

Office de la Propriété
Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2846817 A1 2007/11/15

(21) **2 846 817**

(12) **DEMANDE DE BREVET CANADIEN**
CANADIAN PATENT APPLICATION

(13) **A1**

(22) Date de dépôt/Filing Date: 2007/05/02

(41) Mise à la disp. pub./Open to Public Insp.: 2007/11/15

(62) Demande originale/Original Application: 2 649 876

(30) Priorité/Priority: 2006/05/04 (GB0608838.9)

(51) Cl.Int./Int.Cl. *C12N 15/113*(2010.01),
A61K 31/713(2006.01), *A61K 47/48*(2006.01),
C07H 21/02(2006.01)

(71) Demandeur/Applicant:
NOVARTIS AG, CH

(72) Inventeur/Inventor:
NATT, FRANCOIS JEAN-CHARLES, FR

(74) Agent: FETHERSTONHAUGH & CO.

(54) Titre : ACIDE RIBONUCLEIQUE INTERFERENT COURT (SIRNA) POUR ADMINISTRATION ORALE

(54) Title: SHORT INTERFERING RIBONUCLEIC ACID (SIRNA) FOR ORAL ADMINISTRATION

(57) Abrégé/Abstract:

Short interfering ribonucleic acid (siRNA) for oral administration, said siRNA comprising two separate RNA strands that are complementary to each other over at least 15 nucleotides, wherein each strand is 49 nucleotides or less, and wherein at least one of which strands contains at least one chemical modification.

21489-11000D2

Abstract

Short interfering ribonucleic acid (siRNA) for oral administration, said siRNA comprising two separate RNA strands that are complementary to each other over at least 15 nucleotides, wherein each strand is 49 nucleotides or less, and wherein at least one of which 5 strands contains at least one chemical modification.

DEMANDES OU BREVETS VOLUMINEUX

LA PRÉSENTE PARTIE DE CETTE DEMANDE OU CE BREVETS
COMPREND PLUS D'UN TOME.

CECI EST LE TOME 1 DE 2

NOTE: Pour les tomes additionnels, veillez contacter le Bureau Canadien des Brevets.

JUMBO APPLICATIONS / PATENTS

THIS SECTION OF THE APPLICATION / PATENT CONTAINS MORE
THAN ONE VOLUME.

THIS IS VOLUME 1 OF 2

NOTE: For additional volumes please contact the Canadian Patent Office.

This is a divisional application of Canadian application serial No. 2,649,876

Short interfering ribonucleic acid (siRNA) for oral administration

Background:

RNA interference initially discovered in plants as Post-Transcriptional Gene Silencing (PTGS), is a highly conserved mechanism triggered by double-stranded RNA (dsRNA) and able to down regulate transcript of genes homologous to the dsRNA¹. The dsRNA is first processed by Dicer into short duplexes of 21-23 nt, called short interfering RNAs (siRNAs)². Incorporated in RNA-induced silencing complex (RISC) they are able to mediate gene silencing through cleavage of the target mRNA in the center of the region of homology by Argonaute 2, a component of RISC³. In 2001, Elbashir et al⁴ demonstrated that the direct introduction of synthetic siRNAs would mediate RNA interference gene silencing in drosophila but also in mammalian cells. Since then, siRNA-mediated gene silencing has become a powerful and widely-used molecular biology tool in both target identification target validation studies. Use of siRNAs for gene silencing in animal studies has been described in a limited amount of animal models. Unmodified siRNAs were delivered locally in the eye⁵, intrathecally or intracerebellarly in the central nervous system⁶, and intranasally for the inhibition of respiratory viruses⁷. Intravenous hydrodynamic tail vein injection of unmodified siRNAs has also been studied. This approach allows a rapid delivery, mainly to the liver⁸. A very limited number of studies have been reported on the systemic administration of unmodified siRNAs. Duxbury et al⁹ administered intravenously unmodified siRNAs targeting Focal Adhesion Kinase to an orthotopic tumor xenograft mice model, and observed a tumor growth inhibition as well as a chemosensitization to gemcitabine. Soutscheck et al reported the systemic use of highly chemically modified siRNAs for the endogenous silencing Apolipoprotein B. Intraperitoneal administration of most anti-ApoB siRNA at the high dose of 50 mg/kg reduced ApoB protein level and Lipoprotein concentration¹⁰. Despite these examples, *in vivo* use of siRNAs upon systemic delivery requires improvements in order to make this technology widely applicable for target validation or therapeutic applications. Indeed, unmodified siRNAs are subject to enzymatic digestion, mainly by nucleases abundant in the blood stream. In order to improve pharmacological properties of siRNAs several groups investigated chemical modification of these reagents. While the approaches described are very different among themselves and that no systematic study was yet performed, an overview of the results allows to determine the tolerance of siRNAs to chemical modifications. Several

chemistries such as phosphorothioates¹¹ or boranophosphates¹², 2'-O-Methyl¹³, 2'-O-allyl¹⁴, 2'-methoxyethyl (MOE) and 2'-deoxyfluorouronucleotides¹⁵ or Locked Nucleic Acids (LNA)¹⁶ have been investigated. These studies highlighted that tolerance for modification is not only chemistry-dependent, but also position-dependent.

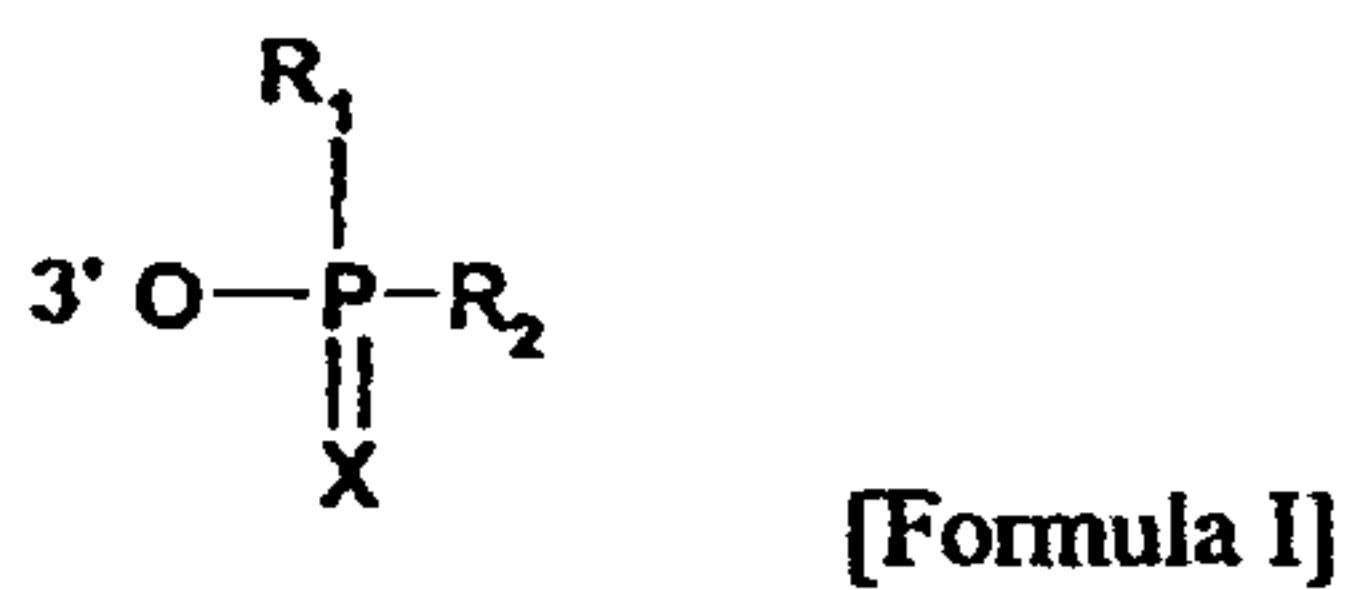
The present invention provides a minimally modified siRNA with improved pharmacological properties. The minimally modified siRNAs are 19bp double-stranded RNA modified on the 3'-end of each strand in order to prevent 3'-exonuclease digestion: the 3'-dideoxynucleotide overhang of 21-nt siRNA has been replaced by a universal 3'-hydroxypropyl phosphodiester moiety and the modification of the two first base-pairing nucleotides on 3'-end of each strand further enhances serum stability. Applied intraperitoneally or orally to adult mice, the modified siRNAs displayed higher potency in a growth factor induce angiogenesis model which correlates with their increased serum stability.

Summary:

In one aspect, the present invention provides a short interfering ribonucleic acid (siRNA) for oral administration, said siRNA comprising two separate RNA strands that are complementary to each other over at least 15 nucleotides, wherein each strand is 49 nucleotides or less, and wherein at least one of which strands contains at least one chemical modification.

In one embodiment, the siRNA comprises at least one modified nucleotide.

In another embodiment, the siRNA comprises at least one 3' end cap.


In another embodiment, said modified nucleotide is selected from among 2' alkoxyribonucleotide, 2' alkoxyalkoxy ribonucleotide, a locked nucleic acid ribonucleotide (LNA), 2'-fluoro ribonucleotide, morpholino nucleotide.

In another embodiment, said modified nucleotide is selected from among nucleotides having a modified internucleoside linkage selected from among phosphorothioate, phosphorodithioate, phosphoramidate, boranophosphonate, and amide linkages.

In another embodiment, said two RNA strands are fully complementary to each other.

In another embodiment, said siRNA comprises a 1 to 6 nucleotide overhang on at least one of the 5' end or 3' end.

In another embodiment, the siRNA contains at least one 3' cap, which is chemical moiety conjugated to the 3' end via the 3' carbon and is selected from among compounds of Formula I:

wherein

X is O or S

R₁ and R₂ are independently OH, NH₂, SH, alkyl, aryl, alkyl-aryl, aryl-alkyl, where alkyl, aryl, alkyl-aryl, aryl-alkyl can be substituted by additional heteroatoms and functional groups, preferably a heteroatom selected from the group of N, O, or S or a functional group selected from the group OH, NH₂, SH, carboxylic acid or ester;

or R₁ and R₂ may be of formula Y-Z where Y is O, N, S and Z is H, alkyl, aryl, alkyl-aryl, aryl-alkyl, where alkyl, aryl, alkyl-aryl, aryl-alkyl can be substituted by additional heteroatoms, preferably a heteroatom selected from the group of N, O, or S.

In another embodiment, the siRNA contains at least one strand which is complementary over at least 15 nucleotides to the mRNA or pre-mRNA of VEGFR-1, VEGFR-2, VEGFR3, Tie2, bFGFR, IL8RA, IL8RB, Fas, or IGF2R.

In another embodiment, the siRNA contains at least one strand which comprises a sequence selected from SEQ ID NO 1 - 900.

In another embodiment, the siRNA is chosen from the group consisting of SEQ ID NO 901-930.

In another embodiment, the siRNA has a stability in a standard gastric acid assay that is greater than an unmodified siRNA with the same nucleotide sequence.

In another embodiment, the siRNA has a stability in a standard gastric acid assay that is greater than or equal to 50% after 30 minutes exposure.

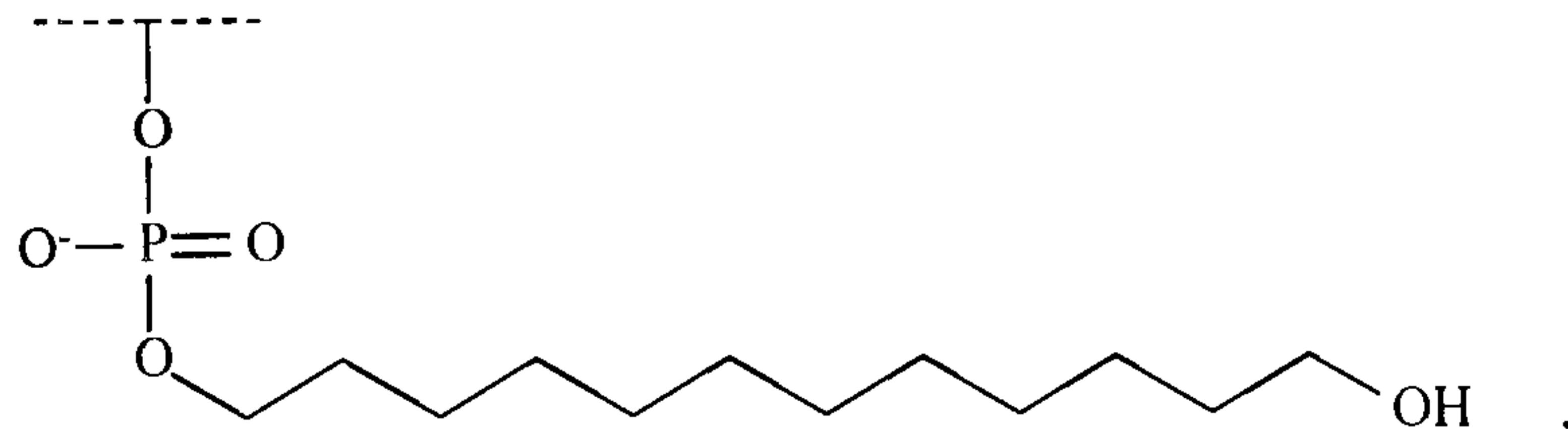
In another embodiment, the siRNA has a stability in a standard serum assay greater than unmodified siRNA.

21489-11000D2

In another embodiment, the siRNA has a stability in a standard serum assay that is greater than or equal to 50% after 30 minutes exposure.

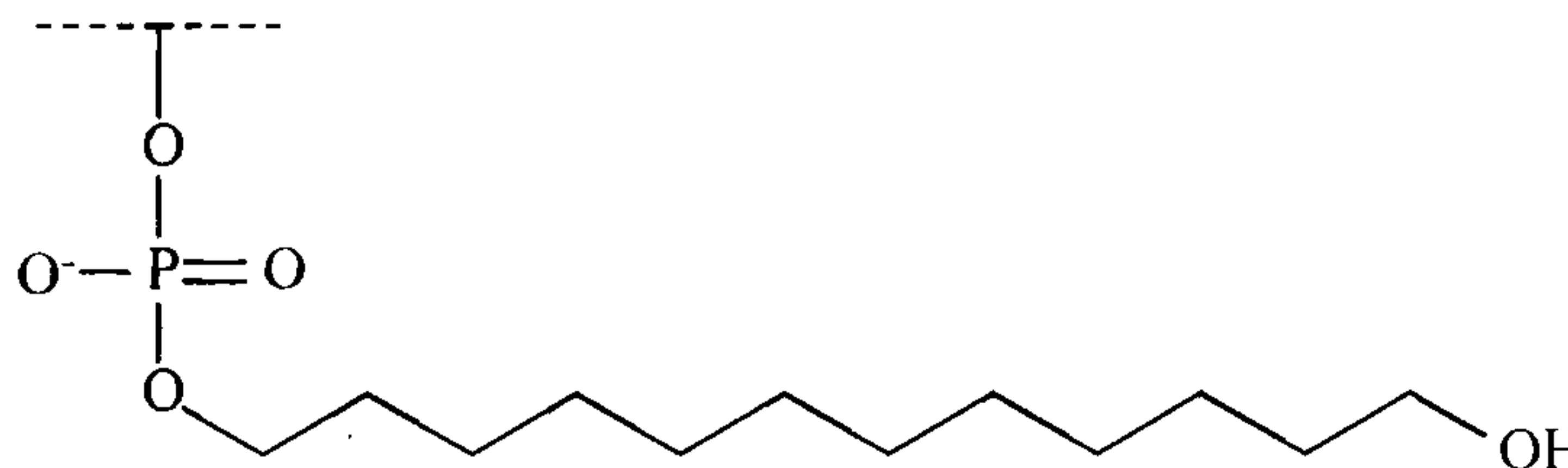
In another embodiment, the siRNA has a stability in a standard intestinal lavage assay that is greater than unmodified siRNA.

5 In another embodiment, the siRNA has an enhanced oral bioavailability compared to an unmodified siRNA of the same nucleotide sequence.


In one aspect, the invention provides a pharmaceutical composition comprising an siRNA with any one or more of the above properties.

10 In another aspect, the invention provides an siRNA with any one or more of the above properties for use as a medicament.

In another aspect, the invention provides the use of an siRNA with any one or more of the above properties in the preparation of a medicament for treating an angiogenic disorder.


15 In another aspect, the invention provides the use of an siRNA with any one or more of the above properties to inhibit an angiogenic process *in vitro*.

20 In another embodiment, the present invention provides a short interfering ribonucleic acid (siRNA), said siRNA comprising two RNA strands that are complementary to each other over at least 15 nucleotides, wherein each strand is 49 nucleotides or less, and wherein the 3'-terminus of at least one strand comprises a modification at the 3' carbon, wherein the modification is:

21489-11000D2

In another embodiment, the present invention provides a short interfering ribonucleic acid (siRNA), said siRNA comprising two RNA strands that are complementary to each other over at least 15 nucleotides, wherein each strand is 49 nucleotides or less, and wherein the 3'-terminus of each strand comprises a modification at the 3' carbon, wherein the 5 modification is:

Brief Description of the Drawings:

Figure 1a, 1b, 1c, 1d and 1e: Metabolic degradation of unmodified siRNA pG13-siRNA (wild-type siRNA in mouse serum); a-c) Ion Exchange-HPLC analysis of 10 unmodified siRNAs after incubation in mouse serum for 0', 30' and 180'; After 30' of incubation at 37°C, major peak in the Ion Exchange HPLC was isolated and re-injected in LC-MS, d) table of detected molecular weights and their assignments; e) ESI-MS spectrum.

Figure 2: illustration of four double-stranded RNA formats: wild-type (or unmodified) siRNA. MOE o/h siRNA, C3-siRNA and C3-MOE siRNA.

Figure 3: Stability of siRNA in 3 different formats in mouse gastric acid. Samples were incubated at 37°C in mouse gastric acid at a 2 micromolar concentration. Disappearance of parent compound was followed over a 2-6 hours period by quantifying the parent compound band.

Lane 1-7: wild-type siRNA in gastric acid at t=0, 5, 10, 15, 30, 60 and 120 min

Lane 8: ds RNA ladder (30, 21, 19, 16, 13, 10 bp)

Lane 9-15: C3 siRNA in gastric acid at t=0, 5, 10, 15, 30, 60 and 120 min

Lane 16: ds RNA ladder (30, 21, 19, 16, 13, 10 bp)

Lane 17-24: C3-MOE siRNA in gastric acid at t=0, 5, 10, 15, 30, 60 and 120 min

Figure 4: Stability of siRNA in 4 different formats in intestinal lavage. Samples were incubated at 37°C in liver microsomes at a 5 micromolar concentration.

(From left to right)

Lane 1: ds RNA ladder (30, 21, 19, 16, 13, 10 bp)

Lane 2-7: wild-type siRNA in intestinal lavage at t=0, 15, 30, 60, 180 and 360 min

Lane 8-13: moe o/h siRNA in intestinal lavage at t=0, 15, 30, 60, 180 and 360 min

Lane 14-19: C3 siRNA in intestinal lavage at t=0, 15, 30, 60, 180 and 360 min

Lane 20-25: C3-MOE siRNA in intestinal lavage at t=0, 15, 30, 60, 180 and 360 min

Figure 5: Stability of siRNA in 4 different formats in liver microsomes. Samples were incubated at 37°C in intestinal fluid from rat intestinal lavage at a 2 micromolar concentration.

(From left to right)

Lane 1: ds

Figure 6: Stability of siRNA in 4 different formats in mouse serum. Samples were incubated at 37°C in mouse serum at a 2 micromolar concentration. Disappearance of parent compound was followed over a 6 hours period by quantifying the parent compound band.

(From left to right)

Lane 1: ds RNA ladder (30, 21, 19, 16, 13, 10 bp) RNA ladder (30, 21, 19, 16, 13, 10 bp)

Lane 2: wild-type siRNA untreated

Lane 3: moe o/h siRNA untreated

Lane 4: C3 siRNA untreated

Lane 5: C3-MOE siRNA untreated

Lane 6-9: same as 2-5 in liver microsomes t=0

Lane 10-13: same as 2-5 in liver microsomes t=60'

Lane 14-17: same as 2-5 in supernatant S12 t=0

Lane 18-21: same as 2-5 in supernatant S12 t=60'

Lane 2-7: wild-type siRNA in mouse serum at t=0, 15, 30, 60, 180 and 360 min

Lane 8-13: moe o/h siRNA in mouse serum at t=0, 15, 30, 60, 180 and 360 min

Lane 14-19: C3 siRNA in mouse serum at t=0, 15, 30, 60, 180 and 360 min

Lane 20-25: C3-MOE siRNA mouse serum at t=0, 15, 30, 60, 180 and 360 min

Figure 7: Characterization *in cellulo* of 3 formats of anti-VEGFR2 siRNA (2 independent sequences). Wild-type siRNA, C3-siRNA and C3-MOE siRNA were transfected into MS1 cells at three concentrations (1, 5, 10 nM). Silencing potency was assessed by measuring VEGFR2 cell surface level by FACS.

Figure 8a and 8b: *In vivo* testing of wild-type siRNA, C3-siRNA and C3-Moe siRNA in a growth factor induced angiogenesis “Agar Chamber” mouse model. Figure 8a shows the results of controls, unmodified VEGFR2 siRNA and C3 modified VEGFR2 siRNA at 1, 5 and 25 micrograms per mouse per day. Figure 8b shows controls, C3 modified VEGFR2 siRNA and of C3-MOE VEGFR2 siRNA at 0.2, 1 and 5 micrograms per mouse per day. In each case pools of 2 anti-VEGFR2 siRNAs were given daily intraperitoneally for three days.

Figure 9: *In vivo* testing of anti-VEGFR2 C3-MOE siRNA given intraperitoneally (i.p.) in a B16 homograft melanoma tumor mouse model at 5 and 20 micrograms per mouse per day. Figure 9a shows that i.p. treatment with modified VEGFR2 siRNA significantly reduces tumour development. Figure 9b also shows that i.p. injection of VEGFR2 siRNA at 20 ug per mouse results in significant inhibition of tumour growth.

Figure 10: *In vivo* testing of C3-MOE siRNA in a growth factor induced angiogenesis mouse model. anti-VEGFR2 siRNAs were given daily orally for three days at 20 micrograms per mouse per day.

Figure 11: *In vivo* testing of C3-MOE siRNA in a growth factor induced angiogenesis mouse model. anti-Tie2 siRNAs were given daily intraperitoneally (1 and 0.2 micrograms per mouse per day) or orally (20 and 5 micrograms per mouse per day) for three days. Figure 11a: weight of excised tissue; Figure 11b: Tie2 protein knock-down

Detailed Disclosure of the Invention:

The present invention relates to compositions and methods for treating angiogenic disorders in a mammal. Specifically, the invention relates to small-interfering RNA (“siRNA”) which may be used to treat angiogenic disorders upon oral administration to a mammal.

Angiogenesis targets in vascular endothelial cells include the following targets/genes: VEGFR-1 (GenBank Accession # AF06365); VEGFR-2 (GenBank Accession # AF063658); VEGFR-3 (GenBank Accession # NM_002020); Tie2 (TEK) (GenBank Accession # NM_000459); bFGFR (GenBank Accession # M60485); IL8RA (GenBank Accession # L19591); IL8RB (GenBank Accession # L19593); Fas (GenBank Accession # X89101); IGF2R (GenBank Accession # NM_000876).

The siRNA molecules according to the present invention mediate RNA interference (“RNAi”). The term “RNAi” is well known in the art and is commonly understood to mean the inhibition of one or more target genes in a cell by siRNA with a region which is complementary to the target gene. Various assays are known in the art to test siRNA for its ability to mediate RNAi (see for instance Elbashir et al., Methods 26 (2002), 199-213). The effect of the siRNA according to the present invention on gene expression will typically result in expression of the target gene being inhibited by at least 10%, 33%, 50%, 90%, 95% or 99% when compared to a cell not treated with the RNA molecules according to the present invention.

“siRNA” or “small-interfering ribonucleic acid” according to the invention has the meanings known in the art, including the following aspects. The siRNA consists of two strands of ribonucleotides which hybridize along a complementary region under physiological conditions. The strands are separate but they may be joined by a molecular linker in certain embodiments. The individual ribonucleotides may be unmodified naturally occurring ribonucleotides, unmodified naturally occurring deoxyribonucleotides or they may be chemically modified or synthetic as described elsewhere herein.

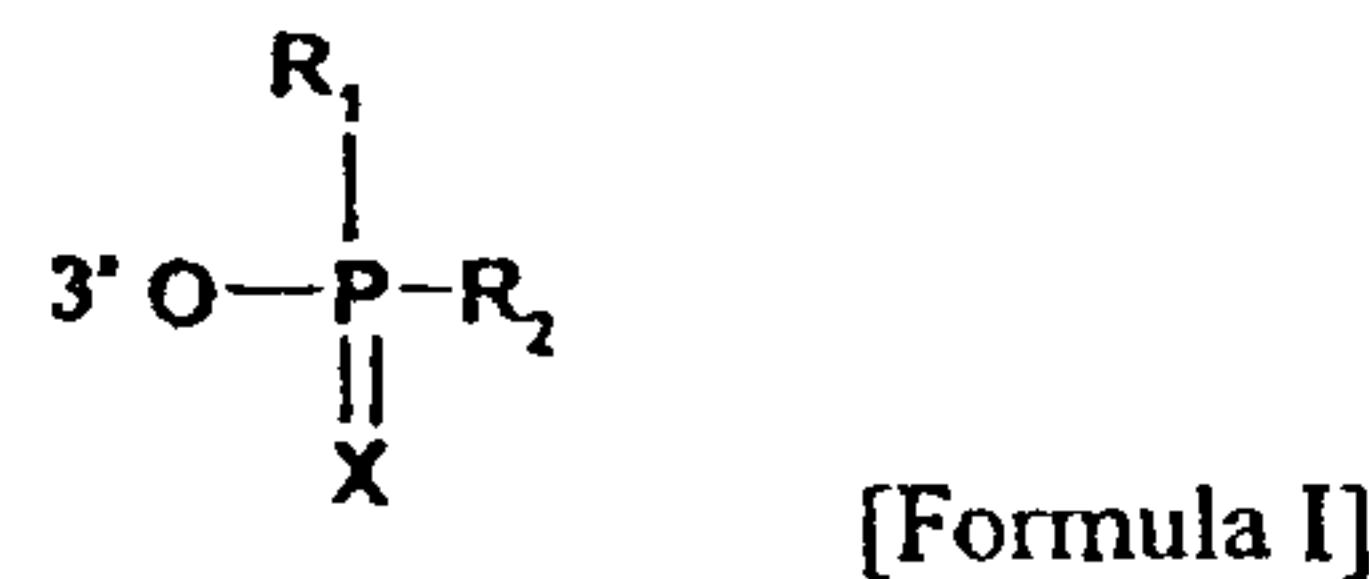
The siRNA molecules in accordance with the present invention comprise a double-stranded region which is substantially identical to a region of the mRNA of the target gene. A region with 100% identity to the corresponding sequence of the target gene is suitable. This

state is referred to as "fully complementary". However, the region may also contain one, two or three mismatches as compared to the corresponding region of the target gene, depending on the length of the region of the mRNA that is targeted, and as such may be not fully complementary. In an embodiment, the RNA molecules of the present invention specifically target one given gene. In order to only target the desired mRNA, the siRNA reagent may have 100% homology to the target mRNA and at least 2 mismatched nucleotides to all other genes present in the cell or organism. Methods to analyze and identify siRNAs with sufficient sequence identity in order to effectively inhibit expression of a specific target sequence are known in the art. Sequence identity may be optimized by sequence comparison and alignment algorithms known in the art (see Gribskov and Devereux, *Sequence Analysis Primer*, Stockton Press, 1991, and references cited therein) and calculating the percent difference between the nucleotide sequences by, for example, the Smith-Waterman algorithm as implemented in the BESTFIT software program using default parameters (e.g., University of Wisconsin Genetic Computing Group).

Another factor affecting the efficiency of the RNAi reagent is the target region of the target gene. The region of a target gene effective for inhibition by the RNAi reagent may be determined by experimentation. A suitable mRNA target region would be the coding region. Also suitable are untranslated regions, such as the 5'-UTR, the 3'-UTR, and splice junctions. For instance, transfection assays as described in Elbashir S.M. et al, 2001 *EMBO J.*, 20, 6877-6888 may be performed for this purpose. A number of other suitable assays and methods exist in the art which are well known to the skilled person.

The length of the region of the siRNA complementary to the target, in accordance with the present invention, may be from 10 to 100 nucleotides, 12 to 25 nucleotides, 14 to 22 nucleotides or 15, 16, 17 or 18 nucleotides. Where there are mismatches to the corresponding target region, the length of the complementary region is generally required to be somewhat longer.

Because the siRNA may carry overhanging ends (which may or may not be complementary to the target), or additional nucleotides complementary to itself but not the target gene, the total length of each separate strand of siRNA may be 10 to 100 nucleotides, 15 to 49 nucleotides, 17 to 30 nucleotides or 19 to 25 nucleotides.


The phrase "each strand is 49 nucleotides or less" means the total number of consecutive nucleotides in the strand, including all modified or unmodified nucleotides, but

not including any chemical moieties which may be added to the 3' or 5' end of the strand. Short chemical moieties inserted into the strand are not counted, but a chemical linker designed to join two separate strands is not considered to create consecutive nucleotides.

The phrase "a 1 to 6 nucleotide overhang on at least one of the 5' end or 3' end" refers to the architecture of the complementary siRNA that forms from two separate strands under physiological conditions. If the terminal nucleotides are part of the double-stranded region of the siRNA, the siRNA is considered blunt ended. If one or more nucleotides are unpaired on an end, an overhang is created. The overhang length is measured by the number of overhanging nucleotides. The overhanging nucleotides can be either on the 5' end or 3' end of either strand.

The siRNA according to the present invention confer a high *in vivo* stability suitable for oral delivery by including at least one modified nucleotide in at least one of the strands. Thus the siRNA according to the present invention contains at least one modified or non-natural ribonucleotide. A lengthy description of many known chemical modifications are set out in published PCT patent application WO 200370918 and will not be repeated here. Suitable modifications for oral delivery are more specifically set out in the Examples and description herein. Suitable modifications include, but are not limited to modifications to the sugar moiety (i.e. the 2' position of the sugar moiety, such as for instance 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al., *Helv. Chim. Acta*, 1995, 78, 486-504) i.e., an alkoxyalkoxy group) or the base moiety (i.e. a non-natural or modified base which maintains ability to pair with another specific base in an alternate nucleotide chain). Other modifications include so-called 'backbone' modifications including, but not limited to, replacing the phosphoester group (connecting adjacent ribonucleotides with for instance phosphorothioates, chiral phosphorothioates or phosphorodithioates). Finally, end modifications sometimes referred to herein as 3' caps or 5' caps may be of significance. As illustrated in Table 1, caps may consist of simply adding additional nucleotides, such as "T-T" which has been found to confer stability on an siRNA. Caps may consist of more complex chemistries which are known to those skilled in the art.

In an embodiment used in the Examples below, the 3' cap is a chemical moiety conjugated to the 3' end via the 3' carbon and is selected from among compounds of Formula I:

wherein

X is O or S

R₁ and R₂ are independently OH, NH₂, SH, alkyl, aryl, alkyl-aryl, aryl-alkyl, where alkyl, aryl, alkyl-aryl, aryl-alkyl can be substituted by additional heteroatoms and functional groups, preferably a heteroatom selected from the group of N, O, or S or a functional group selected from the group OH, NH₂, SH, carboxylic acid or ester;

or R₁ and R₂ may be of formula Y-Z where Y is O, N, S and Z is H, alkyl, aryl, alkyl-aryl, aryl-alkyl, where alkyl, aryl, alkyl-aryl, aryl-alkyl can be substituted by additional heteroatoms, preferably a heteroatom selected from the group of N, O, or S.

Examples of modifications on the sugar moiety include 2' alkoxyribonucleotide, 2' alkoxyalkoxy ribonucleotide, locked nucleic acid ribonucleotide (LNA), 2'-fluoro ribonucleotide, morpholino nucleotide.

The internucleoside linkage may also be modified. Examples of internucleoside linkage include phosphorothioate, phosphorodithioate, phosphoramidate, and amide linkages.

R₁ may be OH.

R₁ and R₂ together may comprise from 1 to 24 C-atoms, from 1 to 12 C-atoms, from 2 to 10 C-atoms, from 1 to 8 or from 2 to 6 C-atoms. In another embodiment, R₁ and R₂ are independently OH, lower alkyl, lower aryl, lower alkyl-aryl, lower aryl-alkyl, where lower alkyl, lower aryl, lower alkyl-aryl, lower aryl-alkyl can be substituted by additional heteroatoms and functional groups as defined above. In another embodiment, R₁ and R₂ are not both OH.

The term "lower" in connection with organic radicals or compounds means a compound or radical which may be branched or unbranched with up to and including 7 carbon

21489-11000

atoms, preferably 1-4 carbon atoms. Lower alkyl represents, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl and branched pentyl, n-hexyl and branched hexyl.

Examples of alkoxyis include O-Met, O-Eth, O-prop, O-but, O-pent, O-hex.

Methods for the synthesis of siRNA, including siRNA containing at least one modified or non-natural ribonucleotides are well known and readily available to those of skill in the art. For example, a variety of synthetic chemistries are set out in published PCT patent applications WO2005021749 and WO200370918. The reaction may be carried out in solution or, preferably, on solid phase or by using polymer supported reagents, followed by combining the synthesized RNA strands under conditions, wherein a siRNA molecule is formed, which is capable of mediating RNAi.

The present invention provides an siRNA containing at least one modified nucleotide which is suitable for oral delivery. In functional terms this means siRNA will have suitable pharmacokinetics and biodistribution upon oral administration to achieve delivery to the target tissue of concern. In particular this requires serum stability, lack of immune response, and drug like behaviour. Many of these features of siRNA can be anticipated based on the standard gastric acid assays and standard serum assays disclosed elsewhere herein.

In another aspect, the present invention provides methods for the inhibition of a target gene comprising introducing into a cell and siRNA according to the present invention, which is capable of inhibiting at least one target gene by RNAi. Also, more than one species of siRNA, which are each specific for another target region, may be introduced into a cell at the same time or sequentially.

The present invention is not limited to any type of target gene or nucleotide sequence. For example, the target gene can be a cellular gene, an endogenous gene, a pathogen-associated gene, a viral gene or an oncogene. Angiogenic genes are of particular importance to the invention because some of the Examples highlight that the orally delivered siRNA of the invention may accumulate at sites of vasculogenesis, neovascularization or angiogenesis. An updated listing of angiogenic genes at these sites of particular interest for the invention are listed in AngloDB: database of angiogenesis and angiogenesis-related molecules Tae-Kwon

Sohn, Eun-Joung Moon¹, Seok-Ki Lee¹, Hwan-Gue Cho² and Kyu-Won Kim³, Nucleic Acids Research, 2002, Vol. 30, No. 1 369-371. Genes of particular significance have been analyzed in detail and are set out elsewhere herein.

In another aspect, the invention also provides a kit comprising reagents for inhibiting expression of a target gene in a cell, wherein said kit comprises dsRNA according to the present invention. The kit comprises at least one of the reagents necessary to carry out the *in vitro* or *in vivo* introduction of the dsRNA according to the present invention to test samples or subjects. In a preferred embodiment, such kits also comprise instructions detailing the procedures by which the kit components are to be used.

“Treatment of an angiogenic disorder” as used in this disclosure means use of a modified siRNA of the invention in a pharmaceutical composition for the treatment of diseases involving the physiological and pathological processes of neovascularization, vasculogenesis and/or angiogenesis. As such, these pharmaceutical compositions are useful for treating diseases, conditions and disorders that require inhibition of neovascularization, vasculogenesis or angiogenesis, including but not limited to cancer tumour growth and metastasis, neoplasm, ocular neovascularization (including macular degeneration, diabetic retinopathy, ischemic retinopathy, retinopathy of prematurity, choroidal neovascularization), rheumatoid arthritis, osteoarthritis, chronic asthma, septic shock, inflammatory diseases, synovitis, bone and cartilage destruction, pannus growth, osteophyte formation, osteomyelitis, psoriasis, obesity, haemangioma, Kaposi's sarcoma, atherosclerosis (including atherosclerotic plaque rupture), endometriosis, warts, excess hair growth, scar keloids, allergic oedema, dysfunctional uterine bleeding, follicular cysts, ovarian hyperstimulation, endometriosis, osteomyelitis, inflammatory and infectious processes (hepatitis, pneumonia, glomerulonephritis), asthma, nasal polyps, transplantation, liver regeneration, leukomalacia, thyroiditis, thyroid enlargement, lymphoproliferative disorders, haematologic malignancies, vascular malformations, and pre-eclampsia.

As used herein, “treatment” means an action taken to inhibit or reduce a process of a disease, disorder or condition, to inhibit or reduce a symptom of a disease, disorder or condition, or to prophylactically prevent the onset or further development of a disease, disorder or condition. “Treat” is the cognitive verb thereof.

An effective dose of the therapeutic agent of the invention is that dose required to treat a disease state. The effective dose depends on the type of disease, the composition used, the

route of administration, the type of mammal being treated, the physical characteristics of the specific mammal under consideration, concurrent medication, and other factors that those skilled in the medical arts will recognize. Generally, an amount between 0.1 mg/kg and 100 mg/kg body weight/day of siRNA is administered dependent upon potency. The nucleic acid molecules of the invention and formulations thereof can be administered orally, topically, parenterally, by inhalation or spray, or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and/or vehicles. The term parenteral as used herein includes percutaneous, subcutaneous, intravascular (e.g., intravenous), intramuscular, intraperitoneal, or intrathecal injection, or infusion techniques and the like. In addition, there is provided a pharmaceutical formulation comprising a nucleic acid molecule of the invention and a pharmaceutically acceptable carrier. One or more nucleic acid molecules of the invention can be present in association with one or more non-toxic pharmaceutically acceptable carriers and/or diluents and/or adjuvants, and if desired other active ingredients. The pharmaceutical compositions containing nucleic acid molecules of the invention can be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsion, hard or soft capsules, or syrups or elixirs.

Compositions intended for oral use can be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions can contain one or more such sweetening agents, flavoring agents, coloring agents or preservative agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients that are suitable for the manufacture of tablets. These excipients can be, for example, inert diluents; such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia; and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets can be uncoated or they can be coated by known techniques. Formulations for oral use can also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil. Aqueous suspensions contain the active materials in a mixture with excipients suitable for the manufacture of aqueous suspensions.

Oral administration of the compositions of the invention include all standard techniques for administering substances directly to the stomach or gut, most importantly by patient controlled swallowing of the dosage form, but also by other mechanical and assisted means of such delivery.

Dosage levels of the order of from about 0.1 mg to about 140 mg per kilogram of body weight per day are useful in the treatment of the above- indicated conditions (about 0.5 mg to about 7 g per subject per day). The amount of active ingredient that can be combined with the carrier materials to produce a single dosage form varies depending upon the host treated and the particular mode of administration. Dosage unit forms generally contain between from about 1 mg to about 500 mg of an active ingredient. It is understood that the specific dose level for any particular subject depends upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the particular disease undergoing therapy.

Therapeutic effect of the therapeutic agents of the invention may be enhanced by combination with other agents. Typically such other agents will include agents known for use in treating similar diseases, such as angiogenic disorders. Alternatively, such agents may be used to reduce side-effects or unwanted effects caused by the therapeutic agents of the invention.

The siRNA of the invention also have important research uses. One such study includes research into an angiogenic process *in vitro*. By “angiogenic process *in vitro*” is meant any process for studying angiogenesis or vasculogenesis which does not employ a whole animal. As such, *in vitro* or *ex vivo* methods and assays which study the steps of the angiogenic process using markers or indicators of angiogenesis are included hereby.

RNA Strand Nucleotide Sequences

The siRNA strand sequences identified in Table 1 have been identified as suitable siRNA sequences against the following targets: VEGFR-1 (GenBank Accession # AF06365); VEGFR-2 (GenBank Accession # AF063658); VEGFR-3 (GenBank Accession # (NM_002020); Tie2 (TEK) (GenBank Accession # NM_000459); bFGFR (GenBank Accession # M60485); IL8RA (GenBank Accession # L19591); IL8RB (GenBank Accession

L19593); Fas (GenBank Accession # X89101); IGF2R (GenBank Accession # NM_000876).

Table 1: siRNAs against human VEGFR-1, VEGFR-2, VEGFR-3, Tie2, bFGFR, IL8RA, IL8RB, Fas, IGF2R

Target Name	pos	siRNA guide sequence	SEQ ID	siRNA complement	SEQ ID
			NO		NO
VEGFR-1	1731	UAUAAGAACUUGUUACUGTG	1	CAGUUAACAAGUUCUUAUATT	451
VEGFR-1	1021	UACGGUUUCAAGCACCUGCTG	2	GCAGGUGCUGAAACCGUATT	452
VEGFR-1	1209	UUUAUGCUCAGCAAGAUUGTA	3	CAAUCUUGCUGAGCAUAAATT	453
VEGFR-1	2904	UUAUCUUCCUGAAAGCCGGAG	4	CCGGCUUUCAGGAAGAUAAATT	454
VEGFR-1	1363	UUGAGGGAUACCAUAUGCGGT	5	CGCAUAUGGUAUCCCUAATT	455
VEGFR-1	1158	UUGAUAAUUAACGAGUAGCCA	6	GCUACUCGUUAAAUAUCAATT	456
VEGFR-1	1091	UUAACCAUACAACUUCGGCG	7	CCGGAAGUUGUAUGGUUAATT	457
VEGFR-1	471	UUAGGUGACGUAACCCGGCAG	8	GCCGGGUUACGUCACCUAATT	458
VEGFR-1	2751	UUGCUCUUGAGGUAGUUGGAG	9	CCAACUACCUAAGAGCAATT	459
VEGFR-1	636	UUUGUCUUAUACAAUAGCCC	10	GGCAUUUGUAUAAGACAAATT	460
VEGFR-1	1254	UUGACAAUUAGAGUGGCAGTG	11	CUGCCACUCUAAUUGUCAATT	461
VEGFR-1	2375	UUUAUAAUUGAUAGGUAGUCAG	12	GACUACCUAUCAAAUUAATT	462
VEGFR-1	3536	UUGAGUAUGUAAACCCACUAT	13	AGUGGGUUUACAUACUCAATT	463
VEGFR-1	2971	UUCCAUAGUGAUGGGCUCTT	14	GGAGCCCACUACUUAUGGAATT	464
VEGFR-1	1774	UCUGUUAAAACUGUCCGCAG	15	GCGGACAGUAAAACAGATT	465
VEGFR-1	3494	UUGGGAUGUAGUCUUUACCAT	16	GGUAAAGACUACAUCCAATT	466
VEGFR-1	2269	UGUUAGAGUGAUCAGCUCCAG	17	GGAGCUGAUCACUCUAAACATT	467
VEGFR-1	525	UUUCCAUCAGGAUCAAAGTG	18	CUUUGAUCCUGAUGGAAATT	468
VEGFR-1	769	UUGAACUCUCGGUUCAAGGG	19	CUUGAACACGAGAGUCAATT	469
VEGFR-1	2246	UAGACUUGUCCGAGGUUCCTT	20	GGAACCUCGGACAAGUCUATT	470
VEGFR-1	732	UUGAGGACAAGAGUAUGGCCT	21	GCCAUACUCUUGUCCUCAATT	471
VEGFR-1	3813	UUACUGGUUACUCUCAAGUCA	22	ACUUGAGAGUAACCAGUAATT	472
VEGFR-1	3925	UUCCAGCUCAGCGUGGUCGTA	23	CGACCACGCUGAGCUGGAATT	473

VEGFR-1	1414	UGCUUCGGAAUGAUUAUGGTT	24	CCAUAAUCAUUCCGAAGCATT	474
VEGFR-1	615	UUGACUGUUGCUUCACAGGTC	25	CCUGUGAAGCAACAGUCAATT	475
VEGFR-1	3300	UCAUCCAUUUGUACUCCUGGG	26	CAGGAGUACAAUUGGAUGATT	476
VEGFR-1	2845	UGGUUUCUUGCCUUGUUCCAG	27	GGAACAAGGCAAGAAACCATT	477
VEGFR-1	2802	UUAGGCUCCAUGUGUAGUGCT	28	CACUACACAUGGAGCCUAATT	478
VEGFR-1	1564	UCUAGAGUCAGCCACAACCAA	29	GGUUGUGGCUGACUCUAGATT	479
VEGFR-1	1154	UAAUUAACGAGUAGCCACGAG	30	CGUGGCUACUCGUUAAUUATT	480
VEGFR-1	1090	UAACCAUACAACUUCGGCGA	31	GCCGGAAGUUGUAUGGUUATT	481
VEGFR-1	1260	UUCACAUUGACAAUUAAGAGTG	32	CUCUAAUUGUCAAUGUGAATT	482
VEGFR-1	3530	AUGUAAACCCACUAAUUCCTG	33	GGAAAUAGUGGGUUUACAUATT	483
VEGFR-1	1177	AUCCUCUUCAGUUACGUCCCTT	34	GGACGUAACUGAAGAGGAUTT	484
VEGFR-1	1193	UUGUAAUAAUUCCCUGCAUCCT	35	GAUGCAGGGAAUUUAACAATT	485
VEGFR-1	1092	UUUAACCAUACAACUUCGGC	36	CGGAAGUUGUAUGGUUAAATT	486
VEGFR-1	627	UACAAAUGCCCAUUGACUGTT	37	CAGUCAAUGGGCAUUUGUATT	487
VEGFR-1	474	AUGUUAGGUGACGUACCCGG	38	GGGUUACGUCACCUAACAUATT	488
VEGFR-1	2761	UAAGUCACGUUUGCUCUUGAG	39	CAAGAGCAAACGUGACUUATT	489
VEGFR-1	2752	UUUGCUCUUGAGGUAGUUGGA	40	CAACUACCUAAGAGCAAATT	490
VEGFR-1	3516	UUUCCUGUCAGUAUGGCAUTG	41	AUGCCAUACUGACAGGAAATT	491
VEGFR-1	1790	UACUGUAGUGCAUUGUUCUGT	42	AGAACAAUGCACUACAGUATT	492
VEGFR-1	1155	AUAAUUAACGAGUAGCCACGA	43	GUGGCUACUCGUUAAUUAATT	493
VEGFR-1	1370	UUGUAGGUUGAGGGAUACCAT	44	GGUAUCCCUCACCUACAUATT	494
VEGFR-1	2227	UGAACAGUGAGGUAGCUGA	45	AGCAUACCUACUGUUCAUATT	495
VEGFR-1	3481	UUUACCAUCCUGUUGUACATT	46	UGUACAAACAGGAUGGUAAATT	496
VEGFR-1	1261	UUUCACAUUGACAAUUAAGAGT	47	UCUAAUUGUCAAUGUGAAATT	497
VEGFR-1	1791	AUACUGUAGUGCAUUGUUCTG	48	GAACAAUGCACUACAGUATT	498
VEGFR-1	3805	UACUCUCAAGUAAUCUUGAG	49	CAAGAUUGACUUGAGAGUATT	499
VEGFR-1	2764	AAAUAAGUCACGUUUGCUCTT	50	GAGCAAACGUGACUUUUUATT	500
VEGFR-2	617	UAAUAGACUGGUACUUUCAT	51	GAAAGUUACCAAGUCUAAUATT	501

VEGFR-2	2686	UAGAAGGUUGACCACAUUGAG	52	CAAUGUGGUCAACCUUCUATT	502
VEGFR-2	561	UAGCUGAUCAUGUAGCUGGGA	53	CCAGCUACAUGAUCAGCUATT	503
VEGFR-2	525	UUGCUGUCCCAGGAAAUUCTG	54	GAUUUCCUGGGACAGCAATT	504
VEGFR-2	2277	AUGAUUUCCAAGUUCGUCUTT	55	AGACGAACUUGGAAUCAUTT	505
VEGFR-2	395	UAAUGUACACGACUCCAUGTT	56	CAUGGAGUCGUGUACAUUATT	506
VEGFR-2	2410	UUCAUCUGGAUCCAUGACGAT	57	CGUCAUGGAUCCAGAUGAATT	507
VEGFR-2	2007	UGAUUCUCCAGGUUUCUGTG	58	CAGGAAACCUGGAGAAUCATT	508
VEGFR-2	1323	UAGACCGUACAUGUCAGCGTT	59	CGCUGACAUUGUACGGGUATT	509
VEGFR-2	3382	UUCUGGUGUAGUAUAUCAGG	60	UGAUUAUACUACACCAGAATT	510
VEGFR-2	3078	UUUCGUGCCGCCAGGUCCCTG	61	GGGACCUGGCGGCACGAAATT	511
VEGFR-2	1432	UUCUUCACAAGGGUAUGGGTT	62	CCCAUACCCUUGUGAAGAATT	512
VEGFR-2	1817	UCAAUUUCCAAAGAGUAUCCA	63	GAUACUCUUUGGAAUUGATT	513
VEGFR-2	688	UAGUUCAAUUCCAUGAGACGG	64	GUCUCAUGGAAUUGAACUATT	514
VEGFR-2	2310	AACAUGGCAAUCACCGCCGTG	65	CGGCGGUGAUUGCCAUGUUTT	515
VEGFR-2	2130	UCCUUCAAUACAAUGCCUGAG	66	CAGGCAUUGUAUUGAAGGATT	516
VEGFR-2	799	UACAAGUUUCUUAUGCUGATG	67	UCAGCAUAAGAAACUUGUATT	517
VEGFR-2	3523	UGAUUAUCGGAAGAACAAUGTA	68	CAUUGUUCUUCGGAUAAUCATT	518
VEGFR-2	1843	UGUGCUAUUAGAGAACAAUGGT	69	CAUGUUCUCUAAUAGCACATT	519
VEGFR-2	2941	UUCUACAUACACUGAGGGACTT	70	GUCCUCAGUGAUGUAGAATT	520
VEGFR-2	2088	UCUUUAAAACCACAAUGAUCUGT	71	AGAUCAUGUGGUUUAAAGATT	521
VEGFR-2	472	UCUUGCACAAAGUGACACGTT	72	CGUGUCACUUUGUGCAAGATT	522
VEGFR-2	180	UGAUUAUUGGCCAAAGCCAG	73	GGCUUUGGCCAAUAAUCATT	523
VEGFR-2	1568	AUUUGUACAAAGCUGACACAT	74	GUGUCAGCUUUGUACAAUATT	524
VEGFR-2	3141	UAAAUAUCCCGGGCCAAGCCA	75	GCUUGGCCGGAUUUATT	525
VEGFR-2	3769	AACCAUACCACUGUCCGUCTG	76	GACGGACAGUGGUAGGUUTT	526
VEGFR-2	3920	UGUCAUCGGAGUGUAUCCGG	77	GGAUUAUCACUCCGAUGACATT	527
VEGFR-2	1718	UCUCAAACGUAGAUCUGUCTG	78	GACAGAUCUACGUUUGAGATT	528
VEGFR-2	2919	UCCUCCACAAAUCCAGAGCTG	79	GCUCUGGAUUGUGGAGGATT	529

VEGFR-2	324	UAAAUGACCGAGGCCAAGUCA	80	ACUUGGCCUCGGUCAUUUATT	530
VEGFR-2	1050	UAACCAAGGUACUUCGCAGGG	81	CUGCGAAGUACCUUGGUUATT	531
VEGFR-2	56	UAGGCAAACCCACAGAGGCGG	82	GCCUCUGUGGGUUUGCCUATT	532
VEGFR-2	2453	UGGCAUCAUAAGGCAGUCGTT	83	CGACUGCCUUAUGAUGCCATT	533
VEGFR-2	1303	UUGAGUGGUGGCCGUACUGGTA	84	CCAGUACGGCACCAUCUATT	534
VEGFR-2	1813	UUUCCAAAGAGUAUCCAAGTT	85	CUUGGAUACUCUUUGGAAATT	535
VEGFR-2	2015	UUGUCGUCUGAUUCUCCAGGT	86	CUGGAGAAUCAGACGACAATT	536
VEGFR-2	3088	UAAGAGGAUAAAUCGUGCCGC	87	GGCACGAAAUAUCCUCUATT	537
VEGFR-2	625	UAUGUACAUAAUAGACUGGTA	88	CCAGUCUAAUUAUGUACAUATT	538
VEGFR-2	800	UUACAAGUUUCUUAUGCUGAT	89	CAGCAUAAGAAACUUGUAATT	539
VEGFR-2	811	UAGGUCUCGGUUUACAAGUTT	90	ACUUGUAAACCGAGACCUATT	540
VEGFR-2	812	UUAGGUCUCGGUUUACAAGTT	91	CUUGUAAACCGAGACCUATT	541
VEGFR-2	3093	UCCGAUAAGAGGAUAAAUCGT	92	GAAAUAUCCUCUUAUCGGATT	542
VEGFR-2	801	UUUACAAGUUUCUUAUGCUGA	93	AGCAUAAGAAACUUGUAAATT	543
VEGFR-2	2009	UCUGAUUCUCCAGGUUUCCTG	94	GGAAACCUGGAGAAUCAGATT	544
VEGFR-2	2127	UUCAAUACAAUGCCUGAGUCT	95	ACUCAGGCAUUGUAUUGAATT	545
VEGFR-2	1585	UUUGUUGACCGCUUCACAUATT	96	AUGUGAAGCGGUCAACAAATT	546
VEGFR-2	562	AUAGCUGAUCAUGUAGCUGGG	97	CAGCUACAUGAUCAGCUATT	547
VEGFR-2	3906	UAUCCGGACUGGUAGCCGCTT	98	GCGCUACCAGUCCGGAUATT	548
VEGFR-2	1316	UACAUUGUCAGCGUUUGAGUGG	99	ACUAAACGCUGACAUGUATT	549
VEGFR-2	3520	UAUCGGAAGAACAAUGUAGTC	100	CUACAUUGUUCUUCGGAUATT	550
VEGFR-3	453	UUCCUGUUGACCAAGAGCGTG	101	CGCUCUUGGUCAACAGGAATT	551
VEGFR-3	2694	UUGAGCUCCGACAUCAGCGCG	102	CGCUGAUGUCGGAGCUATT	552
VEGFR-3	1689	UUGGAUUCGAUGGUGAAGCCG	103	GCUUCACCAUCGAAUCCAATT	553
VEGFR-3	988	UUCAUGCACAAUGACCUCGGT	104	CGAGGUCAUUGUGCAUGAATT	554
VEGFR-3	4374	UUACCAAGGAAUAAUCGGCGG	105	GCCGAUUAUUCCUUGGUATT	555
VEGFR-3	2142	UCUUUGUACCACACGAUGCTG	106	GCAUCGUGUGGUACAAAGATT	556
VEGFR-3	1833	UUGCAGUCGAGCAGAAGCGGG	107	CGCUUCUGCUCGACUGCAATT	557

VEGFR-3	3903	UUCAGCUACCUGAAGCCGCTT	108	GCGGCUUCAGGUAGCUGAATT	558
VEGFR-3	3273	UACACCUUGUCGAAGAUGCTT	109	GCAUCUUCGACAAGGUGUATT	559
VEGFR-3	1107	UACCACUGGAACUCGGCGGG	110	CGCCCGAGUUCCAGUGGUATT	560
VEGFR-3	336	UAGCAGACGUAGCUGCCUGTG	111	CAGGCAGCUACGUCUGCUATT	561
VEGFR-3	2607	UUGUGGAUGCCGAAAGCGGAG	112	CCGCUUUCGGCAUCCACAATT	562
VEGFR-3	1556	UCACAGUCUUUUUCUUUCCCT	113	GGAAAGAAUAAGACUGUGATT	563
VEGFR-3	108	UCCGUGAUGUUCAAGGUCGGG	114	CGACCUUGAACAUCAUCACGGATT	564
VEGFR-3	1954	AUAGUGGCCUCGUGCUCGGG	115	CGAGCACGAGGGCCACUAUTT	565
VEGFR-3	2100	AAGCACUGCAUCUCCAGCGAG	116	CGCUGGAGAUGCAGUGCUUTT	566
VEGFR-3	693	UCAUAGAGCUCGUUGCCUGTG	117	CAGGCAACGAGCUCUAUGATT	567
VEGFR-3	2337	AGGAUCACGAUCUCCAUGCTG	118	GCAUGGAGAUCGUGAUCCUTT	568
VEGFR-3	2054	UCAAGUUCUGCGUGAGCCGAG	119	CGGCUCACGCAGAACUUGATT	569
VEGFR-3	860	UCUGUUGGGAGCGUCGCUCGG	120	GAGCGACGCUCCAACAGATT	570
VEGFR-3	2436	UAGCCCGUCUUGAUGUCUGCG	121	CAGACAUCAAGACGGCUATT	571
VEGFR-3	3759	UUCAUCCUGGAGGAACCACGG	122	GUGGUUCCUCCAGGAUGAATT	572
VEGFR-3	288	AACACCUUGCAGUAGGGCCTG	123	GGCCUACUGCAAGGUGUUTT	573
VEGFR-3	1485	UGCGUGGUACCCGCCUCCAG	124	GGAGGGCGGUGACCACGCATT	574
VEGFR-3	2502	UCGUAGGACAGGUAUUCGCAT	125	GCGAAUACCUGUCCUACGATT	575
VEGFR-3	925	AUACGAGCCCAGGUCUGCTG	126	GCACGACCUGGGCUCGUAUTT	576
VEGFR-3	426	UUGUUGAUGAAUGGCUGCUCA	127	AGCAGCCAUUCAUCAACAATT	577
VEGFR-3	3189	UAGAUGUCCCCGGCAAGGCCA	128	GCCUUGCCCCGGACAUCUATT	578
VEGFR-3	2274	UUGACGCAGCCUUGGGUCTG	129	GACCCAAGGGCUGCGUCAATT	579
VEGFR-3	2196	UUCUGGUUGGAGUCCGCCAAG	130	UGGCGGACUCCAACCAGAATT	580
VEGFR-3	2019	UGCACCGACAGGUACUUCUTG	131	AGAAGUACCUGUCGGUGCATT	581
VEGFR-3	360	AUGCGUGCCUUGAUGUACUTG	132	AGUACAUCAAGGCACGCAUTT	582
VEGFR-3	1755	UACUUGUAGCUGUCGGCUUGG	133	AAGCCGACAGCUACAAGUATT	583
VEGFR-3	3037	UUCCAUGGUACAGCGGGCUCAG	134	GAGCCCGCUGACCAUGGAATT	584

VEGFR-3	1018	UUUGAGCCACUCGACGCCUGAT	135	CAGCGUCGAGUGGCUCAAATT	585
VEGFR-3	1684	UUCGAUGGUGAAGCCGUCGGG	136	CGACGGCUUCACCAUCGAATT	586
VEGFR-3	4373	UACCAAGGAAUAAUCGGCGGG	137	CGCCGAUUAUUCUUGGUATT	587
VEGFR-3	987	UCAUGCACAAUGACCUCGGTG	138	CCGAGGUCAUUGUGCAUGATT	588
VEGFR-3	3267	UUGUCGAAGAUGCUCUUCAGGG	139	CUGAAAGCAUCUUCGACAATT	589
VEGFR-3	4387	UGUAUUACUCAUAAUACCAAG	140	UGGUAAAUAUGAGUAAUACATT	590
VEGFR-3	3883	UUCUUGUCUAUGCCUGCUCTC	141	GAGCAGGCAUAGACAAGAATT	591
VEGFR-3	4376	UAUUACCAAGGAAUAAUCGGC	142	CGAUUAUUCUUGGUAAUATT	592
VEGFR-3	2140	UUUGUACCACACGAUGCUGGG	143	CAGCAUCGUGUGGUACAAATT	593
VEGFR-3	978	AUGACCUCGGUGGCUCUCCGA	144	GGGAGAGCACCGAGGUCAUTT	594
VEGFR-3	2427	UUGAUGUCUGCGUGGCCGGC	145	CGGCCACGCAGACAUCATT	595
VEGFR-3	1109	UGUACCACUGGAACUCGGGCG	146	CCCGAGUUCAGUGGUACATT	596
VEGFR-3	319	UGUGUCGUUGGCAUGUACCTC	147	GGUACAUGCCAACGACACATT	597
VEGFR-3	1843	AUGCACGUUCUUGCAGUCGAG	148	CGACUGCAAGAACGUGCAUTT	598
VEGFR-3	317	UGUCGUUGGCAUGUACCUCGT	149	GAGGUACAUGCCAACGACATT	599
VEGFR-3	700	CUGGAUGUCAUAGAGCUCGTT	150	CGAGCUCUAUGACAUCAGTT	600
Tie-2 (TEK)	1223	UAAGCUUACAAUCUGGCCGT	151	GGGCCAGAUUGUAAGCUUATT	601
Tie-2 (TEK)	2350	UAUCUUCACAUCAACGUGCTG	152	GCACGUUGAUGUGAAGAUATT	602
Tie-2 (TEK)	706	UAUGUUCACGUUAUCUCCCTT	153	GGGAGAUAAACGUGAACAUATT	603
Tie-2 (TEK)	3561	UUUAAGGACACCAAUAUCUGG	154	AGAUAUUGGUGGUCCUUAATT	604
Tie-2 (TEK)	2763	UGAAAUUUGAUGUCAUUCCAG	155	GGAAUGACAUCAAUUCATT	605
Tie-2 (TEK)	174	UUGUUUACAAGUUAGAGGCAA	156	GCCUCUAACUUGUAAACAATT	606
Tie-2 (TEK)	1183	UUCAUUGCACUGCAGACCCTT	157	GGGUCUGCAGUGCAAUGAATT	607
Tie-2 (TEK)	805	UAGAAUAUCAGGUACUUCATG	158	UGAAGUACCUGAUAUUCUATT	608
Tie-2 (TEK)	2601	UUCAAUUGCAAUAUGAUCAGA	159	UGAUCAUAUJGCAAUJUGAATT	609
Tie-2 (TEK)	2277	UAGCCAUCCAAUAUUGUCCAA	160	GGACAAUAUUGGAUGGUCAUTT	610
Tie-2 (TEK)	1366	UACUUCUUAUGAUCUGGCAA	161	GCCAGAUCAUAUAGAAGUATT	611
Tie-2 (TEK)	32	UUUGGUAUCAAGCAGGGCUGGG	162	CAGCCCUGCUGAUACCAAATT	612

Tie-2 (TEK)	4085	UGUACUAUCAGGGUCAUUGTT	163	CAAUGACCCUGAUAGUACATT	613
Tie-2 (TEK)	3881	UUCUGAUUUUCAGCCCAUUCTT	164	GAAUGGGCUGAAAUCAGAATT	614
Tie-2 (TEK)	646	UUGUUGACGCAUCUUCAUGGT	165	CAUGAAGAUGCUGCAACAATT	615
Tie-2 (TEK)	4021	AUAGCAUCAACAUAAAAGGTA	166	CCUUUAUGUUGAAUGCUAUTT	616
Tie-2 (TEK)	209	UUUGUGACUUUCCAUUAGCAT	167	GCUAAUGGAAAGUCACAAATT	617
Tie-2 (TEK)	4223	UAAAUGAAACGGGACUGGGCTG	168	GCCAGUCCCGUUUCAUUUATT	618
Tie-2 (TEK)	3961	UACUAAUUGUACUCACGCCTT	169	GGCGUGAGUACAAUUAGUATT	619
Tie-2 (TEK)	1771	UUGAAUAUGUUGCCAAGCCTC	170	GGCUUGGCAACAUUUCAATT	620
Tie-2 (TEK)	3909	UUAUUGCAUAUGAAACCACAA	171	GUGGUUCAUAUGCAAAUATT	621
Tie-2 (TEK)	3606	UAAAGCGUGGUUUACACGUAG	172	ACGUGAAUACCACGCUUUATT	622
Tie-2 (TEK)	477	AUUAAGGCUUCAAAAGUCCCTT	173	GGGACUUUGAAGCCUUUATT	623
Tie-2 (TEK)	3421	UUCUGCACAAGUCAUCCCGCA	174	CGGGGAUGACUUGUGCAGAATT	624
Tie-2 (TEK)	2730	UAAAUUGUAGGAUCUGGGUTG	175	ACCCAGAUCCUACAAUUUATT	625
Tie-2 (TEK)	1800	UAGUUGAGUGUAACAAUCUA	176	AGAUUGUUACACCUACUATT	626
Tie-2 (TEK)	3385	UAAGCUAACAAUCUCCAUAG	177	AUGGGAGAUUGUUAGCUUATT	627
Tie-2 (TEK)	1692	UAAGGCUCAGAGCUGAUGUTG	178	ACAUCAGCUCUGAGCCUUATT	628
Tie-2 (TEK)	1657	AUGUCCAGUGUCAAUCACGTT	179	CGUGAUUGACACUGGACAUATT	629
Tie-2 (TEK)	3665	UUCUGUCCUAGGCCGCUUCTT	180	GAAGCGGCCUAGGACAGAATT	630
Tie-2 (TEK)	2091	UUAAGUAGCACCAGAAGUCAAG	181	UGACUUCGGUGCUACUUATT	631
Tie-2 (TEK)	2827	UAACCCAUCCUUCUUGAUGCG	182	CAUCAAGAAGGAUGGGUATT	632
Tie-2 (TEK)	1979	UUGGUUGCCAGGUAAAUTA	183	AAUUUGACCUGGCAACCAATT	633
Tie-2 (TEK)	67	UAGAUUAGGAUGGGAAAGGCT	184	CCUUUCCCAUCCUAUCUATT	634
Tie-2 (TEK)	3459	UUCUCCAGUCUGUAGCCCUGG	185	AGGGCUACAGACUGGAGAATT	635
Tie-2 (TEK)	2764	UUGAAAUUUGAUGUCAUUCCA	186	GAAUGACAUCAAAUUUCAATT	636
Tie-2 (TEK)	3560	UUAAGGACACCAAAUCUGGG	187	CAGAUAUUGGUGUCCUUATT	637
Tie-2 (TEK)	715	UUUGAAAGAUUAUGUUCACGTT	188	CGUGAACAUACUUUCAAATT	638
Tie-2 (TEK)	1368	UUUACUUCUAAUAGAUCUGGC	189	CAGAUCAUAUAGAAGUAAATT	639
Tie-2 (TEK)	2351	UUAUCUUCACAUCAACGUGCT	190	CACGUUGAUGUGAAGAUATT	640

Tie-2 (TEK)	205	UGACUUUCCAUUAGCAUCGTC	191	CGAUGCUALUGGAAAGUCATT	641
Tie-2 (TEK)	3957	AAUUGUACUCACGCCUUCCTA	192	GGAAGGCGUGAGUACAAUUTT	642
Tie-2 (TEK)	3962	AUACUAAUUGUACUCACGCCT	193	GCGUGAGUACAAUAGUAUUTT	643
Tie-2 (TEK)	2352	UUUAUCUUCACAUCAACGUGC	194	ACGUUGAUGUGAAGAUAAATT	644
Tie-2 (TEK)	3963	UAUACUAAUUGUACUCACGCC	195	CGUGAGUACAAUAGUAUATT	645
Tie-2 (TEK)	1777	UGUCACUUGAAUAUGUUGCCA	196	GCAACAUUUCAAGUGACATT	646
Tie-2 (TEK)	3388	UCCUAAGCUAACAAUCUCCCA	197	GGAGAUUGUUAGCUUAGGATT	647
Tie-2 (TEK)	636	AUCUUCAUGGUUCGUAUCCCTG	198	GGAUACGAACCAUGAAGAUATT	648
Tie-2 (TEK)	74	UCCUUUGUAGAUUAGGAUGGG	199	CAUCCUAUCUACAAAGGATT	649
Tie-2 (TEK)	707	AUAUGUUCACGUUAUCUCCCT	200	GGAGAUAAACGUGAACAUAUUTT	650
bFGFR	3814	UAAAUCUCUGGUACGACCCCT	201	GGUCGUUACCAAGAGAUUUATT	651
bFGFR	1478	UUACACAAUGAACUCCACGUTG	202	ACGUGGAGUCAUGUGUAATT	652
bFGFR	3773	UAUACUCAGAUUUAUCAACTT	203	GUUGAUAAAUCUGAGUAUATT	653
bFGFR	715	UAGCGGUGGCAGAGUGUGGGCTG	204	GCCACACUCUGCACCGCUATT	654
bFGFR	575	UUCAAACUGACCCUCGCUCGG	205	GAGCGAGGGUCAGUUUGAATT	655
bFGFR	646	UUCUGCAGUUAGAGGUUGGTG	206	CCAACCUCUAACUGCAGAATT	656
bFGFR	3625	AUCGGAAUAAAUAAGCCACTG	207	GUGGUUAAUAAAUCCGAUATT	657
bFGFR	2318	UACAAGGGACCAUCCUGCGTG	208	CGCAGGAUGGUCCUUGUATT	658
bFGFR	1439	UUGUUGGCGGGCAACCCUGCT	209	CAGGGUUGCCGCCAACAAATT	659
bFGFR	3860	AUAGCAACUGAUGCCUCCCAG	210	GGGAGGCAUCAGUUGCUALTT	660
bFGFR	3163	UGAGGGUUACAGCUGACGGTG	211	CCGUCAGCUGUAACCCUCATT	661
bFGFR	2600	UCGAUGUGGUGAAUGUCCCGT	212	GGGACAUUCACCACAUCGATT	662
bFGFR	2513	UCUCGGUGUAUGCACUUCUTG	213	AGAAGUGCAUACACCGAGATT	663
bFGFR	2214	UUUCUCUGUUGCGUCCGACTT	214	GUCGGACGCAACAGAGAAATT	664
bFGFR	1346	UUCUCCACAAUGCAGGUGUAG	215	ACACCUGCAUUGUGGGAGAATT	665
bFGFR	1556	UUGUCUGGGCCAUCUUGCTC	216	GCAAGAUUGGCCAGACAATT	666
bFGFR	2671	UCCGGUAAAUAUGCCUCGG	217	GAGGCAUUUUUGACCAGGATT	667
bFGFR	3105	UUUGAGUCCGCCAUUGGCAAG	218	UGCCAAUGGCGGACUCAAATT	668

bFGFR	2091	UUUGCCUAAGACCAGUCUGTC	219	CAGACUGGUCUUAGGCAAATT	669
bFGFR	1590	UCCAGCAGUCUUCAAGAUCTG	220	GAUCUUGAAGACUGCUGGATT	670
bFGFR	1689	UCCGAUAGAGUUACCCGCCAA	221	GGCGGGUAACUCUAUCGGATT	671
bFGFR	1319	UUGUCAGAGGGCACCAACAGAG	222	CUGUGGUGCCCUCUGACAATT	672
bFGFR	2342	UUGGAGGCAUACUCCACGATG	223	UCGUGGAGUAUGCCUCCAATT	673
bFGFR	107	UCUCGGUCCCGACCGGACGTG	224	CGUCCGGUCGGGACCGAGATT	674
bFGFR	3662	UCUGGUACCAGGCAUUUGGTC	225	CCAAAUGCCUGGUACCAGATT	675
bFGFR	2150	UUGUCCAGCCGAUAGCCUCT	226	AGGCUAUCGGGCUGGACAATT	676
bFGFR	1517	UUUAGCCACUGGAUGUGCGGC	227	CGCACAUCCAGUGGCUAAATT	677
bFGFR	1264	UGUAGCCUCCAAUUCUGUGGT	228	CACAGAAUUGGAGGCUACATT	678
bFGFR	3576	UUCAAUUCGUGGCUCGAAGCAC	229	GCUUCGAGCCACGAUUGAATT	679
bFGFR	613	AUCUCCAUGGAUACUCCACAG	230	GUGGAGUAUCCAUGGAGAUTT	680
bFGFR	1221	UUUCAACCAGCGCAGUGUGGG	231	CACACUGCGCUGGUUGAAATT	681
bFGFR	3004	UAGAGCUCCGGGUGUCGGAA	232	CCCGACACCCGGAGCUCUATT	682
bFGFR	3825	UUACCGAUGGGUAAAUCUCTG	233	GAGAUUUACCCAUCGGUAATT	683
bFGFR	3813	AAAUCUCUGGUAAACGACCCCTT	234	GGGUCGUUACCAGAGAUUUTT	684
bFGFR	3861	UAUAGCAACUGAUGCCUCCCA	235	GGAGGCAUCAGUUGCUAUATT	685
bFGFR	576	UUUCAACUGACCCUCGCUCG	236	AGCGAGGGUCAGUUUGAAATT	686
bFGFR	3772	AUACUCAGAUUUAUCAACUTT	237	AGUUGAUAAAUCUGAGUAUTT	687
bFGFR	3824	UACCGAUGGGUAAAUCUCUGG	238	AGAGAUUUACCCAUCGGUATT	688
bFGFR	2319	AUACAAGGGACCAUCCUGCGT	239	GCAGGAUGGUCCUUGUAUTT	689
bFGFR	3771	UACUCAGAUUUAUCAACUUTG	240	AAGUUGAUAAAUCUGAGUATT	690
bFGFR	2511	UCGGUGUAUGCACUUCUUGGA	241	CAAGAAGUGCACACCCGATT	691
bFGFR	2333	UACUCCACGAUGACAUACAAG	242	UGUAUGUCAUCUGUGGAGUATT	692
bFGFR	3624	UCGGAAUUAAAAGCCACUGG	243	AGUGGCUUUUAAAUCCGATT	693
bFGFR	1304	ACAGAGGUCAUUAUGAUGCTC	244	GCAUCAUAAUGGACUCUGUTT	694
bFGFR	1608	UUUGUCGGUGGUAAAACUCC	245	AGUAAAACCACCGACAAATT	695
bFGFR	1301	GAGUCCAUUAUGAUGCUCCAG	246	GGAGCAUCAUAAUGGACUCTT	696
bFGFR	3626	UAUCGGAAUUAAAAGCCACT	247	UGGCUUAAUAAAUCCGAUATT	697
bFGFR	2672	AUCCGGUAAAUAUGCCUCG	248	AGGCAUUAUUGACCGGAUTT	698
bFGFR	2213	UUCUCUGUUGCGUCCGACUTC	249	AGUCGGACGCAACAGAGAATT	699

bFGFR	2597	AUGUGGUGAAUGUCCCGUGCG	250	CACGGGACAUUCACCACAUU	700
IL8RA	1971	UUUAUUAGGAACAUUCUGCCTG	251	GGCAGAUGUUCCUAUAATT	701
			252	GGUGCUUCAGUUAGAUCAATT	702
IL8RA	75	UUGAUCUAACUGAAGCACCAG	253	GGCUUACCAUCCAAACAAU	703
IL8RA	645	AUUGUUUGGAUGGUAGCCTG	254	CCCACUAACUGGCUAUUATT	704
IL8RA	1431	UAAUUAGCCAGUUAGUGGGTT	255	GCACCUCCAUGGAAACGAATT	705
IL8RA	1378	UUCGUUUCCAUGGAGGUGCAA	256	CGAAUCUGACAUUAGAUGATT	706
IL8RA	1470	UCAUCUA AUGUCAGAUUCGGG	257	CUGAGACACCUACAAGUATT	707
IL8RA	218	UACUUGUUGAGUGUCAGTT	258	GGAGUUCUUGGCACGUCAU	708
IL8RA	1101	AUGACGUGCCAAGAACUCCTT	259	GCUAUGAGGUCCUGGGAAATT	709
IL8RA	677	UUUCCAGGACCUCAUAGCAA	260	CGAUGAAGGAAUAUCUUTT	710
IL8RA	1178	AAGAGAUAUUCCUCAUCGAT	261	CACAGGAGCAUCUCCUCAATT	711
IL8RA	1543	UUGAGGAGAUGCUCCUGUGAG	262	CCAGAUCUAUGCCACAAGATT	712
IL8RA	1783	UCUUGUGGCAUAGAUCUGGCT	263	GGCUCUGGACAGGCACUAU	713
IL8RA	1249	AUAGUGCCUGGUCCAGAGCCAG	264	GGCUGGAUGCUCUCGUUGATT	714
IL8RA	1520	UCAACGAGAGCAUCCAGCCCT	265	CAAGAUCCUGGCUAUGCAU	715
IL8RA	1068	AUGCAUAGCCAGGAUCUUGAG	266	GCUGUUGAGGUACCUCAU	716
IL8RA	1347	UUGGAGGUACCUAACAGCTC	267	AGAAUAACCAACACCCUGATT	717
IL8RA	1208	UCAGGGUGUUGGUUAUUCUTT	268	CAUGUAAAUAUACAGAU	718
IL8RA	117	AUCUGUAAUAAAUGACAUGTC	269	AAGUGGAACGAGACAAGCATT	719
IL8RA	1862	UGCUUGUCUCGUUCCACUUGG	270	GUCUCUCCAACCUCUGAATT	720
IL8RA	1153	UUCAGAGGUUGGAAGAGACAT	271	CGCCAGGCUUACCAUCCAU	721
IL8RA	640	UUGGAUGGUAGCCUGGCCGA	272	GUUGAACGUACACAUUUATT	722
IL8RA	1411	AAAAGAUGUGACGUUCAACGG	273	GGCCGGUGCUUCAGUUAGATT	723
IL8RA	71	UCUAACUGAAGCACCAGGCCAG	274	GCACCAUCAUUCCCGUUGATT	724
IL8RA	1397	UCAACGGGAAUGAUGGUGCTT	275	AGGCUUACCAUCCAAACATT	725
IL8RA	644	UUGUUUGGAUGGUAGCCUGG	276	GCCAGGCUUACCAUCCAAU	726
IL8RA	641	UUUGGAUGGUAGCCUGGCCG	277	GUGCUUCAGUUAGAUCAATT	727
IL8RA	76	UUUGAUCUAACUGAAGCACCAG	278	CACCAUCAUUCCCGUUGAATT	728
IL8RA	1398	UUCAACGGGAAUGAUGGUGCT	279	CCUCCAUGGAAACGAAGCATT	729
IL8RA	1381	UGCUUCGUUUCCAUGGAGGTG	280	AGAGGGUUUGGAAGCCAGATT	730
IL8RA	1769	UCUGGCCUCCAAACCCUCUTT	281	CUAACUGGCUAAUAGCAU	731
IL8RA	1435	AUGCUAAAUAGCCAGUUAGTG	282	CAUCGAUGAAGGAAUAUCUTT	732
IL8RA	1175	AGAUAUUCCUCAUCGAUGGT	283	AGGCAGAUGUUCCUAUAATT	733
IL8RA	1970	UUAAUAGGAACAUUCUGGCCUG	284	CCACUAACUGGCUAUUAGTT	734
IL8RA	1432	CUAAUUAAGCCAGUUAGUGGGT	285	CGGUGCUUCAGUUAGAUCA	735
IL8RA	74	UGAUCUAACUGAAGCACCAGC			

IL8RA	646	AAUUGUUUGGAUGGUAAGCCT	286	GCUUACCAUCCAAACAAUUTT	736
IL8RA	639	UGGAUGGUAGCCUGGCGGAA	287	CCGCCAGGCCUUACCAUCCATT	737
IL8RA	1082	UUGCUGACCAGGCCAUGCATA	288	UGCAUGGCCUGGUAGCAATT	738
IL8RA	1770	AUCUGGCCUCCAAACCCUCC	289	GAGGGUUUGGAAGCCAGAU	739
IL8RA	81	AAUGGUUUGAUACUAACUGAAG	290	UCAGUUAGAUCAAACCAUUTT	740
IL8RA	1372	UCCAUGGAGGUGCAAAGGCCG	291	GCCUUUGCACCUCCAUGGATT	741
IL8RA	1388	AUGAUGGUGCUUCGUUUCAT	292	GGAAACGAAGCACCAUCAUTT	742
IL8RA	643	UGUUUGGAUGGUAAGCCUGGC	293	CAGGCUUACCAUCCAAACATT	743
IL8RA	1784	UUCUUGUGGCAUAGAUCUGGC	294	CAGAUCUAUGCCACAAGAATT	744
IL8RA	1524	AGGGUCAACGAGAGCAUCCAG	295	GGAUGCUCUCGUUGACCCUTT	745
IL8RA	237	AUAGGCGAUGAUCAACACATA	296	UGUUGUGAUCAUCGCCUATT	746
IL8RA	219	AUACUUGUUGAGUGUCAGT	297	UGAGACACCUACAAGUAUTT	747
IL8RA	1389	AAUGAUGGUGCUUCGUUUCCA	298	GAAACGAAGCACCAUCAUTT	748
IL8RA	1972	CUUUUUAGGAACAUUCUGCCT	299	GCAGAUGUUCUAAUAAAAGTT	749
IL8RA	1115	UAGGAGGUACACGAUGACGT	300	GUCAUCGUGUUACCUCCUATT	750
IL8RB	2648	UUAAGUGUCAAUUUAGUGGCA	301	CCACUAAAUGACACUUAATT	751
IL8RB	2184	UUUCUUGUGGUCAAUUCCTA	302	GGAAUUGACCCACAAGAAATT	752
IL8RB	2250	UUGGGUCUUGUGAAUAAGCTG	303	GCUUAAUCACAAGACCCAATT	753
IL8RB	1746	UUCACUUCUUAGAACAUAGAG	304	CUAUGUUCUAAGAAGUGAATT	754
IL8RB	960	UUGGAUGAGUAGACGGUCCT	305	GGACCGUCUACUCAUCCAATT	755
IL8RB	454	AUUACUAAGAUCUUCACCUTT	306	AGGUGAAGAUCUUAGUAUTT	756
IL8RB	2750	UUGGUUUAAUCAGCCUUGGTG	307	CCAAGGCUGAUAAAACCAATT	757
IL8RB	2604	AUCACUACUGUUUAUCUGCAG	308	GCAGAUAAAACAGUAGUGA	758
IL8RB	1026	AUCCGUACAGCAUCCGCCAG	309	GGCGGAUGCUGUUACGGAU	759
IL8RB	1384	AUGUAUAGCUAGAAUCUUGAG	310	CAAGAUUCUAGCUAUACAU	760
IL8RB	1149	AAGAUGACCCGCAUGGCCGG	311	GGGCCAUGCGGGUCAUCU	761
IL8RB	2464	UCUCAGUACCUAUGUAGGTG	312	CCUACAUAGAGGUACUGAGATT	762
IL8RB	877	UUUGACCAAGUAGCGCUUCTG	313	GAAGCGCUACUUGGUAAATT	763
IL8RB	2324	UUCGUUAGGUACAUACACAT	314	GUGAUAGUACCUACGAATT	764
IL8RB	2360	AUGAGUACUUCAUUCUCUTT	315	AGAGGAAUGAAGUACUCAUTT	765
IL8RB	265	UUGGGUGGUAGUCAGAGCU	316	AGCUCUGACUACCACCAATT	766
IL8RB	1642	UUUCUAAACCAUGCAAGGGAA	317	CCCUUGCAUGGUUUAGAAATT	767
IL8RB	2146	UCAUGUGUUAAUCUAUGUCT	318	ACAUAGAAUUAACACAUAGATT	768
IL8RB	2627	UUAAGUCACAUUGCUGUACAA	319	GUACCGCAAUGUGACUUAATT	769
IL8RB	1000	UGUAUUGUUGGCCAUGUCCT	320	GGACAUGGGCAACAAUACATT	770
IL8RB	315	UGACCUGCUGUUAUUUGGAGTG	321	CUCCAAUAACAGCAGGUCATT	771
IL8RB	2774	AAAUAUAGGCAGGUGGUU	322	GAACCACCUGCCUUAUUUTT	772

IL8RB	219	ACCUUGACGAUGAACUUUCTG	323	GAAGUUUCAUCGUCAAGGUTT	773
IL8RB	2389	UUUCAAGGUUCGUCCGUGUTG	324	ACACGGACGAACCUUGAAATT	774
IL8RB	385	UGAGGUAAACUAAAUCUGA	325	AGGAUUUAAGUUUACCUATT	775
IL8RB	1347	UUCUGGCCAUGAAGGCGUAG	326	ACGCCUCAUJUGGCCAGAATT	776
IL8RB	2649	UUUAAGUGUCAAUUAGUGGC	327	CACUAAAUGACACUAAAATT	777
IL8RB	1737	UAGAACAUAGAGUGCCAUGGG	328	CAUGGCACUCUAUGUUCUATT	778
IL8RB	455	AAUUACUAAGAUCUUCACCTT	329	GGUGAAGAUCUUAGUAAUUTT	779
IL8RB	965	UAACAUUGGAUGAGUAGACGG	330	GUCUACUCAUCCAAUGUUATT	780
IL8RB	1740	UCUUAGAACAUAGAGUGCCAT	331	GGCACUCUAUGUUCUAAGATT	781
IL8RB	2632	UGGCAUUAAGUCACAUUGCGG	332	GCAAUGUGACUUAAUGCCATT	782
IL8RB	2755	UAGCCUUGGUUUAAUCAGCCT	333	GCUGAUAAAACCAAGGCUATT	783
IL8RB	2183	UUCUUGUGGUCAAUUCCUAT	334	AGGAAUUGACCCACAAGAATT	784
IL8RB	2605	UAUCACUACUGUUUAUCUGCA	335	CAGAUAAAACAGUAGUGAUATT	785
IL8RB	2340	UCAGGCUGAAGGAUACUUCGT	336	GAAGUAUCCUUCAGCCUGATT	786
IL8RB	2143	UGUGUUAAUUCUAUGUCUGAA	337	CAGACAUAGAAUUAACACATT	787
IL8RB	998	UAUUGUUGCCCAUGUCCUCAT	338	GAGGACAUGGGCAACAAUATT	788
IL8RB	2180	UUGUGGGUCAAUUCCUUAAG	339	UAUAGGAUUUGACCCACAATT	789
IL8RB	2185	AUUUCUUGUGGUCAAUUCCT	340	GAAUUGACCCACAAGAAUUTT	790
IL8RB	307	UGUUUUUGGAGUGGCCACCGA	341	GGUGGCCACUCAAUAACATT	791
IL8RB	2481	UCUGUAAAUUUGUUCACUCTC	342	GAGUGAACAAUUUACAGATT	792
IL8RB	2617	UUGCGGUACAACUAUCACUAC	343	AGUGAUAGUUGUACCGCAATT	793
IL8RB	956	AUGAGUAGACGGGUCCUUCGGA	344	CGAAGGACCGUCUACUCAUTT	794
IL8RB	456	UAUUUACUAAGAUCUUCACCT	345	GUGAAGAUCUUAAGUAAUUTT	795
IL8RB	226	UGAAACAAACCUUGACGAUGAA	346	CAUCGUCAAGGUUGUUUCATT	796
IL8RB	1394	UGAUCAAGCCAUGUAUAGCTA	347	GCUAUACAAUGGUUGAUCAATT	797
IL8RB	458	UGUAUUUACUAAGAUCUUCAC	348	GAAGAUCUUAGUAAUACATT	798
IL8RB	881	UGAAUUUGACCAAGUAGCGCT	349	CGCUACUUGGUCAAAUUCATT	799
IL8RB	2327	UACUUCGUUAGGUACAUAUCA	350	AUAUGUACCUACGAAGUATT	800
Fas	109	UGUAGUAACAGUCUUCUCAA	351	GAGGAAGACUGUUACUACATT	801
Fas	41	UGGACGAUAAUCUAGCAACAG	352	GUUGCUAGAUUAUCGUCCATT	802
Fas	161	UAUGGCAGAAUUGGCCAUAT	353	GAUGGCCAAUUCUGGCCAUATT	803
Fas	182	UUUCACCUGGAGGACAGGGCT	354	CCCUGUCCUCCAGGUGAAATT	804
Fas	62	UCACUUGGGCAUUAACACUTT	355	AGUGUAAAUGCCCAGUGATT	805
Fas	377	ACUUCCUCUUUGCACUUGGTG	356	CCAAGUGCAAAGAGGAAGUTT	806
Fas	349	UGAGUGUGCAUUCUUGAUGA	357	AUCAAGGAAUGCACACUCATT	807
Fas	245	UCCCUUCUUGGCAGGGCACGC	358	GUGCCUGCCAAGAAGGGATT	808
Fas	205	GACUGUGCAGUCCUAGCUTT	359	AGCUAGGGACUGCACAGUCTT	809

Fas	145	AUCAUGAUGCAGGCCUUCCAA	360	GGAAGGCCUGCAUCAUGAUU	810
Fas	123	UUCUGAGUCUCAACUGUAGTA	361	CUACAGUUGAGACUCAGAATT	811
Fas	34	UAAUCUAGCAACAGACGUAAG	362	UACGUCUGUUGCUAGAUUATT	812
Fas	114	UCAACUGUAGUAACAGUCUTC	363	AGACUGUUACUACAGUUGATT	813
Fas	115	CUCAACUGUAGUAACAGUCUTT	364	GACUGUUACUACAGUUGAGTT	814
Fas	28	AGCAACAGACGUAAGAACCGAG	365	GGUUCUUACGUCUGUUGCUTT	815
Fas	122	UCUGAGUCUCAACUGUAGUAA	366	ACUACAGUUGAGACUCAGATT	816
Fas	186	UUCCUUUCACCUGGAGGACAG	367	GUCCUCCAGGUGAAAGGAATT	817
Fas	42	UUGGACGAAUACUAGCAACA	368	UUGCAGAUUAUCGUCCAATT	818
Fas	111	ACUGUAGUAACAGUCUUCCTC	369	GGAAGACUGUUACUACAGUUTT	819
Fas	144	UCAUGAUGCAGGCCUUCCAAG	370	UGGAAGGCCUGCAUCAUGAUU	820
Fas	92	UCAAUUCCAAUCCCUUUGGAGT	371	UCCAAGGGAUUGGAAUUGATT	821
Fas	201	GUGCAGUCCCUAGCUUUCCTT	372	GGAAAGCUAGGGACUGCACTT	822
Fas	128	CCAAGUUCUGAGUCUCACTG	373	GUUGAGACUCAGAACUUGGTT	823
Fas	36	GAUAAUCUAGCAACAGACGTA	374	CGUCUGUUGCUAGAUUAUCTT	824
Fas	162	UUAUGGCAGAAUUGGCCAUCA	375	AUGGCCAAUUCUGCCAUATT	825
Fas	127	CAAGUUCUGAGUCUACUGT	376	AGUUGAGACUCAGAACUUGTT	826
Fas	202	UGUGCAGUCCCUAGCUUUCCT	377	GAAAGCUAGGGACUGCACATT	827
Fas	82	UCCCUUUGGAGUUGAUGUCAGT	378	UGACAUCAACUCCAAGGGATT	828
Fas	160	AUGGCAGAAUUGGCCAUCATG	379	UGAUGGCCAAUUCUGCCAUATT	829
Fas	150	UGGCCAUCAUGAUGCAGGCCT	380	GCCUGCAUCAUGAUGGCCATT	830
Fas	63	GUCACUUGGGCAUUAACACTT	381	GUGUUAUGCCCAGUGACTT	831
Fas	164	GCUUAUGGCAGAAUUGGCCAT	382	GGCCAAUUCUGCCAUAGCTT	832
Fas	37	CGAUAAUCUAGCAACAGACGT	383	GUCUGUUGCUAGAUUAUCGTT	833
Fas	116	UCUCAACUGUAGUAACAGUCT	384	ACUGUUACUACAGUUGAGATT	834
Fas	32	AUCUAGCAACAGACGUAAGAA	385	CUUACGUCUGUUGCUAGAUU	835
Fas	64	AGUCACUUGGGCAUUAACACT	386	UGUUAUAGCCCAGUGACUTT	836
Fas	167	AGGGCUUAUGGCAGAAUUGGC	387	CAAUUCUGCCAUAGCCCUTT	837
Fas	120	UGAGUCUCAACUGUAGUAACA	388	UUACUACAGUUGAGACUCATT	838
Fas	125	AGUUCUGAGUCUACUGUAG	389	ACAGUUGAGACUCAGAACUTT	839
Fas	43	UUUGGACGAAUACUAGCAAC	390	UGCAGAUUAUCGUCCAATT	840
Fas	94	CCUCAAUUCCAAUCCCUUGGA	391	CAAGGGAUUGGAAUUGAGTT	841
Fas	159	UGGCAGAAUUGGCCAUCAUGA	392	AUGAUGGCCAAUUCUGCCATT	842
Fas	110	CUGUAGUAACAGUCUUCCUCA	393	AGGAAGACUGUUACUACAGTT	843
Fas	31	UCUAGCAACAGACGUAAGAAC	394	UCUUACGUCUGUUGCUAGATT	844
Fas	38	ACGAUAAUCUAGCAACAGACG	395	UCUGUUGCUAGAUUAUCGUTT	845

Fas	118	AGUCUCAACUGUAGUAACAGT	396	UGUUACUACAGUUGAGACUTT	846
Fas	169	ACAGGGCUUAUGGCAGAAUTG	397	AUUCUGCCAUAGCCUGUTT	847
Fas	33	AAUCUAGCAACAGACGUAGA	398	UUACGUCUGUUGCUAGAUUTT	848
Fas	163	CUUAUGGCAGAAUUGGCCATC	399	UGGCCAAUUCUGCCAUAGTT	849
Fas	233	AGGGCACGCAGUCUGGUUCAT	400	GAACCAGACUGCGUGCCCUTT	850
IGF2R	6340	UUUGUCACCUAUGACACCCAG	401	GGGUGUCAUAGGUGACAAATT	851
IGF2R	2936	UUUAUAGAGCAAGCCUGGUCTG	402	GACCAGGCUGCUUCUUAATT	852
IGF2R	1331	UCUGAUUGUGGUAUUCUUCCTG	403	GGAAGAUACCACAAUCAGATT	853
IGF2R	4491	UAUUUCAGGACAAUUAUGCCA	404	GCAUAAUUGUCCUGAAUATT	854
IGF2R	2562	UUAAUGUAGUAUUUCUCCAC	405	GGAGGAAAUACUACAUUAATT	855
IGF2R	1456	UUUCCCAUCGUUACCUGCGGT	406	CGCAGGUACGAUGGGAAATT	856
IGF2R	2253	UAGUUCAGUUGGAUCAUCCCA	407	GGAUGAUCCAACUGAACUATT	857
IGF2R	3570	UUGCCUUCUGACACUAAGCAA	408	GCUUAGUGUCAGAAGGCAATT	858
IGF2R	2274	UUAUAGGGUGUGCCGCCUCTG	409	GAGGCGGCACACCCUUAATT	859
IGF2R	1197	UUUCCAUCUGAAAUAUAGGAT	410	CCUAUAAUUCAGAUGGAAATT	860
IGF2R	897	UUGCGCACCAAGCUUCAGUCCG	411	GACUGAAGCUGGUGCGCAATT	861
IGF2R	5205	UUGAUGUAGAAUCAGGGUTG	412	ACCCUGAUUUCUACAUCAATT	862
IGF2R	8904	UUCUCAGCAAUAGAACACCAG	413	GGUGUUCUAUUGCUGAGAATT	863
IGF2R	8604	UAAGGCUUCUUUAUAGGUCGAA	414	CGACCUUAAGAACCUUATT	864
IGF2R	3629	UCAAAGAUCCAUCGCCGCGG	415	GCAGCGAAUGGAUCUUUGATT	865
IGF2R	4344	UUGAUGAGGUAGUGCUCCGGG	416	CGGAGCACUACCUCAUCAATT	866
IGF2R	1419	UUUAUGACGCUCAUCCGCUGA	417	AGCGGAUGAGCGUCAUAAATT	867
IGF2R	7185	UAUUUGUAGGACACGUUGGAA	418	CCAACGUGUCCUACAAUATT	868
IGF2R	4447	UACCCUGCCGAGGUUCACGGG	419	CGUGAACCUCCGGCAGGGUATT	869
IGF2R	3706	UAUCUGAGCACACUCAAACGT	420	GUUUGAGUGUGCUAGAUATT	870
IGF2R	6422	UCUUUGUACAGGUAAUUCTA	421	GAAUUGACCUGUACAAAGATT	871
IGF2R	1306	UUUGACUUGAGAGGUAUCGCT	422	CGAUACCUCUCAAGUCAAATT	872
IGF2R	6129	UUGUGUUUCUGGACGAAUUTG	423	AAUUCGUCCAGAAACACAATT	873
IGF2R	5105	UAGAGCUUCCAUCUCACGG	424	GUGAGGAAUGGAAGCUCUATT	874
IGF2R	4572	UUCACUUGGCUCUCGCUGCAG	425	GCAGCGAGAGCCAAGUGAATT	875
IGF2R	5308	UACCCGGCCGAUACUAUGGG	426	CAUAGAUUAUCGGCCGGUATT	876
IGF2R	3153	UUCUAAUUCGACUGGCCTT	427	GGCCAGUCGGAAUUGAGAATT	877
IGF2R	9029	UAUUACAGUAAAGUUGAUUGA	428	AAUCAACUUUACUGUAUATT	878
IGF2R	1530	UUAACACAGGCGUAUUCCGTG	429	CGGAAUACGCCUGUGUUAATT	879
IGF2R	8364	AAAUGUGCUCUGUACGCCAG	430	GGGCGUACAGAGCACAUUUTT	880

IGF2R	5400	UAGUUGAAAUGCUCGUCCGCT	431	CGGACAAGCAUUUCAACUATT	881
IGF2R	6702	UUGGCUCCAGAGCACGCCGGG	432	CGGCGUGCUCUGGAGCCAATT	882
IGF2R	8479	UUCUCUGACACCUAACUCCA	433	GAGUUGAGGUGUCAGAGAATT	883
IGF2R	4723	UAAGGAGCUCAGAACAAACAG	434	GUUUGAUCUGAGCUCCUATT	884
IGF2R	4237	UGAACAUUCAGUCAGAUCGAA	435	CGAUCUGACUGAAUGUUCATT	885
IGF2R	6203	UAUAGUACGAGACUCCGUUGT	436	AACGGAGUCUCGUACUAUATT	886
IGF2R	753	AUGAAUAGAGAAGUGUCCGGA	437	CGGACACUUCUCAUUCAUTT	887
IGF2R	8554	AUAAGCACAGUAAAGGUGGTA	438	CCACCUUUACUGUGCUUAUTT	888
IGF2R	5462	UUAACAGCUUAGGCGUUCCCA	439	GGAACGCCUAAGCUGUUAATT	889
IGF2R	1460	UUCCUUUCCCAUCGUUACCTG	440	GGUAACGAUGGGAAAGGAATT	890
IGF2R	5206	AUUGAUGUAGAAAUCAAGGGTT	441	CCCUGAUUUCUACAUCAAUTT	891
IGF2R	2559	AUGUAGUAUUUCCUCCACGTG	442	CGUGGAGGAAAUACUACAUTT	892
IGF2R	8605	UUAAGGCUUCUUUAUAGGUCGA	443	GACCUUAAGAAGCCUUAATT	893
IGF2R	4345	AUUGAUGAGGUAGUGUCCGG	444	GGAGCACUACCUCAUCAAUTT	894
IGF2R	1187	AAAUAUAGGAUGAACCUCCGC	445	GGAGGUUCAUCCUAUUUUTT	895
IGF2R	1184	UAUAGGAUGAACCUCCGCUCT	446	AGCGGAGGUCAUCCUAUATT	896
IGF2R	7190	UUGAGUAUUUGUAGGACACGT	447	GUGUCCUACAAAUACUCAATT	897
IGF2R	7182	UUGUAGGACACGUUGGAACCTT	448	GUUCCAACGUGUCCUACAATT	898
IGF2R	2941	AUCCCUUAUAGAGCAAGCCTG	449	GGCUUGCUCUAUAAGGGAUTT	899
IGF2R	3693	UCAAACGUGAUCCUGGUGGAG	450	CCACCAAGGAUCACGUUUGATT	900

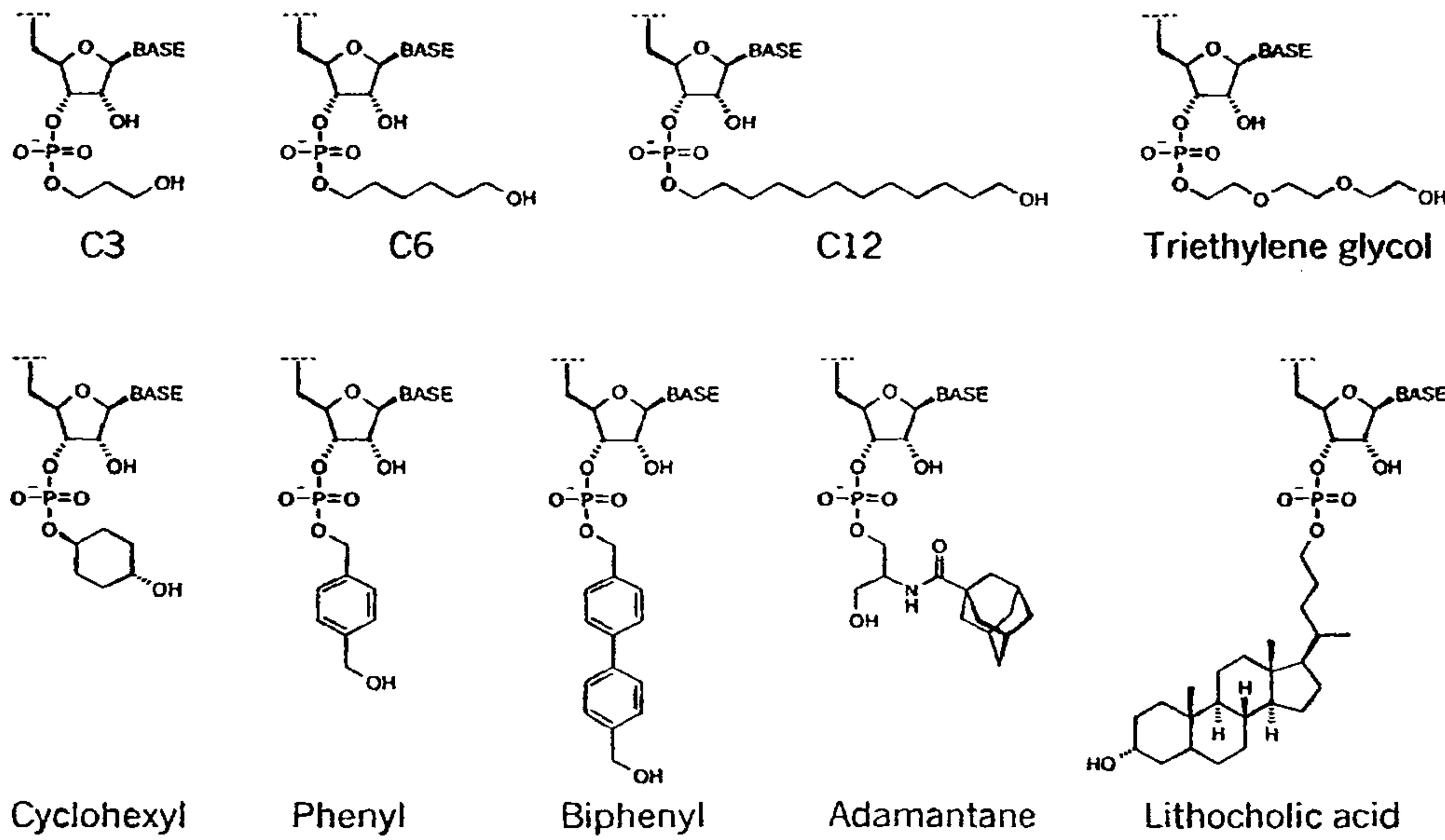
Chemical Modification of RNA Strand Nucleotides

The siRNA according to the invention may comprise at least one modified nucleotide in at least one of the RNA strands. A range of potential modified nucleotides are disclosed elsewhere herein. Useful modifications and combinations of modifications for use according to the invention are shown in **Table 2**:

Table 2: Chemical Modifications and Sequence Architecture

4	Blunt-ended	NNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNN
5	2'-OMe o/h	NNNNNNNNNNNNNNNNNN <u>^PN^P</u> <u>^PN^PNNNNNNNNNNNNNNNNNN</u>
6	2'-OMe/2'F	<u>NNNNNNNNNNNNNNNNNN^PN^P</u> <u>^PN^PNNNNNNNNNNNNNNNNNN</u>
7	LNA (3-7 incorporations in ds region)	<u>NNNNNNNNNNNNNNNNNN</u> snsn nsns <u>NNNNNNNNNNNNNNNNNN</u>

N = any unmodified RNA nucleotide


n = unmodified DNA nucleotide

N^P = modified RNA nucleotide

s = identifies phosphorothioate internucleoside linkage

o/b = overhang

The following modifications added to the 3' position of the 3'-terminus of the siRNA strands, sometimes referred to as a '3' end cap' are also recognized as useful embodiments of the invention and may be used with any of the siRNA according to the invention:

Specific compounds with activity according to the invention include the following, shown in Table 3:

Table 3: Sequences and Chemistries of siRNA used in Examples

Name	strand	Sequence (N: RNA; dN: DNA; n: 2'-moe RNA; s: phosphorothioate)	SEQ ID NO
pGL3-siRNA	guide strand	UCG AAG UAC UCA GCG UAA GdTdT	901
	complement strand	CUU ACG CUG AGU ACU UCG AdTdT	902
pGL3 MOE o/h siRNA	guide strand	CUU ACG CUG AGU ACU UCG Atst	903
	complement strand	UCG AAG UAC UCA GCG UAA Gtst	904
pGL3-C3-siRNA	guide strand	UCG AAG UAC UCA GCG UAA G-C3	905
	complement strand	CUU ACG CUG AGU ACU UCG A-C3	906
pGL3-C3-MOE-siRNA	guide strand	UCG AAG UAC UCA GCG UAa g-C3	907
	complement strand	CUU ACG CUG AGU ACU UCg a-C3	908
VEGFR2-siRNA1	guide strand	UUG AGG UUU GAA AUC GAC CdCdT	909
	complement strand	GGU CGA UUU CAA ACC UCA AdTdT	910
VEGFR2-siRNA2	guide strand	UAA UUU GUU CCU GUC UUC CdAdG	911
	complement strand	GGA AGA CAG GAA CAA AUU AdTdT	912
siRNA control	guide strand	ACG UGA CAC GUU CGG AGA AdTdT	913
	complement strand	UUC UCC GAA CGU GUC ACG UdTdT	914
VEGFR2-C3-siRNA1	guide strand	UUG AGG UUU GAA AUC GAC C-C3	915
	complement strand	GGU CGA UUU CAA ACC UCA A-C3	916
VEGFR2-C3-siRNA2	guide strand	UAA UUU GUU CCU GUC UUC C-C3	917
	complement strand	GGA AGA CAG GAA CAA AUU A-C3	918

C3-siRNA control	guide strand	ACG UGA CAC GUU CGG AGA A-C3	919
	complement strand	UUC UCC GAA CGU GUC ACG U-C3	920
VEGFR2-C3-MOE-siRNA1	guide strand	UUG AGG UUU GAA AUC GAc c-C3	921
	complement strand	GGU CGA UUU CAA ACC UCa a-C3	922
VEGFR2-C3-MOE-siRNA2	guide strand	UAA UUU GUU CCU GUC UUc c-C3	923
	complement strand	GGA AGA CAG GAA CAA AUu a-C3	924
Tie2-C3-MOE-siRNA1	guide strand	UUC UUC UUU AAU UAA CAc c-C3	925
	complement strand	GGU GUU AAU UAA AGA AGa a-C3	926
Tie2-C3-MOE-siRNA2	guide strand	UCU GAG UUU GUA AAU AUc g-C3	927
	complement strand	CGA UAU UUA CAA ACU CAg a-C3	928
C3-MOE-siRNA control	guide strand	ACG UGA CAC GUU CGG AGa a-C3	929
	complement strand	UUC UCC GAA CGU GUC ACg l-C3	930

Examples:

The following Examples illustrate aspects of the invention, and are not intended to limit the embodiments included in the claims recited below. The results and discussion section further below refers to experiments conducted according to the following protocols and employing the following materials. Materials and protocols that are not specifically described are considered to be routinely available to those skilled in the art.

Example 1

Preparation of siRNAs.

Single strand siRNA derivatives were synthesized by standard 2'-O-TOM phosphoamidite technology and purified by Oasis® HLB Extraction Plates (Waters). Sense- and antisense

stranded siRNA were mixed in hybridization buffer (100 mM potassium acetate, 2 mM magnesium acetate, 30 mM Hepes, pH 7.6) heat-denatured at 90° C for 3 min and annealed at 37° C for 60 min. 100 μ M stock solutions of siRNA duplexes were stored at -20° C.

Example 2

Incubation in Serum and analysis by IE-HPLC (LC-MS).

In a standard serum assay, 6 μ L 20 μ M of each siRNA were mixed with 54 μ L serum or CSF and heated at 37° C in an incubator. 50 μ L of the cooled mixture was loaded on an analytical DNA-pac PA-100 Column (Dionex) and analyzed with a NaCl gradient (0 – 0.6 M in 30 min) in a 1:10 Acetonitrile:Buffer (20 mM sodium acetate, 1 mM magnesium acetate, pH 6.5) solution.

For LC-MS analysis 100 μ L (20 μ M or 50 μ M) each siRNA was mixed with 900 μ L sterile fetal bovine serum (GIBCO) incubated at 37° C and separated by HPLC as indicated previously (except of the NaCl gradient: 0M - 0.36M in 9' / 0.36M - 0.6M in 12'). Degradation products were desalting on NAP columns and analyzed by LC-ESI-MS.

Example 3

Incubation in gastric acid

To prepare a standard gastric acid assay, FVB and C57BL6 mice, weighing 18 to 20 g (6 to 8 weeks old), were obtained from Charles River Laboratories (Les Oncins, France). Animals were sacrificed using CO₂, and then stomachs were quickly recovered. Gastric fluid as well as stomach contents were collected and pooled, then loaded on centrifugal filter devices (Ultrafree MC, Millipores). Filter units were spun for 10 minutes according to manufacturer's recommendations. The filtrate, corresponding to mouse gastric fluid, was recovered, aliquoted and frozen prior further experiments.

For each assay, 20 μ M of siRNA solutions were diluted in 9x volume of gastric acid as above described and incubated at 37°C for 0, 5, 10, 15, 30, 60 and 120 min.

Example 4

Incubation in intestinal lavage

To prepare a standard intestinal lavage assay, Male Wistar rat were fasted, anesthetized with isoflurane. Intestinal lavage was obtained by *in situ* perfusion of the small intestine (duodenum, jejunum, ileum) with 10 mL saline (0.5 mL/min) followed by 20 mL water (1

mL/min). Outlet collected was centrifuged (3000 x g, 15 min, 22°C), and supernatant passed through a 1.2-µm filter and stored at -20°C.

For each assay, 20 µM siRNA solutions were diluted in 9x volume of intestinal lavage and incubated at 37°C for 0, 15, 30, 60, 180 and 360 min.

Example 5

Incubation in mouse liver microsomes

In a standard liver microsome assay, to 10 µl of a 250 µM solution of siRNA were added 25 µl of mouse liver microsomes (GEntest 452701 Charge 11) at 20 mg protein /ml, 365 µl of 100 mM phosphate buffer (pH 7.4), 50 µl of UDPGA cofactor (24 mM in water), 50 µl of NADPH. Incubation was quenched by freezing at t=0 min and t= 60 min.

Example 6

Incubation in rat S12 supernatant

For a standard rat S12 supernatant assay, 10 µl of a 250 µM solution of siRNA were added to 17 µl of rat liver S12 at 29.9 mg protein /ml, 373 µl of 100 mM phosphate buffer (pH 7.4), 50 µl of UDPGA cofactor (24 mM in water), 50 µl of NADPH. Incubation was quenched by freezing at t=0 min and t= 60 min.

Example 7

Incubation in mouse serum

For a standard incubation in mouse serum, 20 µM siRNA solutions were diluted in 9x volume of murine serum (Harlan nude mouse) and incubated at 37°C for 0, 15, 30, 60, 180 and 360 min.

Example 8

Gel electrophoresis stability assay.

A 10 µL aliquot of incubation solution was taken immediately after shaking and shock-frozen on dry ice, the mixtures were incubated at 37° C and aliquots were shock frozen at various time points. Aliquots were thawed in 30 µL (15 µL respectively) Loading Buffer (Elchrom Sc., Cham, Switzerland) and separated on a SF50 gels (Elchrom Sc., Cham, Switzerland) at 120 V, 8° C for 240 min. Bands were stained with SYBR Gold (Molecular Probes) and picture were taken with a BIORAD ChemiDoc™ XRS system.

Example 9*Cell culture*

The mouse immortalized endothelial cell line MS1 (ATCC CRL-2279) was grown in DMEM high glucose (4.5g/l) supplemented with L-Glutamine and 10% heat-inactivated FCS (AMIMED, Switzerland) on 1.5% Gelatine-coated culture dishes. MS1 cells were transfected in 24 well-format with siRNA using HiPerfect (QIAGEN) according to manufacturer procedure (tetraplicate, final siRNA concentration was 10nM or as indicated).

Example 10*FACS analysis*

Non-transfected and siRNA transfected MS1 cells were analyzed by FACS for VEGFR2 levels. Briefly, cells were trypsinized from duplicate or triplicate wells, pooled for each conditions, then washed twice with PBS+10% FCS and incubated 10 minutes on ice prior addition of RPE-conjugated anti-VEGFR2 Ab (1 μ g/10⁶ cells; Avas 12 α 1, BD Pharmingen). RPE-labeled isotype IgG2 α were used as FACS control (BD Pharmingen). FACS acquisition and analysis were performed on a FACScalibur using Cell Quest Software (Becton-Dickinson).

Example 11*Animal studies*

Female FVB mice (6 to 8 weeks old), were obtained from Charles River Laboratories (Les Oncins, France). Mice were identified via ear markings and kept in groups (6 animals per cage) under normal conditions and observed daily. Six mice were used per treatment group and all animal experiments were performed in strict adherence to the Swiss law for animal protection.

The reference chamber model has been described in publications (e.g. Wood J, Bold G, Buchdunger E, et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. *Cancer Res* 2000;60:2178-89) In brief, porous tissue chambers made of perfluoro-alkoxy-Teflon (Teflon®-PFA, 21 mm x 8 mm diameter, 550 μ l volume) were filled with 0.8% agar (BBL® Nr. 11849, Becton Dickinson, Meylan, France) and 20U/ml heparin, (Novo Nordisk A/S, Bagsvaerd, Denmark) supplemented with or without 3 μ g/ml recombinant human VEGF and siRNAs as indicated.

Solutions were maintained at 42 °C prior the filling procedure. Mice were anesthetized using 3% Isoflurane (Forene®, Abbott AG, Cham, Switzerland) inhalation. For subcutaneous implantation, a small skin incision was made at the base of the tail to allow the insertion of an implant trocar. The chamber was implanted under aseptic conditions through the small incision onto the back of the animal. The skin incision was closed by wound clips (Autoclip 9 mm Clay Adams). Depending on the required dose, siRNAs were diluted in “injectable quality grade” 0.9% saline solution then delivered to animals either i.p. (200µL /dose) or p.o. by gavage (100µL /dose). The mice were receiving the first dose 2 to 4 hours before implanting chambers; then treated daily for 2 days. If not otherwise indicated, mice were sacrificed three days after implantation, chambers excised and the vascularized fibrous tissue formed around each implant carefully removed. Body weight was used to monitor the general condition of the mice. Statistical analysis was done using one-way ANOVA followed by Dunnett test.

Example 12

B16 melanoma xenograft model

The syngeneic B16/BL6 murine melanoma model, previously identified to be responsive to antiangiogenic therapy (e.g. LaMontagne K, Littlewood-Evans A, Schnell C, O'Reilly T, Wyder L, Sanchez T, Probst B, Butler J, Wood A, Liau G, Billy E, Theuer A, Hla T, Wood J. Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. *Cancer Res.* 2006 Jan 1;66(1):221-31), was used to evaluate the antitumor activity of standard or modified siRNAs. Tumor cells (1 µL, 5 x 10⁴/µL) were injected intradermally into the dorsal pinna of both ears of syngeneic female C57BL/6 mice. Measurements of primary tumor area (mm²) were carried out on days 7, 14, and 21 after tumor cell inoculation using computer-assisted image analysis software (KS-400 3.0 imaging system, Zeiss) and a specifically designed macro. From days 7 to 21, mice were receiving siRNAs diluted in “injectable quality grade” 0.9% saline solution either i.p. (200µL /dose) or p.o. by gavage (100µL /dose) once a day. Mice were sacrificed on day 21, and cranial lymph node metastases were weighed and then frozen.

In these results, actual siRNA sequences and chemistries employed may be determined by reference to Table 3.

Wild-type siRNAs are degraded in mouse serum from both 3'-ends

Oligonucleotide degradation by nucleases is predominantly 3'-exonucleolytic. Modification of antisense oligonucleotides at their termini by the introduction of aromatic or lipophilic residues delays their nucleolytic degradation¹⁷. To verify whether this metabolic pathway would also be dominant for siRNA, we incubated at 37°C a unmodified siRNA (wild-type siRNA) in mouse serum for up to 3 hours.

The unmodified siRNA sequence employed was pG13-siRNA (see Table 3)

The mixtures were analyzed with Strong Anion Exchange HPLC at t=0 min., t=30 min, t= 180 min.

As shown in **Figure 1a, 1b and 1c**, at t= 30 min, a well defined peak corresponding to blunt ended siRNA was observed. By t=3h substantial degradation is observed. **Figure 1d and 1e** illustrate the metabolites identified by HPLC-ESI-MS analysis. This analysis revealed the presence of several metabolites corresponding to the loss of the 3' overhangs and of the 3'- terminal first base pairing ribonucleotide on both strands. Digestion of the 5'-terminal ribonucleotide of the guide strand was also observed.

Figure 1 suggests the degradation pathway of unmodified siRNAs in serum. DNA overhangs are first digested, possibly by 3'-exonucleases. In the LC-MS, additional metabolites were also detected which correspond to the loss of the first base-pairing 3'-ribonucleotide of both strands and also the first 5'-base-pairing ribonucleotide of the guide strand.

3'-modified siRNAs are stable through the GI tract

siRNAs with 2'-methoxyethyl ribonucleotides overhangs (MOE o/h siRNA), blunt-ended siRNAs 3'-capped with a hydroxypropoxy phosphodiester moiety (C3-siRNA), and hydroxypropoxy phosphodiester 3'-capped siRNAs where the two first base paring nucleotide at 3'-end of each strand were modified by 2'-methoxyethyl ribonucleotides residues (C3-MOE siRNA) were synthesized. These compounds are illustrated schematically in **Figure 2**.

First siRNAs were incubated in mouse gastric acid for 2h (Figure 3). No degradation was observed in the cases of C3 siRNA and C3-MOE sRNA, while degradation of wild-type siRNA was observed after 30 minutes.

Stability in intestinal fluid obtained from intestinal lavage of rats revealed almost complete degradation of wild-type siRNA after 15 minutes whereas parent compound in the MOE o/h siRNA, C3-siRNA and C3-Moe siRNA were observed for 60 minutes. (Figure 4)

Stability in liver was evaluated using a liver microsome assay and a S12 assay (representative of liver cytosolic enzymatic activity). Results are shown in Figure 5. In both cases, no degradation was observed after 60 minutes of incubation.

Finally, siRNAs were tested in mouse serum by incubation at 2 micromolar for up to 6 hours at 37°C (results in Figure 6). Parent compound stability was followed by gel electrophoresis. In the cases of modified siRNAs (C3 siRNA, C3-MOE siRNA or MOE o/h siRNA), no significant degradation was observed while the wild-type siRNA

This study indicate that wild type (unmodified) siRNAs are metabolized in mouse gastric acid and in mouse serum. In case of 3'-ends modified siRNAs, no degradation was observed in the GI tract. Therefore it is likely that 3'-modified siRNAs will have a higher oral bioavailability than wild-type siRNAs

Systemically delivered 3'-modified siRNAs are more active in an *in vivo* growth factor induced angiogenesis model¹⁸.

Firstly, the ability of modified siRNAs (C3-siRNA and CE-MOE siRNA) to down regulate a target gene was checked in cellulo by measuring VEGFR2 surface level of MS1 cells transfected with anti-VEGFR2 siRNAs.

Pools of 2 anti VEGFR2 siRNAs as wild-type siRNAs, C3-siRNAs and C3-MOE siRNAs were administered intraperitoneally. Results are shown in Figure 7. Pooled Wild type siRNAs reduced significantly the VEGF induced vascularization at the higher dose of 25 micrograms per mice per day. The same level of inhibition was observed at a 5-fold lower dose with C3-siRNA. In the case of the C3-MOE siRNAs pool, significant reduction of vascularized tissue weight was observed at all tested doses including the lowest 0.2 microgram per mouse per day.

Figure 8a and 8b show that, when given intraperitoneally, both VEGFR2 - C3 and C3-MOE siRNAs were active at below 1 microgram per mouse per day dose.

In vivo testing of anti-VEGFR2 C3-MOE siRNA given intraperitoneally (i.p.) in a B16 homograft melanoma tumor mouse model. **Figure 9a** shows that i.p. treatment with modified VEGFR2-C3-MOE-siRNA significantly reduces tumour development. **Figure 9b** also shows that i.p. injection of VEGFR2-C3-MOE-siRNA at 20 ug per mouse results in significant inhibition of tumour growth.

Oral Delivery of siRNA for Treatment of Angiogenic Disorders

Figure 10 shows that given orally, at a dose of 20 micrograms per mouse per day, the VEGFR2-C3-MOE-siRNA 1 reduced vascularization weight down to basal level (e.g. weight without growth factor induction). Actual siRNA sequences used are referred to in **Table 3**.

Anti Tie2 C3-MOE siRNAs were also tested in the growth factor induced angiogenesis model under both intraperitoneal and oral deliveries. **Figure 11a and 11b** show that given orally, both C3-MOE siRNAs directed at Tie2 were active at 20 microgram per mouse per day. Actual siRNA sequences used may be determined by reference to **Table 3**.

The data shows that 3'-end modified siRNAs with or without additional internal modifications are able to demonstrate therapeutic effect at reasonable doses upon oral administration.

REFERENCES

1. a) Y. Tomari et al. *Genes and Development* **19** (2005), 517; b) P. Shankar et al. *JAMA* **11** (2005), 1367; c) Y. Dorsett et al. *Nature Reviews* **3** (2004), 318
2. a) P.D. Zamore et al. *Cell* **101**, (2000), 25; b) S.M. Hammond et al. *Nature* **404** (2000), 293
3. a) G. Meister et al. *Molecular Cell* **15** (2004), 185.
4. S.M. Elbashir et al. *Genes Dev.* **15** (2001), 188.
5. S.J. Reich et al. *Molecular Vision* **9** (2003), 210.
6. a) Dorn et al. *Nucleic Acids Research* **32** (2004), e49; b) D. R. Thakker et al. *PNAS* **101** (2004), 17270; c) D.R. Thakker et al. *Molecular Psychiatry* **10** (2005), 714
7. V. Bitko et al. *Nature Medicine* **11** (2005), 50.
8. E. Song et al. *Nature Medicine* **9** (2003), 347.
9. D.A. Braasch et al. *Biochemistry* **42** (2003), 7967.
10. Harborth, Antisense Nucleic Acid Drug Devt, 2003
11. A.H.S. Hall et al. *Nucleic Acids Research* **32** (2004), 5991.
12. M. Amarzguioui et al. *Nucleic Acids Research* **31** (2003), 589.
13. F. Czauderna et al. *Nucleic Acids Research* **31** (2003), 2705.
14. T. Prakash et al. *Journal of Medicinal Chemistry* **48** (2005), 4247.
15. J. Elmen et al. *Nucleic Acids Research* **33** (2005), 439.
16. A.S. Boutorin, L.V. Guskova, E.M. Ivanova, N.D. Kobetz, V.F. Zafytova, A.S. Ryte, L.V. Yurchenko and V.V. Vlassov *FEBS Lett.* **254** (1989), p. 129
17. J. Wood et al. *Cancer Research* **60** (2000), 2178.
18. K. LaMontagne et al. *Cancer Res.* **66** (2006), 221.

DEMANDES OU BREVETS VOLUMINEUX

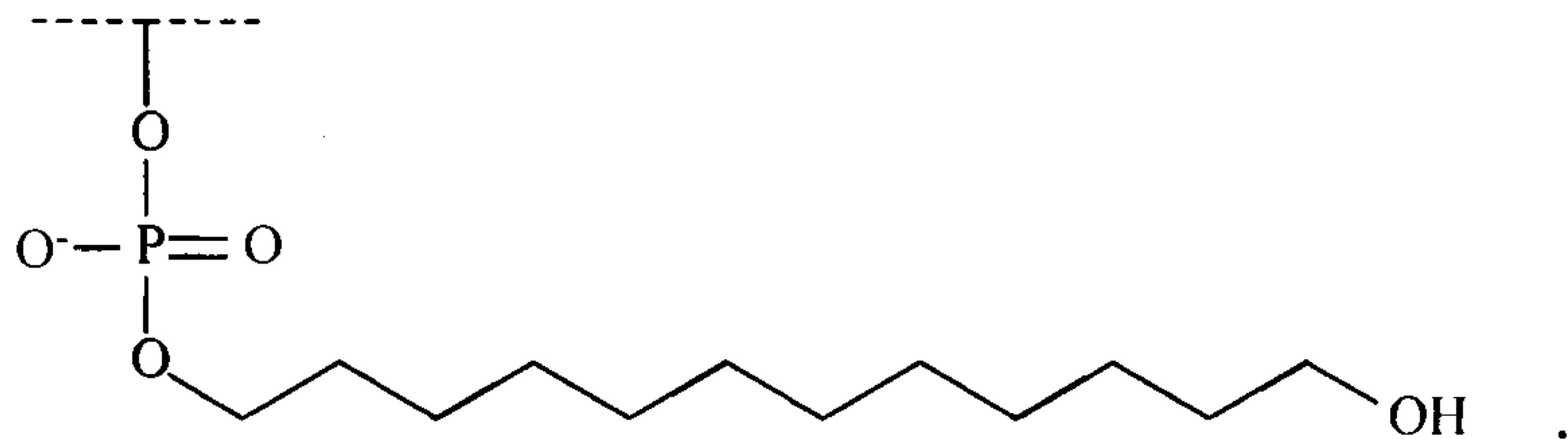
LA PRÉSENTE PARTIE DE CETTE DEMANDE OU CE BREVETS
COMPREND PLUS D'UN TOME.

CECI EST LE TOME 1 DE 2

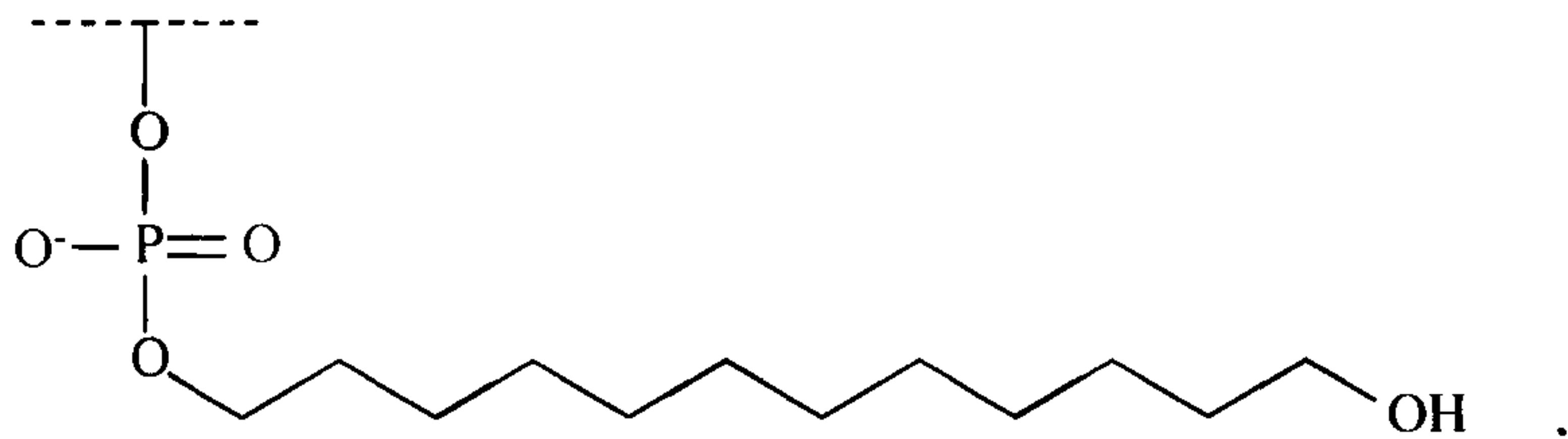
NOTE: Pour les tomes additionnels, veillez contacter le Bureau Canadien des Brevets.

JUMBO APPLICATIONS / PATENTS

THIS SECTION OF THE APPLICATION / PATENT CONTAINS MORE
THAN ONE VOLUME.


THIS IS VOLUME 1 OF 2

NOTE: For additional volumes please contact the Canadian Patent Office.


21489-11000D2

CLAIMS:

1. A short interfering ribonucleic acid (siRNA), said siRNA comprising two RNA strands that are complementary to each other over at least 15 nucleotides, wherein each strand is 49 nucleotides or less, and wherein the 3'-terminus of at least one strand comprises a
5 modification at the 3' carbon, wherein the modification is:

2. A short interfering ribonucleic acid (siRNA), said siRNA comprising two RNA strands that are complementary to each other over at least 15 nucleotides, wherein each strand is 49 nucleotides or less, and wherein the 3'-terminus of each strand comprises a modification
10 at the 3' carbon, wherein the modification is:

3. The siRNA according to claim 1, wherein the first two base-pairing nucleotides
at the 3' end of each strand are modified.

4. The siRNA according to claim 1, wherein the first two base-pairing nucleotides
15 at the 3' end of each strand are 2'-methoxyethyl ribonucleotides residues.

5. The siRNA according to claim 1, wherein the two strands are complementary
to each other over at least 19 nucleotides.

6. The siRNA according to claim 5, wherein each strand is 19 nucleotides.

21489-11000D2

7. The siRNA according to claim 1, wherein both ends of the siRNA are blunt-ended.

8. The siRNA according to claim 1, wherein each strand is 19 nucleotides.

9. The siRNA according to claim 1, wherein the two strands are fully
5 complementary to each other over 19 nucleotides and wherein the siRNA is blunt-ended.

10. The siRNA according to claim 3, wherein at least one additional nucleotide is modified.

11. The siRNA according to claim 1, having stability in a standard gastric acid assay that is greater than an unmodified siRNA with the same nucleotide sequence.

10 12. The siRNA according to claim 1, having stability in a standard gastric acid assay that is greater than or equal to 50% after 30 minutes exposure.

13. The siRNA according to claim 1, having stability in a standard serum assay is greater than an unmodified siRNA with the same nucleotide sequence.

14. The siRNA according to claim 1, having stability in a standard serum assay is
15 greater than or equal to 50% after 30 minutes exposure.

15. The siRNA according to claim 1, having stability in a standard intestinal lavage assay that is greater than an unmodified siRNA with the same nucleotide sequence.

16. The siRNA according to claim 1, having an enhanced bioavailability compared to an unmodified siRNA of the same nucleotide sequence.

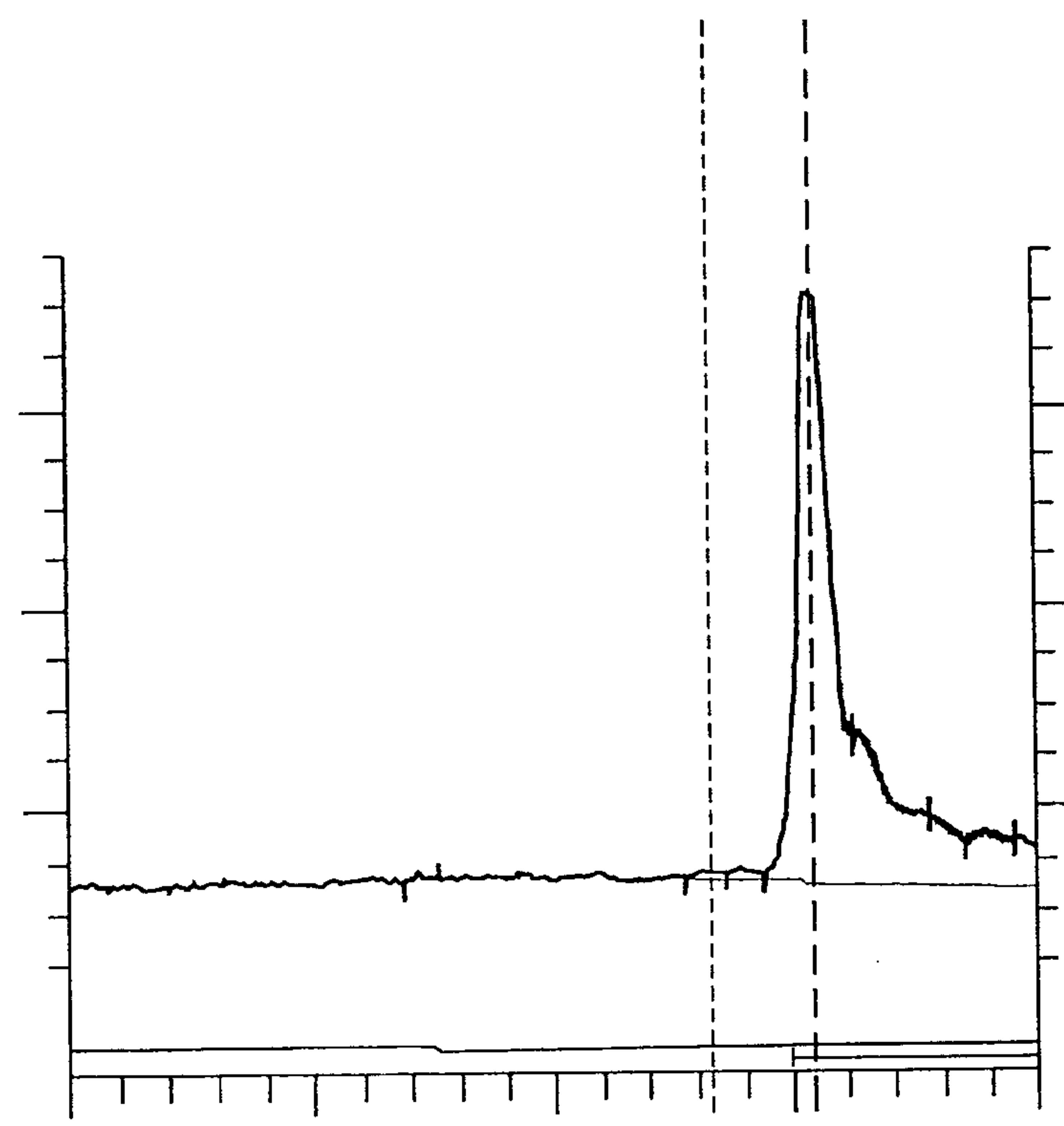
20 17. Pharmaceutical composition comprising the siRNA according to claim 1, and a pharmaceutically acceptable carrier.

18. The siRNA according to claim 1, for use as a medicament.

21489-11000D2

19. The siRNA according to claim 1, wherein the first two base-pairing nucleotides at the 3' end of each strand are modified, wherein each modified nucleotide has an internucleoside linkage which is an amide linkage.

20. The siRNA according to claim 1, for use as a medicament which is
5 administered parenterally.


21. The siRNA according to claim 1, wherein the first two base-pairing nucleotides at the 3' end of each strand are modified, wherein each modified nucleotide is selected from among nucleotides having a modified internucleoside linkage selected from among phosphorothioate, phosphorodithioate, phosphoramidate, boranophosphonoate, and amide
10 linkages.

22. The siRNA according to claim 5, wherein one end of the siRNA is blunt-ended.

23. The siRNA according to claim 1, comprising a 1 to 6 nucleotide overhang on at least one of the 5' end or 3' end.

15 24. The siRNA according to claim 1, for use as a medicament which is administered orally, topically, parenterally, by inhalation or spray, or rectally, or by percutaneous, subcutaneous, intravascular, intravenous, intramuscular, intraperitoneal, intrathecal or infusion technique.

1/18

t=0'

FIG. 1a

2/18

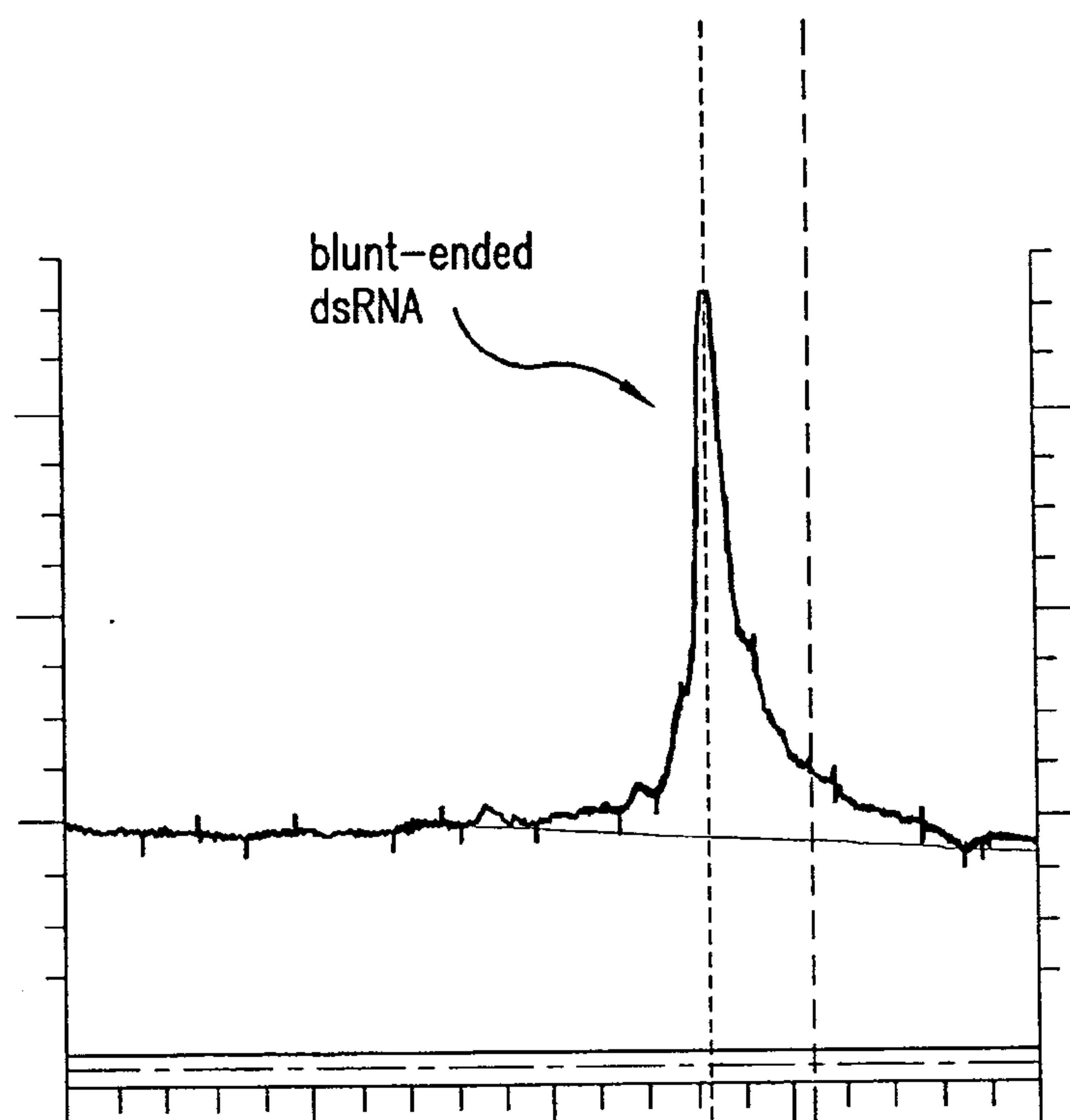

 $t=30'$

FIG.1b

3/18

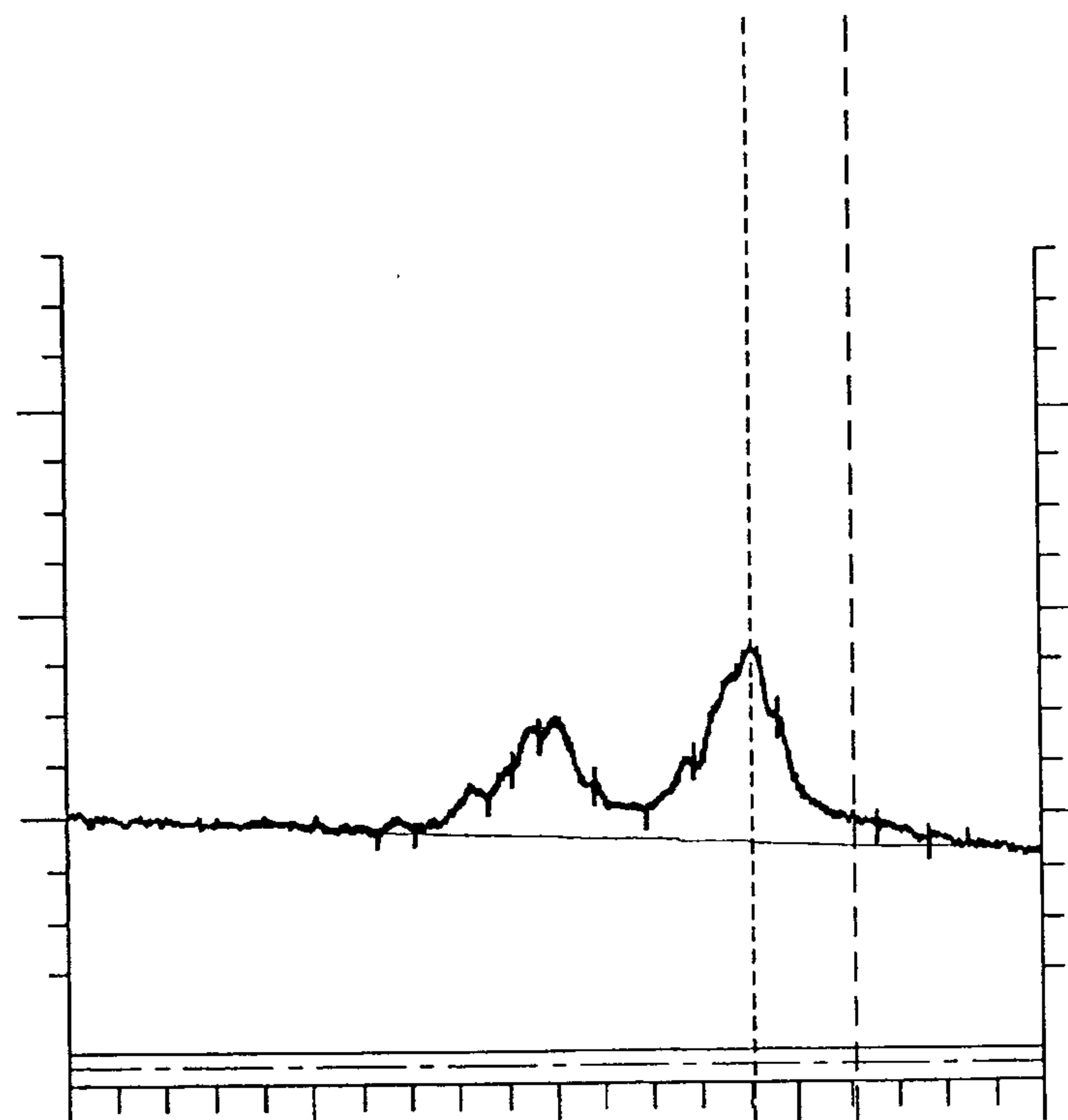

 $t=180'$

FIG.1c

4/18

LC-MS analysis

Compound	Sequence	Mth	found
parent_complement	CUUACCGUGAGUACUUCCGATT	6607.32	
complement -TpTp	CUUACCGUGAGUACUUCCGAT_-	6302.9	6306.4
complement -TpTp -3'Ap	CUUACCGUGAGUACUUCCGA_-	5998.7	5996.8
complement -TpTp -3'Ap	CUUACCGUGAGUACUUCCG_-	5669.5	5670.9
parent_guide	UCGAAGUACUCAGCGUAAGT	6693.37	
guide -TpTp	UCGAAGUACUCAGCGUAAGT_-	6389.1	6387.5
guide -TpTp	CGAACGUACUCAGCGUAAG_-	6084.8	6084.2
guide -TpTp -3'Gp	UCGAAGUACUCAGCGUAAG_-	5739.6	5740.6
guide -TpTp -5'Tp	_CGAACGUACUCAGCGUAAG_-	5778.7	5775.2

FIG. 1d

5/18

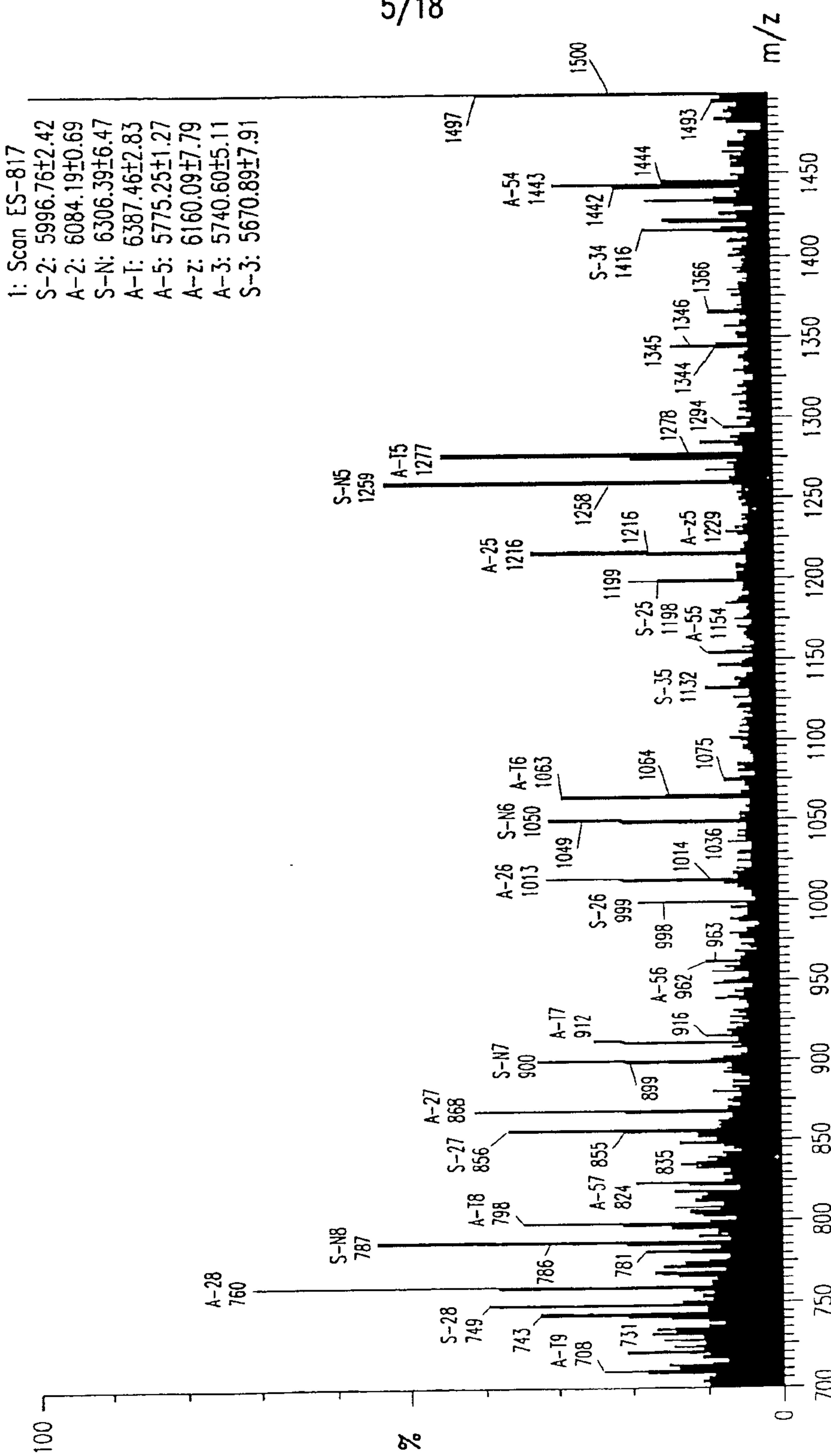
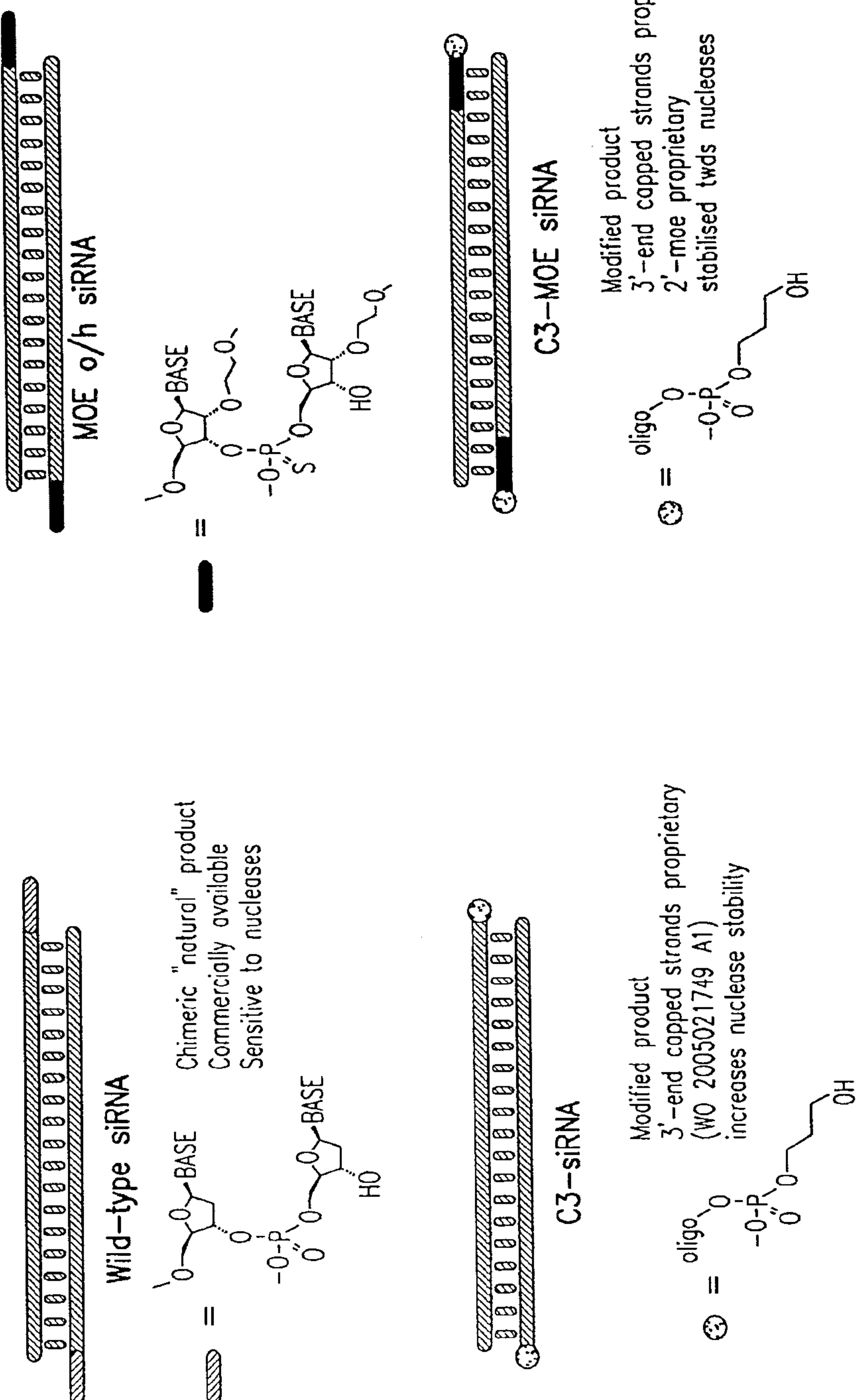



FIG. 1e

SUBSTITUTE SHEET (RULE 26)

6/18

E-2

SUBSTITUTE SHEET (RULE 26)

7/18

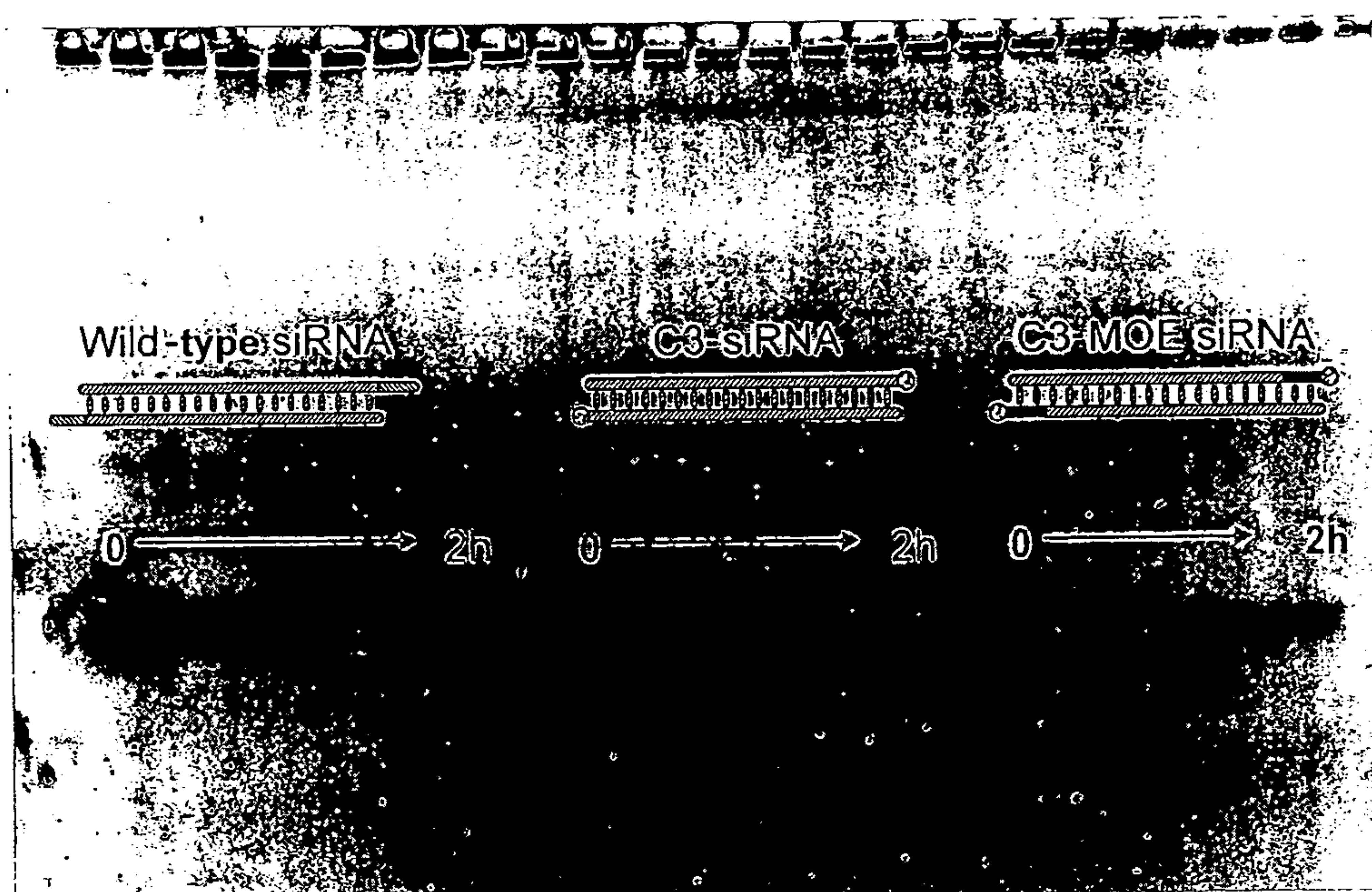
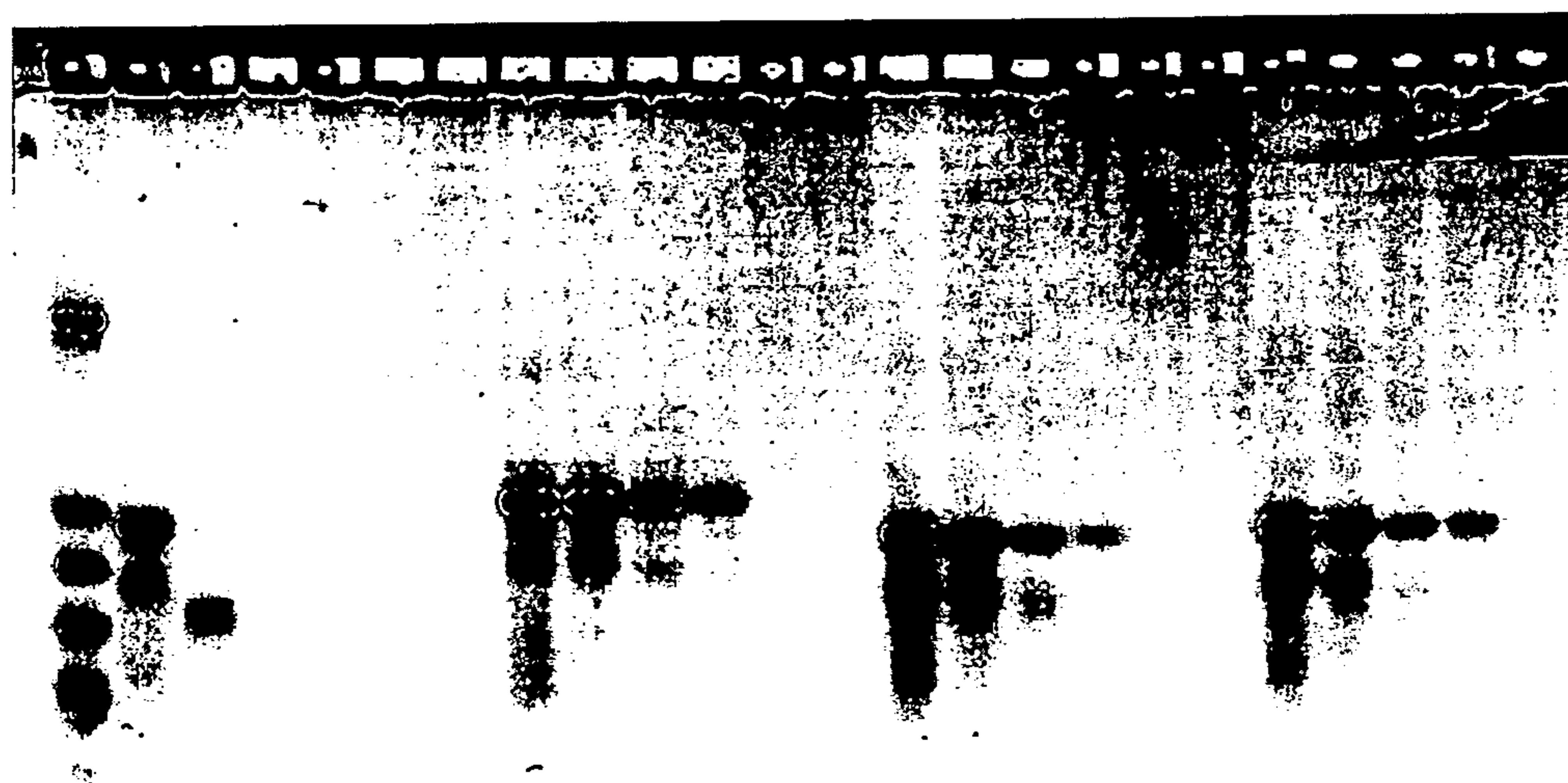
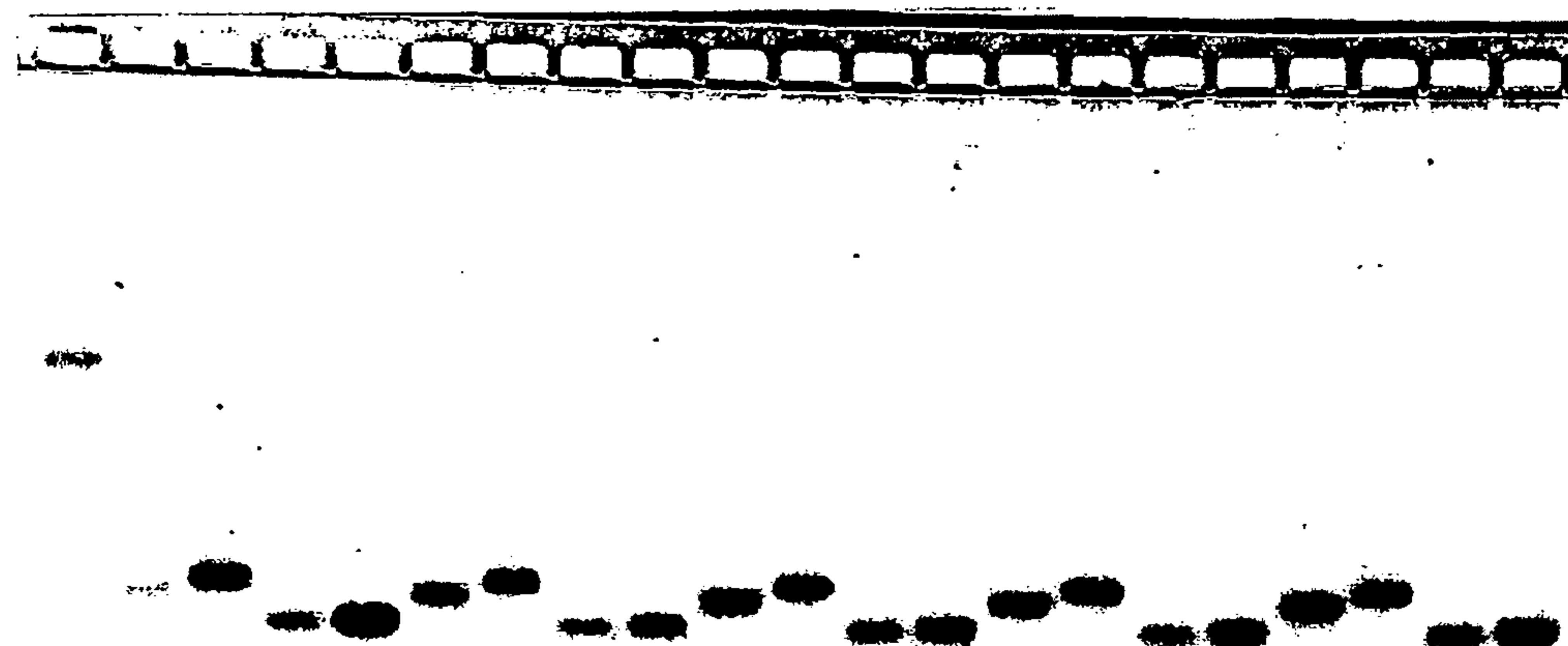



FIG.3

8/18

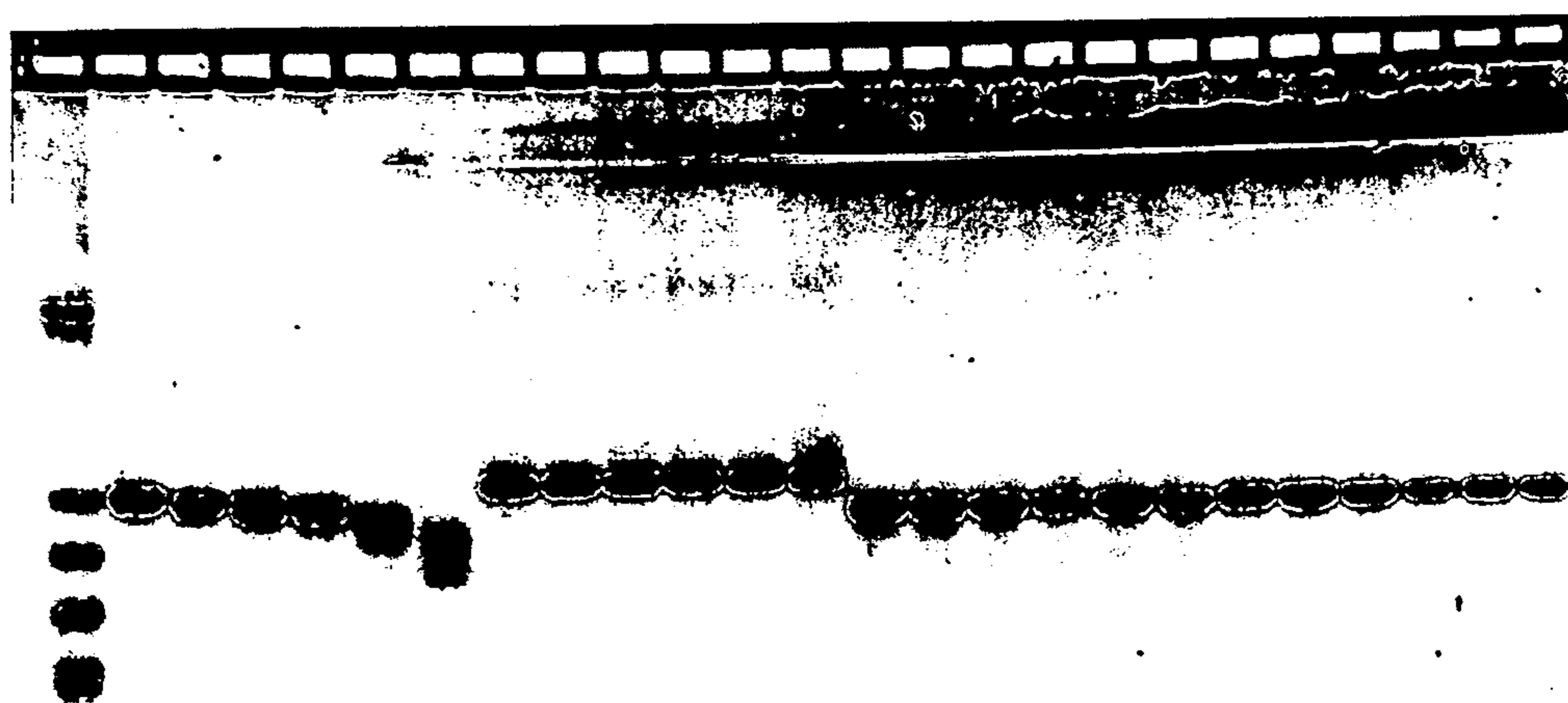


Lane #

1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 20 22 25

FIG.4

9/18



Lane #

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 21

FIG.5

10/18

Lane #

1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 20 22 25

FIG.6

11/18

Effect of stabilization groups on siRNA potency in cellulo

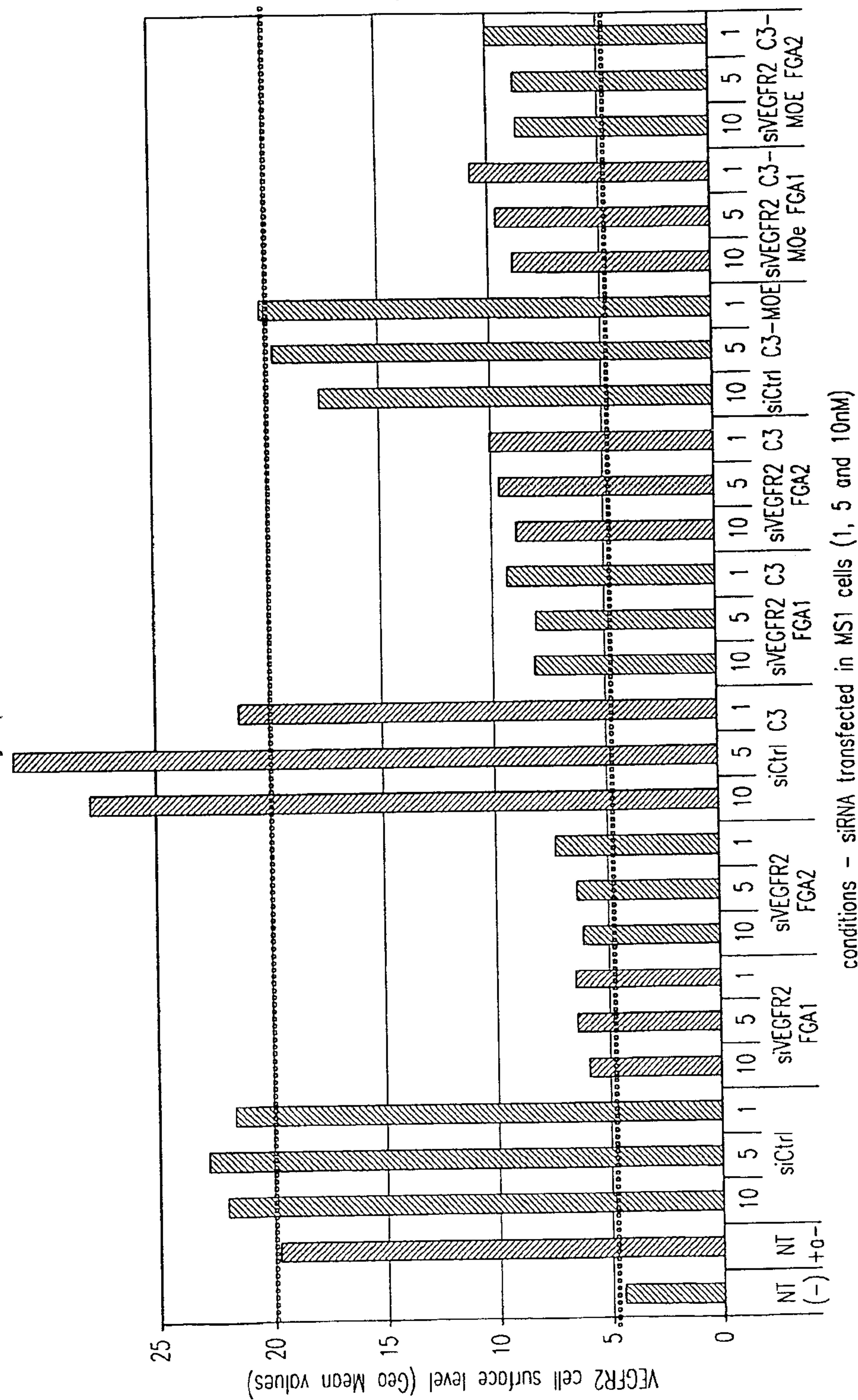


FIG. 7

12/18

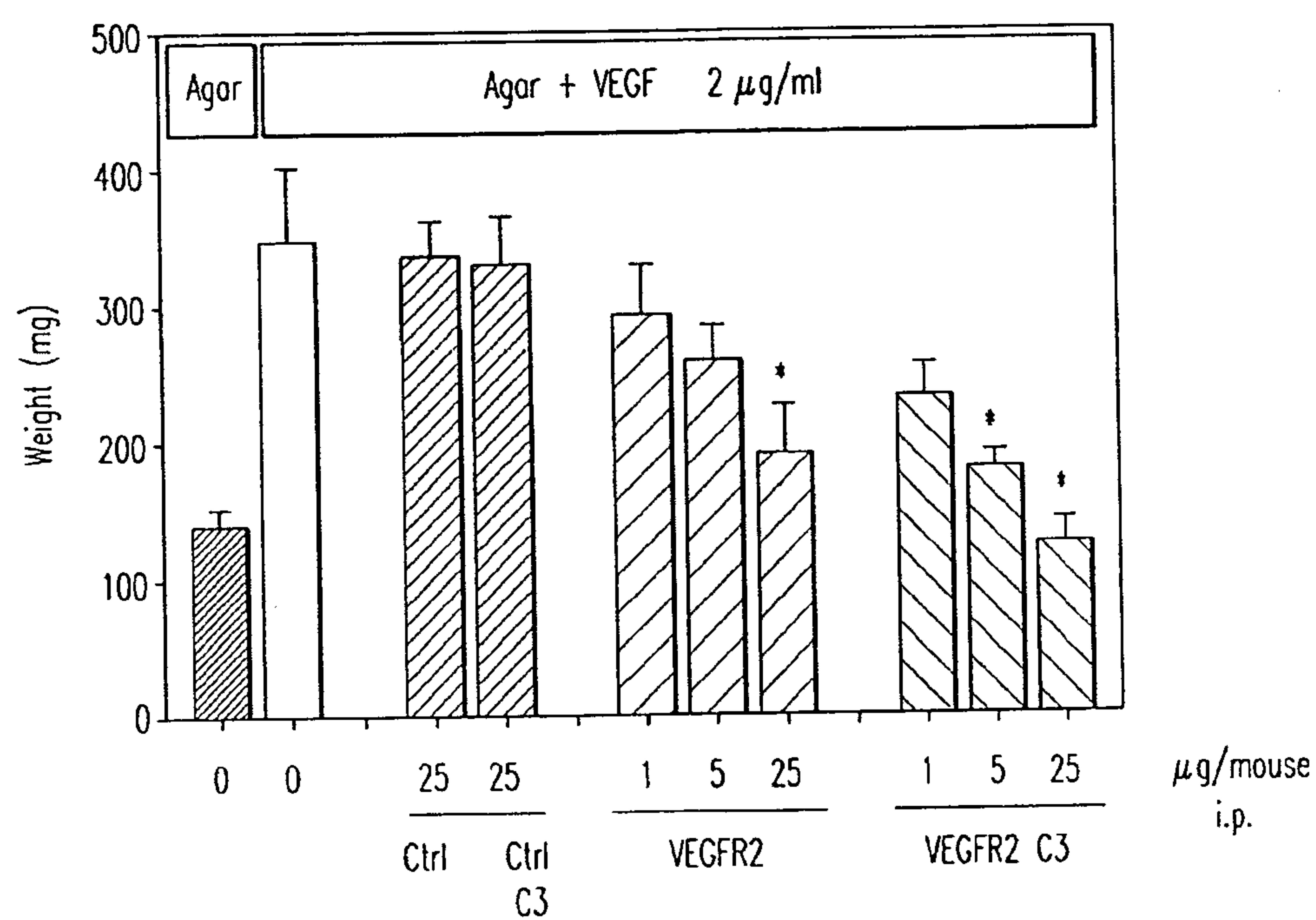


FIG.8a

13/18

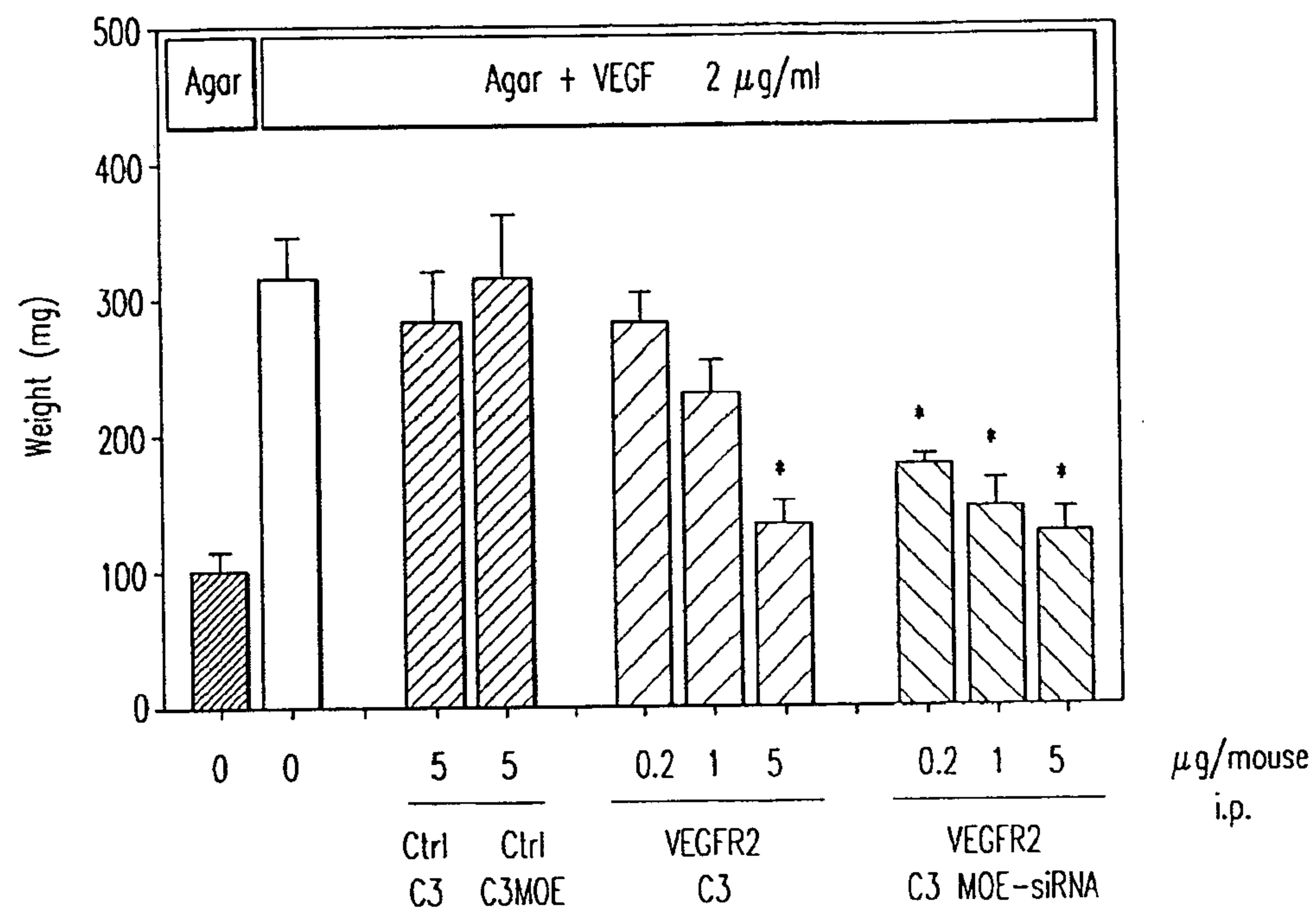


FIG.8b

14/18

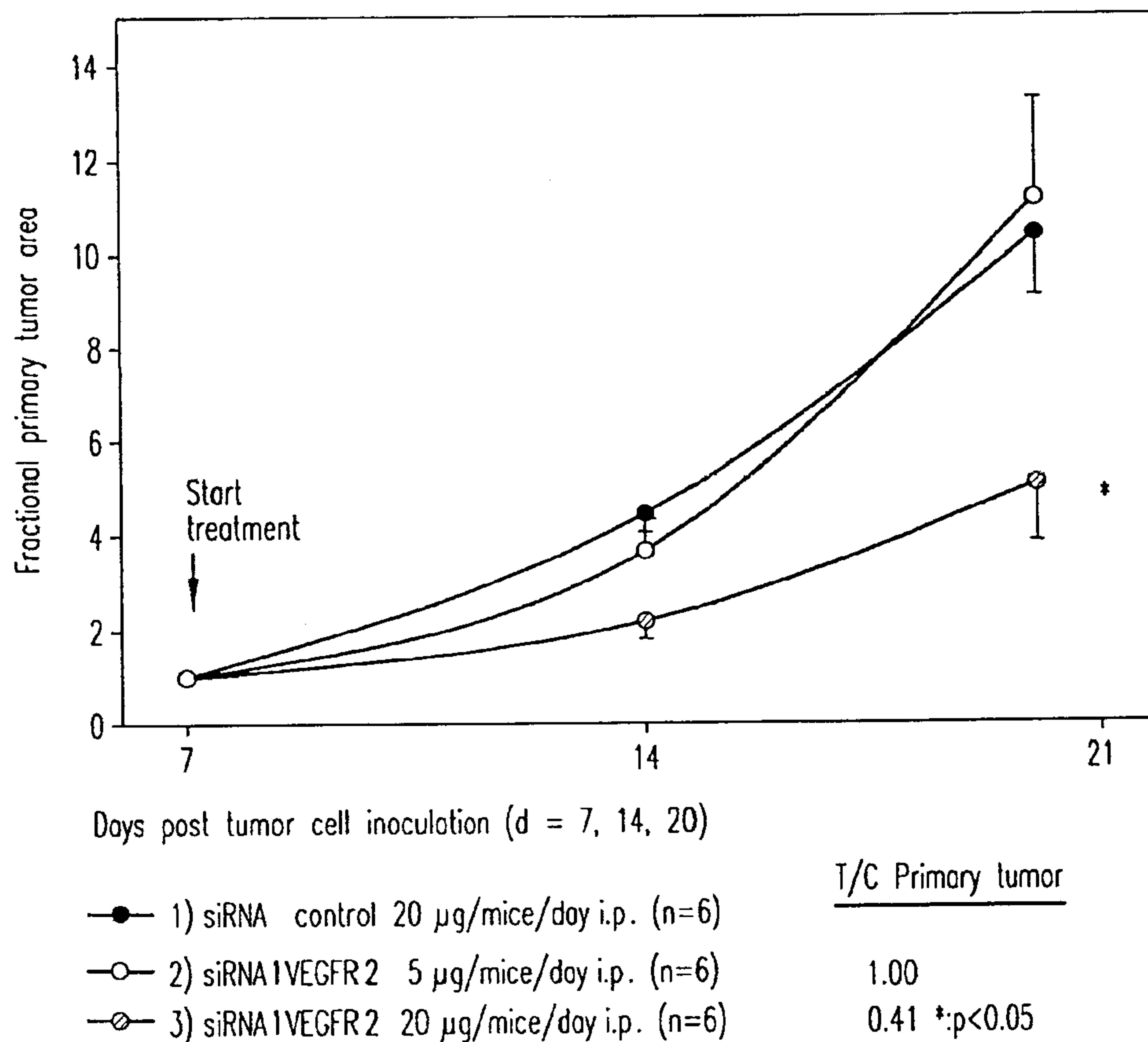


FIG.9a

15/18

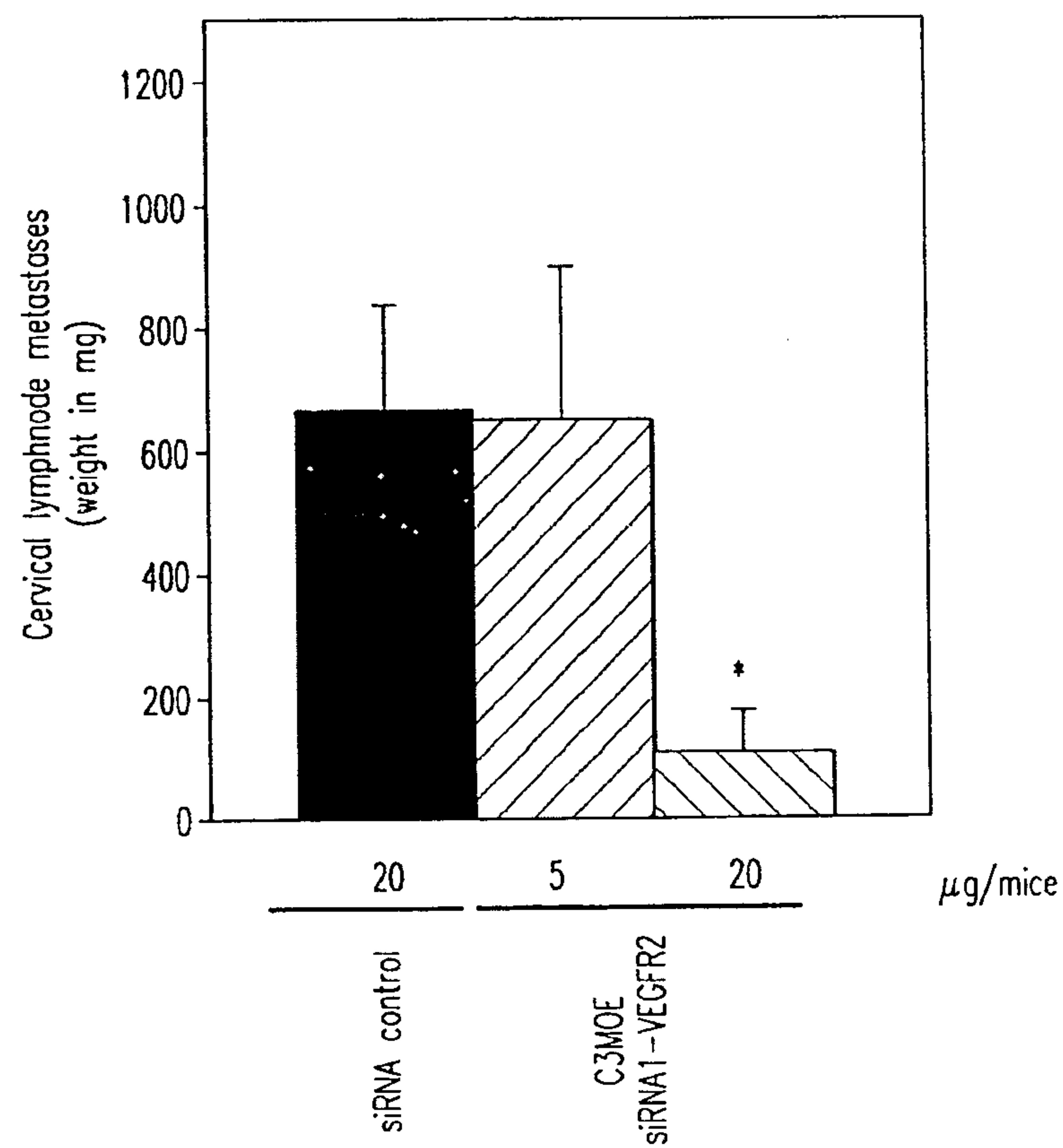


FIG.9b

16/18

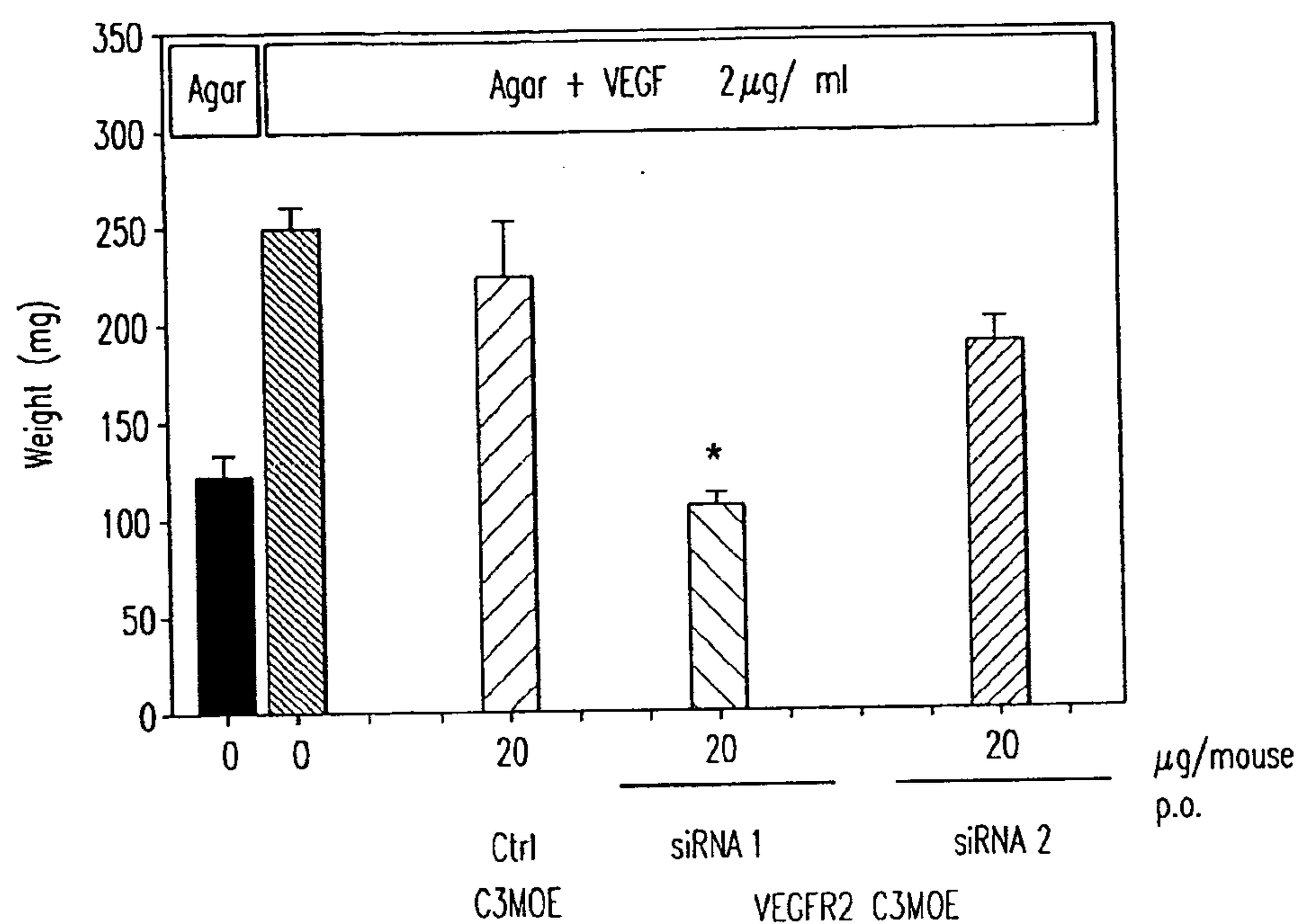


FIG. 10

17/18

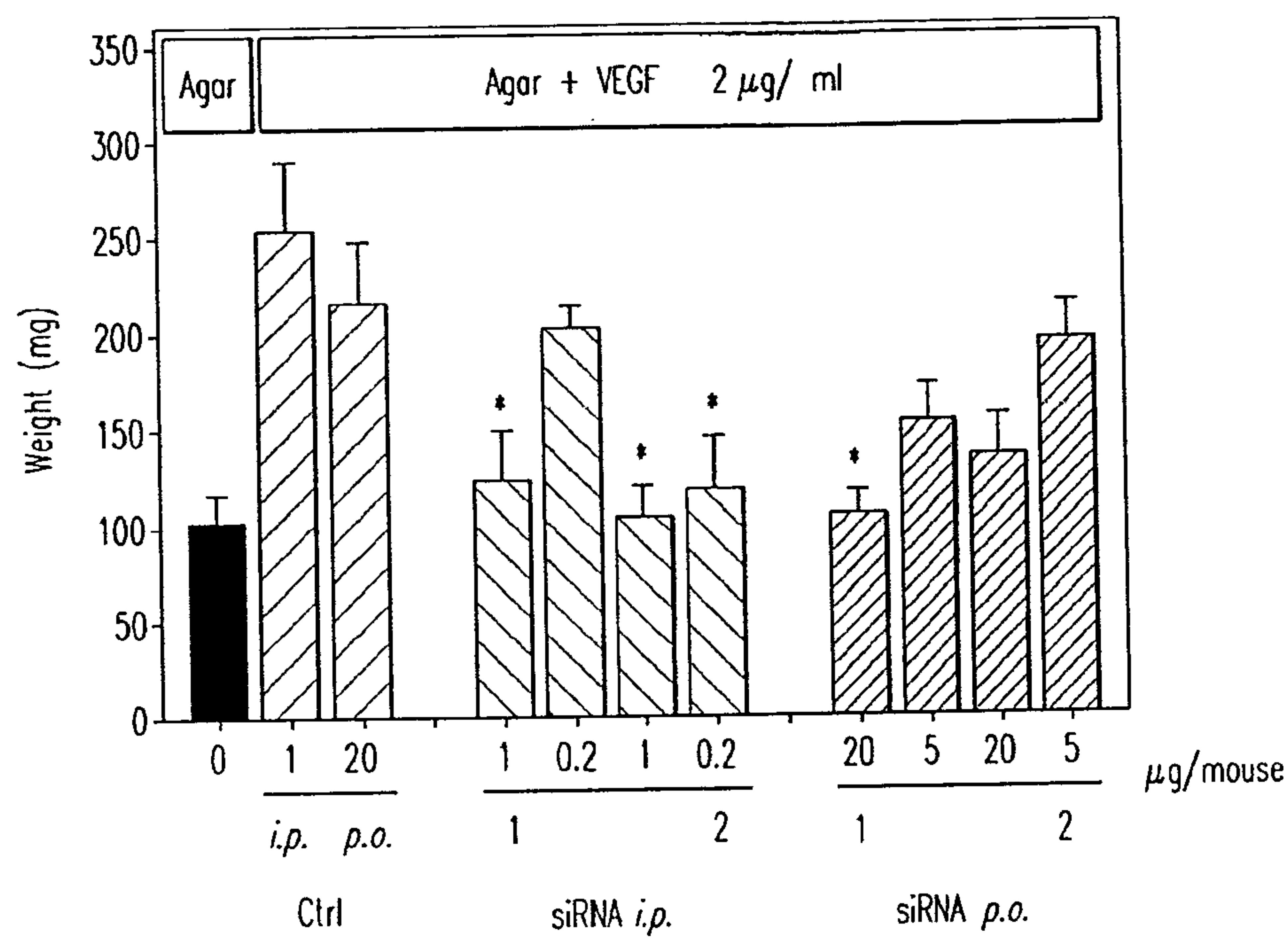


FIG.11a

18/18

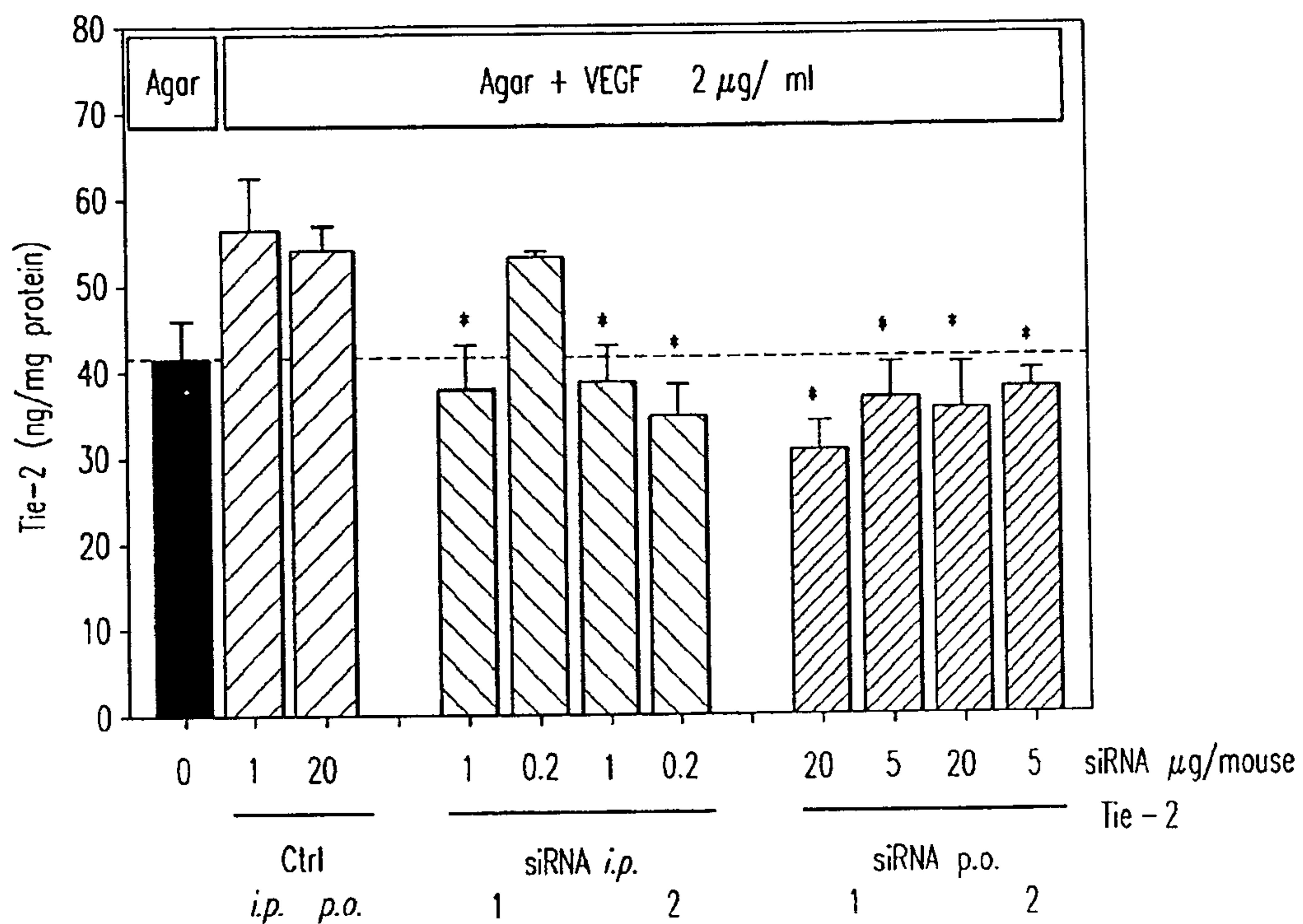


FIG.11b