced by isosorbide dinitrate (ISDN), Example 20d and Example 20e (nitrate) was measured. Fig. 4 shows that the parent non-nitrosylated compound, Example 20d, did not relax the aortic ring. The nitrosated compound, Example 20e, induced the relaxation of the aortic ring. The observed relaxation was similar to that obtained by the nitrate compound, isosorbide dinitrate.

Example 28: Anti-inflammatory paw edema test for Example 2

The carrageenan-induced rat paw edema test was used to measure anti-inflammatory activity. The paw edema test was performed according to the method of Winter et al, *Proc. Soc. Exp. Biol. Med.* 111: 544-547, 1962. Male Sprague-Dawley rats (200-250 g) were fasted for 24 hours with water *ad libitum*. The rats were dosed intragastrically with test compounds in a volume of 5 mL/kg. One hour after dosing the paw volume was measured. Then each rat received a subplantar injection of 50 μl of 1% suspension of carrageenan. Three hours later, the paw volume was measured and compared with the initial volume measured immediately after carrageenan injection. The increase in paw volume is presented as the mean ± SEM for 5 rats per group. Data were analyzed by performing an ANOVA test followed by a Student-Keuls post hoc test.

Figure 5 shows that the parent non-nitrosated compound Example 2a, the nitrosated compound Example 2b and Celecoxib all reduced the paw volume and,
hence, these compounds have antiinflammatory activity. Thus, nitrosation did not
effect the COX-2 inhibition properties of the compounds.

The disclosure of each patent, patent application and publication cited or
described in the present specification is hereby incorporated by reference herein in
its entirety.

Although the invention has been set forth in detail, one skilled in the art will
appreciate that numerous changes and modifications can be made to the invention,
and that such changes and modifications can be made without departing from the
spirit and scope of the present invention.
CLAIMS

What is claimed is:

1. A compound of formula (I), formula (II), formula (III), formula (IV), formula (V), formula (VI), formula (VII), formula (IX), formula (X), formula (XI), formula (XII), formula (XIII), formula (XIV), formula (XV) or formula (XVI), or a pharmaceutically acceptable salt thereof:

 wherein the compound of formula (I) is:

 \[
 \begin{align*}
 &R^1
 &R^2
 &R^3
 &R^4
 &R^5
 &R^6
 &R^7
 &R^8
 &R^9
 &R^{10}
 \end{align*}
 \]

 wherein:

 when side \(b \) is a double bond, and sides \(a \) and \(c \) are single bonds, \(-X^1-Y^1-Z^1-\), is:

 (a) \(-CR'(R^5)-CR^5(R^5)-CR^4(R^5)-\);
 (b) \(-C(O)-CR'(R^4)-CR^2(R^5)-\);
 (c) \(-CR^4(R^4)-CR^6(R^6)-C(O)-\);
 (d) \(-(CR^2(R^5))_2-O-C(O)-\);
 (e) \(-C(O)-O-(CR^3(R^5))_2-\);
 (f) \(-CR^6(R^6)-NR^3-CR^8(R^8)-\);
 (g) \(-CR^6(R^6)-NR^3\cdot C(O)-\);
 (h) \(-CR^8\cdot CR^8\cdot S-\);
 (i) \(-S-CR'=CR^h-\);
 (j) \(-S-N=CR^h-\);
 (k) \(-CR'=N-S-\);
 (l) \(-N=CR^h-O-\);
 (m) \(-O-CR'=N-\);
(n) -NR^2-\text{CR}^4=N-;
(o) -N=\text{CR}^4-S-;
(p) -S-\text{CR}^4=N-;
(q) -\text{C}(O)-NR^2-\text{CR}^5(R^5');
(r) -R'^N-\text{CR}^4=C R^5-;
(s) -\text{CR}^4=\text{CR}^5-\text{NR}^3-;
(t) -O-N=\text{CR}^4-;
(u) -\text{CR}^4=N-O-;
(v) -N=N-\text{S}-;
(w) -S=N=N-;
(x) -R'^N-\text{CR}^4=N-;
(y) -N=\text{CR}^4-\text{NR}^3-;
(z) -R'^N-N=N-;
(aa) -N=N-N-\text{NR}^3-;
(bb) -\text{CR}^4(R^4')-O-\text{CR}^5(R^5');
(cc) -\text{CR}^4(R^4')-S-\text{CR}^5(R^5');
(dd) -\text{CR}^4(R^4')-\text{C}(O)-\text{CR}^5(R^5');
(ee) -\text{CR}^4(R^4')-\text{CR}^5(R^5')-\text{C}(S);-
(ff) -(\text{CR}^5(R^5'))_k-O-\text{C}(S);-
(gg) -\text{C}(S)-O-(\text{CR}^5(R^5'))_k-;
(hh) -(\text{CR}^5(R^5'))_k-NR^2-\text{C}(S);-
(ii) -\text{C}(S)-NR^2-(\text{CR}^5(R^5'))_k-;
(jj) -(\text{CR}^5(R^5'))_k-S-\text{C}(O);-
(kk) -\text{C}(O)-S-(\text{CR}^5(R^5'))_k-;
(ll) -O-\text{CR}^2=\text{CR}^2-;
(mm) -\text{CR}^4=\text{CR}^5-\text{O}-;
(nn) -\text{C}(O)-\text{NR}^2-\text{S}-;
(oo) -S-\text{NR}^2-\text{C}(O);-
(pp) -\text{C}(O)-\text{NR}^2-\text{O};-
(qq) -O-\text{NR}^2-\text{C}(O);-
(rr) -\text{NR}^2-\text{CR}^4=\text{CR}^4-;
(ss) -\text{CR}^4=N-\text{NR}^3-;
(tt) -\text{NR}^2-N=\text{CR}^4-;
(uu) -C(O)-NR^2-NR^3;
(vv) -NR^2-NR^3-C(O)-;
(ww) -C(O)-O-NR^3-;
(xx) -NR^2-O-C(O)-;
(yy) -CR^4R^e-CR^4R^e-;
(zz) -C(O)-CR^4R^e-;
(aaa) -CR^4R^e-C(O)-;
(bbb) -C(S)-CR^4R^e-;
(ccc) -CR^4R^e-C(S)-;

(ddd) -C(=NR^3)-CR^4R^e-; or
(eee) -CR^4R^e-C(=NR^3)-;

when sides a and c are double bonds and side b is a single bond, \(\cdot X^1-Y^1-Z^1 \cdot \) is:
(a) =CR^4-O-CR^2-;
(b) =CR^4-NR^2-CR^2-;
(c) =N-S-CR^4-;
(d) =CR^4-S-N=;
(e) =N-O-CR^4-;
(f) =CR^4-O-N=;
(g) =N-S-N=;
(h) =N-O-N=;
(i) =N-NR^2-CR^4-;
(j) =CR^4-NR^2-N=;
(k) =N-NR^2-N=;
(l) =CR^4-S-CR^2-; or
(m) =CR^4-CR^4(R^4*)-CR^5-;

R^1 is:

(a) -S(O)_2-CH_2;
(b) -S(O)_2-NR^3(D^1);
(c) -S(O)_2-N(D^1)-C(O)-CF_3;
(d) -S(O)-(NH)-NH(D^1);
(e) -S(O)-(NH)-N(D^1)-C(O)-CF_3;
(f) -P(O)(CH_3)NH(D^1);
(g) -P(O)(CH_3)_2;
(h) -C(S)-NH(D)\(^3\);
(i) -S(O)(NH)CH\(_3\);
(j) -P(O)(CH\(_3\))OD\(^3\); or
(k) -P(O)(CH\(_3\))NH(D)\(^3\);

R\(^r\) is:
(a) hydrogen;
(b) halogen;
(c) methyl; or
(d) CH\(_2\)OH;

R\(^s\) is:
(a) lower alkyl;
(b) cycloalkyl;
(c) mono-, di- or tri-substituted phenyl or naphthyl, wherein the substituents are each independently:

(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl;
(7) lower alkyl;
(8) N\(_2\);
(9) -CO\(_2\)D\(^3\);
(10) -CO\(_2\)-lower alkyl;
(11) -(C(R\(^3\))(R\(^4\))\(_2\))OD\(^3\);
(12) -(C(R\(^3\))(R\(^4\))\(_2\))O-lower alkyl;
(13) lower alkyl-CO\(_2\)-R\(^8\);
(14) -OD\(^3\);
(15) haloalkoxy;
(16) amino;
(17) nitro;
(18) alkylsulfinyl; or
(19) heteroaryl;
(d) mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or the heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally, 1, 2, 3, or 4 additional N atoms; wherein the substituents are each independently:

(1) hydrogen;
(2) halo;
(3) lower alkyl;
(4) alkoxy;
(5) alkylthio;
(6) CN;
(7) haloalkyl;
(8) N;
(9) -C(R\(5\))(R\(6\))-OD;
(10) -C(R\(5\))(R\(6\))-O-lower alkyl; or
(11) alkylsulfinyl;

(e) benzoheteroaryl which includes the benzo fused analogs of (d);
(f) -NR\(10\) R\(11\);
(g) -SR\(11\);
(h) -OR\(11\);
(i) -R\(11\);
(j) alkenyl;
(k) alkynyl;
(l) unsubstituted, mono-, di-, tri- or tetra-substituted cycloalkenyl,

wherein the substituents are each independently:

(1) halo;
(2) alkoxy;
(3) alkylthio;
(4) CN;
(5) haloalkyl;
(6) lower alkyl;
(7) N;
(8) \(-\text{CO}_2\text{D}^1\);
(9) \(-\text{CO}_2\)-lower alkyl;
(10) \(-\text{C}(\text{R}^{25})(\text{R}^{25})\)-\text{OD}^1;
(11) \(-\text{C}(\text{R}^{25})(\text{R}^{25})\)-O-lower alkyl;
(12) lower alkyl\(-\text{CO}_2\)-\text{R}^{18} ;
(13) benzylloxy;
(14) \(-\text{O-}(\text{lower alkyl})\)-\text{CO}_2\text{R}^{19} ;
(15) \(-\text{O-}(\text{lower alkyl})\)-\text{NR}^{25} \text{R}^{13} ; \text{or}
(16) alkylsulfinyl;

(m) mono-, di-, tri- or tetra-substituted heterocycloalkyl group of 5, 6 or 7 members, or a benzoheterocycle, wherein said heterocycloalkyl or benzoheterocycle contains 1 or 2 heteroatoms selected from O, S, or N and, optionally, contains a carbonyl group or a sulfonyl group, and wherein said substituents are each independently:

(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl;
(7) \text{N}_2 ;
(8) \(-\text{C}(\text{R}^{15})(\text{R}^{19})\)-\text{OD}^1 ;
(9) \(-\text{C}(\text{R}^{15})(\text{R}^{19})\)-O-lower alkyl; or
(10) alkylsulfinyl;

(n) styryl, mono or di-substituted styryl, wherein the substituent are each independently:

(1) halo;
(2) alkoxy;
(3) alkylthio;
(4) CN;
(5) haloalkyl;
(6) lower alkyl;
(7) \text{N}_2 ;
(8) -CO₂D⁺;
(9) -CO₂-lower alkyl;
(10) -C(R²)(R₂²)-OD⁺;
(11) -C(R²)(R₂²)-O-lower alkyl;
(12) lower alkyl-CO₂-R₂²;
(13) benzyloxy;
(14) -O-(lower alkyl)-CO₂R₂²; or
(15) -O-(lower alkyl)-NR₂R₂³;

(o) phenylacetylene, mono- or di-substituted phenylacetylene, wherein the substituents are each independently:
(1) halo;
(2) alkoxy;
(3) alkylthio;
(4) CN;
(5) haloalkyl;
(6) lower alkyl;
(7) N₂;
(8) -CO₂D⁺;
(9) -CO₂-lower alkyl;
(10) -C(R²)(R₂²)-OD⁺;
(11) -C(R²)(R₂²)-O-lower alkyl;
(12) lower alkyl-CO₂-R₂²;
(13) benzyloxy;
(14) -O-(lower alkyl)-CO₂R₂²; or
(15) -O-(lower alkyl)-NR₂R₂³;

(p) fluoroalkenyl;

(q) mono- or di-substituted bicyclic heteroaryl of 8, 9 or 10 members, containing 2, 3, 4 or 5 heteroatoms, wherein at least one heteroatom resides on each ring of said bicyclic heteroaryl, said heteroatoms are each independently O, S and N and said substituents are each independently:
(1) hydrogen;
(2) halo;
(3) lower alkyl;
(4) alkoxy;
(5) alkylthio;
(6) CN;
(7) haloalkyl;
(8) N₂;
(9) -C(Rᵢ)(Rⱼ)-OD; or
(10) -C(Rᵢ)(Rⱼ)-O-lower alkyl;
(r) K;
(s) aryl;
(t) arylalkyl;
(u) cycloalkylalkyl;
(v) -C(O)Rᵢ;
(u) hydrogen;
(v) arylalkenyl;
(w) arylalkoxy;
(x) alkoxy;
(y) aryloxy;
(z) cycloalkoxy;
(aa) arylthio;
(bb) alkylthio;
(cc) arylalkylthio; or
(dd) cycloalkylthio;
Rᵢ is:
(a) hydrogen;
(b) haloalkyl;
(c) CN;
(d) lower alkyl;
(e) -(C(Rᵢ)(Rⱼ))ₕ-U-V;
(f) K;
(g) unsubstituted or substituted:
(1) lower alkyl-Q;
(2) lower alkyl-O-lower alkyl-Q;
(3) lower alkyl-S-lower alkyl-Q;
(4) lower alkyl-O-Q;
(5) lower alkyl-S-Q;
(6) lower alkyl-O-V;
(7) lower alkyl-S-V;
(8) lower alkyl-O-K; or
(9) lower alkyl-S-K;

wherein the substituent(s) reside on the lower alkyl group;

(h) Q;
(i) alkylcarbonyl;
(j) arylcarbonyl;
(k) alkylarylcarbonyl;
(l) arylalkylcarbonyl;
(m) carboxylic ester;
(n) carboxamido;
(o) cycloalkyl;
(p) mono-, di- or tri-substituted phenyl or naphthyl, wherein the
substituents are each independently:

(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl;
(7) lower alkyl;
(8) N;
(9) -CO₂D;
(10) -CO₂-lower alkyl;
(11) -(C(R')(R''))ₙ-OD;
(12) -(C(R')(R''))ₙ-O-lower alkyl;
(13) lower alkyl-CO₂-R';
(14) -OD';
(15) haloalkoxy;
(16) amino;
(17) nitro; or
(18) alkylsulfinyl;
(q) alkenyl;
(r) alkynyl;
5 (s) arylalkyl;
(t) lower alkyl-OD;
(u) alkoxyalkyl;
(v) aminoalkyl;
(w) lower alkyl-CO₂R³;
10 (x) lower alkyl-C(O)NR²(R³);
(y) heterocyclicalkyl; or
(z) heterocyclic ring-C(O)-;
R⁴, R⁵, R⁶ and R⁷ are each independently:
15 (a) hydrogen;
(b) amino;
(c) CN;
(d) lower alkyl;
(e) haloalkyl;
(f) alkoxy;
20 (g) alkylthio;
(h) Q;
(i) -O-Q;
(j) -S-Q;
(k) K;
25 (l) cycloalkoxy;
(m) cycloalkylthio;
(n) unsubstituted, mono- or di-substituted phenyl or unsubstituted,
30 mono- or di-substituted benzyl, wherein the substituents are each independently:
(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl;
(7) N;
(8) Q;
(9) nitro; or
(10) amino;

(o) unsubstituted, mono-, or di-substituted heteroaryl or unsubstituted, mono-, or di-substituted heteroarylmethyl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or the heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally, 1, 2, 3, or 4 additional N atoms; said substituents are each independently:

(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl;
(7) N;
(8) -C(R')(R')-OD;
(9) -C(R')(R')-O-lower alkyl; or
(10) alkylsulfinyl

(p) -CON(R')(R');
(q) -CH_{2}OR';
(r) -CH_{2}OCN;

(s) unsubstituted or substituted:

(1) lower alkyl-Q;
(2) -O-lower alkyl-Q;
(3) -S-lower alkyl-Q;
(4) lower alkyl-O-lower alkyl-Q;
(5) lower alkyl-S-lower alkyl-Q;
(6) lower alkyl-O-Q;
(7) lower alkyl-S-Q;
(8) lower alkyl-O-K;
(9) lower alkyl-S-K;
(10) lower alkyl-O-V; or
(11) lower alkyl-S-V;

wherein the substituent(s) resides on the lower alkyl;

(t) cycloalkyl;
(u) aryl;
(v) arylalkyl;
(w) cycloalkylalkyl;
(x) aryloxy;
(y) arylalkoxy;
(z) arylalkylthio;
(aa) cycloalkylalkoxy;
(bb) heterocycloalkyl;
(cc) alkylsulfonyloxy;
(dd) alkylsulfonyl;
(ee) arylsulfonyl;
(ff) arylsulfonyloxy;
(gg) -C(O)R^6;

(hh) nitro;
(ii) amino;
(jj) aminoalkyl;
(kk) -C(O)-alkyl-heterocyclic ring;
(ll) halo;

(mm) heterocyclic ring;
(nn) -CO_2D';
(oo) carboxyl;
(pp) amidyl; or
(qq) alkoxyalkyl;

alternatively, R^1 and R^2 together with the carbons to which they are attached are:

(a) cycloalkyl;
(b) aryl; or
(c) heterocyclic ring;
alternatively, \(R' \) and \(R'' \) or \(R'' \) and \(R''' \) taken together with the carbon to which they are attached are:

(a) cycloalkyl; or
(b) heterocyclic ring;

alternatively, \(R' \) and \(R'' \), \(R'' \) and \(R''' \), \(R' \) and \(R''' \), or \(R'' \) and \(R'' \) when substituents on adjacent carbon atoms taken together with the carbons to which they are attached are:

(a) cycloalkyl;
(b) heterocyclic ring; or
(c) aryl;

\(R' \) and \(R'' \) are each independently:

(a) hydrogen;
(b) unsubstituted, mono- or di-substituted phenyl; unsubstituted, mono- or di-substituted benzyl; unsubstituted, mono- or di-substituted heteroaryl; mono- or di-substituted heteroarylmethyl, wherein said substituents are each independently:

(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl;
(7) \(\text{N}_2 \);
(8) \(-\text{C}(\text{R}'')(\text{R}''')-\text{OD}\); or
(9) \(-\text{C}(\text{R}''')(\text{R}''')-\text{O}-\text{lower alkyl}\);
(c) lower alkyl;
(d) \(-\text{CH}_2\text{OR}'\);
(e) CN;
(f) \(-\text{CH}_2\text{CN}\);
(g) haloalkyl;
(h) \(-\text{CON}(\text{R}'')(\text{R}''')\);
(i) halo; or
(j) -OR^g;

R^g is:

(a) hydrogen;
(b) K; or
(c) R^g;

alternatively, R^g and R^g', R^g and R' or R' and R^g together with the carbon to
which they are attached form a saturated monocyclic ring of 3, 4, 5, 6 or 7 atoms;
on Optionally containing up to two heteroatoms selected from oxygen, S(O), or NR;
R^g is:

(a) lower alkyl;
(b) lower alkyl-\text{CO}_2\text{D}^i;
(c) lower alkyl-N\text{HD}^i;
(d) phenyl or mono-, di- or tri-substituted phenyl, wherein the
substituents are each independently:

(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) lower alkyl-\text{CO}_2\text{D}^i;
(6) lower alkyl-N\text{HD}^i;
(7) CN;
(8) \text{CO}_2\text{D}^i; or
(9) haloalkyl;

(e) benzyl, mono-, di- or tri-substituted benzyl, wherein the
substituents are each independently:

(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) lower alkyl-\text{CO}_2\text{D}^i;
(6) lower alkyl-N\text{HD}^i;
(7) CN;
(8) -\text{CO}_2\text{D}^i; or
(9) haloalkyl;
(f) cycloalkyl;
(g) K; or
(h) benzoyl, mono-, di-, or trisubstituted benzoyl, wherein the
substituents are each independently:
(1) halo;
(2) lower alkyl;
(3) alkoxyl
(4) alkylthio;
(5) lower alkyl-CO₂D;
(6) lower alkyl-NHD;
(7) CN;
(8) -CO₂D; or
(9) haloalkyl;

R^{10} and R^{10'} are each independently:
(a) hydrogen; or
(b) R^{11};
R^{11} is:
(a) lower alkyl;
(b) cycloalkyl;
(c) unsubstituted, mono-, di- or tri-substituted phenyl or naphthyl,
wherein the substituents are each independently:
(1) halo;
(2) alkoxy;
(3) alkylthio;
(4) CN;
(5) haloalkyl;
(6) lower alkyl;
(7) N;
(8) -CO₂D;
(9) -CO₂-lower alkyl;
(10) -C(R^{15})(R^{16})-OD;
(11) -C(R^{15})(R^{16})-O-lower alkyl;
(12) lower alkyl-\(\text{CO}_2\text{D}^1 \);
(13) lower alkyl-\(\text{CO}_2\text{R}^{12} \);
(14) benzyloxy;
(15) -O-(lower alkyl)-\(\text{CO}_2\text{D}^1 \);
(16) -O-(lower alkyl)-\(\text{CO}_2\text{R}^{12} \); or
(17) -O-(lower alkyl)-\(\text{NR}^{15}\text{R}^{18} \);

d) unsubstituted, mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or said heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally 1, 2, or 3 additional N atoms, and wherein said substituents are each independently:
(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) \(\text{CN} \);
(6) haloalkyl;
(7) \(\text{N}_2^\text{y} \);
(8) -C(\(\text{R}^{15} \))(\(\text{R}^{15} \))-\(\text{OD}^1 \); or
(9) -C(\(\text{R}^{15} \))(\(\text{R}^{15} \))-O-lower alkyl;

e) unsubstituted, mono- or di-substituted benzo heterocycle, wherein the benzo heterocycle is a 5, 6, or 7-membered ring which contains 1 or 2 heteroatoms independently selected from O, S, or N, and, optionally, a carbonyl group or a sulfonyl group, wherein said substituents are each independently:
(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) \(\text{CN} \);
(6) haloalkyl;
(7) \(\text{N}_2^\text{y} \);
(8) -C(\(\text{R}^{15} \))(\(\text{R}^{15} \))-\(\text{OD}^1 \); or
(9) -C(R^{12})(R^{13})-O-lower alkyl;

(f) unsubstituted, mono- or di-substituted benzocarbocycle, wherein
the carbocycle is a 5, 6, or 7-membered ring which optionally contains a carbonyl
group, wherein said substituents are each independently:

(1) halo;
(2) lower alkyl;
(3) alkoxy;
(4) alkylthio;
(5) CN;

(6) haloalkyl;
(7) N_{3};
(8) -C(R^{12})(R^{13})-OD^{1}; or
(9) -C(R^{12})(R^{13})-O-lower alkyl;

(g) hydrogen; or

(h) K

R^{12} and R^{13} are each independently:

(a) hydrogen;
(b) lower alkyl; or
(c) aryl; or

R^{12} and R^{13} together with the atom to which they are attached form a
saturated monocyclic ring of 3, 4, 5, 6 or 7 atoms;

R^{14} and R^{15} are each independently:

(a) hydrogen; or
(b) lower alkyl; or

R^{14} and R^{15} together with the atom to which they are attached form a
carbonyl, thial, or a saturated monocyclic ring of 3, 4, 5, 6 or 7 atoms;

D^{1} is:

(a) hydrogen or
(b) D;

D is:

(a) V; or
(b) K;

U is:
(a) oxygen;
(b) sulfur; or
(c) \(-N(R)R\);

V is:

5
(a) \(-NO\);
(b) \(-NO_2\); or
(c) hydrogen

K is \(-W_aE_b-(C(R)(R))_pE_c-(C(R)(R))_qW_d-(C(R)(R))_rW_t-E_iW_g-(C(R)(R))_z-U-V;\)

wherein \(a, b, c, d, g, i\) and \(j\) are each independently an integer from 0 to 3;
\(p, x, y\) and \(z\) are each independently an integer from 0 to 10;

W at each occurrence is independently:

(a) \(-C(O)\);
(b) \(-C(S)\);
(c) \(-T\);
(d) \(-(C(R)(R))_k\);
(e) alkyl;
(f) aryl;
(g) heterocyclic ring;
(h) arylheterocyclic ring, or
(i) \(-(CH_2CH_2O)_q\);

E at each occurrence is independently:

(a) \(-T\);
(b) alkyl;
(c) aryl;
(d) \(-(C(R)(R))_k\);
(e) heterocyclic ring;
(f) arylheterocyclic ring; or
(g) \(-(CH_2CH_2O)_q\);

30
h is an integer form 1 to 10;
q is an integer from 1 to 5;
\(R_\alpha\) and \(R_\beta\) are each independently:

(a) hydrogen;
(b) alkyl;
(c) cycloalkoxy;
(d) halogen;
(e) hydroxy;
(f) hydroxyalkyl;
(g) alkoxyalkyl;
(h) arylheterocyclic ring;
(i) cycloalkylalkyl;
(j) heterocyclicalkyl;
(k) alkoxy;
(l) haloalkoxy;
(m) amino;
(n) alkylamino;
(o) dialkylamino;
(p) arylamino;
(q) diarylamino;
(r) alkylarylamine;
(s) alkoxyhaloalkyl;
(t) haloalkoxy;
(u) sulfonic acid;
(v) alkylsulfonic acid;
(w) arylsulfonic acid;
(x) arylalkoxy;
(y) alkylthio;
(z) arylthio;
(aa) cyano;
(bb) aminoalkyl;
(cc) aminoaryl;
(dd) alkoxy;
(ee) aryl;
(ff) arylalkyl;
(gg) carboxamido;
(hh) alkylcarboxamido;
(ii) arylcarboxamido;
(jj) amidyl;
(kk) carboxyl;
(ll) carbamoyl;

5 (mm) alkylcarboxylic acid;
(nn) arylcarboxylic acid;
(oo) alkylcarbonyl;
(pp) arylcarbonyl;
(qq) ester;

(rr) carboxylic ester;
(ss) alkylcarboxylic ester;
(tt) arylcarboxylic ester;
(uu) haloalkoxy;
(vv) sulfonamido;

10 (ww) alkylsulfonamido;
(xx) arylsulfonamido;
(yy) alkylsulfonyl,
(zz) alkylsulfonyloxy,
(aaa) arylsulfonyl,

20 (bbb) arylsulphonyloxy
(ccc) sulfonic ester;
(ddd) carbamoyl;
(eee) urea;

25 (fff) nitro; or
(ggg) -U-V; or

Rₜ and Rₜ taken together are:

(a) oxo;
(b) thial; or

Rₜ and Rₜ taken together with the carbon to which they are attached are:

30 (a) heterocyclic ring;
(b) cycloalkyl group; or
(c) bridged cycloalkyl group;

k is an integer from 1 to 2;
T at each occurrence is independently:

(a) a covalent bond,
(b) carbonyl,
(c) an oxygen,
(d) \(-S(O)_{e}\); or
(e) \(-N(R_j)R_i\);

\(o\) is an integer from 0 to 2;

Q is:

(a) \(-C(O)-U-D^1\);
(b) \(-CO_2\)-lower alkyl;
(c) tetrazolyl-5-yl;
(d) \(-C(R^5)(R^2)(S-D^1)\);
(e) \(-C(R^5)(R^2)(O-D^1)\); or
(f) \(-C(R^5)(R^2)(O\text{-lower alkyl})\);

\(R_j\) is:

(a) a lone pair of electron;
(b) hydrogen; or
(c) lower alkyl;

\(R_i\) is:

(a) hydrogen;
(b) alkyl;
(c) aryl;
(d) alkylcarboxylic acid;
(e) arylcarboxylic acid;
(f) alkylcarboxylic ester;
(g) arylcarboxylic ester;
(h) alkylcarboxamido;
(i) arylcarboxamido;
(j) alkylsulfanyl;
(k) alkylsulfonyl;
(l) alkylsulfonyloxy;
(m) arylsulfanyl;
(n) arylsulfonyl;
(o) arylsulphonyloxy;
(p) sulfonamido;
(q) carboxamido;
(r) carboxylic ester;
(s) aminoalkyl;
(t) aminoaryl;
(u) \(-\text{CH}_2\text{C(U-V)(R}_1\text{)(R}_2\text{)}\);
(v) a bond to an adjacent atom creating a double bond to that atom; or
(w) \(-(\text{N}_2\text{O}_2^-)\text{•M}^+\), wherein M\(^+\) is an organic or inorganic cation;

with the proviso that the compounds of formula I must contain at least one nitrite, nitrate, thionitrite or thionitrate group;

wherein the compound of formula (II) is:

![Chemical Structure](image)

wherein:

A-B is:
(a) N-C;
(b) C-N; or
(c) N-N;

when sides d and f are double bonds, and sides e and g are single bonds,

\(-X^2-Y^2-Z^2\) is:
(a) \(\text{CR}^4\text{-CR}^4\text{-CR}^5\text{-};\)
(b) \(\text{N-CR}^4\text{-CR}^4\text{-};\)
(c) \(\text{N-CR}^4\text{-N-};\)
(d) \(=CR^4-N=CR^{5*} \);
(e) \(=CR^4-N=N- \);
(f) \(=N-N=CR^4- \);
(g) \(=N-N=N- \);
(h) \(=CR^4-\text{CR}^5=N- \); or
(i) \(=CR^5-\text{CR}^5=N- \);

\(R^2 \) and \(R^2 \) taken together are:

(a)

\[\text{or} \]

(b)

or \(R^2 \) and \(R^2 \) taken together with the carbon atoms to which they are attached are:

(a) cycloalkyl; or
(b) heterocyclic ring;

\(R^97 \) is:

(a) hydrogen;
(b) alkylthio;
(c) alkylsulfanyl;
(d) alkylsulfonyl;
(e) cyano;
(f) carboxyl;
(g) amino;
(h) lower alkyl;
(i) haloalkyl;
(j) hydroxy;
(k) alkoxy;
(l) haloalkoxy;
(m) alkylarylalkylamino;
(n) aminoalkyl;
(o) aminoaryl;
(p) sulfonamido;
(q) alkylsulfonamido;
(r) arylsulfonamido;
(s) heterocyclic ring;
(t) hydroxyalkyl; or
(u) nitro;

a is an integer from 1 to 3;

when sides e and g are double bonds, and sides d and f are single bonds,
-X^2-Y^2-Z^2- is:

(a) -CR^2=N-N=;
(b) -N=N-CR^4=;
(c) -CR^2=N-CR^6=;
(d) -N=CR^4-N=;
(e) -CR^4=CR^6-N=;
(f) -N=CR^4- CR^6=;
(g) -CR^2=CR^6- CR^8=; or
(h) -N=N-N=;

when side g is a double bond, and sides d, e and f are single bonds,
-X^2-Y^2-Z^2- is:

(a) -C(O)-O-CR^2=;
(b) -C(O)-NR^2-CR^2=;
(c) -C(O)-S-CR^4=; or
(d) -C(H)R^4-C(OH)R^6-N=;

when sides d is a double bond, and sides e, f and g are single bonds,
-X^2-Y^2-Z^2- is:
(a) \(\text{CR}^1\text{-O-C(O)}\);
(b) \(\text{CR}^1\text{-NR}^2\text{-C(O)}\);
(c) \(\text{CR}^1\text{-S-C(O)}\); or
(d) \(\text{N-C(OH)}\text{R}^4\text{-C(H)}\text{R}^5\);

when sides \(f \) is a double bond, and sides \(d, e \) and \(g \) are single bonds,

\[-X^2\text{-Y}^2\text{-Z}^2\] is:

(a) \(\text{CH(R}^4\text{-CR}^5\text{=}N}\); or
(b) \(\text{C(O)}\text{-CR}^4\text{=}CR^5\);

when sides \(e \) is a double bond, and sides \(d, f \) and \(g \) are single bonds,

\[-X^2\text{-Y}^2\text{-Z}^2\] is:

(a) \(\text{-N=CR}^4\text{-CH(R}^5\text{)}\); or
(b) \(\text{-CR}^4\text{=}CR^5\text{-C(O)}\);

when sides \(d, e, f \) and \(g \) are single bonds,

\[-X^2\text{-Y}^2\text{-Z}^2\] is:

\[\text{(a) -C(O)-CR}^4\text{(R}^4\text{)}\text{-C(O)}\];

\(R^1, R^1, R^2, R^3, R^4, R^5 \) and \(R^{5^y} \) are as defined herein;

with the proviso that the compounds of formula II must contain at least one nitrite, nitrate, thionitrite or thionitrate group;

wherein the compound of formula (III) is:

\[
\begin{tikzpicture}
 \node (a) at (0,0) \text{R}^1;
 \node (b) at (1,0) \text{y}^3;
 \node (c) at (2,0) \text{R}^2;
 \node (d) at (3,0) \text{X}^3;
 \node (e) at (4,0) \text{III};

declare coordinates
\end{tikzpicture}
\]

wherein:

\(X^3 \) is:

(a) \(\text{-C(O)-U-D}^1\);
(b) \(\text{-CH}_2\text{-U-D}^1\);
(c) \(\text{-CH}_2\text{-C(O)}\text{-CH}_2\);
(d) \(\text{-CH}_2\text{-CH}_2\text{-C(O)}\text{-U-D}^1\);
(e) -CH₂-O-D³; or
(f) -C(O)H

Y³ is:
(a) -(CR³(R⁵³))ₖ-U-D³;
(b) -CH₃;
(c) -CH₂OC(O)R⁶; or
(d) -C(O)H;

alternatively, X³ and Y³ taken together are -CR⁸₂(R⁸³)-CR⁸₂(R⁸⁵)-;
R⁸₂, R⁸³, R⁸⁴ and R⁸⁵ are each independently:

10
(a) hydrogen;
(b) hydroxy;
(c) alkyl;
(d) alkoxy;
(e) lower alkyl-OD³;
(f) alkylthio;
(g) CN;
(h) -C(O)R⁸⁴; or
(i) -OC(O)R⁸⁵;

R⁸⁴ is:

20
(a) hydrogen;
(b) lower alkyl; or
(c) alkoxy;

R⁸⁵ is:

25
(a) lower alkyl;
(b) alkoxy
(c) unsubstituted, mono-, di- or tri-substituted phenyl or pyridyl,

wherein the substituents are each independently:
(1) halo;
(2) alkoxy;
(3) haloalkyl;
(4) CN;
(5) -C(O)R⁸⁴;
(6) lower alkyl;
(7) -S(O)_2-lower alkyl; or
(8) -OD;

alternatively, R'^{62} and R'^{63} or R'^{62'} and R'^{63'} taken together are:
(a) oxo;
(b) thial;
(c) =CR'^{65}R'^{67}; or
(d) =NR'^{68};

R'^{66} and R'^{67} are each independently:
(a) hydrogen;
(b) lower alkyl;
(c) lower alkyl-OD;
(d) CN; or
(e) C(O)R'^{64};

R'^{65} is:
(a) OD;
(b) alkoxy;
(c) lower alkyl; or
(d) unsubstituted, mono-, di- or tri-substituted phenyl or pyridyl,

wherein the substituents are each independently:

(1) halo;
(2) alkoxy;
(3) haloalkyl;
(4) CN;
(5) C(O)R'; or
(6) lower alkyl;
(7) -S(O)_2-lower alkyl; or
(8) -OD;

R', R'^{2}, R'^{5}, R'^{5'}, R'^{6}, U, D', o and k are as defined herein;

with the proviso that the compounds of formula III must contain at least one
nitrite, nitrate, thionitrite or thionitrate group.
wherein the compound of formula (IV) is:

wherein:

X^i and Z^i are each independently:

(a) N; or
(b) CRm;

R^{20} is:

(a) -S(O)$_2$-CH$_3$;
(b) -S(O)$_2$-NR$_m$(D^i); or
(c) -S(O)$_2$-N(D^i)-C(O)-CF$_3$;

R^{22} and $R^{22'}$ are each independently:

(a) hydrogen;
(b) lower alkyl;
(c) alkoxy;
(d) alkylthio;
(e) haloalkyl;
(f) haloalkoxy;

(g) CN;
(h) -CO$_2$Di;
(i) -CO$_2$R$_m$;
(j) lower alkyl-O-Di;
(k) lower alkyl-CO$_2$Di;
(l) lower alkyl-CO$_2$R$_m$;
(m) halo;
(n) -O-Di;
(o) -N$_m$;
(p) -NO₂;
(q) -NR'''D¹;
(r) -N(D¹)C(O)R''';
(s) -NHK;
(t) aryl;
(u) arylalkylthio;
(v) arylalkoxy;
(w) alkylamino;
(x) arylxoxo;
(y) alkylarylalkylamino;
(z) cycloalkylalkylamino; or
(aa) cycloalkylalkoxy;

R² is:

(a) mono-, di- or tri-substituted phenyl or pyridinyl (or the N-oxide thereof), wherein the substituent are each independently:

(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) lower alkyl;
(7) haloalkyl;
(8) N₂;
(9) -CO₂D¹;
(10) -CO₂-lower alkyl;
(11) -C(R''')⁵(R'⁵)-OD¹;
(12) -OD¹;
(13) lower alkyl-CO₂-R'''; or
(14) lower alkyl-CO₂-D¹;

(b) -T-C(R''')(R⁵)→(C(R''')(R⁵))ₙ-C(R''')(R⁵)-U-D¹;
(c)

\[\begin{array}{c}
\text{(CH}_2\text{)}_5 \\
\text{(CH}_2\text{)}_s \\
\text{N} \\
\text{(CH}_2\text{)}_o \\
\end{array} \]

(d) arylalkyl; or
(e) cycloalkylalkyl;

wherein:

\(R^{14} \) and \(R^{15} \) are each independently:

(a) hydrogen; or
(b) lower alkyl;

\(R^{22}, R^{24}, R^{25}, R^{26}, R^{27}, R^{28} \) are each independently:

(a) hydrogen; or
(b) lower alkyl; or

\(R^{23} \) and \(R^{27}, \) or \(R^{27} \) and \(R^{28} \) together with the atoms to which they are attached form a carbocyclic ring of 3, 4, 5, 6 or 7 atoms, or \(R^{23} \) and \(R^{25} \) are joined to form a covalent bond;

\(Y^5 \) is:

(a) \(CR^{29}R^{30}; \)
(b) oxygen; or
(c) sulfur;

\(R^{29} \) and \(R^{30} \) are each independently:

(a) hydrogen;
(b) lower alkyl;
(c) \((\text{CH}_2)_s\text{-OD}^1; \)
(d) halo; or

\(R^{29} \) and \(R^{30} \) taken together are an oxo group;

\(s \) is an integer from 2 to 4;

\(R^6, D^1, T, U, K \) and \(o \) are as defined herein;

with the proviso that the compounds of formula IV must contain at least one nitrite, nitrate, thionitrite or thionitrate group.
wherein the compound of formula (V) is:

wherein:

\(X^5 \) is:

5

(a) oxygen; or
(b) sulfur;

\(R^{31} \) is:

(a) alkoxy;
(b) haloalkoxy;
(c) alkylthio;
(d) haloalkyl;
(e) halo; or
(f) lower alkyl;

\(R^{32}, R^{33}, R^{34}, R^{35}, R^{36} \) and \(R^{37} \) are each independently:

15

(a) hydrogen;
(b) halo;
(c) lower alkyl;
(d) cycloalkyl;
(e) haloalkyl;

(f) -OD;
(g) -OR;
(h) -SD;
(i) \(-\text{SR}^3\);
(j) \(-\text{S(O)R}^4\);
(k) \(-\text{S(O)}_2\text{R}^6\);
(l) unsubstituted, mono- or di-substituted benzyl, wherein the

substituents are each independently:

(1) haloalkyl;
(2) CN;
(3) halo;
(4) lower alkyl;
(5) \(-\text{OR}^9\);
(6) \(-\text{SR}^9\);
(7) \(-\text{S(O)R}^8\); or
(8) \(-\text{S(O)}_2\text{R}^4\);

(m) phenyl or mono- or di-substituted phenyl, wherein the

substituents are each independently:

(1) haloalkyl;
(2) CN;
(3) halo;
(4) lower alkyl;
(5) \(-\text{OR}^9\);
(6) \(-\text{SR}^9\);
(7) \(-\text{S(O)R}^8\); or
(8) \(-\text{S(O)}_2\text{R}^4\); or

\(\text{R}^2\) together with \(\text{R}^3\) form an oxo group; or
\(\text{R}^4\) together with \(\text{R}^5\) form an oxo group; or
\(\text{R}^6\) together with \(\text{R}^7\) form an oxo group; or

\(\text{R}^2\) and \(\text{R}^3\) are joined so that, together with the carbon atom to which they
are attached, they form a saturated monocyclic ring of 3, 4, 5, 6 or 7 members, and,
optionally, contain one heteroatom; or

\(\text{R}^3\) and \(\text{R}^4\) are joined so that, together with the carbon atoms to which they
are attached, they form a saturated or aromatic monocyclic ring of 3, 4, 5, 6 or 7
members; or

\(\text{R}^3\) and \(\text{R}^6\) are joined so that, together with the carbon atoms to which they
are attached, they form a saturated or aromatic monocyclic ring of 3, 4, 5, 6 or 7 members; or

R³⁴ and R³⁵ are joined so that, together with the carbon atom to which they are attached, they form a saturated monocyclic ring of 3, 4, 5, 6 or 7 members, and optionally, contain one heteroatom; or

R³⁴ and R³⁶ are joined so that, together with the carbon atoms to which they are attached, they form a saturated or aromatic monocyclic ring of 3, 4, 5, 6 or 7 members; or

R³⁶ and R³⁷ are joined so that, together with the carbon atom to which they are attached, they form a saturated monocyclic ring of 3, 4, 5, 6 or 7 members, and, optionally, contain one heteroatom;

R³⁸ and R³⁹ are hydrogen or R³⁸ and R³⁹ when taken together are oxo;

R³⁵, R⁴¹ and R⁴² are each independently:

(c) hydrogen;

(d) halo;

(c) lower alkyl;

(d) alkoxy;

(e) alkylthio;

(f) -S(O)-lower alkyl;

(g) haloalkyl;

(h) CN;

(i) -N₃;

(j) -NO₂;

(k) -SCF₃; or

(l) -OCF₃;

R⁴³ is:

(a) lower alkyl; or

(b) benzyl, optionally mono- or di-substituted, wherein the substituents are each independently:

(1) haloalkyl;

(2) CN;

(3) halo; or

(4) lower alkyl;
alternatively, X^6 and U taken together with the carbon atom to which they are attached form a 5-, 6-, or 7-membered heterocyclic ring; n at each occurrence is an integer from 0 to 1; and D^i, U and K are as defined herein; with the proviso that the compounds of formula V must contain at least one nitrite, nitrate, thionitrite or thionitrate group; wherein the compound of formula (VI) is:

![Diagram]

wherein:

X^6 is:

(a) oxygen;
(b) sulfur;
(c) CH_2;
(d) S(O)_2;
(e) NH; or
(f) C(O);

Z^6 is:

(a) K;
(b) $-\text{C(O)CH}_2$; or
(c) hydrogen;

R^45 is:

(a) lower alkyl; or
(b) mono-, di-, tri-, tetra- or per-substituted lower alkyl, wherein the substituent is halo;

\(\text{R}^{46} \) is:

(a) mono or disubstituted aromatic ring of 5 atoms containing one O, S or N atom, and, optionally, 1, 2 or 3 additional N atoms, wherein the substituents are each independently:

1. hydrogen;
2. lower alkyl;
3. halo;
4. -O-lower alkyl;
5. -S-lower alkyl;
6. haloalkyl;
7. -COCH\(_3\);
8. -S(O)\(_2\)-lower alkyl;

(b) mono or disubstituted aromatic ring of 6 atoms containing 0, 1, 2, 3 or 4 nitrogen atoms, wherein the substituents are each independently:

1. hydrogen;
2. lower alkyl;
3. halo;
4. -O-lower alkyl;
5. -S-lower alkyl;
6. -O-haloalkyl;
7. -S-haloalkyl;
8. haloalkyl;
9. CN;
10. -N\(_2\);
11. -COCH\(_3\);
12. -S(O)\(_2\)-lower alkyl;
13. alkenyl; or
14. alkynyl;

(c) cycloalkylalkyl;

(d) unsubstituted, mono-, di-, tri-, or tetra substituted phenyl or naphthyl, wherein the substituents are each independently:
(1) halo;
(2) CN;
(3) haloalkyl;
(4) -N₃;
(5) vinyl;
(6) acetylenyl;
(7) lower alkyl;
(8) alkoxy;
(9) haloalkoxy;
(10) alkylthio; or
(11) haloalkylthio;
(e) unsubstituted, mono-, di-, tri-, or tetra substituted benzoheteroaryl, wherein the substituents are each independently:
(1) halo;
(2) CN; or
(3) haloalkyl;
(f) substituted lower alkyl;
(g) substituted alkenyl;
(h) cycloalkyl; or
(i) lower alkyl-O-lower alkyl;
R¹⁷ is:
(a) -C(O)-lower alkyl;
(b) -CN;
(c) -CO₂D¹;
(d) -CO₂-lower alkyl ester;
(e) -C(O)-NHD¹;
(f) -S(O)-lower alkyl;
(g) -S(O)₂-lower alkyl;
(h) -NO₂;
(i) haloalkyl;
(j) halo;
(k) K;
(l) -S(O)₈NR¹⁹R¹¹; or
(m) -S(O)\textsubscript{n}NR\textsubscript{12}R\textsubscript{13};

R49 is:

(a) hydrogen; or
(b) lower alkyl; or

R49 and R48 taken together with the atoms to which they are attached form a 5, 6, or 7-membered unsubstituted, mono-, di-, or trisubstituted saturated or unsaturated cyclic ring optionally containing a =S(O)\textsubscript{2}-group, wherein the substituents are each independently:

(a) oxo;
(b) lower alkyl;
(c) OD1; or
(d) =N-OD1;

R20, R21, R22, R23, K, Di and o are as defined herein;

with the proviso that the compounds of formula VI must contain at least one nitrite, nitrate, thionitrite or thionitrate group;

wherein the compound of formula (VII) is:

\[\text{VII} \]

wherein:

X7 is:

(a) oxygen;
(b) sulfur;
(c) -NR21;
(d) -N-O-R22; or
(e) -N-NR25R26;
Y' is:
 (a) hydrogen;
 (b) halo;
 (c) lower alkyl;
 (d) alkenyl; or
 (e) alkynyl;

Z' is:
 (a) -C(O)-;
 (b) oxygen;
 (c) -S(O)_{2}^{-};
 (d) -NR_{2}^{+}; or
 (e) covalent bond;

R'^{\circ} is:
 (a) R^{3}; or
 (b) R^{4};

R'^{\circ} and R'^{5}\circ are each independently:
 (a) hydrogen;
 (b) halo;
 (c) lower alkyl;
 (d) aryl;
 (e) arylalkyl;
 (f) cycloalkyl;
 (g) cycloalkylalkyl;
 (h) -OD_{1}^{+};
 (i) lower alkyl-OD_{1}^{+};
 (j) carboxamido;
 (k) amidyl; or
 (l) K;

R'^{2} is:
 (a) lower alkyl;
 (b) alkenyl;
 (c) cycloalkyl;
 (d) cycloalkylalkyl;
(e) aryl;
(f) arylalkyl;
(g) heterocyclic ring; or
(h) lower alkyl-heterocyclic ring;

R² and R⁰ are each independently:
(a) lower alkyl;
(b) cycloalkyl;
(c) cycloalkylalkyl;
(d) aryl;
(e) arylalkyl;
(f) heterocyclic ring; or
(g) heterocyclicalkyl;

R³ is:
(a) hydrogen; or
(b) lower alkyl;

R¹, R², R³, K, D¹ and o are as defined herein;
with the proviso that the compounds of formula VII must contain at least
one nitrite, nitrate, thionitrite or thionitrate group.

wherein the compound of formula (VIII) is:

VIII

wherein:

X⁸ is:
(a) oxygen;
(b) sulfur;
(c) NR; or
(d) -CR²R⁰;
A^1, A^2, A^3, and A^4 are each independently carbon or nitrogen, with the proviso that at least two of A^1, A^2, A^3, and A^4 are carbon atoms;

R^{5a} is:

(a) haloalkylalkyl;

(b) halo;

(c) alkylthio;

(d) alkoxy;

(e) -NO_2;

(f) CN;

(g) lower alkyl-CN;

(h) heterocyclic ring;

(i) lower alkyl;

(j) arylalkyl;

(k) cycloalkyl; or

(l) phenyl or mono- or di-substituted phenyl, wherein the substituents are each independently:

(1) alkylthio;

(2) nitro; or

(3) alkylsulfanyl;

R^{5b} is:

(a) $\text{-CO}_2\text{D}^1$;

(b) $\text{-C(O)-N(R)^6(}\text{R}^6)$;

(c) -CO_2-lower alkyl;

(d) $\text{-C(O)-N(D^1)-S(O)}_2-(\text{C(R)}_2(\text{R})_2)-\text{U-V}$; or

(e) -CO_2-lower alkyl-U-V;

R^{5c} is:

(a) hydrogen;

(b) phenyl;

(c) thienyl;

(d) alkynyl;

(e) alkenyl; or

(f) alkyl;

R^8 is:
(a) hydrogen;
(b) lower alkyl;
(c) arylalkyl;
(d) alkoxy;
(e) aryloxy;
(f) arylalkoxy;
(g) haloalkyl;
(h) haloalkoxy;
(i) alkylamino;
(j) arylamino;
(k) arylalkylamino;
(l) nitro;
(m) sulfonamido;
(n) carboxamido;
(o) aryl;
(p) -C(O)-aryl; or
(q) -C(O)-alkyl;

alternatively, R₅ and the monocyclic ring radical of which A¹, A², A³, and A⁴ comprise four of the six atoms are:

(a) naphthyl;
(b) quinolyl;
(c) isoquinolyl;
(d) quinolizinyl;
(e) quinoxalinyll; or
(f) dibenzofuryl;

R⁵₉ and R⁶⁹ are each independently:
(a) hydrogen;
(b) lower alkyl;
(c) lower alkyl-phenyl;
(d) haloalkyl;
(e) halo;
(f) -NO₂;
(g) CN;
(h) lower alkyl-CN;
(i) alkoxy;
(j) alkylthio; or
(k) alkenyl;

alternatively, R" and R' taken together along with the atoms to which they are attached are cycloalkyl;

R', R', R, R, D', U, V, a and p are as defined herein;

with the proviso that the compounds of formula VIII must contain at least one nitrite, nitrate, thionitrite or thionitrate group;

wherein the compound of formula (IX) is:

![Chemical Structure](image)

wherein:

X' is -C(O)-U-D' and Y' is -CH_2-CR_5(R_5)-U-D'; or

X' is -CH_2-CR_5(R_5)-U-D' and Y' is -C(O)-U-D'; or

X' and Y' taken together are:

(a) -C(O)-O-CR_4(R_4)-CR_5(R_5)-;
(b) -(CR_4(R_4))_k-CR_5(R_5)-CR_5(R_5)-;
(c) -C(O)-(CR_4(R_4))_k-CR_5(R_5)-;
(d) -(CR_5(R_5))_k-CR_5(R_5)-C(O)-;
(e) -C(O)-CR_4(R_4)-CR_5(R_5)-;

wherein X' is the first carbon atom of a, b, c, d and e;

R', R', R', R', R', R', U, D' and k are as defined herein;

with the proviso that the compounds of formula IX contain at least one nitrite, nitrate, thionitrite or thionitrate group;

wherein the compound of formula (X) is:
wherein:

when side $h, k,$ and j are single bonds, and side i and l are a double bond, $\text{X}^{10} \text{Y}^{10} \text{Z}^{10}$ is:

(a)

or

(b)

when sides i, k and l are single bonds, and sides h and j are double bonds, $\text{X}^{10} \text{Y}^{10} \text{Z}^{10}$ is:
when side \(h \) and \(j \) are single bonds, and side \(k \) and \(i \) is a single or a double bond, \(-X^{10} Y^{10} Z^{10}\) is:

(a)

\[
\begin{array}{c}
\text{or}
\end{array}
\]

(b)

\(P^{10}\) is:

(a) \(-N=;\)

(b) \(-NR^3;\)

(c) \(-O;\) or

(d) \(-S;\)

\(Q^{10}\) and \(Q^{10'}\) are each independently:

(a) \(CR^{60};\) or

(b) nitrogen;

\(A^{10} B^{10} C^{10} D^{10}\) is:

(a) \(-CR'=CR'^4 CR'^5 CR'^6;\)

(b) \(-CR'(R'^1)-CR'^5(R'^1)-CR'^4(R'^1)-C(O);\)

(c) \(-CR'(R'^1)-CR'^5(R'^1)-C(O)-CR'(R'^1);\)
(d) -CR^i(R^i)-C(O)-CR^j(R^j)-CR^k(R^k)-;
(e) -C(O)-CR^i(R^i)-CR^j(R^j)-CR^k(R^k)-;
(f) -CR^i(R^i)-CR^j(R^j)-C(O)-;
(g) -CR^i(R^i)-C(O)-CR^j(R^j)-;
(h) -C(O)-CR^i(R^i)-CR^j(R^j)-;
(i) -CR^i(R^i)-CR^j(R^j)-O-C(O)-;
(j) -CR^i(R^i)-O-C(O)-CR^j(R^j)-;
(k) -O-C(O)-CR^i(R^i)-CR^j(R^j)-;
(l) -CR^i(R^i)-CR^j(R^j)-C(O)-O-;

(m) -CR^i(R^i)-C(O)-O-CR^j(R^j)-;
(n) -C(O)-O-CR^i(R^i)-CR^j(R^j)-;
(o) -CR^{12}(R^{13})-O-C(O)-;
(p) -C(O)-O-CR^{12}(R^{13})-;
(q) -O-C(O)-CR^{12}(R^{13})-;
(r) -CR^{12}(R^{13})-C(O)-O-;
(s) -N=CR^i-CR^j=CR^k-;
(t) -CR^i=N-CR^j=CR^k-;
(u) -CR^i=CR^j-N=CR^k-;
(v) -CR^i=CR^j=CR^k=N-;
(w) -N=CR^i-CR^j=N-;
(x) -N=CR^i-N=CR^j-;
(y) -CR^i=N-CR^j=N-;
(z) -S-CR^i=N-;
(aa) -S-N=CR^i-;

(bb) -N=N-NR^3-;
(cc) -CR^i=N-S-;
(dd) -N=CR^i-S-;
(ee) -O-CR^i=N-;
(ff) -O-N=CR^i-; or

(gg) -N=CR^i-O-;

A^{10}, B^{10}, C^{10} = D^{10} is:

(a) -CR^i=CR^j=CR^k=
(b) -CR^i(R^i)-CR^j(R^j)-CR^k(R^k)-;
(c) -C(O)-CR¹(R⁵)-CR²(R⁶) -
(d) -CR¹(R⁴)-CR³(R⁵)-C(O) -
(e) -N=CR⁴-CR⁵ -
(g) -N=N-CR⁴ -
(h) -N=N-NR³ -
(i) -N=N-N=N -
(j) -N=CR⁴-NR³ -
(k) -N=CR⁴-N=N -
(l) -CR²=N-NR³ -
(m) -CR²=N-N=N -
(n) -CR²=N-CR⁴ -
(o) -CR⁴=CR²-NR³ -
(p) -CR²=CR²-N=N -
(q) -S-CR²=CR² -
(r) -O-CR¹=CR³ -
(s) -CR²=CR³-O -
(t) -CR²=CR³-S -
(u) -CR²=N-S -
(v) -CR²=N-O -
(w) -N=CR⁴-S -
(x) -N=CR⁴-O -
(y) -S-CR²=N -
(z) -O-CR²=N -
(aa) -N=N=S -
(bb) -N=N-O -
(cc) -S=N=N -
(dd) -O-N=N -
(ee) -CR²=CR⁵-S -
(ff) -CR¹(R⁴)-CR⁵(R⁶)-S -
(gg) -CR¹(R⁴)-CR³(R⁵)-O -
(hh) -S-CR²(R⁴)-CR³(R⁵) -
or
(ii) -O-CR²(R⁴)-CR³(R⁵) -

R⁰ and R⁶ are each independently:
(a) lower alkyl;
(b) haloalkyl;
(c) alkoxy;
(d) alkylthio;
(e) lower alkyl-OD;
(f) -C(O)H;
(h) -(CH₂)₃-CO₂-lower alkyl;
(i) -(CH₂)₄-CO₂D;
(j) -O-(CH₂)₄-S-lower alkyl;
(k) -(CH₂)₅-S-lower alkyl;
(l) -S(O)₂-lower alkyl;
(m) -(CH₂)₅-NR₁²R₁₃; or
(n) -C(O)N(R⁴)(R⁸);

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R¹⁰, R¹³, T, D and q are as defined herein;

with the proviso that the compounds of formula X must contain at least one nitrite, nitrate, thionitrite or thionitrate group;

wherein the compound of formula (XI) is:

![Chemical Structure](image)

wherein:

X¹¹ is:

(a) oxygen; or

(b) CH₂;

Y¹¹ is:
(a) oxygen;
(b) \(-H_2\);
(c) \(-N-OD^1\);
(d) \(-N-O\)-lower alkyl;
(e) \(-N-O\)-aryl;
(f) \(-N-C(O)-O\)-lower alkyl;
(g) \(-N-N\(R^6\)(R^8); or
(h) \(-N-N\(R^6\)-S(O)_2\)-lower alkyl;
\(R^{6a}, R^{6b}, R^{6c}\) and \(R^{6d}\) are each independently:

10
(a) hydrogen;
(b) lower alkyl;
(c) alkoxy;
(d) halo;
(e) CN;
(f) OD^1;
(g) aryloxy;
(h) \(-NR^{6a}R^{12}\);
(i) \(-CF_3\);
(j) \(-NO_2\);
(k) alkylthio;
(l) \(-S(O)_2\)-lower alkyl;
(m) \(-C(O)N(R^6)(R^8);\)
(n) \(-CO_2D^1\)
(o) \(-CO_2\)-lower alkyl; or
(p) \(-NR^{6a}-C(O)-lower alkyl;\)
\(R^{6a}\) is:

20
(a) hydrogen;
(b) lower alkyl;
(c) alkenyl;
(d) alkoxyalkyl; or
(e) cycloalkylalkyl;
\(R^6, R^{12}, R^{13}, o, K\) and \(D^1\) are as defined herein;
with the proviso that the compounds of formula XI must contain at least one
nitrite, nitrate, thionitrite or thionitrate group;

wherein the compound of the formula (XII) is:

![Chemical Structure](image)

wherein:

\[\text{X}^{12} \] is:

(a)

\[\text{or} \]

(b)

(c) \[\text{NR}^{71} \];

\[\text{Y}^{12} \] is:
(a)

(b)

(c)

(d)

(e) -NR²(R⁷⁴);
(f) hydrogen; or
(g) K;

Z² is:

(a)

(b) R⁶⁷;

R⁶⁷ is:
(a) hydrogen;
(b) lower alkyl;
(c) lower alkyl-OD;
(d) -OD;
(e) haloalkyl; or
(f)

R is:

10
(a) lower alkyl;
(b) halo;
(c) alkoxy
(d) haloalkyl;
(e) alkylthio;
(f) haloalkylthio;
(g) -OCH;

(h) unsubstituted, mono-, or di-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or said heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally 1, 2, or 3 additional N atoms, and wherein said substituents are each independently:

(1) halo; or
(2) lower alkyl

(i) -S(O),lower alkyl;
(j) -S(O),lower haloalkyl;
(k) amino;
(l) alkylamino;
(m) dialkylamino;
(n) \(-N(H)\text{SO}_2\)-lower alkyl;
(o) \(N(H)\text{SO}_2\)-lower haloalkyl;
(p) nitro;
(q) cyano;
(r) \(-\text{CO}_2\text{D}^1\);
(s) carboxylic ester;
(t) lower alkyl-\(\text{OD}^1\);
(q) carboxamide; or
(r) \(-\text{C(O)N(R}^{\text{R}^{0}})\text{D}^1\);

10 \(R^{0}\) is:
(a) lower alkyl;
(b) hydrogen;
(c) alkoxy
(d) mono-, di-, tri, tetra- or penta-substituted phenyl, wherein the substituent are each independently:

(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) alkylthio;

20 (5) \(-\text{S(O)}_6\)-lower alkyl;
(6) lower alkyl;
(7) haloalkyl;
(8) \(-\text{CO}_2\text{D}^1\);
(9) \(-\text{lower alkyl-CO}_2\text{D}^1\);
(10) \(-\text{OD}^1\);
(11) \(-\text{lower alkyl-OD}^1\); or
(12) haloalkoxy;

(e) mono-, di-, or tri-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is \(S\), \(O\), or \(N\), and, optionally, 1, 2, or 3 additional \(N\) atoms; or the heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is \(N\), and, optionally, 1, 2, 3, or 4 additional \(N\) atoms; wherein the substituents are each independently:
(1) hydrogen;
(2) halo;
(3) lower alkyl;
(4) alkoxy;
(5) alkylthio;
(6) aryloxy;
(7) arylthio;
(8) \(-\text{CO}_2\text{D}^1\);
(9) \(-\text{C(O)}\text{NH(}\text{D}^1\))

(10) haloalkyl; or
(11) \(-\text{OD}^1\);

\(\text{R}^{70}\) is:
(a) lower alkyl;
(b) hydrogen; or
(c) mono- or di-substituted phenyl, wherein the substituent are each independently:

(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) haloalkyl; or
(5) lower alkyl;

\(\text{R}^{71}\) is:
(a) benzoyl, or mono-, or disubstituted benzoyl, wherein the substituents are each independently:

(1) halo;
(2) lower alkyl; or
(3) alkoxy;
(b) benzyl, mono- or disubstituted benzyl, wherein the substituents are each independently:

(1) halo;
(2) lower alkyl; or
(3) alkoxy;
(c) lower alkyl-pyridinyl, or unsubstituted, mono-, or disubstituted
pyridinyl, wherein the substituents are each independently:
 (1) halo;
 (2) lower alkyl; or
 (3) alkoxy;
 (d) -C(O)-pyridinyl, or mono-, or disubstituted -C(O)-pyridinyl

wherein the substituents are each independently:
 (3) halo;
 (4) lower alkyl; or
 (3) alkoxy;

(e) hydrogen;
(f) aryl;
(g) cycloalkyl;
(h) cycloalkylalkyl;

R25 is:

(a) lower alkenyl-CO\textsubscript{2}D1; or
(c) K;

R25 is unsubstituted or mono substituted lower alkyl, wherein the
substituents are each independently:

(a) hydroxy;
(b) alkoxy;
(c) nitro;
(c) -NH\textsubscript{2};
(d) alkylamino;
(e) dialkylamino;
(f) carboxyl;
(g) carboxylic ester; or
(h) carboxamide;

R24 is:

(a) hydrogen;
(b) lower alkyl; or
(c) -C(O)R25;

R75 is:

(a) lower alkyl;
(b) haloalkyl
(c) substituted lower alkyl;
(d) cycloalkyl;
(e) unsubstituted, mono-, di- or tri-substituted phenyl or naphthyl,

wherein the substituents are each independently:

1. halo;
2. alkoxy;
3. \(-\text{S(O)}_\text{2}\)-lower alkyl;
4. hydroxy;
5. \(-\text{S(O)}_\text{2}\)-haloalkyl;
6. lower alkyl;
7. haloalkyl;
8. \(-\text{CO}_\text{2}D\text{I}\);
9. \(-\text{CO}_\text{2}\)-lower alkyl;
10. \(-\text{S(O)}_\text{2}NR^\text{H}(D^\text{I})\);
11. lower alkyl-O-lower alkyl;
12. \(-\text{CN}\);
13. lower alkyl-OD^\text{I};
14. arylalkoxy;
15. \(-\text{C(O)}NR^\text{H}(D^\text{I})\); or
16. aryl;

(f) mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is selected from S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or the heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally, 1, 2, 3, or 4 additional N atoms; wherein the substituents are each independently:

1. halo;
2. alkoxy;
3. \(-\text{S(O)}_\text{2}\)-lower alkyl;
4. hydroxy;
5. \(-\text{S(O)}_\text{2}\)-haloalkyl;
6. lower alkyl;

7. haloalkyl;
8. \(-\text{CO}_\text{2}D\text{I}\);
9. \(-\text{CO}_\text{2}\)-lower alkyl;
10. \(-\text{S(O)}_\text{2}NR^\text{H}(D^\text{I})\);
11. lower alkyl-O-lower alkyl;
12. \(-\text{CN}\);
13. lower alkyl-OD^\text{I};
14. arylalkoxy;
15. \(-\text{C(O)}NR^\text{H}(D^\text{I})\); or
16. aryl;
(7) haloalkyl;
(8) -CO₂D⁺;
(9) -CO₂-lower alkyl;
(10) -S(O)₂NR₁⁰(D')⁺;
(11) -lower alkyl-O-lower alkyl;
(12) -N(D')S(O)₂-lower alkyl;
(13) lower alkyl-OD⁺;
(14) -N(D')S(O)₂-haloalkyl;
(15) -C(O)NR₁⁰(D')⁺; or
(16) aryl;

R₇⁰ is:
(a) alkyl;
(b) substituted alkyl;
(c) alkyl-N(D')S(O)₂-aryl;
(d) substituted alkyl-cycloalkyl;
(e) substituted alkyl-heterocyclic ring; or
(f) arylalkoxy;

R₇⁷ is:
(a) -OD⁺;
(b) alkoxy; or
(c) -NR₇⁰R₇⁰⁺;

R₇⁰ and R₇⁰ are each independently:
(a) hydrogen;
(b) hydroxy;
(c) alkoxy;
(d) lower alkyl; or
(e) substituted lower alkyl; or

R₇⁰ and R₇⁰ taken together with the nitrogen to which they are attached form a heterocyclic ring;

R₇⁰ and R₇⁰ are each independently:
(a) hydrogen;
(b) lower alkyl; or
(c) halo;
R⁶⁰ and R⁶⁹ are each independently:
(a) hydrogen; or
(b) lower alkyl; or

R⁶⁰ and R⁶⁹ taken together with the carbon to which they are attached form a
cycloalkyl ring;
m is an integer from 0 to 6;
D¹, R¹, R², R¹², K, X⁵, a, p and o are as defined therein; and
with the proviso that the compounds of formula XII must contain at least
one nitrite, nitrate, thionitrite or thionitrate group;

wherein the compound of formula (XIII) is:

![Chemical Structure](attachment:chemical_structure.png)

wherein:
X¹³ and Y¹³ are each independently:
(a) =C(H)-; or
(b) =N-;

R⁹⁰ is:
(a) lower alkyl;
(b) lower alkyl-OD¹⁺;
(c) alkenyl;
(d) lower alkyl-CN;
(e) lower alkyl-CO₂D¹⁺;
(f) aryl;
(g) heterocyclic ring; or

R⁹¹ is:
(i) heterocyclicalkyl;

(a) mono-, di- or tri-substituted phenyl, wherein the substituents are
each independently:

(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl;
(7) lower alkyl;
(8) \(-\text{CO}_2\text{D}^1\);
(9) \(-\text{CO}_2\)-lower alkyl;
(10) lower alkyl-\text{OD}^1;
(11) lower alkyl-\text{NR}^{12}\text{R}^{13};
(12) lower alkyl-\text{CO}_2\text{D}^1; or
(13) \text{-OD}^1;

(b) mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or the heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally, 1, 2, 3, or 4 additional N atoms; wherein the substituents are each independently:

(1) hydrogen;
(2) halo;
(3) alkoxy;
(4) alkylthio;
(5) CN;
(6) haloalkyl;
(7) lower alkyl;
(8) \(-\text{CO}_2\text{D}^1\);
(9) \(-\text{CO}_2\)-lower alkyl;
(10) lower alkyl-\text{OD}^1;
(11) lower alkyl-\text{NR}^{12}\text{R}^{13};
(12) lower alkyl-\text{CO}_2\text{D}^1; or
(13) \text{-OD}^1;
D¹, R¹, R¹², and R¹³, are as defined herein; and
with the proviso that the compounds of formula XIII must contain at least
one nitrite, nitrate, thionitrite or thionitrate group;
wherein the compound of formula (XIV) is:

![Chemical Structure](image)

wherein:

X¹⁴ is:

(a) -C(O)-; or
(b) -C(S)-;

Y¹⁴ is:

(a) -O-; or
(b) -S-;

A¹⁴, B¹⁴, D¹⁴ is:

(a) -CR¹=CR³-CR²=CR⁵-;
(b) -CR¹(R¹)-CR³(R³)-C(O)-;
(c) -CR¹(R¹)-C(O)-CR³(R³)-;
(d) -C(O)-CR¹(R¹)-CR³(R³)-;
(e) -CR¹(R¹)-O-C(O)-;
(f) -C(O)-O-CR¹(R¹)-;
(g) -O-C(O)-CR¹(R¹)-;
(h) -S-N=CR¹-;
(i) -O-N=CR¹-;
(j) -CR³(R³)-NR³-C(O)-;
(k) -C(O)-NR³-CR¹(R¹)-;
(l) -NR²-C(=O)-CR⁴(=O)⁻;
(m) -CR⁴(=O)-S-C(=O)⁻;
(n) -C(=O)-S-CR⁴(=O)⁻;
(o) -S-C(=O)-CR²(=O)⁻;
(p) -CR²=CR⁴-C(=O)⁻;
(q) -C(=O)-CR²=CR⁴⁻;
(r) -O-CR⁴=CR²⁻;
(s) -S-CR²=CR⁴⁻;
(t) -NR²-CR²=CR⁴⁻;
(u) -S-NR²-C(=O)⁻;
(v) -O-NR²-C(=O)⁻; or
(w) -NR²-N=CR²⁻;

R¹, R², R³, R⁴, R⁵, R⁶ and R⁷ are as defined herein; and
with the proviso that the compounds of formula XIV must contain at least
one nitrite, nitrate, thionitrite or thionitrate group;

wherein the compound of formula (XV) is:

\[
\begin{array}{c}
\text{XV} \\
\end{array}
\]

wherein:

\[X^{15}\] is:

(a) -C(=O)⁻;
(b) -CH₂⁻;
(c) -CH(OD¹)⁻;
(d) -C=O-N=O-lower alkyl⁻;
(e) -O⁻;
(f) -S(O)₅⁻;
(g) -NR⁶⁻; or
(g) covalent bond;

Y10 is:

(a) aryl; or
(b) cycloalkyl;

Z10 is:

(a) hydrogen;
(b) alkyl;
(c) haloalkyl;
(d) cycloalkyl;
(e) alkoxy;
(f) alkylthio;
(g) cycloalkylalkythio;
(h) cycloalkylalkoxy;
(i) -OD1;
(j) halo;
(k) cyano;
(l) -C(O)OD1;
(m) -C(O)-lower alkyl;

R10 is:

(a) hydrogen;
(b) lower alkyl;
(c) -C(O)-lower alkyl; or
(d) K;

R1, D1, K and o are as defined herein; and

with the proviso that the compounds of formula XV contain at least one nitrite, nitrate, thionitrite or thionitrate group;
wherein the compound of formula (XVI) is:

![Chemical Structure](image)

XVI

5

wherein:

X^{16} is:

(a)

![Chemical Structure](image)

or

(b)

![Chemical Structure](image)

Y^{16} is:

(a) hydrogen;
(b) halogen;
(c) methyl; or
(d) ethyl;

Z^{16} is:
(a) hydrogen; or
(b) methyl;

R^9 is:
(a) chloro; or
(b) fluoro;

R^9 and R^{10} are each independently:
(a) hydrogen; or
(b) fluoro;

R^{10} is:
(a) chloro;
(b) fluoro;
(c) hydrogen;
(d) methyl;
(e) ethyl;
(f) methoxy;
(g) ethoxy; or
(i) hydroxy;

R^{11} is:
(a) chloro;
(b) fluoro;
(c) trifluoromethyl; or
(d) methyl;

R^{13} is:
(a) lower alkyl;
(b) lower alkenyl;
(c) alkoxy; or
(d) alkylthio;

K and X^{13} are as defined herein; and

with the proviso that the compounds of formula XVI must contain at least

one nitrite, nitrate, thionitrite or thionitrate group.

2. A composition comprising the compound of claim 1 and a
pharmaceutically acceptable carrier.

3. A method for treating, preventing or reducing inflammation, pain or
fever in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.

4. A method for treating or preventing a gastrointestinal disorder, or improving the gastrointestinal properties of a COX-2 inhibitor in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.

5. The method of claim 4, wherein the gastrointestinal disorder is an inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome, ulcerative colitis, a peptic ulcer, a stress ulcer, a bleeding ulcer, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison syndrome, gastroesophageal reflux disease, a bacterial infection, short-bowel (anastomosis) syndrome, or a hypersecretory state associated with systemic mastocytosis or basophilic leukemia and hyperhistaminemia.

6. A method for facilitating wound healing in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.

7. The method of claim 6, wherein the wound is an ulcer.

8. A method for treating or reversing renal or other toxicities in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.

9. A method for treating or preventing a disorder resulting from elevated levels of COX-2 in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.

10. The method of claim 9, wherein the disorder resulting from elevated levels of COX-2 is angiogenesis, arthritis, asthma, bronchitis, menstrual cramps, premature labor, tendinitis, bursitis, skin-related condition, neoplasia, inflammation in disease, ophthalmic disorder, pulmonary inflammation, central nervous system disorder, allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis, inflammation and/or microbial infection, cardiovascular disorder, urinary and/or urological disorder, endothelial dysfunction, preservation of organs and tissues, inhibition and/or prevention of activation, adhesion and infiltration of neutrophils at the site of inflammation, or inhibition and/or prevention of platelet aggregation.
11. The composition of claim 2, further comprising at least one therapeutic agent.

12. The composition of claim 11, wherein the therapeutic agent is a steroid, a nonsteroidal antiinflammatory compound, a 5-lipoxygenase inhibitor, a leukotriene B₄ receptor antagonist, a leukotriene A₄ hydrolase inhibitor, a 5-HT agonist, a 3-hydroxy-3-methylglutaryl coenzyme A inhibitor, a H₂ receptor antagonist, an antineoplastic agent, an antiplatelet agent, a decongestant, a diuretic, a sedating or non-sedating anti-histamine, an inducible nitric oxide synthase inhibitor, an opioid, an analgesic, a Helicobacter pylori inhibitor, a proton pump inhibitor, an isoprostane inhibitor, or a mixture thereof.

13. A method for treating, preventing or reducing inflammation, pain or fever in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 11.

14. A method for treating or preventing a gastrointestinal disorder, or improving the gastrointestinal properties of a COX-2 inhibitor in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 11.

15. The method of claim 14, wherein the gastrointestinal disorder is an inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome, ulcerative colitis, a peptic ulcer, a stress ulcer, a bleeding ulcer, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison syndrome, gastroesophageal reflux disease, a bacterial infection, short-bowel (anastomosis) syndrome, or a hypersecretory state associated with systemic mastocytosis or basophilic leukemia and hyperhistaminemia.

16. A method for facilitating wound healing in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 11.

17. The method of claim 16, wherein the wound is an ulcer.

18. A method for treating or reversing renal or other toxicities in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 11.

19. A method for treating or preventing a disorder resulting from elevated levels of COX-2 in a patient in need thereof comprising administering to
the patient a therapeutically effective amount of the composition of claim 11.

20. The method of claim 19, wherein the disorder resulting from elevated levels of COX-2 is angiogenesis, arthritis, asthma, bronchitis, menstrual cramps, premature labor, tendinitis, bursitis, skin-related condition, neoplasia, inflammation in disease, ophthalmic disorder, pulmonary inflammation, central nervous system disorder, allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis, inflammation and/or microbial infection, cardiovascular disorder, urinary and/or urological disorder, endothelial dysfunction, preservation of organs and tissues, inhibition and/or prevention of activation, adhesion and infiltration of neutrophils at the site of inflammation, or inhibition and/or prevention of platelet aggregation.

21. A composition comprising at least one compound of claim 1 or a pharmaceutically acceptable salt thereof, and at least one compound that donates, transfers or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase.

22. The composition of claim 21 further comprising a pharmaceutically acceptable carrier.

23. The composition of claim 21, wherein the compound that donates, transfers, or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor or is a substrate for nitric oxide synthase is an S-nitrosothiol.

25. The composition of claim 23, wherein the S-nitrosothiol is:
 (i) $\text{HS}(\text{C}$(R$_x$)$(\text{R}_y$))$_{mn}$SNO;
 (ii) $\text{ONS}(\text{C}$(R$_x$)$(\text{R}_y$))$_{mn}$R$_v$; or
 (iii) $\text{H}_2\text{N-CH(CO$_2$H)-(CH$_2$)$_{mm}$}-\text{C(O)NH-CH(CH$_2$SNO)-C(O)NH-CH$_2CO_2$H}$; wherein mm is an integer from 2 to 20; R$_x$ and R$_y$ are each independently a hydrogen, an alkyl, a cycloalkoxy, a halogen, a hydroxy, an hydroxyalkyl, an alkoxyalkyl, an arylheterocyclic ring, a cycloalkylalkyl, a heterocyclicalkyl, an
alkoxy, a haloalkoxy, an amino, an alkylamino, a dialkylamino, an arylamino, a diarylamino, an alkylarylamine, an alkoxylhaloalkyl, a haloalkoxy, a sulfonic acid, a sulfonic ester, an alkylsulfonic acid, an arylsulfonic acid, an arylalkoxy, an alkylthio, an arylthio, a cyano, an aminoalkyl, an aminoaryl, an alkoxy, an aryl, an arylalkyl, a carboxamido, an alkylcarboxamido, an arylcarboxamido, an amidyl, a carboxyl, a carbamoyl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxyl, an arylcarboxyl, an ester, a carboxylic ester, an alkylcarboxylic ester, an arylcarboxylic ester, a haloalkoxy, a sulfonamido, an alkylsulfonamido, an arylsulfonamido, an alkylsulfonyl, an alkylsulfonfuryl, an arylsulfonyloxy, a carbamoyl, a urea, a nitro, -T-Q-, or (C(R))(R),-T-Q, or R, and R, taken together are an oxo, a methanithial, a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group; Q is -NO or -NO2; and T is independently a covalent bond, a carbonyl, an oxygen, -S(O)2- or -N(R)2R-, wherein o is an integer from 0 to 2, R, is a lone pair of electrons, a hydrogen or an alkyl group; R, is a hydrogen, an alkyl, an aryl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxylic ester, an arylcarboxylic ester, an alkylcarboxamido, an arylcarboxamido, an alkylsulfanyl, an alkylsulfonfuryl, an alkylsulfonamido, an alkylsulfonyloxy, an alkylsulfonyloxy, an arylsulfonfuryl, a sulfonamido, a carboxamido, a carboxylic ester, an aminoaryl, an aminoaryl, -CH2-C(T-Q)(R)(R), or -(N2O2-)*M+, wherein M+ is an organic or inorganic cation; with the proviso that when R, is -CH2-C(T-Q)(R)(R) or -(N2O2-)*M+; then "-T-Q" can be a hydrogen, an alkyl group, an alkoxyalkyl group, an aminoalkyl group, a hydroxy group or an aryl group.

26. The composition of claim 21, wherein the compound that donates, transfers, or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase is L-arginine, L-homoarginine, N-hydroxy-L-arginine, nitrosated L-arginine, nitrosylated L-arginine, nitrosated N-hydroxy-L-arginine, nitrosylated N-hydroxy-L-arginine, citrulline, ornithine, glutamine, or an arginase inhibitor.

27. The composition of claim 21, wherein the compound that donates, transfers, or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase is:

(i) a compound that comprises at least one ON-O-, ON-N- or ON-C-
group;

(ii) a compound that comprises at least one O₂N-O-, O₂N-N-, O₂N-S- or O₂N-C- group;

(iii) a N-oxo-N-nitrosoamine having the formula: R¹R²-N(O-M')-NO,

wherein R¹ and R² are each independently a polypeptide, an amino acid, a sugar, an oligonucleotide, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted hydrocarbon, or a heterocyclic group, and M' is an organic or inorganic cation.

28. The composition of claim 27, wherein the compound comprising at least one ON-O-, ON-N- or ON-C- group is an ON-O-polypeptide, an ON-N-polypeptide, an ON-C-polypeptide, an ON-O-amino acid, an ON-N-amino acid, an ON-C-amino acid, an ON-O-sugar, an ON-N-sugar, an ON-C-sugar, an ON-O-oligonucleotide, an ON-N-oligonucleotide, an ON-C-oligonucleotide, a straight or branched, saturated or unsaturated, substituted or unsubstituted, aliphatic or aromatic ON-O-hydrocarbon, a straight or branched, saturated or unsaturated, substituted or unsubstituted, aliphatic or aromatic ON-N-hydrocarbon, a straight or branched, saturated or unsaturated, substituted or unsubstituted, aliphatic or aromatic ON-C-hydrocarbon, an ON-O-heterocyclic compound, an ON-N-heterocyclic compound or a ON-C-heterocyclic compound.

29. The composition of claim 27, wherein compound comprising at least one O₂N-O-, O₂N-N-, O₂N-S- or O₂N-C- group is an O₂N-O-polypeptide, an O₂N-N-polypeptide, an O₂N-S-polypeptide, an O₂N-C-polypeptide, an O₂N-O-amino acid, O₂N-N-amino acid, O₂N-S-amino acid, an O₂N-C-amino acid, an O₂N-O-sugar, an O₂N-N-sugar, O₂N-S-sugar, an O₂N-C-sugar, an O₂N-O-oligonucleotide, an O₂N-N-oligonucleotide, an O₂N-S-oligonucleotide, an O₂N-C-oligonucleotide, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted O₂N-O-hydrocarbon, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted O₂N-N-hydrocarbon, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted O₂N-S-hydrocarbon, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted O₂N-C-hydrocarbon, an O₂N-O-heterocyclic compound, an O₂N-N-heterocyclic compound, an O₂N-S-heterocyclic compound or an O₂N-C-heterocyclic compound.
30. The composition of claim 21, further comprising at least one therapeutic agent.

31. The composition of claim 30, wherein the therapeutic agent is a steroid, a nonsteroidal antiinflammatory compound, a 5-lipoxygenase inhibitor, a leukotriene B₄ receptor antagonist, a leukotriene A₄ hydrolase inhibitor, a 5-HT agonist, a 3-hydroxy-3-methylglutaryl coenzyme A inhibitor, a H₂ receptor antagonist, an antineoplastic agent, an antplatelet agent, a decongestant, a diuretic, a sedating or non-sedating anti-histamine, an inducible nitric oxide synthase inhibitor, an opioid, an analgesic, a Helicobacter pylori inhibitor, a proton pump inhibitor, an isoprostane inhibitor, or a mixture thereof.

32. A method for treating, preventing or reducing inflammation, pain or fever in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 21 or 30.

33. A method for treating or preventing a gastrointestinal disorder, or improving the gastrointestinal properties of a COX-2 inhibitor in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 21 or 30.

34. The method of claim 33, wherein the gastrointestinal disorder is an inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome, ulcerative colitis, a peptic ulcer, a stress ulcer, a bleeding ulcer, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison syndrome, gastroesophageal reflux disease, a bacterial infection, short-bowel (anastomosis) syndrome, or a hypersecretory state associated with systemic mastocytosis or basophilic leukemia and hyperhistaminemia.

35. A method for facilitating wound healing in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 21 or 30.

36. The method of claim 35, wherein the wound is an ulcer.

37. A method for treating or reversing renal or other toxicities in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 21 or 30.

38. A method for treating or preventing a disorder resulting from elevated levels of COX-2 in a patient in need thereof comprising administering to
the patient a therapeutically effective amount of the composition of claim 21 or 30.

39. The method of claim 38, wherein the disorder resulting from elevated levels of COX-2 is angiogenesis, arthritis, asthma, bronchitis, menstrual cramps, premature labor, tendinitis, bursitis, skin-related condition, neoplasia, inflammation in disease, ophthalmic disorder, pulmonary inflammation, central nervous system disorder, allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis, inflammation and/or microbial infection, cardiovascular disorder, urinary and/or urological disorder, endothelial dysfunction, preservation of organs and tissues, inhibition and/or prevention of activation, adhesion and infiltration of neutrophils at the site of inflammation, or inhibition and/or prevention of platelet aggregation.

40. A kit comprising at least one compound of claim 1 or a pharmaceutically acceptable salt thereof.

41. A kit comprising at least one compound of claim 1 or a pharmaceutically acceptable salt thereof, and at least one compound that donates, transfers or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase.

42. The kit of claim 41, wherein the compound of claim 1 or a pharmaceutically acceptable salt thereof, and the at least one compound that donates, transfers or releases nitric oxide, induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase are separate components in the kit or are in the form of a composition in the kit.

43. A kit comprising at least one compound of claim 1 or a pharmaceutically acceptable salt thereof, and at least one therapeutic agent.

44. The kit of claim 43, wherein the compound of claim 1 or a pharmaceutically acceptable salt thereof, and the at least one therapeutic agent are separate components in the kit or are in the form of a composition in the kit.

45. A compound selected from the group consisting of 4-[5-(4-chlorophenyl)-3-((nitrooxy)methyl)-3-hydroxyrazolyl] benzenesulfonamide, 4-[5((nitrooxy)methyl)-3-phenylisoxazol-4-yl] benzenesulfonamide, 2-(1-methyl-4-(nitrosothio)-4-piperidyl) ethyl 3-(N-[(4-(5-methyl-3-phenylisoxazol-4-
yl)phenyl)sulfonyl)carbamoyl)propanoate, (2-{1-[(4-chlorophenyl)methyl]-5-methoxy-2-methylindol-3-yl}ethyl)nitrooxy, 1-(3-(4-fluorophenyl)-7-(nitroxymethyl)(3a-hydroimidazolo(1,2-a)pyridin-2-yl)-4-(methylsulfonyl)benzene, ethyl 6-chloro-8-((nitroxymethyl)-2-(trifluoromethyl)-2H-chromene-3-carboxylate, 2-{1-[(4-chlorophenyl)carbonyl]-5-methoxy-2-methylindol-3-yl}-N-(2-methyl-2-(nitrosothio)propyl)acetamide, ethyl (2Z)-3-(4-chlorophenyl)-3-(4-(methylsulfonyl)phenyl)-2-(2-(nitrooxy)ethyl)prop-2-enoate, (2Z)-3-(4-chlorophenyl)-3-(4-(methylsulfonyl)phenyl)-2-(2-(nitrooxy)ethyl)prop-2-enoic acid, (2Z)-3-(4-chlorophenyl)-2-(2-hydroxyethyl)-N-(2-methyl-2-(nitrosothio)propyl)-3-(4-(methylsulfonyl)phenyl)prop-2-enoamide, 1-(5-methyl-1-(2-methyl-2-(nitrosothio)propyl)pyrrol-2-yl)-4-(methylsulfonyl)benzene, 3-{4-(1-methyl-1-(nitrosothio)ethyl)-2-oxo-1,3-oxazolidin-3-yl}propyl (2Z)-4-acetyloxy-2-(4-fluorophenyl)-3-(4-(methylsulfonyl)phenyl)but-2-enoate, (2Z)-3-(4-fluorophenyl)-3-[N-methyl-N-(2-methyl-2-(nitrosothio)propyl)carbamoyl]-2-(4-(methylsulfonyl)phenyl)prop-2-enyl acetate, 2-(1-methyl-4-(nitrosothio)-4-piperidyl)ethyl (2Z)-3-(4-acetyloxy-2-(4-fluorophenyl)-3-(4-(methylsulfonyl)phenyl)but-2-enoate, (3Z)-4-(4-chlorophenyl)-3-(ethoxycarbonyl)-4-(4-(methylsulfonyl)phenyl)but-3-enoic acid, 3-methyl-N-{[4-(5-methyl-3-phenylisoxazol-4-yl)phenyl]sulfonyl}-3-(nitrosothio)butanamide, 2-methyl-2-(nitrosothio)propyl-5-(4-chlorophenyl)-1-(4-sulfamoylphenyl) pyrazole-3-carboxylate, 4-(4-fluorophenyl)-5-(4-(methylsulfonyl)phenyl)-2-{4-[(nitroxy)methyl]phenyl}methyl)-2-hydroxypyridazin-3-one, 1-(1-(2-hydroxyethyl)-4-benzylpyrazol-3-yl)-4-(methylsulfonyl)benzene, 4-(methylsulfonyl)-1-[1-(2-nitrooxy)ethyl]-4-benzylpyrazol-5-yl]benzene, 4-(1-cyclohexyl-3-(hydroxymethyl)pyrazol-5-yl)-1-(methylsulfonyl)benzene and 4-{1-cyclohexyl-3-(nitrooxy)methyl}pyrazol-5-yl]-1-(methylsulfonyl)benzene.

46. A composition comprising at least one compound of claim 45 and a pharmaceutically acceptable carrier.

47. A kit comprising at least one compound of claim 45.

48. A composition comprising at least one parent COX-2 inhibitor of formula (I), formula (II), formula (III), formula (IV), formula (V), formula (VI), formula (VII), formula (IX), formula (X), formula (XI), formula (XII),), formula (XIII), formula (XIV), formula (XV) or formula (XVI), or a pharmaceutically
acceptable salt thereof, and at least one compound that donates, transfers or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase.

49. The composition of claim 48 further comprising a pharmaceutically acceptable carrier.

50. The composition of claim 48, wherein the compound that donates, transfers, or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor or is a substrate for nitric oxide synthase is an S-nitrosothiol.

52. The composition of claim 50, wherein the S-nitrosothiol is:

(i) \(\text{HS}(C(R_i)(R_j))_{mm}\text{SNO}_2 \);

(ii) \(\text{ONS}(C(R_i)(R_j))_{mm}\text{R}_{i'} \); or

(iii) \(\text{H}_2\text{N-CH(CO}_2\text{H)-(CH}_2\text{)}_{mm}\text{C(O)NH-CH(CH}_2\text{SNO)}\text{C(O)NH-CH}_2\text{CO}_2\text{H} \);

wherein mm is an integer from 2 to 20; \(R_i \) and \(R_j \) are each independently a hydrogen, an alkyl, a cycloalkoxy, a halogen, a hydroxy, an hydroxyalkyl, an alkoxyalkyl, an arylheterocyclic ring, a cycloalkylalkyl, a heterocyclicalkyl, an alkoxy, a haloalkoxy, an amino, an alkylaminoo, a dialkylaminoo, an arylaminoo, a diarylaminoo, an alkylarylamino, an arkoxyhaloalkyl, a haloalkoxy, a sulfonic acid, a sulfonic ester, an alkylsulfonic acid, an arylsulfonic acid, an arylalkoxy, an alkylthio, an arlythio, a cyano, an aminoalkyl, an aminoaryl, an alkoxy, an aryl, an arylalkyl, a carboxamido, an alkylcarboxamido, an arylcarboxamido, an amidyl, a carboxyl, a carbamoyl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxyn, an arylcarboxyn, an ester, a carboxylic ester, an alkylcarboxylic ester, an arylcarboxylic ester, a haloalkoxy, a sulfonamido, an alkylsulfonamido, an arylsulfonamido, an alkylsulfonoyl, an alkylsulfonyl, an arylsulfonyl oxy, a carbamoyl, a urea, a nitro, \(-T\cdotQ\cdot\) or \(C(R_i)(R_j))_{mm}\cdotT\cdotQ\cdot\) or \(R_i \) and \(R_j \) taken together are an oxo, a methanithial, a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group; \(Q \) is \(-\text{NO} \) or \(-\text{NO}_2 \); and \(T \) is independently a covalent bond, a carbonyl, an oxygen, \(-\text{S(O)}_n \) or \(-\text{N(R_i)}R_{i'} \), wherein \(o \) is an integer from 0 to
2. R₁ is a lone pair of electrons, a hydrogen or an alkyl group; R₂ is a hydrogen, an
alkyl, an aryl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxylic
ester, an arylcarboxylic ester, an alkylcarboxamido, an arylcarboxamido, an
alkylsulfinyl, an alkylsulfonyl, an alkylsulfonyleoxy, an arylsulfinyl, an
aryl sulfonyleoxy, an arylsulfonyl, a sulfonamido, a carboxamido, a carboxylic ester,
an aminoalkyl, an aminoaryl, -CH₂-C(T-Q)(R₁)(R₂), or -(N₂O₂⁻)⁺M⁺, wherein M⁺ is an
organic or inorganic cation; with the proviso that when R₁ is -CH₂-C(T-Q)(R₁)(R₂) or
-(N₂O₂⁻)⁺M⁺; then "-T-Q" can be a hydrogen, an alkyl group, an alkoxyalkyl group,
an aminoalkyl group, a hydroxy group or an aryl group.

53. The composition of claim 48, wherein the compound that donates,
transfers, or releases nitric oxide, or induces the production of endogenous nitric
oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide
synthase is L-arginine, L-homoarginine, N-hydroxy-L-arginine, nitrosated L-
arginine, nitrosylated L-arginine, nitrosylated N-hydroxy-L-arginine, nitrosylated N-
hydroxy-L-arginine, citrulline, ornithine, glutamine, or an arginase inhibitor.

54. The composition of claim 48, wherein the compound that donates,
transfers, or releases nitric oxide, or induces the production of endogenous nitric
oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide
synthase is:

(i) a compound that comprises at least one ON-O-, ON-N- or ON-C-
 group;

(ii) a compound that comprises at least one O₂N-O-, O₂N-N-, O₂N-S- or
 -O₂N-C- group;

(iii) a N-oxo-N-nitrosoamine having the formula: R¹R²-N(O-M⁺)-NO,

wherein R¹ and R² are each independently a polypeptide, an amino acid, a sugar, an
oligonucleotide, a straight or branched, saturated or unsaturated, aliphatic or
aromatic, substituted or unsubstituted hydrocarbon, or a heterocyclic group, and
M⁺ is an organic or inorganic cation.

55. The composition of claim 54, wherein the compound comprising at
least one ON-O-, ON-N- or ON-C- group is an ON-O-polypeptide, an ON-N-
polypeptide, an ON-C-polypeptide, an ON-O-amino acid, an ON-N-amino acid, an
ON-C-amino acid, an ON-O-sugar, an ON-N-sugar, an ON-C-sugar, an ON-O-
oligonucleotide, an ON-N-oligonucleotide, an ON-C-oligonucleotide, a straight or
branched, saturated or unsaturated, substituted or unsubstituted, aliphatic or
aromatic ON-O-hydrocarbon, a straight or branched, saturated or unsaturated,
substituted or unsubstituted, aliphatic or aromatic ON-N-hydrocarbon, a straight or
branched, saturated or unsaturated, substituted or unsubstituted, aliphatic or
aromatic ON-C-hydrocarbon, an ON-O-heterocyclic compound, an ON-N-
heterocyclic compound or a ON-C-heterocyclic compound.

56. The composition of claim 54, wherein compound comprising at least
one O₂N-O-, O₂N-N-, O₂N-S- or O₂N-C- group is an O₂N-O-polypeptide, an O₂N-N-
polypeptide, an O₂N-S-polypeptide, an O₂N-C-polypeptide, an O₂N-O-amino acid,
O₂N-N-amino acid, O₂N-S-amino acid, an O₂N-C-amino acid, an O₂N-O-sugar, an
O₂N-N-sugar, O₂N-S-sugar, an O₂N-C-sugar, an O₂N-O-oligonucleotide, an O₂N-N-
oligonucleotide, an O₂N-S-oligonucleotide, an O₂N-C-oligonucleotide, a straight or
branched, saturated or unsaturated, aliphatic or aromatic, substituted or
unsaturated O₂N-O-hydrocarbon, a straight or branched, saturated or
unsaturated, aliphatic or aromatic, substituted or unsubstituted O₂N-N-
hydrocarbon, a straight or branched, saturated or unsaturated, aliphatic or
aromatic, substituted or unsubstituted O₂N-S-hydrocarbon, a straight or branched,
saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted O₂N-
C-hydrocarbon, an O₂N-O-heterocyclic compound, an O₂N-N-heterocyclic
compound, an O₂N-S-heterocyclic compound or an O₂N-C-heterocyclic compound.

57. The composition of claim 48, further comprising at least one
therapeutic agent.

58. The composition of claim 57, wherein the therapeutic agent is a
steroid, a nonsteroidal antiinflammatory compound, a 5-lipoxygenase inhibitor, a
leukotriene B₄ receptor antagonist, a leukotriene A₄ hydrolase inhibitor, a 5-HT
agonist, a 3-hydroxy-3-methylglutaryl coenzyme A inhibitor, a H₂ receptor
antagonist, an antineoplastic agent, an antiplatelet agent, a decongestant, a diuretic,
a sedating or non-sedating anti-histamine, an inducible nitric oxide synthase
inhibitor, an opioid, an analgesic, a Helicobacter pylori inhibitor, a proton pump
inhibitor, an isoprostane inhibitor, or a mixture thereof.

59. A method for treating, preventing or reducing inflammation, pain or
fever in a patient in need thereof comprising administering to the patient a
therapeutically effective amount of the composition of claim 48 or 57.
60. A method for treating or preventing a gastrointestinal disorder, or improving the gastrointestinal properties of a COX-2 inhibitor in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 48 or 57.

61. The method of claim 60, wherein the gastrointestinal disorder is an inflammatory bowel disease, Crohn’s disease, gastritis, irritable bowel syndrome, ulcerative colitis, a peptic ulcer, a stress ulcer, a bleeding ulcer, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison syndrome, gastroesophageal reflux disease, a bacterial infection, short-bowel (anastomosis) syndrome, or a hypersecretory state associated with systemic mastocytosis or basophilic leukemia and hyperhistaminemia.

62. A method for facilitating wound healing in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 48 or 57.

63. The method of claim 62, wherein the wound is an ulcer.

64. A method for treating or reversing renal or other toxicities in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 48 or 57.

65. A method for treating or preventing a disorder resulting from elevated levels of COX-2 in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 48 or 57.

66. The method of claim 65, wherein the disorder resulting from elevated levels of COX-2 is angiogenesis, arthritis, asthma, bronchitis, menstrual cramps, premature labor, tendinitis, bursitis, skin-related condition, neoplasia, inflammation in disease, ophthalmic disorder, pulmonary inflammation, central nervous system disorder, allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis, inflammation and/or microbial infection, cardiovascular disorder, urinary and/or urological disorder, endothelial dysfunction, preservation of organs and tissues, inhibition and/or prevention of activation, adhesion and infiltration of neutrophils at the site of inflammation, or inhibition and/or prevention of platelet aggregation.

67. A kit comprising at least one parent COX-2 inhibitor and at least one compound that donates, transfers, or releases nitric oxide, or induces the
production of endogenous nitric oxide or endothelium-derived relaxing factor or is a substrate for nitric oxide synthase, or a pharmaceutically acceptable salt thereof.

68. The kit of claim 67, further comprising at least one therapeutic agent.

69. The kit of claim 67, wherein the parent COX-2 inhibitor and the compound that donates, transfers, or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase are separate components in the kit.

70. The kit of claim 67, wherein the parent COX-2 inhibitor and the compound that donates, transfers, or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase are in the form of a composition in the kit.
Figure 2

Log M (Concentration)

% Maximum Relaxation

(n=6-12)

ISDN
Example 2b
Example 2a
Figure 4

(\(n = 4-16\))

ISDN
Example 20d
Example 20c
Figure 5

Dose (μmol/kg, p.o.)

Celecoxib

Example 2a Example 2b

Paw Volume Increase (ml)
A. CLASSIFICATION OF SUBJECT MATTER
 IPC(7) : A61K 31/40, 31/415, 31/421, 31/50; C07D 207/325, 231/05, 237/14, 263/04, 263/06
 US CL. : 514/247, 376, 403, 376; 544/232, 238, 239, 240; 548/228, 379.4, 379.7, 561
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 U.S. : 514/247, 376, 403, 376; 544/232, 238, 239, 240; 548/228, 379.4, 379.7, 561
 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CAS ONLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5,932,598 A (TALLEY et al) 03 August 1999, see column 2, formula 1.</td>
<td>1-66</td>
</tr>
<tr>
<td>A</td>
<td>US 6,004,960 A (Li et al) 21 December 1999, see column 2, formula 1.</td>
<td>1-66</td>
</tr>
<tr>
<td>A</td>
<td>US 5,710,140 A (DUCHARMÉ et al) 20 January 1998, see column 2, formula 1.</td>
<td>1-66</td>
</tr>
<tr>
<td>A</td>
<td>US 5,935,990 A (KHANNA et al) 10 August 1999, see column 3, formula 1.</td>
<td>1-66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special categories of cited documents:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>"A" document defining the general state of the art which is not considered to be of particular relevance</td>
<td>"P"</td>
<td>later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</td>
</tr>
<tr>
<td>"E" earlier application or patent published on or after the international filing date</td>
<td>"X"</td>
<td>document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</td>
</tr>
<tr>
<td>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</td>
<td>"Y"</td>
<td>document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</td>
</tr>
<tr>
<td>"O" document referring to an oral disclosure, use, exhibition or other means</td>
<td>"&"</td>
<td>document member of the same patent family</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search
08 March 2001 (08.03.2001)

Date of mailing of the international search report
18 APR 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703)305-3230

Authorized officer
Deepak Rao
Telephone No. (703) 308-1600

Form PCT/ISA/210 (second sheet) (July 1998)
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claim Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claim Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claim Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Continuation Sheet

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☒ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 1-66 (in part) i.e., compounds of formula II and VII

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest □ The additional search fees were accompanied by the applicant’s protest.
☒ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)
BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claim(s) 1-66 (in part), drawn to compounds of formula VII, corresponding composition, method of use and kit.

Group II, claim(s) 1-66 (in part), drawn to compounds of formula I, corresponding composition, method of use and kit.

Group III, claim(s) 1-66 (in part), drawn to compounds of formula II, corresponding composition, method of use and kit.

Group IV, claim(s) 1-66 (in part), drawn to compounds of formula III, corresponding composition, method of use and kit.

Group V, claim(s) 1-66 (in part), drawn to compounds of formula IV, corresponding composition, method of use and kit.

Group VI, claim(s) 1-66 (in part), drawn to compounds of formula V, corresponding composition, method of use and kit.

Group VII, claim(s) 1-66 (in part), drawn to compounds of formula VI, corresponding composition, method of use and kit.

Group VIII, claim(s) 1-66 (in part), drawn to compounds of formula VIII, corresponding composition, method of use and kit.

Group IX, claim(s) 1-66 (in part), drawn to compounds of formula IX, corresponding composition, method of use and kit.

Group X, claim(s) 1-66 (in part), drawn to compounds of formula X, corresponding composition, method of use and kit.

Group XI, claim(s) 1-66 (in part), drawn to compounds of formula XI, corresponding composition, method of use and kit.

Group XII, claim(s) 1-66 (in part), drawn to compounds of formula XII, corresponding composition, method of use and kit.

Group XIII, claim(s) 1-66 (in part), drawn to compounds of formula XIII, corresponding composition, method of use and kit.

Group XIV, claim(s) 1-66 (in part), drawn to compounds of formula XIV, corresponding composition, method of use and kit.

Group XV, claim(s) 1-66 (in part), drawn to compounds of formula XV, corresponding composition, method of use and kit.

Group XVI, claim(s) 1-66 (in part), drawn to compounds of formula XVI, corresponding composition, method of use and kit.

Group XVII, claim(s) 67-70, drawn to a kit.

The inventions listed as Groups I-XVII do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The inventions listed as Groups I-XVII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Groups I-XVI are drawn to structurally dissimilar compounds that lack a common core, which compounds are not art recognized equivalents of each other. There is no special technical feature that is common to all of the compounds as required by PCT Rule 13.2. Group XVII is drawn to a kit which is not coextensive with the compounds of Groups I-XVI, but in fact is of different scope and thus, can not be considered to being adapted with the compounds or sharing a common special technical feature.