
US 2008.00982OOA1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0098200 A1

Sandon et al. (43) Pub. Date: Apr. 24, 2008

(54) TWO DIMENSIONAL ADDRESSING OFA Publication Classification
MATRIX-VECTOR REGISTER ARRAY

(51) Int. Cl.
(76) Inventors: Peter A. Sandon, Essex Junction, VT G06F 5/76 (2006.01)

(US); R. Michael P. West, Colchester, G06F 9/30 (2006.01)
VT (US) (52) U.S. Cl. .. 712/1; 712/E09

Correspondence Address: (57) ABSTRACT
SCHMEISER, OLSEN & WATTS A processor for processing matrix data. The processor
22 CENTURY HILL DRIVE includes M independent vector register files which are
SUTE 3O2 adapted to collectively store a matrix of L data elements.
LATHAM, NY 12110 (US) Each data element has B binary bits. The matrix has N rows

and M columns, and L=N*M. Each column has K Subcol
(21) Appl. No.: 11/950,474 umns. N22, M22, K22, and B21. Each row and each

Subcolumn is addressable. The processor does not duplica
(22) Filed: Dec. 5, 2007 tively store the L data elements. The matrix includes a set of

arrays such that each array is a row or Subcolumn of the
Related U.S. Application Data matrix. The processor may execute an instruction that per

forms an operation on a first array of the set of arrays. Such
(63) Continuation of application No. 10/715,688, filed on that the operation is performed with selectivity with respect

Nov. 18, 2003. to the data elements of the first array.

PROCESSOR 15

YO2- RO2 YO3- RO3)

Y12- R11 Y13 - R12

Y2(2) R2O Y23) - R21

Y30 - R31 Y32 R33) Y33 - R3O)
|-

YAO) RAO Y42 R42 Y43 - R43

YSO) R53 Y51 - R50 Y52 - R51) Y53 - R52

YOO - ROO)

Y1O- R13

Y2O - R22

Y60- YG1 - R63 Y61 - R60 Y61 - R611

Y1O- Y71 - R72 Y71 - R73 Y71 - R7EO)

Y8O- t R8(1) YBE)-R812 Y8(1-R8(3)
128x32it 128x32bit 128x32it 128x32bit

Y126O) - R1262) i. R1263) Y1261 - R126O) Y1261 - R1261)
Y1271 - R1272 Y1272 - R1273 Y1273 - R1270) Y127O - R1271

17- - 4:1
mO m3

PROCESSOR

Patent Application Publication Apr. 24, 2008 Sheet 1 of 7 US 2008/0098200 A1

R128 R129 R130 R131 /

so an an as
Renau at leaf
R5-N1 RSO RST R512 R53)
R6-NTRGO) RGIT RG2 IRGs)
R7 Rico R7(1) R72 R7(3)

Patent Application Publication Apr. 24, 2008 Sheet 2 of 7 US 2008/0098200 A1

PROCESSOR 15

YOO)

Y1O)

Y2O

Y3O)

Y4O)

YSO)

YGO)

YTO)

Y8O

YO3)

Y13

Y23)

Y33

Y43

Y53

Y61

Y71

Y81
128x32bit 128x32bit

Y1261

R1273 Y1273

R1262

R1271)

R1263

R1272)

Y12GO

Y1270)

PROCESSOR

FIG. 2

Patent Application Publication Apr. 24, 2008 Sheet 3 of 7 US 2008/0098200 A1

20

|
21 22 23 24 25 26 27 28 29

| | | | | | | | |

R126 126 126 126 126 2 3 || 0 || 1
R127 127 127 127 127 | 3 || 0 || 1 || 2
R128 O | 1 || 2 || 3 || 0 || 1 || 2 || 3
R129 3 o 1 || 2 || 1 || 2 || 3 || 0
R130 | 2 || 3 || 0 || 1 || 2 || 3 || 0 || 1 |
R131 | 1 || 2 || 3 || 0 || 3 || 0 || 1 || 2
R132 || 4 || 5 || 6 || 7 || 0 || 1 || 2 || 3 |
R13 || 7 || 4 || 5 || 5 || 1 || 2 || 3 || 0
R254 126 127 124 125 2 3 o 1
R255 125 126 127 124 3 o 1 2

FIG. 3

US 2008/0098200 A1 Sheet S of 7 Patent Application Publication Apr. 24, 2008

R254 126 127 124 125 2 3 o 1
R255 125 126 12, 124 | 1 || 2 || 3 || 0

FIG. 5

H[100d0

US 2008/0098200 A1

{{9 (9.I.H.

ŒSI? ().| SI? 8] ISH[]3000d0

SII8 #7 pÐMIÐS01

W79 %).I.H.

SII8 8 H[100d0

Patent Application Publication Apr. 24, 2008 Sheet 6 of 7

Patent Application Publication Apr. 24, 2008 Sheet 7 of 7 US 2008/0098200 A1

90

94
96

MEMORY
DEVICE

92

INPUT
DEVICE

91

PROCESSOR

MEMORY copyR
DEVICE

OUTPUT
DEVICE

97

FIG. 7

US 2008/00982OO A1

TWO DIMIENSIONAL ADDRESSING OFA
MATRIX-VECTOR REGISTER ARRAY

0001. This application is a continuation application
claiming priority to Ser. No. 10/715,688, filed Nov. 18,
2003.

BACKGROUND OF THE INVENTION

0002) 1. Technical Field
0003. The present invention relates to logically address
ing both rows and Subcolumns of a matrix stored in a
plurality of vector register files within a processor.
0004 2. Related Art
0005) A Single Instruction Multiple Data (SIMD) vector
processing environment may be utilized for operations asso
ciated with vector and matrix mathematics. Such mathemat
ics processing may relate to various multimedia applications
Such as graphics and digital video. A current problem
associated with SIMD vector processing arises from a need
to handle vector data flexibly. The vector data is currently
handled as a single (horizontal) vector of multiple elements
when operated upon in standard SIMD calculations. The
rows of the matrix can therefore be accessed horizontally in
a conventional manner. However it is often necessary to
access the columns of the matrix as entities, which is
problematic to accomplish with current technology. For
example, it is common to generate a transpose of the matrix
for accessing columns of the matrix, which has the problem
of requiring a large number of move/copy instructions and
also increases (i.e., at least doubles) the number of required
registers.

0006. Accordingly, there is a need for an efficient pro
cessor and method for addressing rows and columns of a
matrix used in SIMD vector processing.

SUMMARY OF THE INVENTION

0007. The present invention provides a processor, com
prising M independent vector register files, said M vector
register files adapted to collectively store a matrix of L data
elements, each data element having B binary bits, said
matrix having N rows and M columns, said L=N*M, each
column having K Subcolumns, said Ne2, said Me2, said
Kel, said Be1, each row of said N rows being addressable,
each Subcolumn of said K Subcolumns being addressable,
said processor not adapted to duplicatively store said L data
elements.

0008. The present invention provides a method for pro
cessing matrix data, comprising:
0009 providing the processor; and
00.10 providing M independent vector register files
within the processor, said M vector register files collectively
storing a matrix of L data elements, each data element
having B binary bits, said matrix having N rows and M
columns, said L=N*M, each column having K subcolumns,
said N22, said Me2, said Kel, said B21, each row of said
N rows being addressable, each subcolumn of said K sub
columns being addressable, said processor not duplicatively
storing said L data elements.
0011. The present invention provides a processor, com
prising M independent vector register files, said M vector

Apr. 24, 2008

register files adapted to collectively store a matrix of L data
elements, each data element having B binary bits, said
matrix having N rows and M columns, said L=N*M, each
column having K Subcolumns, said Ne2, said Me2, said
Kel, said Be1, each row of said N rows being addressable,
each Subcolumn of said K Subcolumns being addressable,
said matrix including a set of arrays such that each array is
a row or Subcolumn of the matrix, said processor adapted to
execute an instruction that performs an operation on a first
array of the set of arrays, said operation being performed
with selectivity with respect to the data elements of the first
array.

0012. The present invention provides a method for pro
cessing matrix data, comprising:
0013 providing the processor;
0014) providing M independent vector register files
within the processor, said M vector register files collectively
storing a matrix of L data elements, each data element
having B binary bits, said matrix having N rows and M
columns, said L=N*M, each column having K subcolumns,
said N22, said Me2, said Kel, said B21, each row of said
N rows being addressable, each subcolumn of said K sub
columns being addressable, said matrix including a set of
arrays such that each array is a row or Subcolumn of the
matrix; and
0015 executing an instruction by said processor, said
instruction performing an operation on a first array of the set
of arrays, said operation being performed with selectivity
with respect to the data elements of the first array.
0016. The present invention advantageously provides an
efficient processor and method for addressing rows and
columns of a matrix used in SIMD vector processing.

BRIEF DESCRIPTION OF THE DRAWINGS

0017 FIG. 1 depicts a layout of a matrix of data elements,
in accordance with embodiments of the present invention.
0018 FIG. 2 depicts a physical layout for storing the data
elements of the matrix of FIG. 1 and multiplexors for
reading the data elements into the matrix of FIG. 1, in
accordance with embodiments of the present invention.
0019 FIG. 3 depicts a read-logic table for reading the
data elements from the physical layout of FIG. 2 into the
rows and subcolumns of the matrix of FIG. 1, in accordance
with embodiments of the present invention.
0020 FIG. 4 depicts the physical layout of FIG. 2 for
storing the data elements of the matrix of FIG. 1 and
multiplexors for writing the data elements of the matrix of
FIG. 1 into the physical layout, in accordance with embodi
ments of the present invention.
0021 FIG. 5 depicts a write-logic table for writing the
data elements from the rows and subcolumns of the matrix
of FIG. 1 into the physical layout of FIG. 4, in accordance
with embodiments of the present invention.
0022 FIG. 6A-6C depicts instructions which utilize the
multiplexors of FIG. 2 or FIG. 4 to perform operations with
selectivity with respect to the data elements of a row or
subcolumn of the matrix of FIG. 1, in accordance with
embodiments of the present invention.

US 2008/00982OO A1

0023 FIG. 7 depicts a computer system having a proces
sor for addressing rows and Subcolumns of a matrix used in
vector processing, in accordance with embodiments of the
present invention.

DETAILED DESCRIPTION OF THE
INVENTION

0024 FIG. 1 depicts a layout of a matrix 10 of data
elements, in accordance with embodiments of the present
invention. The matrix 10 comprises 128 rows (denoted as
rows 0, 1,..., 127) and 4 columns (denoted as columns 0.
1, 2, 3). Rows 0, 1,..., 127 are addressed as registers R0.
R1, R127, respectively (i.e., registers Rn, n=0, 1,..., 127).
The columns are each divided into subcolumns as follows:

0025)
.., 252:

0026
.., 253;

0027 column 2 is divided into subcolumns 130, 134. . .
.., 254; and
0028)

.., 255.

column 0 is divided into subcolumns 128, 132, ..

column 1 is divided into subcolumns 129, 133, . .

column 3 is divided into subcolumns 131, 135, . .

Subcolumns 128, 129, 255 are addressed as registers
R128, R129, . . . , R255, respectively (i.e., registers Rn,
n=128, 129, . . . , 255).
0029 FIG. 1 also depicts data elements of the matrix 10.
Each data element includes B binary bits (e.g., B=32). The
data elements of the matrix 10 have the form Rnm wherein
n is a row index (n=0, 1,..., 127) and m is a column index
(m=0, 1, 2, 3). For example R52 denotes the data element
in row 5, column 2 of the matrix 10. As seen in FIG. 1:
0030 register R0 contains row 0 (i.e., data elements
R00), ROL1), RO2), RD3));
0031 register R1 contains row 1 (i.e., data elements
R10), R1, R12, R13):
0032)
0033)
0034)
0035 register R127 contains row 127 (i.e., data elements
R1270), R1271), R1272), R1273);
0.036 register R128 contains subcolumn 0 (i.e., data
elements R00), R10), R20), R30):
0037 register R129 contains subcolumn 1 (i.e., data
elements R01). R11), R21), R31);
0038
0039)
0040
0041 register R255 contains subcolumn 128 (i.e., data
elements R0128). R1128), R2128), R3128).
0042. Instructions for moving and reorganizing data of
the matrix 10 of FIG. 1 are processed by a processor,
wherein the processor includes: vector register files, address
registers for accessing the vector register files, and multi
plexors. Accordingly, FIG. 2 depicts a processor 15, com

Apr. 24, 2008

prising vector register files (V0, V1, V2, V3), address
registers (A0, A1, A2, A3), and 4:1 multiplexors (mo, m1,
m2, and m3), in accordance with embodiments of the
present invention. In FIG. 2, the vector register files are used
in conjunction with the address registers and multiplexors to
read rows or subcolumns of the matrix 10 of FIG. 1 from the
vector register files. Each of the vector register files includes
128 registers. The number (4) of said vector register files is
equal to the number (4) of columns of the matrix 10 of FIG.
1. Vector register file V (=0, 1, 2, 3) includes registers Yi
for i=0, 1, ... , 127 (i.e., YOI), Y1), . . . , Y127). For
example, vector register file V3 (i.e., j=3) includes registers
YO3), Y13),..., Y1273). Each of vector register files V0,
V1,V2, and V3 (and the 128 registers therein) are indepen
dently addressable via address registers A0, A1, A2, and A3,
respectively. Generally, address register Aj (=0, 1, 2, 3)
addresses register Yi of vector register file V if A
contains i (i=0, 1,..., 127). For example, if address register
A2 contains the integer 4, then address register A2 addresses
register Y42 of vector register file V2.
0043. The data elements Rnm) of the matrix 10 of FIG.
1 are stored and distributed within the vector register files
V0, V1, V2, and V3 as shown in FIG. 2. In FIG. 2, the
distribution of data array elements Rinm) within the regis
ters of the vector register files V0, V1,V2, and V3 facilitates
addressing of both the rows and subcolumns of the matrix 10
of FIG. 1 for vector-read operations, as will be explained
infra in conjunction with FIG. 3. It is noted from FIG. 2 that
the matrix 10 of FIG. 1 is stored in the vector register files
V0, V1,V2, and V3 in accordance with the following two
rules.

0044) The first rule relates to the storing of a row of the
matrix 10 into the vector register files. The first rule is as
follows: if data element Rnm) is stored in register Yn
then data element R(n) m1) is stored in register Y(n)1).
whereinj1=(i+1) mod 4 (i.e., j=0, 1, 2, 3 maps into 1 = 1, 2,
3, 0, respectively), and wherein m1 =(m+1) mod 4 (i.e., m=0,
1, 2, 3 maps into m1 = 1, 2, 3, 0, respectively). The operator
“mod’ is a modulus operator defined as follows. If I1 and I2
are positive integers then I1 mod I2 is the remainder when
I1 is divided by I2. As an example of the first rule, data
elements R00), R01), R02), RO3) of the row associated
with register R0 are respectively stored in registers Y00).
YO1), YO2), YO3), whereas data elements R10). R11),
R12, R13) of the row associated with register R1 are
respectively stored in registers Y11, Y12), Y13), Y10).
As a consequence of the first rule, each of data elements
RnO), Rn1), Rn2), Rn(3) of row n is stored in a different
vector register file but in a same relative register location
(i.e., i=n for register Yii) in its respective vector register
file. Thus, the data elements RnO), Rn 1), Rn2), Rn(3) of
the row associated with register Rn are stored as a permuted
sequence thereof in the registers YnO). Yn1). Yn2), Yn3
of FIG. 2.

0045. The second rule relates to the storing of a subcol
umn of the matrix 10 into the vector register files: if data
element Rinm) is stored in register Yn then data element
R(n+1)m is stored in register Y(n+1)1), whereinj1=(+1)
mod 4. As an example of the second rule, data elements
R01). R11), R21), R31) of the subcolumn pointed to by
register R129 are respectively stored in registers Y01).
Y12, Y23), Y30). As a consequence of said second rule,
each of data elements RnO), Rn1), Rn2), Rn(3) of row in

US 2008/00982OO A1

is stored in a different vector register file and in a different
relative vector register location, characterized by index i for
register Yi), in its respective vector register file. Thus, the
data elements of each Subcolumn are stored in a broken
diagonal fashion in the registers of the vector register files
VO, V1,V2, and V3.

0046) The multiplexors m0, m1, m2, and m3 in FIG. 2
sequentially order the data elements read from the vector
register files V0, V1,V2, and V3 in conjunction with logical
interconnections 17 between the vector register files V0, V1,
V2, V3 and the multiplexors m0, m1, m2, and m3. The
logical interconnections 17 are described in a read-logic
table 20 shown in FIG. 3, as will be discussed next.
0047 FIG. 3 depicts a read-logic table 20 for reading
rows and subcolumns of the matrix 10 of FIG. 1 from the
vector register files and V0, V1,V2, V3 while utilizing the
multiplexors m0, m1, m2, and m3 of FIG. 2, in accordance
with embodiments of the present invention. In FIG. 3,
column 21 of the read-logic table 20 lists registers R0, R1,
..., R255 of FIG. 1. Columns 22-25 of the read-logic table
20 list the values of address registers A0, A1, A2, A3.
Columns 26-29 of the read-logic table 20 list the values of
multiplexors m0, m1, m2, and m3. Each of said multiplexors
(mo, m1, m2, m3) is a set of two binary switches, each
switch being “on” or “off” and being represented by a binary
bit 1 or 0, respectively. Thus, the “value' of the multiplexor
is the composite value (0, 1, 2, or 3) of the two binary bits
respectively representing the on/off status of the two
Switches.

0048. Each row of the matrix 10 to be read is identified
by the index n which selects a register Rn in the range
Osins 127. Each subcolumn of the matrix 10 to be read is
identified by the index n which selects a register Rn in the
range 128s ns 255. The data elements of each row or
subcolumn to be read are accessed from registers Yi of the
vector register files V0, V1,V2, and V3, said registers being
pointed to by the address registers A0, A1, A2, A3, respec
tively. The data elements so accessed from the registers
pointed to by the address registers A0, A1, A2, and A3 are
sequentially ordered in accordance with the values of the
multiplexors m0, m1, m2, and m3 as follows. The multi
plexor value is the index j that selects a vector register file
(V0, V1,V2, or V3). Then the content of the address register
associated with the selected vector register file selects the
data element. Recall that Yi denotes register i of vector
register file V. If a row or subcolumn to be read is identified
by register Rn, then the data elements are accessed from the
registers Yi in the sequential order of: Y(a0)m0). Y(a1)
m1). Y(a2)m2), and Y(a3)m3), wherein a0, a1, a2, and a3
denote the content of A(m0), A(ml), A(m2), and A(m3).
respectively. For example, if A0=2, A1 =3, A2=0, A3=1 and
m0=3, m1 =2, m2=1, and m3=0, then:

0049) a0=1 (i.e., content of A(m0) or A3),
0050 a1 =0 (i.e., content of A(ml) or A2),
0051 a2=3 (i.e., content of A(m2) or A1), and
0052, a3=2 (i.e., content of A(m3) or A0).
0053 As an example of reading a row, assume that the
row to be read is associated with register R2 (see FIG. 1).
Then from the R2 row of FIG. 3: A0=2, A1=2, A2=2, A3=2
and m0=2, m1 =3, m2=0, m3=1. The data elements are

Apr. 24, 2008

accessed from the registers Rij in the sequential order of
Y(a0)2), Y(a1)3), Y(a2)0), and Y(a3)1 as dictated by the
values of m0, m1, m2, and m3, respectively. Using the
values of A0, A1, A2, A3 and m0, m1, m2, m3 it follows that
a0=2, a1 =2, a2=2, and a3=2. Thus, the data elements are
accessed from the registers Rij in the sequential order of
Y22), Y23), Y20), and Y21). Therefore, referring to FIG.
2 for the contents of Yi), the data elements are accessed in
the sequential order of R20), R21), R22, and R23.
which is the correct ordering of data elements of the row
associated with register R2 as may be verified from FIG. 1.

0054 As an example of reading a subcolumn, assume
that the subcolumn to be read is associated with register
R129 (see FIG. 1). Then from the R129 row of FIG.3: A0=3,
A1=0, A2=1, A3=2 and m0=1, m1 =2, m2=3, m3=0. Thus the
data elements are accessed from the registers Yi in the
sequential order of Y(a0)1, Y(a1)2), Y(a2)3, and Y(a3)
0 as dictated by the values of mo, m1, m2, and m3,
respectively. Using the values of A0, A1, A2, A3 and m0.
m1, m2, m3 it follows that a)=0, a1 =1, a2=2, and a3=3.
Thus, the data elements are accessed from the registers Rij
in the sequential order of YO1, Y12), Y23), and Y30).
Therefore, referring to FIG. 2 for the contents of Yi), the
data elements are accessed in the sequential order of R01.
R11), R21), and R31), which is the correct ordering of
data elements of the Subcolumn associated with register
R129 as may be verified from FIG. 1.
0.055 The preceding examples illustrate that in order for
the multiplexors m0, m1, m2, and m3 to sequentially order
the accessed data elements so as to correctly read a row or
subcolumn of the matrix 10 of FIG. 1, the following general
rule is adhered to regarding the storage of data elements in
the registers of the vector register files. The data elements of
each subcolumn are stored in different vector register files,
which means that for each Subcolumn, no two data elements
therein are stored in a same vector register file. Similarly, the
data elements of each row are stored in different vector
register files, which means that for each row, no two data
elements therein are stored in a same vector register file.
While FIG. 2 shows a particular distribution of data array
elements Rinm) within the registers Yi of the vector
register files V0, V1,V2, and V3, other distribution of data
array elements Rinm) are within the scope of the present
invention, such that the preceding general rule is adhered to.
The read-logic table (e.g., see FIG. 3) for reading rows or
subcolumns is specific to the particular distribution of data
array elements Rinm) within registers Yi).
0056. Thus, the multiplexors m0, m1, m2, and m3 are
adapted to respond to a command to read a row (or Subcol
umn) of the matrix by mapping the data elements of the row
(or subcolumn) from the vector register files V0, V1,V2,
and V3 to the row (or subcolumn) in accordance with a
read-row (or read-column) mapping algorithm as exempli
fied by the read-logic table 20 of FIG. 3. Instead of using the
read-logic table 20 having numerical values therein, one
could alternatively implement the read-row (or read-col
umn) mapping algorithm by use of Boolean logic State
mentS.

0057 FIG. 2, described supra, relates to reading a row or
subcolumn of the matrix 10 of FIG. 1 from the registers Yi
in accordance with the read-logic table 20 of FIG. 3. As
described next, FIG. 4 relates to writing a row or subcolumn

US 2008/00982OO A1

of the matrix 10 of FIG. 1 into the registers Yi in
accordance with the write-logic table 40 of FIG. 5.
0.058 FIG. 4 depicts processor 15, comprising vector
register files (V0, V1,V2, V3), address registers (A0, A1,
A2, A3), and 4:1 multiplexors (mo, m1, m2, and m3), in
accordance with embodiments of the present invention. In
FIG. 4, the vector register files are used in conjunction with
the address registers and multiplexors to write rows or
subcolumns of the matrix 10 of FIG. 1 to the vector register
files V0, V1,V2, and V3. The vector register files (V0, V1,
V2, V3), the address registers (A0, A1, A2, A3), and the
distribution of data elements Rnm of the matrix 10 of FIG.
1 within the registers Yi of the vector register files are the
same as in FIG. 2, described supra. In FIG. 4, the distribution
of data array elements Rn m within the registers of the
vector register files V0, V1,V2, and V3 facilitates address
ing of both the rows and subcolumns of the matrix 10 of
FIG. 1 for vector-write operations, as will be explained infra
in conjunction with FIG. 5.
0059) The multiplexors m0, m1, m2, and m3 in FIG. 4
sequentially order the data elements to be written into the
vector register files V0, V1,V2, and V3 in conjunction with
logical interconnections 18 between the vector register files
V0, V1,V2, V3 and the multiplexors m0, m1, m2, and m3.
The logical interconnections 18 are described in a write
logic table 40 shown in FIG. 5, as will be discussed next.
0060 FIG. 5 depicts a write-logic table 40 for writing
rows and subcolumns of the matrix 10 of FIG. 1 to the vector
register files V0. V1,V2, and V3 while utilizing the multi
plexors m0, m1, m2, and m3 of FIG. 2, in accordance with
embodiments of the present invention. In FIG. 5, column 41
of the write-logic table 40 lists registers R0, R1, ..., R255
of FIG. 1. Columns 42-45 of the write-logic table 40 list the
values of address registers A0, A1, A2, A3. Columns 46-49
of the write-logic table 40 list the values of multiplexors m0.
m1, m2, and m3. Each row of the matrix 10 to be written is
identified by the index n which selects a register Rn in the
range Osins 127. Each subcolumn of the matrix 10 to be
written is identified by the index n which selects a register
Rn in the range 128sns 255.
0061 The data elements of each row or subcolumn to be
written, as selected by register Rn (n=0, 1, 255), is
distributed into the registers Yi of the vector register files
V0, V1,V2, and V3 according to the following rule. Recall
that Yi denotes register i of vector register file V. Let the
sequentially ordered data elements associated with register
Rn (as identified in FIG. 1) be denoted as RnO), Rn1).
Rn2), and Rn(3). The rule is that data elements RnO).
Rn1), Rn(2), and Rn(3) are written in vector register files
V(0), V(1), V(2), and V(3), respectively, wherein multi
plexors m(0), m(1), m(2), and m(3) contain 0, 1, 2, and 3.
respectively. As an example, if mo=1, m1 =2, m2=3, and
m3=0 then RnO), Rn1), Rn(2), and Rn(3) are written into
vector register files V3, V0, V1, and V2, respectively,
reflecting m3=0, mO=1, m1 =2, and m2=3. The address
registers A0, A1, A2, and A3 contain the register number
within vector register files V0, V1,V2, and V3, respectively,
into which the data elements are written. Thus in the
preceding example, data element RnO is written into reg
ister 34 of vector register file V3 if address register A3
contains the value 34.

0062. As an example of writing a row, assume that the
row to be written is associated with register R2 (see FIG. 1).

Apr. 24, 2008

From the R2 row of FIG. 1, the sequence of data elements
associated with R2 is R20), R21), R22), and R23). From
the R2 row of FIG. 4, A0=2, A1=2, A2=2, A3=2, m0=2 and
m1 =3, m2=0, m3=1. Thus, according to the preceding rule,
the sequence of data elements R20), R21), R22, and
R23 associated with register R2 are distributed into the
vector register files V2, V3, V0, and V1 as reflecting m2=0,
m3=1, m0=2, and m1 =3. Thus data element R20 is written
into vector register file V2 at register position 2 (i.e., Y22)
since A2=2 in consistency with FIG. 4. Data element R21
is written into vector register file V3 at register position 2
(i.e., Y23) since A3=2 in consistency with FIG. 4. Data
element R22 is written into vector register file V0 at
register position 2 (i.e., Y20) since A0=2 in consistency
with FIG. 4. Data element R23 is written into vector
register file V1 at register position 2 (i.e., Y21) since A1=2
in consistency with FIG. 4.

0063 As an example of writing a subcolumn, assume that
the subcolumn to be written is associated with register R129
(see FIG. 1). From the R129 subcolumn of FIG. 1, the
sequence of data elements associated with R129 is R01).
R11), R2), and R31). From the R129 row of FIG.4, A0=3,
A1=0, A2=1, A3=2 and m0 =3, m1 =0, m2=1, and m3=2.
Thus, according to the preceding rule, the sequence of data
elements R01). R11), R21), and R31) associated with
register R129 are distributed into the vector register files V1,
V2, V3, and V0 as reflecting m1 =0, m2=1, m3=2, and m0=3.
Thus data element R01 is written into vector register file
V1 at register position 0 (i.e., YO1)) since A1 =0 in consis
tency with FIG. 4. Data element R11 is written into vector
register file V2 at register position 1 (i.e., Y12) since A2=1
in consistency with FIG. 4. Data element R21 is written
into vector register file V3 at register position 2 (i.e., Y23)
since A3=2 in consistency with FIG. 4. Data element R31)
is written into vector register file V0 at register position 3
(i.e., Y30) since A0=3 in consistency with FIG. 4.
0064. Thus, the multiplexors m0, m1, m2, and m3 are
adapted to respond to a command to write a row (or
Subcolumn) of the matrix by mapping the data elements of
the row (or subcolumn) to the vector register files V0, V1,
V2, and V3 in accordance with a write-row (or write
column) mapping algorithm as exemplified by the write
logic table 40 of FIG. 5. Instead of using the write-logic
table 40 having numerical values therein, one could alter
natively implement the write-row (or write-column) map
ping algorithm by use of Boolean logic statements.

0065. Although the embodiments described in FIGS. 1-5
described a matrix having 128 rows and 4 columns, wherein
each column is divided into 32 subcolumns with 4 data
elements in each Subcolumn, the scope of the present
invention generally includes a matrix of having N rows and
M columns such that the matrix includes a total of L data
elements such that L=N*M. Each row of the N rows is
addressable, and each Subcolumn of the K Subcolumns is
addressable. Each data element comprises B binary bits. The
parameters N. M. K., and B may be subject to the following
constraints: Ne2, M22, Ke1, and Be 1. For the examples
illustrated in FIGS. 1-5, N=128, M=4, K=32, and B=32.

0.066. The examples illustrated in FIGS. 1-5 illustrate the
following relationships involving N. M., and K: KM=N, N
mod K=0, N mod M=0, N=2 such that P is a positive integer
of at least 2, M=2' such that Q is a positive integer of at least

US 2008/00982OO A1

2, each subcolumn of each column includes M rows of the
N rows, the total number of binary bits in each subcolumn
and the total number of binary bits in each row are equal to
a constant number of binary bits (128 bits for FIGS. 1-5).
0067. The preceding relationships involving N. M., and K
are merely illustrative and not limiting. The following
alternative non-limiting relationships are included within the
scope of the present invention. A first alternative relationship
is that the Subcolumns of a given column do not have a same
(i.e., constant) number of data elements. A second alterna
tive relationship is that the total number of binary bits in
each subcolumn is unequal to the total number of binary bits
in each row. A third alternative relationship is that at least
two columns have a different number K of subcolumns. A
fourth alternative relationship is that N mod Kz0. A fifth
alternative relationship is that there is no value of Psatis
fying N=2 such that P is a positive integer of at least 2. A
sixth alternative relationship is that there is no value of Q
satisfying M=2' such that Q is a positive integer of at least
2.

0068 The scope of the present invention also includes
embodiment in which the B binary bits of each data element
are configured to represent a floating point number, an
integer, a bit string, or a character String.
0069. Additionally, the present invention includes a pro
cessor having a plurality of vector register files. The plural
ity of vector register files is adapted to collectively store the
matrix of L data elements. Note that the L data elements are
not required to be stored duplicatively within the processor,
because the rows and the subcolumns of the matrix are each
individually addressable through use of vector register files
in combination with address registers and multiplexors
within the processor, as explained Supra in conjunction with
FIGS 1-5.

0070. In embodiments of the present invention, illus
trated supra in conjunction with FIGS. 1-5, the data elements
of each subcolumn are adapted to be stored in different
vector register files, and the data elements of each row are
adapted to be stored in different vector register files. In
addition, the data elements of each Subcolumn are adapted
to be stored in different relative register locations of the
different vector register files, and the data elements of each
row are adapted to be stored in a same relative register
location of the different vector register files.
0071) While the matrix 10 is depicted in FIG. 1 with the
N rows being horizontally oriented and the M columns being
vertically oriented, the scope of the present invention also
includes embodiments in which the N rows are vertically
oriented and the M columns are horizontally oriented
0072 FIGS. 6A-6C depict instructions which utilize the
multiplexors of FIG. 2 or FIG. 4 to perform operations with
selectivity with respect to the data elements of a row or
subcolumn of the matrix 10 of FIG. 1, in accordance with
embodiments of the present invention.
0.073 FIG. 6A depicts an instruction in which data ele
ments of an array R(RA) associated with register RA are
copied to data element positions within an array R(DEST)
associated with register DEST. The 2-bit words aa, bb, cc,
and dd respectively correspond to the values of multiplexors
m0, m1, m2, and m3 of FIG. 2 or FIG. 4. Let array R(RA)
have data elements R(RA)0), R(RA)1), R(RA)2), R(RA)

Apr. 24, 2008

3therein. Let array R(DEST) have data elements R(DEST)
O), R(DEST)1), R(DEST)2), R(DEST)3 therein. The
operation of FIG. 6A copies R(RA)aa), R(RA)bb), R(RA)
cc), R(RA)dd into R(DEST)0), R(DEST)1), R(DEST)
2), R(DEST)3), respectively. Thus the multiplexor values
m0, m1, m2, and m3 control the movement of data from the
array R(RA) to the array R(DEST), with selectivity with
respect to the elements of array R(RA). To illustrate, con
sider the following three examples.

0074. In the first example relating to the instruction
depicted by FIG. 6A, set aa=0, bb=1, cc=2, dd=3. This is a
conventional altay-copy operation in which the elements
R(RA)0), R(RA)1), R(RA)2), and R(RA)3 are respec
tively copied into R(DEST)0), R(DEST)1), R(DEST)2),
R(DEST)3).
0075. In the second example relating to the instruction
depicted by FIG. 6A, set aa=0, bb=0, cc=0, dd=0, which
results in copying R(RA)0 into each of R(DEST)0).
R(DEST)1), R(DEST)2), R(DEST)3]. This function,
often referred to as a splat operation, Supports Scalar-vector
operations.

0076. In the third example relating to the instruction
depicted by FIG. 6A, set aa=3, bb=2, cc=1, dd=0, which
results in copying R(RA)3), R(RA)2), R(RA)1), and
R(RA)0 into R(DEST)0), R(DEST)1), R(DEST)2), and
R(DEST)3), respectively. Thus R(RA) is copied to
R(DEST) with reversal of the order of the data elements of
R(RA).
0077. The preceding examples are merely illustrative.
Since there are 256 permutations (i.e., 4) of aa, bb, cc, and
dd the operation of FIG. 6 includes 256 operation variants.
In addition, both RDESTzRA and RDEST=RA are possible.
Thus, the case of RDEST=RA facilitates internal rearrang
ing the data elements of R(RA) in accordance with any of
256 different permutations. All of these operations require
use of the multiplexors m0, m1, m2, and m3. Note that all
of these operations are essentially free since the multiplexors
m0, m1, m2, and m3 must be present to effectuate address
ing of the rows and subcolumns of the matrix 10 of FIG. 1,
as explained supra in conjunction with FIGS. 1-5.

0078 FIG. 6B depicts an instruction in which data ele
ments of an array R(RA) associated with register RA are
copied to data element positions within an array R(DEST)
associated with register DEST, with masking of selected
elements of R(RA). That is, Q elements of R(RA) are
masked (i.e., not copied) to R(DEST) and the remaining 4-Q
elements of R(RA) are copied to R(DEST), wherein
0sQs 4. Let B0, B1, B2, and B3 denote the mask bits
required by this operation. Then R(RA)m is copied/not
copied to R(DEST) m if Bm=1/0 for m=0, 1, 2, and 3. This
would normally be accomplished by a read-modify-write
sequence, but is facilitated here by the use of individual
vector register files, V0, V1,V2 and V3.
0079 FIG. 6C depicts an instruction in which a single
data element of an array R(RA) associated with register RA
is combined functionally (in accordance with the function f)
with an array R(RB) associated with register RB. The
functional result is stored in an array R(DEST) associated
with register DEST, and the elements of R(RA)aa are used
to perform the function f. The two-bit word aa selects a
single data element of the array R(RA) associated with

US 2008/00982OO A1

register RA by setting the read multiplexors m0, m1, m2,
and m3 (in FIG. 2) such that all four multiplexors select that
single data element. For example, if the function f denotes
“addition' then the following SUM vector (having compo
nents SUMO). SUMI1), SUMI2), SUM3) would be
formed and stored in R(DEST):
0080 SUMO-R(RA)aal+R(RB)0):
0081 SUM1=R(RA)aa+R(RB)1:
0082 SUMI2=R(RA)aa+R(RB)2):
0.083 SUM3=R(RA)aal+R(RB)3).
Again, this operation is essentially free since the read
multiplexors m0, m1, m2, and m3 are already present.

0084. There are many other operations, in addition to the
operations illustrated in FIGS. 6A-6C, which could be
performed with selectivity with respect to the data elements
of an array (i.e., row or subcolumn) of the matrix 10 of FIG.
1. Said selectivity is controlled by the multiplexors m0, m1,
m2, and m3 of FIG. 2 or FIG. 4.
0085 FIG. 7 depicts a computer system 90 having a
processor 91 for addressing rows and Subcolumns of a
matrix used in Vector processing and for executing an
instruction that performs an operation on an array of the
matrix with selectivity with respect to the data elements of
the array, in accordance with embodiments of the present
invention. The computer system 90 comprises a processor
91, an input device 92 coupled to the processor 91, an output
device 93 coupled to the processor 91, and memory devices
94 and 95 each coupled to the processor 91. The processor
91 may comprise the processor 15 of FIGS. 2 and 4. The
input device 92 may be, interalia, a keyboard, a mouse, etc.
The output device 93 may be, inter alia, a printer, a plotter,
a computer Screen, a magnetic tape, a removable hard disk,
a floppy disk, etc. The memory devices 94 and 95 may be,
inter alia, a hard disk, a floppy disk, a magnetic tape, an
optical storage Such as a compact disc (CD) or a digital
Video disc (DVD), a dynamic random access memory
(DRAM), a read-only memory (ROM), etc. The memory
device 95 includes a computer code 97. The computer code
97 includes an algorithm for using rows and subcolumns of
a matrix in Vector processing and for executing an instruc
tion that performs an operation on an array of the matrix
with selectivity with respect to the data elements of the
array. The processor 91 executes the computer code 97. The
memory device 94 includes input data 96. The input data 96
includes input required by the computer code 97. The output
device 93 displays output from the computer code 97. Either
or both memory devices 94 and 95 (or one or more addi
tional memory devices not shown in FIG. 7) may be used as
a computer usable medium (or a computer readable medium
or a program storage device) having a computer readable
program code embodied therein and/or having other data
stored therein, wherein the computer readable program code
comprises the computer code 97. Generally, a computer
program product (or, alternatively, an article of manufacture)
of the computer system 90 may comprise said computer
usable medium (or said program storage device).
0086) While FIG. 7 shows the computer system 90 as a
particular configuration of hardware and software, any con
figuration of hardware and Software, as would be known to
a person of ordinary skill in the art, may be utilized for the

Apr. 24, 2008

purposes stated Supra in conjunction with the particular
computer system 90 of FIG. 7. For example, the memory
devices 94 and 95 may be portions of a single memory
device rather than separate memory devices.
0087 While embodiments of the present invention have
been described herein for purposes of illustration, many
modifications and changes will become apparent to those
skilled in the art. Accordingly, the appended claims are
intended to encompass all Such modifications and changes as
fall within the true spirit and scope of this invention.

1. A processor, comprising Mindependent vector register
files, said M vector register files collectively storing a matrix
of L data elements, each data element having B binary bits,
said matrix having N rows and M columns, said L=N*M,
each column having K Subcolumns, said Ne2, said Me2,
said Ke2, said N=KM, said B21, each row of said N rows
being addressable, each Subcolumn of said K Subcolumns
being addressable, wherein each of the M vector register
files includes an array of N registers, wherein each of the
N*M registers of the M vector register files is storing a data
element of the L data elements, wherein the data elements of
each subcolumn are stored in different vector register files,
wherein the data elements of each row are stored in different
vector register files, wherein the processor further comprises
Maddress registers, wherein each address register of the M
address registers is associated with a corresponding one of
the M vector register files, and wherein each vector register
file is independently addressable through its associated
address register pointing to one of the N registers of said
vector register file.

2. The processor of claim 1, wherein the data elements of
each subcolumn are stored in different relative register
locations of the different vector register files, and wherein
the data elements of each row are stored in a same relative
register location of the different vector register files.

3. The processor of claim 1, wherein the processor further
comprises M multiplexors respectively coupled to the M
vector register files, wherein each multiplexor of the M
multiplexors comprises a set of binary Switches Subject to
each binary Switch being on or off and respectively repre
sented by a binary bit 1 or 0 such that the value of the
multiplexor consists of the composite value of said binary
bits, wherein the M multiplexors are adapted to respond to
a command to read a row of the matrix by mapping the data
elements of the row from the M vector register files to the
row of the matrix in accordance with a read-row mapping
algorithm, and wherein the M multiplexors are adapted to
respond to a command to read a Subcolumn of the matrix by
reading the data elements of the subcolumn from the M
vector register files to the subcolumn of the matrix in
accordance with a read-Subcolumn mapping algorithm.

4. The processor of claim 1, wherein the processor further
comprises M multiplexors respectively coupled to the M
vector register files;

wherein each multiplexor of the M multiplexors com
prises a set of binary Switches Subject to each binary
switch being on or off and respectively represented by
a binary bit 1 or 0 such that the value of the multiplexor
consists of the composite value of said binary bits:

wherein the M multiplexors are adapted to respond to a
command to write a row of the matrix by mapping the

US 2008/00982OO A1

data elements of the row to the M vector register files
in accordance with a write-row mapping algorithm; and

wherein the M multiplexors are adapted to respond to a
command to write a subcolumn of the matrix by
mapping the data elements of the Subcolumn to the M
vector register files in accordance with a write-subcol
umn mapping algorithm.

5. The processor of claim 1, wherein the processor further
comprises M multiplexors respectively coupled to the M
vector register files such that each of the M multiplexors has
a different value, and wherein each multiplexor of the M
multiplexors comprises a set of binary Switches Subject to
each binary Switch being on or off and respectively repre
sented by a binary bit 1 or 0 such that the value of the
multiplexor consists of the composite value of said binary
bits.

6. The processor of claim 1, wherein the processor is
adapted to execute an instruction that performs an operation
on a first array of the set of arrays, said operation being
performed with selectivity with respect to the data elements
of the first array.

Apr. 24, 2008

7. The processor of claim 6, wherein the processor further
comprises M multiplexors respectively coupled to the M
vector register files, wherein each multiplexor of the M
multiplexors comprises a set of binary Switches Subject to
each binary Switch being on or off and respectively repre
sented by a binary bit 1 or 0 such that the value of the
multiplexor consists of the composite value of said binary
bits, and wherein the values associated with the M multi
plexors control said selectivity.

8. The processor of claim 7, wherein the instruction is
adapted to copy at least one data element of the first array of
the set of arrays to a second array of the set of arrays, and
wherein the instruction does not insert an exact copy of the
first array into the second array.

9. The processor of claim 7, wherein the instruction is
adapted to rearrange the data elements of the first array
within the first array.

10. The processor of claim 7, wherein the processor is not
adapted to duplicatively store the L data elements.

