G

(12) PATENT

(19) NO (11) 331543 (13) B1

NORGE (51) Int Cl.
GO6F 17/00 (2006.01)
GO6F 9/00 (2006.01)
GO6F 9/06 (2006.01)
GO6F 9/44 (2006.01)
GO6F 9/45 (2006.01)
GO6F 9/46 (2006.01)
GOG6F 13/00 (2006.01)
GO6F 15/16 (2006.01)
GOG6F 12/00 (2006.01)
GO6T 3/00 (2006.01)

Patentstyret
(21) Sgknadsnr 20041263 (86) Intinng.dag og
sgknadsnr
(22) Inng.dag 2004.03.25 (85)  Videreferingsdag
(24) Lepedag 2004.03.25 (30) Prioritet 2003.03.26, US, 401244
(41)  Almdilgj 2004.09.27
(45) Meddelt 2012.01.23
(73) Innehaver Microsoft Corp, One Microsoft Way, US-WA98052-6399 REDMOND, USA
(72) Oppfinner Stefan H Pharies, 525 E Roy Street, Apartment 301, US-WA98102 SEATTLE, USA
Sowmy K Srinivasan, 9755 228th Terrace NE, US-WA98053 REDMOND, USA
Natasha H Jethanandani, 800 137th Avenue NE, C9-204, US-WA98005 BELLEVUE, USA
Yann Erik Christensen, 817 16th Avenue, US-WA98122 BELLEVUE, USA
Elena A Kharitidi, 413 239th Avenue NE, US-WA98074 SAMMAMISH, USA
Douglas M Purdy, 28634 NE 63rd Way, US-WA98014 CARNATION, USA
(74) Fullmektig Bryn Aarflot AS, Postboks 449 Sentrum, 0104 OSLO, Norge
(54) Benevnelse Typeoverganger,
(56) Anforte
publikasjoner EP 1030 253 A1

(57) Sammendrag

Fremgangsmater, systemer og dataprogramprodukter for & konvertere et objekt av én type til et objekt av en
annen type som muliggjer endring eller individuell tilpasning av kjgrematen til konverteringsprosessen.
Konverteringen kan bli utfert i en utvidbar serialiseringsmotor som serialiserer, deserialiserer og konverterer
objekter av forskjellig type. Kjgrematen til serialiseringsmotoren blir endret av én eller flere utvidelsesrutiner
som implementerer de enskede spesialtilpasninger eller utvidelser uten & kreve utskiftning av andre
eksisterende rutiner. Basert pa typeinformasjon, som er identifisert for et initielt objekt, blir objektet konvertert til
en mellomrepresentasjon som muliggjer modifikasjon under kjgring, inklusive modifikasjon av objektnavn,
objekttyper og objektdata. Mellomrepresentasjonen av det initielle objektet blir modifisert i henhold til
utvidelsesrutiner som endrer kjgrematen til serialiseringsmotoren, og mellomrepresentasjonen blir konvertert til
et endelig objekt og en endelig type.

Typeovugang-phefineaoo
(Deserialisering)
“Endellg Endelly
" e
380
‘Standard-
gm
Matkor Cmeoi- | | melom-
330 - reprasentasjon representasjon
Standard- 2604 2608
rutine
350 Bruker-
utvidelses-
" — . rutine
w' Initielf 3
m objekt
346




10

15

20

25

30

331543

1

Foreliggende oppfinnelse vedrarer serialisering av objekter. Mer spesifikt ved-
rerer foreliggende oppfinnelse fremgangsmater, systemer og dataprogramprodukter
for & konvertere objekter av én type til objekter av en annen type ved hjelp av utvidel-
sesrutiner som endrer kjgrematen til en serialiseringsmotor uten at det er ngdvendig
a skifte ut andre eksisterende rutiner i serialiseringsmotoren.

| generell forstand refererer serialisering til det & konvertere enkeltstaende eller
innrettinger av (nestede) minnelagrede objekter til en linezer sekvens av bit-oktetter
som er egnet for overfering til en fiernlokasjon, persistent lagring pa disk, etc. Motsatt
tar deserialisering den lineaere sekvensen av bit-oktetter og oppretter de motsvarende
enkeltstaende eller innrettinger av minnelagrede objekter. Utfart etter hverandre
resulterer typisk serialisering og deserialisering i at det blir generert et eksakt klon av
det opprinnelige objektet.

Tradisjonelt har serialiseringskode blitt skrevet som et monolittisk program,
uten mulighet for individuell tilpasning bortsett fra & skifte ut hele programmet. Mang-
elen p& mulighet for individuell tilpasning eller utvidbarhet gjer serialiserings-
mekanismen lite fleksibel for brukere, inklusive utviklere og andre interesserte parter.
Med en monolittisk implementasjon er stegvise forbedringer eller individuelle
tilpasninger for & adressere et gitt problem direkte ofte ikke mulig, og kan kreve
tungvinte utenomgaelser eller ganske enkelt utelukke visse gnskede operasjoner.
Dersom individuelle tilpasninger skal foretas uansett, er typisk standardrutiner som
implementerer nyttig funksjonalitet ikke tilgjengelige for utvikleren, og ma derfor bli
implementert pa nytt, noe som i vesentlig grad gker (og ofte uoverkommeliggjer)
arbeidet som er ngdvendig for & utvikle den anskede tilpasningen. Som falge av dette
kan typisk ny funksjonalitet bli lagt til i serialiseringskoden av utviklerne av
serialiseringskoden, noe som hindrer sluttbrukere i & utvikle sine egne forbedringer og
forbedre eksisterende funksjonalitet.

Selv om en eksakt kopi av et objekt ofte er malet for serialisering og
deserialisering, kan konvertering av objekttyper, -navn og -data under kjgring veere
onsket i noen tilfeller. Som angitt ovenfor kan serialisering og deserialisering for
eksempel bli anvendt for & overfare et objekt til en fiernlokasjon. Fjernlokasjonen kan

forvente visse typer objekter, objektdata og objektnavn som er forskjellige fra



10

15

20

25

30

331543

2

kildeobjektet. Tradisjonell serialiseringskode kan veere skrevet for & utfare objekt-
transformasjoner, men transformeringen kan ikke bli lagt til under kjering og er den
samme for alle brukere, noe som ikke tar hensyn til at forskjellige brukere vil kunne
ha forskjellige behov. Selv om en gitt transform kan vaere veldig viktig for en gitt
bruker pa et gitt tidspunkt, kan transformens generelle relevans vaere ubetydelig for
brukermassen som helhet, og derfor ikke implementert.

Tradisjonell serialiseringskode har ogsa en tendens til & tilby liten fleksibilitet
med hensyn til det a identifisere objekter & konvertere, eller & basere konverteringer
pa data inneholdt i et objekt. Felgelig er det gnskelig med fremgangsmater, systemer
og dataprogramprodukter for & konvertere objekter av én type til objekter av en annen
type, basert pa spesialiserte rutiner for & endre serialisering og deserialisering under
kjgring, uten at det er ngdvendig & re-implementere standardrutiner.

| et farste aspekt tilveiebringer oppfinnelsen en fremgangsmate, som utfgres i
et datasystem som omfatter en utvidbar serialiseringsmotor som serialiserer og
deserialiserer dataobjekter av forskjellig type, for 4 konvertere et initielt objekt av en
initiell type til et endelig objekt av en endelig type, der fremgangsmaten muliggjer
endring av kjgrematen til serialiseringsmotoren gjennom én eller flere
utvidelsesrutiner uten at det er nadvendig & bytte ut én eller flere eksisterende rutiner
i serialiseringsmotoren, idet fremgangsmaten omfatter trinn for & identifisere
typeinformasjon for et initielt objekt av en initiell type som mottas for
kjeretidsprosessering av serialiseringsmotoren, basert pa typeinformasjonen,
konvertere det initielle objektet til en mellomrepresentasjon av det initielle objektet
som er egnet for kjgretidsmodifisering, modifisere mellomrepresentasjonen av det
initielle objektet i henhold til én eller flere utvidelsesrutiner, og med det endre
kjgrematen til serialiseringsmotoren, konvertere mellomrepresentasjonen av det
initielle objektet til et endelig objekt av en endelig type, og & utsette modifisering av
mellomrepresentasjonen til mellomrepresentasjonen konverteres til det endelige
objektet for & unnga & matte bufre en modifisering av mellomrepresentasjonen.

| et andre aspekt tilveiebringer oppfinnelsen et dataprogramprodukt som
implementerer en utvidbar serialiseringsmotor for & konvertere ett eller flere initielle

objekter av én eller flere initielle typer til ett eller flere endelige objekter av én eller



10

15

20

25

30

331543

3

flere endelige typer, der kjgrematen til serialiseringsmotoren kan bli endret uten at det
er ngdvendig & re-implementere eksisterende deler av serialiseringsmotoren, idet
dataprogramproduktet omfatter ett eller flere datamaskinlesbare medier som bzerer
datamaskin-eksekverbare instruksjoner i form av programmoduler, der program-
modulene omfatter: en refleksjonsmodul som kan bli byttet ut under kjaring, for &
identifisere typeinformasjon for et initielt objekt av en initiell type som er mottatt for
prosessering av serialiseringsmotoren, én eller flere konverteringsmoduler som kan
bli byttet ut under kjaring, for & generere og modifisere en mellomrepresentasjon av
det initielle objektet basert pa den identifiserte typeinformasjonen, idet den ene eller
de flere kjgretid-utskiftbare konverteringsmodulene omfatter én eller flere utvidelses-
rutiner som endrer kjgrematen til serialiseringsmotoren, og en genereringsmodul som
kan bli byttet ut ved kjeretid, for & opprette et endelig objekt av en endelig type basert
p& mellomrepresentasjonen generert av konverteringsmodulen, hvor den ene eller de
flere kjgretid-utskiftbare konverteringsmodulene er i stand til 4 utsette én eller flere
endringer av mellomrepresentasjonen av det initielle objektet inntil mellomrepresenta-
sjonen blir konvertert til det endelige objektet for & unnga bufferkrav i forbindelse med
det a utfgre den ene eller de flere modifiseringene av mellomrepresentasjonen.

Det beskrives fremgangsmater, systemer og dataprogramprodukter for &
konvertere et objekt av en initiell type til et objekt av en endelig type, og muliggjer
endring eller individuell tilpasning av kjgrematen til konverteringsprosessen. | henhold
til eksempler pa utfgrelse av foreliggende oppfinnelse som er beskrevet mer utfarlig
nedenfor, kan en utvidbar serialiseringsmotor serialisere, deserialisere og konvertere
objekter av forskjellig type. Kjgrematen til serialiseringsmotoren endres av én eller
flere utvidelsesrutiner som implementerer de enskede individuelle tilpasninger eller
utvidelser. Disse utvidelsesrutinene endrer kjgrematen til serialiseringsmotoren uten &
kreve utskiftning av andre eksisterende rutiner.

| ett utfarelseseksempel blir typeinformasjon identifisert for et initielt objekt
mottatt av serialiseringsmotoren for prosessering. Basert pa typeinformasjonen blir
det initielle objektet konvertert til en mellomrepresentasjon som muliggjer modifisering
under kjaring, inklusive endring av objektnavn, objekttyper og objektdata. Mellom-

representasjonen av det initielle objektet modifiseres i henhold til én eller flere



10

15

20

25

30

331543

4

utvidelsesrutiner som endrer kjgrematen til serialiseringsmotoren, og mellom-
representasjonen blir konvertert til et endelig objekt av en endelig type.

Mellomrepresentasjonen av det initielle objektet kan omfatte et objektnavn, en
objekttype og objektdata, som alle kan bli modifisert av utvidelsesrutinene. Mellom-
representasjonen kan ogsa bli modifisert av én eller flere standardrutiner i
serialiseringsmotoren. Modifikasjonen av mellomrepresentasjonen kan vaere basert
pa en gitt struktur eller modell innenfor typeinformasjonen, objektdata i det initielle
objektet, metadata eller kombinasjoner av foregaende.

Nar det initielle objektet er et minnelagret objekt, serialiserer serialiserings-
motoren det initielle objektet for & generere det endelige objektet. Det endelige
objektet kan bli formatert i XML (eXtensible Markup Language) eller i et annet format
som er egnet for a representere et serialisert objekt. Tilsvarende, nar det endelige
objektet er et minnelagret objekt, deserialiserer serialiseringsmotoren det initielle
objektet for a generere det endelige objektet. Det endelige objektet kan bli instansiert
og initialisert som del av deserialiseringsprosessen. | noen tilfeller kan bade det
initielle objektet og det endelige objektet vaere minnelagrede objekter, eller begge kan
veere serialiserte objekter, for eksempel nar serialiseringsmotoren utfarer en
objektkonvertering. For & redusere bufferkravene kan modifiseringen av
mellomrepresentasjonen utsettes til mellomrepresentasjonen blir konvertert til det
endelige objektet.

Ytterligere saertrekk og fordeler ved oppfinnelsen vil bli vist i beskrivelsen som
folger, og vil delvis veere apenbare fra beskrivelsen eller kan leeres gjennom
praktisering av oppfinnelsen. Saertrekkene og fordelene ved oppfinnelsen kan
realiseres og oppnas ved hjelp av de redskaper eller virkemidler og kombinasjoner
som spesifikt er utpekt i patentkravene. Disse og andre seertrekk ved foreliggende
oppfinnelse vil tydeliggjeres bedre av den felgende beskrivelsen og kravene, eller kan
leeres gjennom praktisering av oppfinnelsen som vist i det felgende.

For a beskrive hvordan de ovenfor angitte og andre fordeler og seertrekk ved
oppfinnelsen kan oppnas, vil en mer detaljert beskrivelse av oppfinnelsen som kort
beskrevet ovenfor bli gitt med henvisning til spesifikke utfgrelsesformer av denne som

er illustrert i de vedlagte figurene. Idet man forstar at disse figurene kun viser typiske



10

15

20

25

30

331543

5

utfgrelsesformer av oppfinnelsen, og derfor ikke skal anses som begrensende for
dens ramme, vil oppfinnelsen bli beskrevet og forklart mer spesifikt og detaljert ved
hjelp av de vedlagte figurene, der:

Figur 1 illustrerer et eksempel pa serialiseringsmodul og serialiserings-
infrastruktur ifglge foreliggende oppfinnelse,

Figurene 2-4 viser konvertering av objekter i forbindelse med eksempler pa
"pipeliner” eller behandlingskeer for serialisering, deserialisering og typekonvertering.

Figurene 5A-5B viser eksempler pa handlinger og trinn i fremgangsmater for
serialisering, deserialisering og konvertering av objekter i henhold til foreliggende
oppfinnelse, og

Figur 6 illustrerer et eksempel pa system som utgjer et egnet driftsmiljg for
foreliggende oppfinnelse.

Foreliggende oppfinnelse omfatter fremgangsmater, systemer og data-
programprodukter for & konvertere objekter av en initiell type til objekter av en endelig
type, og muliggjer endring eller individuell tilpasning av kjgrematen til konverterings-
prosessen. Utfgrelsesformer av foreliggende oppfinnelse kan omfatte én eller flere
spesialinnrettede og/eller én eller flere generelle datamaskiner som omfatter
forskjellig maskinvare, som diskutert mer detaljert nedenfor i forbindelse med figur 6.

Figur 1 illustrerer et eksempel pa serialiseringsmodul og serialiserings-
infrastruktur 100 (ogsa kjent som en serialiseringsmotor) ifglge foreliggende opp-
finnelse. For en objektinstans 110 genererer serialiseringsmodulen 100 et motsvar-
ende XML-objekt 150. Tilsvarende, for et XML-objekt 160, genererer serialiserings-
modulen 100 en motsvarende, deserialisert objektinstans 170. Det skal bemerkes at i
denne sgknaden, betegnelsen "serialisering" ofte blir anvendt som en generisk
betegnelse som omfatter serialisering (f.eks. det & konvertere enkeltstaende eller
innrettinger av minnelagrede objekter til en linezer sekvens av bit-oktetter som er
egnet for overfaring til en fiernlokasjon, persistent lagring pa disk, etc.), deserialiser-
ing (det & opprette, fra den linesere sekvensen av bit-oktetter, de motsvarende
enkeltstaende eller innrettinger av minnelagrede objekter), konvertering (det &

konvertere ett objekt til et annet), etc. Dette er for eksempel tilfelle her nar



10

15

20

25

30

6

serialiseringsmodulen 100 serialiserer, deserialiserer og konverterer objekter av
forskjellig type.

Serialiseringsmodulen 100 omfatter én eller flere refleksjonsmoduler 120, én
eller flere konverteringsmoduler 130 og én eller flere genereringsmoduler 140. | dette
utferelseseksempelet konverterer serialiseringsmodulen 100 en mottatt minnelagret
objektinstans 110 til et XML-objekt 150 som er egnet for overfaring til en fiern-
lokasjon, og konverterer en mottatt XML-objektinstans 160 til en minnelagret objekt-
instans 170. Naturligvis er minnelagrede objekter og XML-objekter kun eksempler pa
objekttyper som kan bli opprettet eller mottatt av serialiseringsmodulen 100. Hver av
modulene i serialiseringsmodulen 100 (refleksjonsmodulene 120, konverterings-
modulene 130 og genereringsmodulene 140) kan bli byttet ut under kjering for bruker-
definert serialisering, deserialisering eller konvertering.

Refleksjonsmodulene 120 har ansvar for & identifisere typeinformasjon for
mottatte objektinstanser 110 og mottatte XML-objekter 160. Typeinformasjonen kan
omfatte lagrede eller mottatte metadata som er assosiert med administrerte typer i et
miljg med administrert kode. Alternativt kan typeinformasjonen bli levert til
refleksjonsmodulene 120 fra ulike kilder, omfattende automatisert generering under
kompilering, manuell generering, standard typeinformasijon, etc.

Konverteringsmodulene 130 konverterer mellom objekter av forskjellig type.
Eksempler pa konverteringsprosesser er beskrevet mer i detalj nedenfor i forbindelse
med figurene 2-4. Konverteringen mellom forskjellige objekter kan vaere vilkarlig
kompleks og omfatte generering av mellomobjekter. Deler av denne kompleksiteten
kan omfatte det & konvertere basert pa data i et objekt og typestrukturer assosiert
med et objekt. For eksempel kan hvilke konverteringer som blir utfart avhenge av
visse objekttyper eller typenavn, eksistens av gitte navnede eller typede egenskaper
pa en type, eksistens av en egenskap med gitte metadata tilknyttet, objektnavn
assosiert med et objekt, etc. Konverteringen kan bli utsatt til generering av det
endelige objektet for & redusere eller unnga krav til bufring som ellers kan vaere en
del av det & konvertere ett objekt til et annet.

Genereringsmodulene 140 har ansvar for & generere det endelige objektet

som frembringes av serialiseringsmodulen 100. | tilfellet med et XML-objekt 150

331543



10

15

20

25

30

331543

7

oppretter genereringsmodulen 140 objektet ~ den genererer den relevante XML-
koden for objektet — og kan skrive objektet til en datastrem. ! tilfellet med en
objektinstans 170 vil genereringsmodulen 140 instansiere og initialisere eller bygge
opp objektet.

Som nevnt ovenfor er serialiseringsmodulen 100 ogsa kjent som en
serialiseringsmotor. Som vist i figur 1, utgjeres serialiseringsmotoren av et antall
ordnede sett av moduler. Sammen har disse modulene ansvar for alle operasjoner.
En individuell modul er kjent som en typeovergang, fordi, som beskrevet mer i detalj
nedenfor, moduler konverterer fra én type til en annen (eller danner overganger
mellom forskjellige typer). En typeovergang gjer det mulig & konvertere typer og
instanser og/eller & holde rede pa informasjon om et objekt som blir serialisert,
deserialisert eller konvertert. Med henvisning til figurene 2-4, er et ordnet sett av
typeoverganger kjent som en typeovergang-pipeline, og svarer generelt til et ordnet
sett av konverteringsmoduler 130. For hver av operasjonene som blir utfgrt av
serialiseringsmotoren kan det eksistere en separat typeovergang-pipeline. Det finnes
pipeliner for serialisering (f.eks. figur 2), deserialisering (f.eks. figur 3), konvertering
(f.eks. figur 4), objektkopiering, etc. Informasjon som gjelder generelt for alle tre
figurene er presentert nedenfor, fgr en individuell diskusjon av hver av figurene 2-4.

For de eksempelvise pipelinene som er vist i figurene 2-4 er koden (én eller
flere moduler) som har ansvar for serialisering, deserialisering og konvertering av
objekter implementert i form av et antall forhandsdefinerte typeoverganger. Disse
modulene blir plassert i den aktuelle pipelinen og anvendt under kjgring. (De stiplede
kvadratene i figur 1 er ment & representere tilgjengelige typeovergangsmoduler for
anvendelse i forskjellige typeovergang-pipeliner.) En stor del av det tilgjengelige API-
et for det eksempelet pa serialiseringsmotor som er vist i figur 1 er kun en innpakning
av dette forhandsdefinerte settet av pipeliner. Dette demonstrerer serialiserings-
motorens utvidbarhet — serialiseringsmotoren er bare et sett av abstrakte pipeliner.
Den faktiske implementasjonen av spesifikk logikk er tilveiebrakt i pluggbare moduler
som kan skiftes ut nar som helst.

I de eksemplene pé typeovergang-pipeliner som er illustrert i figurene 2-4, er

en gitt typeovergang i stand til & konvertere én av tre typer objekter: et initielt objekt,



10

15

20

25

30

8

et mellomobjekt og et endelig objekt. | figur 4 er det initielle objektet et administrert
kode-objekt og det endelige objektet er et XML-objekt basert pa4 W3C (World Wide
Web Consortium) sin Infoset-standard. Mellomobjektet eller mellomrepresentasjonen
vist i alle tre figurene er en konstruksjon som eksisterer internt i
serialiseringsmotoren, og, som beskrevet mer i detalj nedenfor, representerer et
utvidelsespunkt. Mellomrepresentasjonen er et foranderlig objekt som er basert pa en
foranderlig type. Som s&dan tiener den foranderlige typen til & definere oppfarsel og
lagring av typede data, og det foranderlige objektet tiener til & lagre typede data og
manipulere de typede dataene gjennom oppfersel definert pa typen.

Figur 2 viser et eksempel pa typeovergang 200 for & serialisere et minnelagret
initielt objekt 240 av initiell type eller format 210. (Som anvendt i beskrivelsen og
kravene, skal betegnelsen "type" tolkes i bred forstand til & omfatte hvilke som helst
objekttyper eller -formater.) Med bruk av en standardrutine 250 blir det initielle
objektet 240 konvertert til en mellomrepresentasjon 260A av en mellomtype eller et
mellomformat 220. Som vil bli beskrevet mer i detalj nedenfor, er denne mellom-
representasjonen foranderlig, og tillater endring av bade objekttyper og objektdata.
Allikevel kan mellomformatet 220 og det initielle formatet 210 ogsa vaere det samme,
neert beslektet, litt forskjellig, helt forskjellig, etc.

En brukerdefinert utvidelsesrutine 260 konverterer mellomrepresentasjonen
260A av det initielle objektet 240 til en mellomrepresentasjon 260B. Denne
konverteringen kan omfatte endring av objekttyper, objektnavn, objektdata og
liknende. Den brukerdefinerte utvidelsesrutinen 260 representerer en kjgreutvidelse
av serialiseringsmotoren generelt, og typeovergang-pipelinen 200 spesielt. Merk at
anvendelsen av den brukerdefinerte utvidelsesrutinen 260 ikke krevde re-
implementering av standardrutinen 250, noe som typisk er tilfelle med konvensjonelle
serialiseringsprogrammer.

Standardrutinen 270 konverterer mellomrepresentasjonen 260B til et endelig
objekt 280 av endelig type eller format 230. Det endelige objektet 280 er egnet for
overfering til en fiernlokasjon, persistent lagring, etc. Fglgelig omfatter det endelige
formatet 230 til det endelige objektet 280 et bredt spekter av objekttyper. Her, som i
andre deler av beskrivelsen, er objekitype, -format og -representasjon generelle

331543



10

16

20

25

30

331543

9

betegnelser som omfatter objektets type og format samt typer, formater, navn og data
som kan vaere inneholdt i et objekt.

Figur 3 viser et eksempel pa typeovergang 300 for & deserialisere et objekt
340 av initiell type eller format 330. Tilsvarende som i figur 2 over, konverterer en
standardrutine 350 det initielle objektet 340 til en mellomrepresentasjon 360A med en
mellomtype eller et mellomformat 320. En brukerdefinert utvidelsesrutine 360
konverterer mellomrepresentasjonen 360A til en mellomrepresentasjon 360B. Merk at
mellomtypen 320 representerer én eller flere mellomtyper. Falgelig kan mellom-
representasjonen 360A og mellomrepresentasjonen 360B vaere forskjellige typer,
men er likevel korrekt angitt som en mellomtype, i forhold til initiell type 330 og
endelig type eller format 310.

En standardrutine 370 konverterer meliomrepresentasjonen 360B til et endelig
objekt 380 av en endelig type 310. Ettersom typeovergang-pipelinen 300 utferer
deserialisering, er det endelige objektet 380 et minnelagret objekt som er instansiert
og populert. Som vil bli beskrevet mer i detalj nedenfor, er typeovergang-pipelinen
300 tilsluttet kode for a instansiere og initialisere objektinstanser. Denne koden kan bli
referert til som en instansfabrikk eller skriverfabrikk, og svarer generelt til
genereringsmodulene 140 vist i figur 1.

Figur 4 viser et eksempel pa typeovergang-pipeline 400 for & konvertere et
initielt objekt 440 til et endelig objekt 480. De individuelle typeovergangene vist i
figur 4 er i stand til & konvertere ett av tre forskjellige objektyper eller -formater: en
administrert kode / CLR-formaterte objekter 410, mellomobjekter / Flex-formaterte
objekter 420 og Infoset / XML-formaterte objekter 430. CLR star for "Common
Language Runtime" og er en del av Microsofts .NET® administrerte kjsremiljg. Blant
annet omfatter fordelene ved CLR integrasjon pa tvers av programmeringssprak,
unntaksbehandling pa tvers av programmeringssprak og liknende. Kompilatorer
mater ut metadata for & beskrive typer, medlemmer og referanser. Metadataene
lagres med koden i den flyttbare CLR-kjerefilen. CLR er naturligvis kun ett eksempel
pa en type administrert kode. Som antydet i figur 4 kan begge objektene vaere

minnelagrede objekter (f.eks. CLR-formaterte objekter), eller alternativt kan begge



10

15

20

25

30

10

objektene vaere serialiserte objekter (f.eks. Infoset-formaterte objekter). Med andre
ord kan det initielle objektet og det endelige objektet vaere av samme type.

CLR-objekter 410 er instanser eller forekomster av CLR-typer som inneholder
en kombinasjon av data og oppfersel eller funksjonalitet, selv om kun dataene er
relevante for serialiseringsformal. Som angitt over er et Infoset-objekt eller en Infoset-
represesentasjon 430 formatert i henhold til en W3C-standard for en trestruktur
bestaende av et predefinert sett av datanoder med gitt semantikk. Et flex-objekt 420
er en konstruksjon som finnes internt i serialiseringsmotoren, og representerer et
utvidelsespunkt for den som serialiserer.

Et flex-objekt er et foranderlig objekt som er basert pa en foranderlig type. Den
foranderlige typen er kjent som en flex-type. | det eksempelet pa typeovergang-
pipeline 400 som er vist i figur 4, tiener en flex-type samme funksjon som dens
motsvarende CLR-type, nemlig & definere oppfersel og lagring av typede data.
Tilsvarende tjener et flex-objekt samme funksjon som CLR-objekt, nemlig a lagre
typede data og manipulere disse dataene gjennom oppfersel definert pa typen.
Grunnen til at flex-typer og flex-objekter blir anvendt er at CLR-typer er uforanderlige.

| det eksempelet pa typeovergang-pipeline som er vist i figur 4, er det lagt
visse begrensninger pa typene som kan bli serialisert for 4 fremme enkelthet og utvid-
barhet. Disse begrensningene reduserer antallet forskjellige modeller og permutasjo-
ner som serialisereren trenger a gjenkjenne for a serialisere og deserialisere en gitt
type. For dette formal vet serialiseringsmotorer kun hvordan de skal serialisere CLR-
objekter hvis type fglger noe som er kjent som en kjernemodell. Typer som falger
kiernemodellen mé& enten eksponere sine data som egenskaper (eller felter) eller
implementere et gitt funksjonsgrensesnitt (som definerer eksplisitte lese- og skrive-
metoder). | tillegg ma disse typene implementere en "public" default-
instansieringsfunksjon. Typer som ikke falger kjiernemodellen kan ikke serialiseres.

Flex-typer og flex-objekter anvendes for & endre formen (medlemmer,
funksjonsgrensenitt, etc.) til et gitt CLR-objekt slik at det falger kjernemodellen. For
det gitte CLR-objektet kan det bli konstruert en flex-type som eksponerer et forskijellig
sett av medlems- og typeinformasjon enn instansens CLR-type. Et flex-objekt som er

basert pa flex-typen kan bli instansiert som delegerer visse kall til CLR-objektet selv.

331543



10

15

20

331543

11

Flex-objektet kan ogsa utfgre eventuelle konverteringer av dataene i CLR-objektet,

enten for eller etter delegering. Som fglge av dette kan data i CLR-objektet bl

eksponert pa ulike mater, inklusive en som falger kjernemodellen. Falgelig kan en

typeovergang starte med en objekttype som ikke fglger kjernemodellen og generere

en objekttype som gjer det.

En typeovergang kan konvertere CLR-objekter, flex-objekter og Infoset-

representasjoner pa ulike mater. En hvilken som helst gitt typeovergang tar en

inntype som den opererer pa og en uttype som den produserer eller genererer.

Denne uttypen blir sendt til den neste typeovergangen i pipelinen. For den

eksemplifiserte typeovergang-pipelinen 400 er felgende konverteringer stattet:

Inntype

CLR
CLR
CLR
Flex
Flex
Flex
Infoset
infoset

Infoset

Uttype

CLR
Flex
Infoset
Flex
CLR
Infoset
Infoset
Flex
CLR

Beskrivelse
Konverterer et CLR-objekt til et nytt CLR-objekt
Konverterer et CLR-objekt til et flex-objekt
Konverterer et CLR-objekt til et Infoset-objekt
Konverterer et flex-objekt til et nytt flex-objekt
Konverterer et flex-objekt til et CLR-objekt
Konverterer et flex-objekt til et Infoset-objekt
Konverterer et Infoset-objekt til en ny Infoset
Konverterer et Infoset-objekt til et flex-objekt
Konverterer et Infoset-objekt til et CLR-objekt

De forskjellige klassifiseringene av typeoverganger er frembragt for a tilveie-

bringe serialiseringsmotorens grunnfunksjonalitet. (Selv om figurene 2 og 3 refererer

til generiske typer, er henvisninger til disse figurene gjort nedenfor med de spesifikke

typene som er illustrert i figur 4 for a gi en bredere sammenheng.)

1. Serialisering konverterer et CLR-objekt til et Infoset-objekt eller en Infoset-

representasjon. For & utfere denne operasjonen er det tilveiebrakt en

typeovergang-pipeline (sa som den vist i figur 2) som omfatter en CLR-til-flex

typeovergang (f.eks. standardrutinen 250), et hvilket som helst antall flex-til-flex

overganger samt en flex-til-Infoset typeovergang (f.eks. standardrutinen 270).



10

15

20

25

30

331543

12

2. Deserialisering konverterer en Infoset-representasjon til et CLR-objekt. For &
utfere denne operasjonen er det tilveiebrakt en typeovergang-pipeline (s& som
den vist i figur 3) som omfatter en Infoset-til-flex typeovergang (f.eks. standard-
rutinen 350), et hvilket som helst antall flex-til-flex overganger og en flex-til-CLR
typeovergang (f.eks. standardrutinen 370).

3. Objektkopiering blir anvendt for & generere en dypkopi av et CLR-objekt. For &
utfare denne operasjonen er det tilveiebrakt en typeovergang-pipeline som om-
fatter en CLR-il-CLR typeovergang.

4. Objektkonvertering (figur 4) genererer en dypkopi (det endelige objektet 480) av
CLR-objektet eller -objektene (det initielle objektet 440) samtidig med utfarelse av
eventuelle konverteringer (standard- eller brukerutvidelsesrutinen 460) av instans-
dataene (mellomrepresentasjonene 460A og 460B). For a utfere denne operasjo-
nen er det tilveiebrakt en typeovergang-pipeline som omfatter en CLR-til-flex
typeovergang (standard- eller brukerutvidelsesrutinen 450), eventuelt én eller flere
flex-til-flex typeoverganger (standard- eller brukerutvidelsesrutinen 460) som
utfgrer konverteringene, samt en flex-til-CLR typeovergang (standard- eller
brukerutvidelsesrutinen 470).

5. Infoset-konverteringen skaper en kopi av og konverterer eventuelt et Infoset-
objekt. Tilsvarende som for objektkopieringen er det for & utfare denne operasjo-
nen tilveiebrakt en typeovergang-pipeline som omfatter en Infoset-til-Infoset
typeovergang.

De siste tre alternativene er verdt & merke seg pa grunn av maten de er
implementert. Mens andre implementasjoner bufrer objekt- eller Infoset-data, kan
utferelsesformer av foreliggende oppfinnelse utsette konverteringene for & unnga
eller redusere bufringskravene. Som falge av dette kan ytelsen og ressursstyringen
forbedres betraktelig.

For a stette de ovennevnte operasjonene tilveiebringer serialiseringsmotoren
stamme- eller base-typeoverganger som utferer de aktuelle konverteringene. | figur 4
kan hvilke som helst av standard- eller brukerutvidelsesrutinene 450, 460 og 470
veere base-typeoverganger eller brukerdefinerte erstatninger. Ved anvendelse av en

utvidbar konfigureringsmekanisme blir de relevante typeoverganger identifisert og



10

15

20

25

30

331543

13

lastet inn i pipeliner under kjering. Serialiseringsmotoren anvender disse base-
pipelinene for a utfgre den forespurte operasjonen. Base-typeovergangene kan
imidlertid bli byttet ut nar som helst, ettersom motoren jobber med abstrakte
typeoverganger heller enn spesifikke implementasjoner. | ett utfarelseseksempel
omfatter en pipeline bare en liste av typeoverganger for pipelinen, slik at endring av
listen endrer pipelinen. | dette utferelseseksempelet, nar en gitt typeovergang blir
anropt for et objekt, anropes ingen andre typeoverganger for dette objektet.

Merk at i ett utfarelseseksempel, CLR 410, flex 420 og Infoset 430 svarer til
det initielle formatet 210, mellomformatet 220 og det endelige formatet 230 for
serialisering som vist i figur 2, og svarer til den endelige typen 310, mellomtypen 320
og den initielle typen 330 for deserialisering som vist i figur 3. Flex-objektet er
mellomformatet mellom CLR og Infoset. | dette utfgrelseseksempelet tillates ikke en
typeovergang a konvertere direkte fra CLR til Infoset, eller omvendt. Blant annet
bidrar dette til & forenkle den eksemplifiserte serialiseringsmotoren. Mens den
grunnleggende funksjonaliteten eller virkematen til serialiseringsmotoren er definert
av base-typeoverganger, finnes det ogsa mange ytterligere trekk (s& som stgtte for
eksisterende programmeringsmodeller) som utviklere kan forvente. Base-
typeovergangene kunne ha blitt designet for a implementere disse trekkene, men
istedet er det tilveiebrakt et antall grunnleggende flex-til-flex typeoverganger som
tiener dette formalet. Denne lgsningen sikrer at base-typeoverganger er enkle og
utvidbare. Som fglge av dette kan utviklere modifisere standardfunksjonalitet og
tilveiebringe ny funksjonalitet pa egen hand.

For dette utfarelseseksempelet, betrakt en serialiseringsprosess for en CLR-
type navnet Person som har to egenskaper: ForNavn og EtterNavn. For & serialisere
(se figur 2) en instans av denne typen, er det nadvendig med en pipeline med
grunnleggende CLR-til-flex og flex-til-Infoset typeoverganger. Serialiseringsmotoren
sender Person-instansen til CLR-til-flex typeovergangen. Denne typeovergangen
returnerer en ny instans av et flex-objekt som er basert pa og delegerer til Person-
instansen. Flex-objektet blir deretter sendt til flex-til-Infoset typeovergangen.

Flex-til-Infoset typeovergangen har ansvar for a transformere eller konvertere

flex-objektet til en Infoset-representasjon. Far konverteringen bestemmer den



10

15

20

25

30

331543

14

grunnleggende flex-til-Infoset typeovergangen hvordan den skal avbilde flex-objektets
struktur til Infoset. Base-implementasjonen i dette eksempelet anvender et
skjemasprak og definerer avbildninger med midlene definert i dette spraket. Siden
typeoverganger er utbyttelige, kan det bli introdusert en ny avbildningsmekanisme
som omfatter statte for et nytt skjemasprak, hvilket representerer et annet
utvidelsespunkt i serialiseringsmotoren. Nar avbildningsprosessen er avsluttet,
konverteres objektet til en Infoset-representasjon som blir skrevet til en strem.

Som savidt nevnt ovenfor, er typeovergangene i serialiseringsmotoren tilknyttet
skriverfabrikker. Skriverfabrikker har ansvar for opprettelse av en ressurs som er i
stand til & skrive data. Selv om ressursen vil kunne skrive data til et hvilket som helst
mal, er de mest vanlige destinasjonene datastremmer (etter serialisering for tran-
sport) og CLR-objekter (etter deserialisering) Base-skriverfabrikken for dette utfgrel-
seseksempelet returnerer en ressurs som skriver til en brukerlevert datastrem.
Ressursen som genereres av denne fabrikken kan skrive til datastremmen pa et
hvilket som helst format den matte gnske. Som sadan er den ikke Iast til XML-
serialiseringsformatet, noe som gjer skriverfabrikken utbyttelig og introduserer nok et
annet utvidelsespunkt i serialiseringsmotoren.

Deserialisering (se for eksempel figur 3) av Infoset-representasjonen i dette
utferelseseksempelet involverer en pipeline som omfatter de grunnleggende Infoset-
til-flex og flex-til-CLR typeovergangene. Serialiseringsmotoren sender en brukerlevert
datastrem som representerer Infoset-kilden sa vel som hvilken CLR-type (her Person)
som blir deserialisert til den ferste typeovergangen (Infoset-til-flex). Denne typeover-
gangen oppretter en ny instans av et flex-objekt basert pa Person-typen som
delegerer til vdatastrfammen. Det resulterende flex-objektet blir sendt til flex-til-Infoset
typeovergangen som initialiserer en instans av Person med data fra flex-objektet
(flex-objektet befinner seg i streammen siden flex-objektet delegerer). Som med
serialisering, terminerer deserialiserings-pipelinen i en skriverfabrikk. Base-
skriverfabrikken for deserialiserings-pipelinen har ansvar for & opprette instansen av
den CLR-typen som blir deserialisert.

| tillegg til serialisering og deserialisering kan det veere gnskelig & transformere

Person-typen. Som angitt over omfatter Person-typens form to egenskaper: ForNavn



10

15

20

25

30

331543

15

og EtterNavn. Anta for eksempel at en applikasjon som anvender denne definisjonen
av Person vekselvirker med en annen applikajson som anvender en ulik definisjon av
Person (f.eks. en Person med én egenskap — FulitNavn). Selv om én mulighet ville
veere & gjore at begge applikasjonene anvender samme definisjon av Person-typen,
vil ikke dette alltid vaere mulig (for eksempel kan begge applikasjonene allerede veere
skrevet).

| henhold til det utfarelseseksempelet som beskrives kan det bli generert en
typeovergang som konverterer formen til en Person-instans i én applikasjon til den
formen som forventes av den andre. For & utfgre transformasjonen (se figur 2), er det
nedvendig a konstruere en ny flex-til-flex typeovergang (f.eks. brukerutvidelsesrutinen
260) og plassere denne i serialiserings-pipelinen etter den grunnleggende CLR-til-flex
typeovergangen (f.eks standardrutinen 250). Under serialiseringsprosessen blir
denne typeovergangen forsynt med et flex-objekt som delegerer til Person-instansen.
Typeovergangen konstruerer en ny flex-type med den nye formen (én enkelt egen-
skap: FulltNavn). Basert p& denne flex-typen blir det opprettet et nytt flex-objekt som
sammenkjeder egenskapene ForNavn og Etternavn i det opprinnelige flex-objektet
(som ogsa delegerer til Person-instansen). Dette flex-objektet blir sendt til den grunn-
leggende flex-til-Infoset typeovergangen (f.eks. standardrutinen 270), som serialiserer
én egenskap i stedet for to. Det er verdt & merke seg at den faktiske konkateneringen
ikke trenger & bli gjennomfart for flex-til-Infoset typeovergangen ber om verdien for
den nye egenskapen FulltNavn. Falgelig utsettes konverteringen til opprettelse av
Infoset-objektet eller det endelige objektet.

Felgelig kan en serialiseringsmotor i henhold til foreliggende oppfinnelse
tilveieringe en utvidbar arkitektur for & konvertere mellom systemer og typer, som
omfatter: stette for pluggbare type- og datakonverteringer, stette for foranderlige typer
og objekter, statte for pluggbare skjema-type systemer, statte for pluggbare
dataformater, etc.

Foreliggende oppfinnelse kan ogsa beskrives med hensyn til fremgangsmater
som omfatter funksjonelle trinn og/eller ikke-funksjonelle handlinger. Det falgende er
en beskrivelse av handlinger og trinn som kan utfgres ved praktisering av foreligg-

ende oppfinnelse. Vanligvis beskriver funksjonelle trinn oppfinnelsen med hensyn til



10

15

20

25

30

331543

16

resultater som oppnas, mens ikke-funksjonelle handlinger beskriver mer spesifikke
handlinger for & oppna et ansket resultat. Selv om de funksjonelle trinn og ikke-
funksjonelle handlinger kan vaere beskrevet eller krevet i en gitt rekkefalge, er ikke
foreliggende oppfinnelse n@dvendigvis begrenset til noen konkret rekkefglge eller
kombinasjon av handlinger og/eller trinn.

Figurene 5A-5B viser eksempler pa handlinger og trinn i fremgangsmater for &
serialisere og deserialisere objekter i henhold til foreliggende oppfinnelse, som kan
omfatte det & motta (512) et initielt objekt av en initiell type for Kjgretidsbehandling av
en serialiseringsmotor. Et trinn for a identifisere (520) typeinformasjon for det initielle
objektet kan omfatte det & motta (522) typeinformasjonen. Typeinformasjonen kan
forsynes i form av metadata assosiert med administrert kode. Et trinn for & konvertere
(530) det initielle objektet til en mellomrepresentasjon basert pa den informasjonen
om den initielle typen kan omfatte det & generere (ikke vist) mellomrepresentasjonen
basert pa typeinformasjonen, anrope (532) én eller flere brukerdefinerte utvidelses-
rutiner og anrope (534) én eller flere standardrutiner for & modifisere mellomrepre-
sentasjonen. Den ene eller de flere utvidelsesrutinene endrer kjgrematen til
serialiseringsmotoren.

Det skal bemerkes at mellomrepresentasjonen kan omfatte et objektnavn, en
objekttype og/eller objektdata. Selv om det ikke er vist, kan et trinn for & modifisere
(540) mellomrepresentasjonen ogsa omfatte det & anrope (ikke vist) én eller flere
brukerdefinerte utvidelsesrutiner og anrope (ikke vist) én eller flere standardrutiner for
a modifisere mellomrepresentasjonen. Et trinn for & modifisere (540) mellom-
representasjon kan videre omfatte det 4 endre (540) et objekts navn, type og/eller
data. Et trinn for a utsette (550) modifiseringen kan omfatte det & spesifisere (552)
hvordan mellomrepresentasjonen skal modifiseres uten faktisk & endre mellomrepre-
sentasjonen. En slik utsettelse kan bidra til 4 redusere buffer- og prosesserings-
kravene som ellers er assosiert med det & modifisere mellomrepresentasjonen med
en gang.

Et trinn for & konvertere (560) mellomrepresentasjonen av det initielle objektet
til et endelig objekt av endelig type eller format kan omfatte falgende handlinger. Ved

serialisering (563) kan trinnet omfatte det & opprette eller generere (565) det endelige



10

16

20

25

30

331543

17

objektet. | ett utferelseseksempel som beskrevet ovenfor, formateres det endelige
objektet i XML for transport. Det & opprette eller generere (565) det endelige objektet
kan derfor omfatte det a generere den relevante XML-koden og skrive det endelige
objektet til en datastrem. Alternativt kan det endelige objektet bli formatert for
persistent lagring til disk eller i et hvilket som helst annet format som er egnet for &
representere det serialiserte initielle objektet. Ved deserialisering (564) kan trinnet
omfatte det & instansiere (566) og initialisere (568) det endelige objektet. Under
konverteringstrinnet (560) anropes brukerdefinerte utvidelsesrutiner og standard-
rutiner for eventuelle utsatte modifikasjoner som har angitt hvordan en endring skal
gjeres, men ikke faktisk utfgrt endringen.

Utfarelsesformer innenfor rammen av foreliggende oppfinnelse omfatter ogsa
datamaskiniesbare medier for & beere eller inneholde datamaskin-eksekverbare
instruksjoner eller datastrukturer lagret deri. Slike datamaskinlesbare medier kan
veere et hvilket som helst tilgjengelig medium som kan aksesseres av en generell
eller spesialinnrettet datamaskin. Som eksempler, uten begrensning, kan slike
datamaskinlesbare medier omfatte RAM, ROM, EEPROM, CD-ROM eller andre
optiske lagre, magnetdisk-lagre eller andre magnetiske lagringsanordninger, eller et
hvilket som helst annet medium som kan anvendes for & beere eller lagre gnskede
programkodeinnretninger i form av datamaskin-eksekverbare instruksjoner eller
datastrukturer og som kan aksesseres av en generell eller spesialinnrettet data-
maskin. Nar informasjon blir overfart eller levert over et nettverk eller en annen
kommunikasjonsforbindelse (enten kablet, tradlgs eller en kombinasjon av kablet og
tradles) til en datamaskin, betrakter datamaskinen pa relevant mate forbindelsen som
et datamaskinlesbart medium. En hvilken som helst slik forbindelse kan saledes
betegnes et datamaskinlesbart medium. Kombinasjoner av det ovennevnte er ogsa
omfattet innenfor rammen av datamaskinlesbare medier. Datamaskin-eksekverbare
instruksjoner kan for eksempel omfatte instruksjoner og data som forarsaker at en
generell datamaskin, en spesialinnrettet datamaskin eller en spesialinnrettet
prosesseringsanordning utfgrer en gitt funksjon eller gruppe av funksjoner.

Figur 6 og den fglgende beskrivelsen er ment for & gi en kort, generell beskriv-

else av et egnet databehandlingsmilje i hvilket oppfinnelsen kan bli implementert.



10

15

20

25

30

18

Selv om det ikke er nedvendig, vil oppfinnelsen bli beskrevet i den generelle
sammenhengen datamaskin-eksekverbare instruksjoner, s& som programmoduler,
som blir eksekvert av datamaskiner i nettverksmiljeer. Generelt omfatter program-
moduler rutiner, programmer, objekter, komponenter, datastrukturer, etc. som utfgrer
spesifikke oppgaver eller implementerer spesifikke abstrakte datatyper. Datamaskin-
eksekverbare instruksjoner, assosierte datastrukturer og programmoduler represente-
rer eksempler pa programkodeinnretningene for & utfare trinn i fremgangsmatene
beskrevet her. Den konkrete sekvensen av slike eksekverbare instruksjoner eller
assosierte datastrukturer representerer eksempler pa motsvarende handlinger for &
utfere funksjonene beskrevet i disse trinnene.

Fagmannen vil forsta at oppfinnelsen kan praktiseres i nettverkede databe-
handlingsmiljger med mange typer datasystemstrukturer, omfattende personlige data-
maskiner, handholdte anordninger, flerprosessorsystemer, mikroprosessorbasert eller
programmerbar forbrukerelektronikk, personlige datamaskiner i nettverk, minidata-
maskiner, stormaskiner og liknende. Oppfinnelsen kan ogsa praktiseres i distribuerte
databehandlingsmiljger der oppgaver blir utfgrt av lokale og eksterne prosesserings-
anordninger som er forbundet (enten via kablede forbindelser, tradlgse forbindelser
eller en kombinasjon av kablede og tradlgse forbindelser) giennom et kommunika-
sjonsnettverk. | et distribuert databehandlingsmilja kan programmoduler befinne seg i
bade lokale og eksterne minnelagringsanordninger.

Som kan sees i figur 6, omfatter et eksempel pa system for & implementere
oppfinnelsen en generell databehandlingsanordning i form av en konvensjonell
datamaskin 620 som omfatter en prosesseringsenhet 621, et systemminne 622 og en
systembuss 623 som kopler forskjellige systemkomponenter inklusive systemminnet
622 til prosesseringsenheten 621. Systembussen 623 kan vaere en hvilken som helst
av mange typer busstrukturer, omfattende en minnebuss eller minnekontroller, en
ekstern buss og en lokal buss, som anvender en hvilken som helst av en rekke til-
gjengelige bussarkitekturer. Systemminnet omfatter et leseminne (ROM) 624 og et
direkteaksessminne (RAM) 625. Et BIOS (basic input/output system) 626 som inne-

holder de grunnleggende rutinene som hjelper til & overfare informasjon mellom

331543



10

15

20

25

30

331543

19

elementer i datamaskinen 620, for eksempel under oppstart, kan veere lagret i
ROM 624.

Datamaskinen 620 kan ogsé omfatte en harddiskstasjon 627 for & lese fra og
skrive til en magnetisk harddisk 639, en magnetdisk-stasjon 628 for a lese fra eller
skrive til en flyttbar magnetdisk 629 og en optisk stasjon 630 for a lese fra eller skrive
til en flyttbar optisk disk 631, s4 som et CD-ROM eller et annet optisk medium.
Harddiskstasjonen 627, magnetdisk-stasjonen 628 og den optiske stasjonen 630 er
koplet til systembussen 623 henholdsvis via et harddiskstasjon-grensesnitt 632, et
magnetdiskstasjon-grensesnitt 633 og et optisk stasjon-grensesnitt 634. Stasjonene
og deres assosierte datamaskinlesbare medier tilveiebringer ikke-volatil lagring av
datamaskin-eksekverbare instruksjoner, datastrukturer, programmoduler og andre
data for datamaskinen 620. Selv om det eksemplifiserte miljget som beskrives her
omfatter en magnetisk harddisk 639, en flyttbar magnetisk disk 629 og en flyttbar
optisk disk 631, kan andre typer datamaskinlesbare medier for & lagre data
anvendes, inklusive magnetkassetter, flashminnekort, DVD-plater, Bernoulli-patroner,
RAM-minner, ROM-minner og liknende.

Programkodeinnretninger som omfatter én eller flere programmoduler kan
veere lagret i harddisken 639, magnetdisken 629, den optiske disken 631, ROM 624
eller RAM 625, inklusive et operativsystem 635, ett eller flere applikasjonsprogram-
mer 636, andre programmoduler 637 og programdata 638. En bruker kan mate inn
kommandoer og informasjon til datamaskinen 620 via et tastatur 640, en pekeranord-
ning 642 eller andre innmatingsanordninger (ikke vist), s& som en mikrofon, en styre-
spak, en spillkontroll, en parabolantenne, en skanner eller liknende. Disse og andre
innmatingsanordninger er ofte koplet til prosesseringsenheten 621 via et serieport-
grensesnitt 646 som er koplet til systembussen 623. Alternativt kan innmatingsanord-
ningene veere tilkoplet via andre grensesnitt, s& som en parallellport, en spillutgang
eller en universell seriell buss (USB-port). En monitor 647 eller en annen type frem-
visningsanordning er ogsa koplet til systembussen 623 via et grensesnitt, sa som et
skjermkort 648. | tillegg til monitoren omfatter personlige datamaskiner typisk andre

periferiske utmatingsanordninger (ikke vist), s& som hgyttalere og skrivere.



15

20

25

20

Datamaskinen 620 kan kjgre i et nettverket miljg som anvender logiske for-
bindelser til én eller flere fierndatamaskiner, sa som fjerndatamaskiner 649a og 649b.
Fjerndatamaskinene 649a og 649b kan hver vaere en annen personlig datamaskin, en
tiener, en ruter, en nettverks-PC, en peer-anordning eller en annen vanlig nettverks-
node, og omfatter typisk mange av eller alle de elementene som er beskrevet ovenfor
i forbindelse med datamaskinen 620, selv om kun minnelagringsanordninger 650a og
650b og deres assosierte applikasjonsprogrammer 636a og 636b er illustrert i figur 6.
De logiske forbindelsene som er vist i figur 6 omfatter et lokalt nettverk (LAN) 651 og
et regionalt nettverk (WAN) 652, som er vist her kun som eksempler og ikke begrens-
ning. Slike nettverksmiljger er vanlige i kontornettverk, bedriftsomspennende data-
nettverk, intranett og Internett.

Nar den blir anvendt i et LAN-nettverksmiljg, er datamaskinen 620 koplet til det
lokale nettverket 651 via et nettverksgrensesnitt eller nettverkskort 653. Nar den blir
anvendt i et WAN-nettverksmiljg, kan datamaskinen 620 omfatte et modem 654, en
tradigs forbindelse eller andre midler for a etablere kommunikasjon over det regionale
nettverket 652, for eksempel Internett. Modemet 654, som kan vaere internt eller
eksternt, er koplet til systembussen 623 via serieport-grensesnittet 646. | et nettverks-
miljg kan programmoduler som er vist i forbindelse med datamaskinen 620, eller
deler av disse, veere lagret i den eksterne minnelagringsanordningen. En vil forsta at
de viste nettverksforbindelsene kun er eksempler, og at andre midler for & etablere
kommunikasjon over det regionale nettverket 652 kan anvendes.

Foreliggende oppfinnelse kan realiseres i andre konkrete former uten at en
fierner seg fra dens idé eller essensielle saertrekk. De beskrevne utfgrelsesformene
skal i alle henseende betraktes som kun illustrerende, og ikke begrensende. Oppfin-
nelsens ramme defineres derfor av de etterfalgende kravene heller enn av den fore-
gaende beskrivelsen. Alle endringer som faller innenfor kravenes betydning og

ekvivalensramme skal vaere omfattet av disse.

331543



10

15

20

25

331543

21

PATENTKRAV

1. Fremgangsmate, som utferes i et datasystem som omfatter en utvidbar seriali-
seringsmotor som serialiserer og deserialiserer dataobjekter av forskijellig type, for &
konvertere et initielt objekt av en initiell type til et endelig objekt av en endelig type,
der fremgangsmaten muliggjer endring av kjgrematen til serialiseringsmotoren gjen-
nom én eller flere utvidelsesrutiner uten at det er nadvendig & bytte ut én eller flere
eksisterende rutiner i serialiseringsmotoren, idet fremgangsmaten omfatter trinn for a:

identifisere typeinformasjon for et initielt objekt av en initiell type som mottas
for kjgretidsprosessering av serialiseringsmotoren,

basert pa typeinformasjonen, konvertere det initielle objektet til en mellom-
representasjon av det initielle objektet som er egnet for kjaretidsmodifisering,

modifisere mellomrepresentasjonen av det initielle objektet i henhold til én eller
flere utvidelsesrutiner, og med det endre kjgrematen til serialiseringsmotoren,

konvertere mellomrepresentasjonen av det initielle objektet til et endelig objekt
av en endelig type, og

a utsette modifisering av mellomrepresentasjonen til mellomrepresentasjonen
konverteres til det endelige objektet for & unnga a matte bufre en modifisering av

mellomrepresentasjonen.

2. Fremgangsmate ifglge krav 1, der mellomrepresentasjonen av det initielle
objektet omfatter minst ett av et objektnavn, en objekttype og objektdata.

3. Fremgangsmate ifglge krav 2, der trinnet for & endre mellomrepresentasjonen
av det initielle objektet i henhold til én eller flere utvidelsesrutiner omfatter det a

modifisere minst ett av objektnavnet, objekttypen og objektdataene.



10

15

20

25

30

331543

22

4. Fremgangsmate ifalge krav 1, det & modifisere mellomrepresentasjonen av det
initielle objektet baseres pa enten en gitt modell eller struktur i typeinformasjonen,

objektdata i det initielle objektet eller begge deler.

5. Fremgangsmate ifalge krav 1, der det initielle objektet omfatter et minnelagret
objekt, og serialiseringsmotoren serialiserer det initielle objektet for & generere det

endelige objektet.

6. Fremgangsmate ifalge krav 1, der det endelige objektet omfatter et minne-
lagret objekt som skal instansieres og initialiseres basert pa det initielle objektet, og
der serialiseringsmotoren deserialiserer det initielle objektet for & skape det endelige
objektet.

7. Fremgangsmate ifalge krav 1, der bade det initielle objektet og det endelige
objektet er minnelagrede objekter.

8. Dataprogramprodukt som implementerer en utvidbar serialiseringsmotor for &
konvertere ett eller flere initielle objekter av én eller flere initielle typer til ett eller flere
endelige objekter av én eller flere endelige typer, der kjgrematen til serialiserings-
motoren kan bli endret uten at det er nedvendig & re-implementere eksisterende deler
av serialiseringsmotoren, idet dataprogramproduktet omfatter ett eller flere data-
maskinlesbare medier som baerer datamaskin-eksekverbare instruksjoner i form av
programmoduler, der programmodulene omfatter:

en refleksjonsmodul som kan bli byttet ut under kjgring, for & identifisere type-
informasjon for et initielt objekt av en initiell type som er mottatt for prosessering av
serialiseringsmotoren,

én eller flere konverteringsmoduler som kan bli byttet ut under kjgring, for &
generere og modifisere en mellomrepresentasjon av det initielle objektet basert pa
den identifiserte typeinformasjonen, idet den ene eller de flere kjaretid-utskiftbare
konverteringsmodulene omfatter én eller flere utvidelsesrutiner som endrer kjgre-

maten til serialiseringsmotoren, og



10

15

20

25

331543

23

en genereringsmodul som kan bli byttet ut ved kjgretid, for & opprette et ende-
lig objekt av en endelig type basert pa mellomrepresentasjonen generert av konvert-
eringsmodulen, hvor den ene eller de flere kjgretid-utskiftbare konverteringsmodulene
er i stand til &4 utsette én eller flere endringer av mellomrepresentasjonen av det
initielle objektet inntil mellomrepresentasjonen blir konvertert til det endelige objektet
for & unnga bufferkrav i forbindelse med det & utfare den ene eller de flere modifiser-

ingene av mellomrepresentasjonen.

9. Dataprogramprodukt ifalge krav 8, der mellomrepresentasjonen omfatter et
objektnavn, en objekttype og objektdata for det initielle objektet og eventuelle objekter
inneholdt i det initielle objektet.

10.  Dataprogramprodukt ifglge krav 8, der den ene eller de flere kjgretid-
utskiftbare konverteringsmodulene er i stand til & endre minst én av et objektnavn, en
objekitype og objektdata for det initielle objektet og eventuelle objekter inneholdt i det
initielle objektet.

11.  Dataprogramprodukt ifglge krav 8, der den ene eller de flere kjgretid-
utskiftbare konverteringsmodulene er i stand til & holde rede péa informasjon vedrgr-

ende det initielle objektet uten & modifisere mellomrepresentasjonen.

12.  Dataprogramprodukt ifalge krav 8, der den ene eller de flere kjgretid-
utskiftbare konverteringsmodulene er i stand til & modifisere mellomrepresentasjonen
av det initielle objektet basert p& enten en gitt modell eller struktur i typeinformasjo-

nen, objektdata i det initielle objektet, eller begge deler.

13.  Dataprogramprodukt ifalge krav 8, der den kjgretid-utskiftbare genererings-

modulen er i stand til & opprette det endelige objektet i XML-format.



331543

24

14.  Dataprogramprodukt ifglge krav 8, der den kjeretid-utskiftbare genererings-
modulen er i stand til a instansiere og initialisere det endelige objektet basert pa

mellomrepresentasjonen.



331543

1/7

o}
Suejsu €

} b4

001 InpowsBupasielag *

Pielao

0st

Malgo<€
-TNX

] | ] I | B ] | T ) ] |
[} ] ) ] ] t ] ] ] | [ 1
| ] ] 1 1 ) [} (] | ] I [

i ] ] 1 ] ] ] [} | [} 1 ]
S | VNN U USRI WS SR SN BN WU EYNVRDI RNPEUNUEN NUNNUNUN IOV SN SR
1 ! ! | r__ | i ! !

' ori ) : 0t} ! | 0Zi |
I Lo(e)npowt  beeed oo (J@)NPOW  bemefooo L (J9)Inpow -—b---]
| -sBuniatsuan | 1 -sBULIBUBAUOY | | -suolsyopey |
..... TR TR W SNSRI (RN SOOURR T SO SN NN IS M W N
) ] ] ] ) ] | ] ] ] ] ]

] [] ] ] ] ] ] ] | { ] [}

] [) ] ] ! ] { [} | L] ] \
[ ! ! H ! ! H ! ! H !

0%

SUejsul

-PRlao



DI1L0990

2/7

Z by
T
pafqo
Biepu3 092
aunn
-sas|apIAn
aunni
-pIepuels g092 vosz
uolsejuasaidal uolsejuasaidal
-WoleN -WoyjaN
0s¢
aunn
-pJepuels
ore
mefqo
jeny|

(Bunasieusg)
00z auljadid-buebiancadA

0¢z
jewno)
Bilepu]

(1744
1euo}
-WO|[3

oz
}ewloy
Haniu|



251045

3/7

¢ by

0.8
aunn.

-plepuels:

Y

08¢
Palqo

ore
palqo
09¢ Hsiiu
aunni
-S8s|9pIAIN
g \A%m
aunny
g09s V03¢ -piepuerg
uofsejuasaidal uolsejuasaidal -
-Wollon -Wwojlo

Birepu3

(Buussieussaq)
00¢ auljedid-BuebisnoadA |

23]
adAy
[1eniy]

s

0zt
adA)
-WojlsN
— .
| _
A |
ore
adA)
Biepuy.



~HILITI

4/7

p b4

aunny

-S8S[apIAnIBYNIq
192 -plepuelg ;

0%
TWX /3esojup

0%F

X8| / Jeelpauliaju|

»
)

orF

g09s vosy
uolsejusssidal uolsejussaidal
-woj|a -
oLp _ -WwojsN wolisiN o5y
aunn auyni
-1ayniq 13|19 -19%Nniq J9|I9
-pJepuels -piepueig
08y oy
pialqo »alqo.
Biopu3 yapiug
(Buapaauoy)

00 2uyadid-buebianoadA

Y10 /3P0y
E_a i

l

i




FrTT T T T T T T T T

231045

5/7
~ Motta initieit objekt +—512
-_—"--‘---—-"--—'; ---------------- )
~ Motta typeinformasjon 1—522

Identifisere
typeinformasjon 520

" Anrope brukerutvidelsesrutine(r) 4532

Anrope standardrutine(r) +—534

Konvertere til mellom-

representasjon 530

Endre objektets
navn / type / data

Spesifisere hvordan a endre
mellomrepresentasjon

542/ Modifisere mellom-

I
I
I
I
I
)
|
i
|
! 552/ : Utsette
representasjon 540 I
|

modifisering 550

Til figur 58

Fig. 5A




v —— R R G D ——— —————— - — —— —— - —— — —

P LTI

Konvertere meliom-
. representasjon til
endelig objekt 560

6/7

Fra figur 5A
________________ b
[
Generere endelig objekt 4—562 |
1
i
|
563 Y l 1 ' /564 i
Serialisere ' Deserialisere :
l E
865~ 56
'‘Opprette objekt , Instansiere |
!
|
l 568 |
y |
Initialisere !
I
|
|
|
|
|
|




-t DTS

. 78 e i 9¢9 Sty As
J601d Janpow ! §Ewss
fsexidd wne.. smm._ -mmm inp sewwesBoid -njesedo
Isepiddy WeiBtld  [weiBod SIpUY| yorspyiddy .
upisewejep unisewejep \\
- -uJal e
wefy Y q6p9 E o
Z\ Nmor/
Hameu 1- T T llﬂ
Jeuoibay | X eeq _
| . \ -weiboig !
}99 ~ I 5 Wusesusib hiusosualBl | musasusis nusasualb |
_ ,“Vu_cmwwcﬁz " Jod -uofsels -uolsejs -uolsejs I
n/|-S¥9A)e Y -)sipjeube - I
HoApau jexoT _ oues_ \.xm__no \x PisubE wxw_uu_m_._ |
- | /€9 Jainpow |
ay “ .26\ re9 — £e9” — _ 23 -wesboud aipuy| | |
~ -tlelboid sip _
|
| | | T 9co _
9 ‘b1 N " ; ssnquisisig V ' lwwesbosd _
. _ £29—" MW -suofsexyddy | |}
| T §
{ €9 woyshs
1 — Z — -Ajesado "
! 879 voy )29 — . _
_ -wsalys 18yua 579 (W) |,
10juol “ - -sBunassesold Fesooomaoooooos =4 |
_ . 929 sog !
| _
| ¥29 (NoY) |
_ g - -
r9 “ 079 (44 _
|
_ —




	Page 1 - ABSTRACT/BIBLIOGRAPHY
	Page 2 - DESCRIPTION
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - CLAIMS
	Page 23 - CLAIMS
	Page 24 - CLAIMS
	Page 25 - CLAIMS
	Page 26 - DRAWINGS
	Page 27 - DRAWINGS
	Page 28 - DRAWINGS
	Page 29 - DRAWINGS
	Page 30 - DRAWINGS
	Page 31 - DRAWINGS
	Page 32 - DRAWINGS

