(54) Title: METHOD FOR THE DETERMINATION OF DIFFERENT TYPES OF AUTOANTIBODIES RAISED AGAINST TSH RECEPTORS BY SELECTIVE IMMUNOPRECIPITATION, FUSION PROTEINS FOR DETERMINING SUCH A METHOD AND APPLICATION OF Labeled TSH RECEPTOR CHIMERAS IN SUCH A METHOD

(54) Bezeichnung: VERFAHREN ZUR BESTIMMUNG VON VERSCHIEDENEN TYPEN VON AUTOANTIKÖRPERN GENEREN TSH-REZEPTOR DURCH SELEKTIVE IMMUNPRÄZIPITATION, FUSIONSPROTEINE ZUR DURCHFÜHRUNG EINES SOLCHEN VERFAHRENS UND DIE VERWENDUNG VON MARKIERTEM TSH-REZEPTOR-CHIMÄREN BEI EINEM SOLCHEN VERFAHREN

(57) Abstract: The invention relates to a method for differential diagnostic determination of autoantibodies (TSHR-auto-Ab) raised against TSH receptors (TSHR) in a serum or plasma sample of a patient suffering from a thyroid gland autoimmune disease or when an illness of the said nature is suspected in a patient whereby is selectively determined an amount of at least one type of autoantibody (TSHR-auto-Ab) in a sample selected from (i) stimulating autoantibodies (TSAb), (ii) blocking autoantibodies (TBAbs) and/or (iii) neither stimulating nor blocking, non-pathogenic TSHR-auto-Ab, whereby replacement occurs for an aliquot of a liquid sample from a reaction mixture with a solubilized and directly labeled, in particular, enzyme-labeled binding reagent in the form of a labeled rTSHR-chimera, wherein antibodies required for the binding of stimulating and/or blocking autoantibodies (TSAb and/or TBAbs) are replaced by substantial sequences of the TSHR from another receptor, react thereby and the complex formed in the reaction consisting of complexes of autoantibody-rTSHR-chimeras is converted into a precipitate. Said complexes are separated out of the liquid phase of the reaction mixture and the amount of label in the precipitate is determined, in addition to labeled rTSHR-chimerae required for the inventive method.

(57) Zusammenfassung: Verfahren zur differentialdiagnostischen Bestimmung von gegen den TSH-Rezeptor (TSHR) gebildeten Autoantikörpern (TSHR-Auto-Ab) in einer Serum- oder Plasmaprobe eines Patienten, der an einer Schilddrüsen-Autoimmunerkrankung leidet oder bei dem der Verdacht auf eine derartige Erkrankung besteht, bei dem man in der Probe selektiv die Menge von wenigstens einem Typ von Autoantikörpern (TSHR-Auto-Ab), die ausgewählt sind aus (i) stimulierenden Autoantikörpern (TSAb), (ii) blockierenden Autoantikörpern (TBAbs) und/oder (iii) weder stimulierend noch blockierend wirkenden, nicht pathogenen TSHR-Auto-Ab bestimmt, indem man in einer Reaktionsmischung eine Teilmengen der Probe in flüssiger Phase mit einem solubilisierten und direkt markierten, insbesondere enzymmarkierten Bindungsreagenz in Form einer markierten rTSHR-Chimäre, in der die für die Bindung von stimulierenden und/oder blockierenden Autoantikörpern (TSAb und/oder TBAbs) wesentlichen Sequenzen des TSHR durch Sequenzen eines anderen Receptors ersetzt sind, umsetzt und die bei der Umsetzung gebildeten Komplexe aus Autoantikörper-rTSHR-Chimäre in ein Präzipitat überführt, dieses von der flüssigen Phase der Reaktionsmischung abgetrennt und die Menge der Markierung im Präzipitat bestimmt, sowie die für dieses Verfahren benötigten markierten rTSHR-Chimären.
Verfahren zur Bestimmung von verschiedenen Typen von Autoantikörpern gegen den TSH-Rezeptor durch selektive Immunpräzipitation, Fusionsproteine zur Durchführung eines solchen Verfahrens und die Verwendung von markierten TSH-Rezeptor-Chimären bei einem solchen Verfahren

Der Rezeptor für das Hormon TSH (thyroidstimulierendes Hormon), der TSH-Rezeptor (TSHR), spielt eine Schlüsselrolle für die Funktion und das Wachstum von Schilddrüsenzellen. Dieser Rezeptor ist ein Glied einer Unterfamilie der G-Protein-gekoppelten Glykoproteinrezeptoren, die außerdem insbesondere noch die Rezeptoren für das luteinisierende Hormon/Choriongonado-
trophin (LH/CGR) und das follicelstimulierende Hormon (FSHR) umfaßt. Die Rezeptoren dieser Unterfamilie weisen eine große N-terminale extrazelluläre Domäne auf, die für die Ligandenbindung von essentieller Bedeutung ist und für die gezeigt wurde, daß sie an der Signalübermittlung beteiligt ist. Die Übermittlung des TSHR-Signals wird überwiegend durch die Aktivierung von Adenylatcyclase vermittelt, was zu einer Erhöhung des intrazellulären cAMP-Niveaus führt.

Ein Teil des großen Interesses an dem TSHR ist auf seine Rolle als primäres Autoantigen bei verschiedenen Schilddrüsen-Autoimmunerkrankungen zurückzuführen, die vom Auftreten von Autoantikörpern gegen den TSHR begleitet sind (TSHR-Auto-Ab). Zu derartigen Schilddrüsen-Autoimmunerkrankungen gehören insbesondere die Basedowsche Krankheit (Morbus Basedow;engl.: Graves’ disease), eine zu Schilddrüsenüberfunktion führende Autoimmunerkrankung, die zu den häufigsten menschlichen Autoimmunerkrankungen überhaupt gehört, sowie die Hashimoto Thyreoiditis und das idiopathische Myxödem, die mit einer Schilddrüsenunterfunktion verbunden sein können.

Die traditionelle Schwierigkeit, den hTSHR ohne Funktionalitätsverlust zu markieren und in einer löslichen bzw. dispergierbaren Form bereitzustellen, erschwerte bis heute die Entwicklung von klinisch einsetzbaren direkten Immunpräzipitationsassays zum Nachweis von pathologischen hTSHR-Autoantikörpern.

in einer Probe vorhandenen TSHR-Auto-Ab eine Unterscheidung nach stimulierenden (TSAb), blockierenden (TBAb) sowie ggf. weder stimulierenden noch blockierenden, "neutralen" TSHR-Auto-Ab zu treffen. Außerdem ist ein Arbeiten mit einem radioaktiven Label in vielen Fällen grundsätzlich unerwünscht.

Ein direkter Immunpräzipitationsassay würde für die Diagnose des Morbus Basedow insofern einen Vorteil darstellen, als er es z.B. erlauben könnte, alle Autoantikörper gegen den TSHR nachzuweisen, einschließlich derer, die an den TSHR binden, jedoch dabei die Wechselwirkung von TSH bzw. dem Kompetitor bTSH mit dem TSHR nicht stören. Da inzwischen bekannt ist, daß

Zur Unterscheidung von stimulierenden, blockierenden und neutralen Autoantikörpern wurden bisher im wesentlichen Bioassays genutzt, bei denen ermittelt wird, ob die cAMP-Produktion von Zellen, die in ihrer Membran einen natürlichen oder rekombinanten TSHR enthalten, durch die Anwesenheit von bestimmten Seren bzw. Autoantikörpern erhöht wird bzw. ob die durch eine gegebene TSH-Konzentration in der Probe bewirkte cAMP-Produktion durch die Seren oder Autoantikörper geschwächt wird. Im Rahmen derartiger Untersuchungen bzw. zur Ermittlung derjenigen Bereiche der Sequenz der extrazellulären Domäne des TSHR, an die TSH bzw. die verschiedenen Typen von Autoantikörpern (TSAb, TBAb) binden, wurde dabei auch schon mit hTSHR-Chimären gearbeitet, bei denen bestimmte hTSHR-Teilesequenzen durch entsprechende Sequenzen anderer G-Proteingekoppelter Rezeptoren, und zwar insbesondere von Ratten-LH-CG-Rezeptoren, ersetzt waren. Dabei zeigte sich in cAMP-Stimulationsassays unter Verwendung von Zellen, die diese Chimären exprimieren, daß für die Bindung von stimulierenden TSHR-Auto-Ab (TSAb) offensichtlich die Aminosäuren des N-Terminus des hTSHR benötigt werden, und zwar insbesondere Aminosäuren der Sequenz 8-165, gerechnet vom Methionin-Anfangsrest. Für die Bindung von blockierenden TSHR-Auto-Ab (TBAb) dagegen erwiesen sich Aminosäuren vom C-Terminus der extrazellulären Domäne des hTHSR, insbesondere Aminosäuren der Sequenz 261-370, als erforderlich.

Im Zusammenhang mit der Verwendung von TSHR/LHCGR-Chimären in

Es ist ferner Aufgabe der vorliegenden Erfindung, die für ein derartiges Verfahren geeigneten neuen markierten hTSHR-Präparate zu schaffen.

Diese Aufgaben werden durch ein Verfahren gemäß Anspruch 1, die markierten rhTSHR-Chimären gemäß Anspruch 6 sowie, in ganz allgemeiner Form, durch die Verwendung von rhTSHR-Chimären in Form von Fusionsproteinen gemäß Anspruch 9 gelöst.

Vorteilhafte, gegenwärtig bevorzugte Ausgestaltungen der Gegenstände der Ansprüche 1 und 6 werden in den Unteransprüchen 2 bis 5 und 7 und 8 wiedergegeben.

Im vorausgehenden und nachfolgenden Text dieser Anmeldung werden die verwendeten Reagenzien bzw. Analyten/Biomoleküle in der Regel durch verschiedene Abkürzungen gekennzeichnet, die stets in den folgenden Bedeutungen zu verstehen sind, es sei denn, es ergibt sich für den Fachmann aus dem konkreten Zusammenhang etwas anderes. Die Verwendung der speziellen Angaben erfolgt dabei aus Gründen der exakten Beschreibung der durchgeführten Versuche und Messungen, bedeutet jedoch nicht,
daß die beschriebenen Ergebnisse und Schlußfolgerungen nur für den beschriebenen Spezialfall gelten und nicht unter Heranziehung des relevanten Fachwissens verallgemeinert werden können.

TSH = Thyroidstimulierendes Hormon (Thyreotropin). Wird die Abkürzung TSH ohne weitere Zusätze verwendet, handelt es sich nicht um ein bestimmtes Produkt, sondern die Bindung bzw. Funktion des Hormons wird in allgemeiner Form diskutiert.

TSHR = Der TSH-Rezeptor, ein in der Schilddrüsenmembran verankerter Glykoproteinrezeptor. Wird die Abkürzung TSHR ohne weitere Zusätze verwendet, handelt es sich nicht um ein bestimmtes Produkt, sondern die Funktion des Rezeptors bzw. seine Bindungsbeteiligung wird in allgemeiner Form diskutiert.

rTSHR = Gentechnisch erzeugtes (rekombinantes) Polypeptid, das die Aminosäuresequenz eines natürlich vorkommenden TSHR, insbesondere eines humanen TSHR (hTSHR), wenigstens in einem solchen Ausmaße aufweist, daß es als "funktionaler TSH-Rezeptor" bezeichnet werden kann, was bedeutet, daß es sich bezüglich der Bindung von Autoantikörpern gegen den TSHR bzw. von hTSH in signifikantem Ausmaß wie der natürlich vorkommende,

WT rTSHR = "Wildtyp TSHR" - ein im wesentlichen vollständiger rhTSHR zur Bestimmung der Gesamtmenge an TSHR-Auto-Ab (Total) in einer Probe.

Fusions-TSHR = rhTSHR mit angefügten Aminosäuresequenzen, die die Polypeptidsequenz eines funktionalen TSHR verlängern.

TSHR-LUC = Um den Proteinrest eines Enzmys, und zwar in allen Beispielen eines Leuchtkäfer-Luciferase-Enzym (LUC), verlängertes rhTSHR-Fusionsprotein.

TSHR/LH-CGR = "TSHR-Chimäre", d.h. ein rhTSHR, bei dem Teile der Aminosäuresequenz durch vergleichbare Sequenzen eines anderen Rezeptors mit einem anderem Bindungsverhalten gegenüber TSHR-Auto-Ab, insbesondere nichtbindenden Sequenzen, und zwar gemäß
allen Beispielen durch Sequenzen eines Ratten LH-CG-Rezeptors (LH-CGR), ersetzt sind.

TSHR/LH-CGR-LUC = rhTSHR-Fusionsprotein, das eine TSHR-Chimäre sowie einen Enzymrest enthält, der in allen Beispielen ein Leuchtkäfer-Luciferase-Rest ist.

TSHR-Auto-Ab = In biologischen Proben, insbesondere huminem Serum oder Plasma, nachweisbare Autoantikörper gegen den TSH-Rezeptor beliebiger Spezifität.

TSAb = Die Schilddrüse stimulierende TSHR-Auto-Ab. Ihr Nachweis ist insbesondere für die Diagnose des Morbus Basedow (englisch: Graves’ disease) von Bedeutung.

TBAb = Die Wirkung von TSH auf die Schilddrüse blockierende TSHR-Auto-Ab, deren Nachweis zu einer Hypothyreose in Beziehung gesetzt werden kann.

Im Rahmen der Arbeiten, die in der vorliegenden Anmeldung beschrieben werden, wurden mit der Absicht, selektive Immunpräzipitationsassays zur Bestimmung von TSHR-Auto-Ab-Typen zu
schaften, neue Reagenzien in Form von Fusionsproteinen geschaffen, die einen Leuchtkäfer-Luciferase-Rest als Beispiel für einen detektierbaren Enzymrest enthalten, sowie einen rekombinannten funktionalen humanen TSH-Rezeptor (rhTSHR), der auch als "Wildtyp-TSHR" (WT TSHR) bezeichnet wird, sowie drei verschiedene TSHR-Chimären (Chimären A, B und C). Die Chimären wurden so konstruiert, daß aufgrund von Erkenntnissen, die mit Bioassays unter Verwendung derartiger Chimären gewonnen worden waren, die Hoffnung bestand, daß sie für stimulierende oder blockierende TSHR-Auto-Ab selektiv sein könnten. Eine weitere Chimäre (Chimäre C) war eine solche, die weder mit stimulierenden noch blockierenden TSHR-Auto-Ab reagieren sollte und daher für sogenannte "neutrale" Autoantikörper ohne bekannte pathogene Wirkung selektiv sein müßte, wenn Seren tatsächlich auch derartige neutrale TSHR-Auto-Ab enthalten.

Mit den genannten neuen Reagenzien wurden verschiedene Versuchsreihen durchgeführt, in denen festgestellt werden sollte, ob die Anfügung eines Enzym-Proteinrests die Funktionalität des TSHR-Rests im Fusionsprodukt beeinträchtigt und/oder ob durch die Einbindung in ein Fusionsprodukt die Enzymaktivität des angefügten Enzymrests signifikant verändert wird. Derartige Untersuchungen waren auch deshalb erforderlich, weil die bisher bekannten TSHR-Fusionsprodukte stets nur kürzere Peptidreste, jedoch keine langen Enzymresten von proteinischer Natur enthielten.

Wie nachfolgend genauer gezeigt wird, erwies es sich, daß die Funktionalität des TSHR bzw. der TSHR-Chimären durch die Anfügung eines Enzymrests nicht signifikant verändert wird, und daß außerdem auch der Enzymrest, der in den konkreten Beispielen ein Leuchtkäfer-Luciferase-Rest war, seine Wirkung behält und für die übliche Nachweisreaktion verwendet werden kann.

Nachdem man festgestellt hatte, daß die TSHR- bzw. TSHR-Chimären-Enzym-Fusionsprodukte die gewünschten Reaktivitäten auf-
wiesen, wurden sie in Immunpräzipitationsassays eingesetzt, wobei Seren von Normalpersonen und Patienten mit Schilddrüsen-
erkrankungen getestet wurden und die erhaltenen Ergebnisse zu
den Ergebnissen in Beziehung gesetzt wurden, die mit den
vorbekannten Assays erhalten wurden, nämlich einmal mit einem
kompetitiven Assay zur Bestimmung von TSHR-Auto-Ab, die mit
TSH kompetieren (TBII), und zum anderen mit Bioassays, bei
denen die cAMP-Produktion von transformierten Zellen gemessen
wurde.

Nachfolgend wird die Erfindung anhand von Herstellungs- und
Anwendungsbeispielen unter Bezugnahme auf eine Figur noch
näher erläutert.

Materialien und Methoden

Materialien

I\(^{125}\) I-bTSH (56\(\mu\)Ci/\(\mu\)g) sowie die für die Bestimmung verwendeten
kommerziellen TRAK-Assay\(^{\circledR}\)-Kits wurden genau wie die verwendete
Protein A-Suspension und die monoclonalen Maus-Antikörper
gegen die extrazelluläre Domäne des hTSHR von der Firma
Das Plasmid pcDNA3-rLHR(B9) wurde von Dr. D.L. Segaloff (The
University of Iowa, USA) zur Verfügung gestellt. Das Plasmid
pSP-luc+NF wurde von der Fa. Promega (Heidelberg, Deutschland)
erworben. Als ECL Western-Blot-Nachweis-Kit und cAMP-RIA-Kit
wurden Kits der Fa. Amersham (Braunschweig, Deutschland) ver-
wendet. Die DNA-Primer
P1 (5'-GTCATGCATCGCTGCTGGTGGCAGTG-3'),
P2 (5'-GTCGACGTCGTTATGTTAATCACAG-3'),
P3 (5'-GTCCTTAAGAAAACACTGCCCTCCAAAGAAA-3') und
P4 (5'-ATCGAGCTCTTTCATTCTCTCCTCAAGATGGC-3')

wurden von der Firma Interactiva (Ulm, Deutschland) bezogen.
Zellkultur

HeLa-Zellen wurden in Dulbecco's modifiziertem Eagle's Medium, das mit 10 % fetalem Rinderserum ergänzt war, gezüchtet. Die Zellen wurden in einer 5%igen CO₂-Atmosphäre bei 37°C kultiviert.

Konstruktion von TSHR/LH-CGR-Chimären

Herstellung von Vektoren für die Expression von TSHR bzw. TSHR/LH-CGR-Chimären und dem Enzym Luciferase

Erzeugung von Vacciniaivirus-Rekombinanten

Expression und Gewinnung von Fusionsproteinen TSHR-LUC bzw. TSHR/LH-CGR-LUC als Zelleextrakt

Konfluente HeLa-Zellen, die in einer 75 cm²-Platte (ungefähr 20 x 10⁶ Zellen) gezüchtet wurden, wurden mit einer koloniebildenden Einheit (cfu) an rekombinantem Vacciniaivirus pro Zelle infiziert und für 24 h bei 37°C inkubiert. Infizierte Zellen wurden durch Abschaben in eine phoshpatgepufferet Salzlösung (PBS) überführt und viermal mit PBS unter Zentrifugieren bei 2500 U/min gewaschen. Die erhaltenen Zellen wurden in 0,3 ml eines Puffers A (20mM Hepes-KOH; pH 7,5; 50 mM NaCl; 1 % Triton X100; 10 % Glycerol) unter Einfrieren und Auftauen lysiert. Die erhaltene Suspension wurde bei 30000 g 1h zentrifugiert, der Überstand (etwa 8 mg/ml Gesamtprotein) wurde gesammelt und bei -70°C aufbewahrt.

Der wie beschrieben erhaltene Überstand (Extrakt) wurde in den Immunpräzipitations-Versuchen als TSHR-LUC bzw. TSHR/LH-CGR-LUC eingesetzt.

Herstellung von Zellfraktionen

Wie oben beschrieben wurde eine Monoschicht von konfluenter HeLa-Zellen, die in einer 75 cm²-Platte gezüchtet wurden, mit einer Plaque-bildenden Einheit eines rekombinanten Vacciniaivirus pro Zelle infiziert und 24 h bei 37°C inkubiert. Infizierte Zellen wurden mit PBS gewaschen, geerntet und unter Zentrifugieren bei 1200 U/min pelletiert. Das erhaltene Zellpellet wurde in 0,3 ml eines Puffers resuspendiert, der 10 mM Tris-HCl, pH 7,6, 50 mM NaCl, 10% Glycerol sowie eine Proteaseverminderung enthielt. Die Suspension wurde danach bei 4°C durch 20 Hubbewegungen in einem Glas/Teflon-Homogenisator homogenisiert und dann 15 min bei 800 g zentrifugiert sowie anschließend für 1 h bei 30000 g. Der Überstand (die Cytoplasmasfraktion) wurde gesammelt. Das Membranpellet wurde aufgearbeitet, indem es bei 4°C durch 20 Hubbewegungen in einem Glas/Teflon-Homogenisator in 0,3 ml 1%
Triton X100 im gleichen Puffer homogenisiert und dann bei 30000 g für 1 h zentrifugiert wurde. Der Überstand (Triton X100-Membranextrakt) wurde gesammelt und bei -70°C aufbewahrt.

Immunpräzipitations-Versuche

Für die nachfolgend beschriebenen Immunpräzipitations-Analysen wurden 40 μl TSHR-LUC bzw. TSHR/LH-CGR-LUC (2×10⁶ relative Lichteinheiten) mit 10 μl Serum vermischt und über Nacht bei 4°C inkubiert. Zur Ausfällung der gebildeten Immunkomplexe wurden 25 μl einer 20%-igen Protein A-Suspension in Puffer A zugesetzt, und die Mischung wurde unter Schütteln 1 h bei 4°C inkubiert. Unter Zentrifugieren wurde die Suspension 4 mal mit 1 ml Puffer A (ohne Triton X100) gewaschen. Abschließend wurde das Pellet in 50 μl Puffer A (ohne Triton X100) resuspendiert, und die Luciferaseaktivität in der aus dem Pellet erhaltenen Suspension wurde mittels eines Luminometers (Lumat 9501, Firma Berthold, Wildbad, Germany) nach dem üblichen Bestimmungsprotokoll bestimmt. Die erhaltenen Ergebnisse wurden als gebundene relative Lichteinheiten ausgedrückt.

Bindung von ¹²⁵I-TSH an TSHR-LUC oder TSHR/LH-CGR-LUC

Das Ausmaß der unspezifischen Bindung wurde in Gegenwart von 10⁻⁷ M TSH bestimmt und betrug < 5% der Gesamtbindung.
Bestimmung von die TSH-Bindung inhibierenden Immunglobulinen (TBII)

Bioassay zum Nachweis von stimulierenden TSHR-Auto-Ab (TSAb)

Bioassay zum Nachweis von blockierenden TSHR-Auto-Ab (TBAab)

\[II(\%) = 100 \times \left\{ 1 - \frac{\text{cAMP Patient TSH}}{\text{cAMP negative Kontrolle TSH}} \right\} \].

Western blotting

Unter Verwendung der obigen Materialien und unter Anwendung der beschriebenen Techniken wurden die nachfolgend beschriebenen Versuche durchgeführt, deren Ergebnisse unter Bezugnahme auf die Figuren näher erläutert werden.

In den Figuren zeigen:

Fig. 1 die Bindung von TSH an verschiedene exprimierte rhTSHR-Produkte, und zwar in Form von Verdrängungskurven, die die Inhibierung der Bindung von \(^{125}\text{I}\)-bTSH durch steigende Mengen an unmarkiertem TSH an Wildtyp-TSHR (WT; ■); TSHR-LUC (o) sowie an Chimäre A-LUC (▲) zeigen. Die Ergebnisse sind ausgedrückt als Prozent der Gesamtbindung in Abwesenheit von unmarkiertem TSH, die für WTTSHR, TSHR-LUC und Chimäre A-LUC 4512 cpm, 2793 cpm bzw. 2856 cpm betrugen. Jeder Wert ist der Mittelwert ± 2 SD von Doppelmessungen in zwei getrennten Versuchen.

Fig. 2 die Fähigkeit von Kontrollseren und Seren von Morbus Basedow-Patienten zur Immunpräzipitation von WTTSHR-LUC im Vergleich mit der Fähigkeit dieser Seren, in
einem herkömmlichen kompetitiven TRAK Assay die Bindung von 125I-bTSH an ein hrTSH-Präparat zu inhibieren. Die Immunpräzipitations-Aktivitäten der Seren sind ausgedrückt als gebundene RLU (relative Lichteinheiten), die Inhibierungsaktivitäten werden als internationale Einheiten/Liter (IU/l) ausgedrückt, wie im Text näher erläutert wird. Die waagerechte punktierte Linie ist die Linie für zwei Standardabweichungen (SD) oberhalb des Mittelwerts für Normalpersonen (30737 RLU).

Fig. 3 die Fähigkeit von Kontrollseren und Seren von Morbus Basedow-Patienten zur Immunpräzipitation von Chimäre C-LUC im Vergleich mit der Fähigkeit dieser Seren, in einem herkömmlichen kompetitiven TRAK Assay® die Bindung von 125I-bTSH an ein hrTSH-Präparat zu inhibieren. Die Immunpräzipitations-Aktivitäten der Seren sind ausgedrückt als gebundene RLU (relative Lichteinheiten), die Inhibierungsaktivitäten werden als internationale Einheiten/pro Liter (IU/l) ausgedrückt, wie im Text näher erläutert wird. Die waagerechte punktierte Linie ist die Linie für zwei Standardabweichungen (SD) oberhalb des Mittelwerts für Normalpersonen (38980 RLU).

Fig. 4 die Differenz der Immunpräzipitatbildung von TSHR-LUC und Chimäre C-LUC (WT-C) mit Seren von Normalpersonen und Morbus Basedow-Patienten, verglichen mit der Fähigkeit dieser Seren, die Bindung von 125I-TSH an ein rhTSH-Präparat zu inhibieren. Die Immunpräzipitations-Aktivitäten der Seren sind als Werte von gebundenem RLU ausgedrückt, die Inhibierungsaktivitäten werden, wie im Text erläutert, in IU/l ausgedrückt. Die waagerechte punktierte Linie gibt den Wert von zwei Standardabweichungen (SD) oberhalb des Mittelwerts für Normalpatienten (3384 RLU) an.
Fig. 5 die Differenz der Immunpräzipitatabildung von TSHR-LUC und Chimäre A-LUC (WT-A) in Seren von Normalpatienten (n=62) und Seren von Morbus Basedow-Patienten (n=63) verglichen mit der Fähigkeit dieser Seren, in einem cAMP-Bioassay die cAMP-Synthese zu stimulieren. Die Immunpräzipitations-Aktivitäten der Seren sind ausgedrückt als gebundene RLU, die cAMP-stimulierenden Aktivitäten werden als Stimulationsindex (SI) ausgedrückt. Die waagerechte punktierte Linie ist die Linie für zwei Standardabweichungen (SD) oberhalb des Mittelwerts für normale Patienten (7000 RLU). Die senkrechte gepunktete Linie zeigt den SI-cutoff für Normalseren (200%).

Fig. 6 die Differenz der Immunpräzipitatabildung der Chimären A und C (A-C) durch Seren von Morbus Basedow-Patienten (n=63) verglichen mit der Fähigkeit dieser Seren, die cAMP-Synthese in einem cAMP-Bioassay zu inhibieren. Die Immunpräzipitations-Aktivitäten der Seren sind ausgedrückt als gebundene RLU, die cAMP-blockierenden Aktivitäten sind ausgedrückt als Inhibierungsindex (II). Die waagerechte gepunktete Linie zeigt den Wert von zwei Standardabweichungen (SD) oberhalb des Mittelwerts für Normalpersonen (835 RLU). Die senkrechte punktierte Linie zeigt den II-cutoff für Seren von Normalpersonen (10%).

Nachfolgend werden die verschiedenen Messungen unter Verwendung der neuen TSHR-LUC bzw. TSHR/LH-CGR-LUC Fusionsprodukte näher beschrieben.

Reaktivität von TSHR-LUC bzw. TSHR/LH-CGR-LUC-Fusionsprodukten mit 125I-TSH

Zur Prüfung der Frage, ob die Luciferase-Fusionsprodukte gegenüber TSH ein Bindungsverhalten zeigen, das den Erwartungen entspricht, wurden die die entsprechenden Fusionsprodukte
enthaltenden Lysate von HeLa-Zellen, die mit einem geeigneten rekombinannten Vacciniavirus gemäß den obigen Versuchen infiziert worden waren, mit 125I-TSH umgesetzt, und es wurde der Grad der Bindung von 125I-TSH in Abhängigkeit von der gleichzeitig in der Reaktionslösung vorhandenen Menge an unmarkiertem TSH gemessen. Die Ergebnisse der Versuche sind in Fig. 1 dargestellt, in der der Wert für 100% die Gesamtmenge an gebundenem 125I-TSH in Abwesenheit von unmarkiertem TSH darstellt. Es zeigte sich, daß keine grundsätzlichen Unterschiede bei den Verdrängungskurven zu erkennen sind, die man für die Fusionsproteine TSHR-LUC und die Chimäre A-LUC, bei der die TSHR-Aminosäuren 8-165 ersetzt sind, erhielt. Der Absolutwert für die maximale TSH-Bindung war für den Wildtyp TSHR etwa 1,6 mal höher als für die LUC-Fusionsprokducte. Berücksichtigt man, daß bei der Expression von Wildtyp-TSHR in HeLa-Zellen eine Rezeptordichte von etwa 150000 Rezeptoren pro Zelle erhalten wird, läßt sich errechnen, daß derartige HeLa-Zellen etwa zwei Drittel dieser Menge, d.h. etwa 100000 Rezeptor-Luciferase-Fusionsmoleküle pro Zelle erzeugten.

Die anderen Chimären-Fusionsprodukten, nämlich Chimäre B-LUC und Chimäre C-LUC, bei denen die TSHR-Reste 261-370 bzw. die TSHR-Reste 8-165 sowie 261-370 durch Ratten-LH-CGR-Reste ersetzt waren, waren nicht in der Lage, 125I-TSH spezifisch zu binden. Diese Ergebnisse sind in Übereinstimmung mit dem, was aufgrund von Literaturdaten erwartet werden konnte (Biochim Biophys Res Commun. 179: 70-77 (1991), J Clin Endocrinol Metab. 81: 1758-1767 (1996)).

Es ist ausdrücklich darauf hinzuweisen, daß alle Fusionsprodukte die enzymatische Aktivität der Leuchtkäfer-Luciferase aufwiesen. Die Lumineszenzintensität von Zelllysaten, die die Fusionsprodukte TSHR-LUC bzw. TSHR/LH-CGR-LUC enthielten, war weitgehend identisch, indem pro ml Lysat etwa 10^9 RLU gemessen wurden.

Wie die oben beschriebenen Versuche zur Herstellung von Zellmembranfraktionen ergeben, war in allen Fällen mehr als 90% der Luciferaseaktivität in der Membranfraktion lokalisiert. Nur etwa
10% der Luciferaseaktivität wurde in der wasserlöslichen Cytoplasmafraktion gefunden. Die Luciferase-Meßdaten zeigten genau wie Western-Blotting-Experimente, daß alle Fusionsprodukte in HeLa-Zellen nach der beschriebenen Technik mit etwa der gleichen Wirksamkeit exprimiert wurden.

(i) die Bindung von Fusionsprodukten, die WT TSHR (WT) enthalten, sollte der Gesamtmenge an TSHR-Auto-Ab in den Seren proportional sein,

(ii) der Unterschied der Werte für die Bindung von TSHR-LUC und Chimäre A-LUC (WT-A) (oder zwischen den Chimären B-LUC und C-LUC, d.h. B-C) durch die Testseren sollte der Menge von TSAb in diesen Seren entsprechen,

(iii) der Unterschied zwischen den Bindungswerten für TSHR-LUC und Chimäre B-LUC (WT-B) (oder zwischen den Chimären A-LUC und C-LUC, d.h. A-C) sollte die Menge an TBAb in Seren widerspiegeln,

(iv) das Ausmaß der Bindung an Chimäre C-LUC, die weder die Epitope für TSAb noch für TBAb enthält, sollte die Menge an neutralen Autoantikörpern in den Testseren widerspiegeln.

Es zeigte sich, daß die Fusionsprodukte von sowohl TSHR als auch den drei TSHR/LH-CGR-Chimären eine deutliche Wechselwirkung mit den in Seren von Morbus Basedow-Patienten vorhandenen Auto-
antikörpern zeigten. Tabelle 1 zeigt die mittleren Bindungswerte, die unter Verwendung von Seren von 62 Kontrollpersonen und 74 Morbus Basedow-Patienten erhalten wurden.

Tabelle 1

<table>
<thead>
<tr>
<th></th>
<th>TSHR</th>
<th>Chimäre A</th>
<th>Chimäre B</th>
<th>Chimäre C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrollen</td>
<td>19573</td>
<td>17965</td>
<td>22251</td>
<td>22794</td>
</tr>
<tr>
<td>(n=62)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patienten</td>
<td>97065</td>
<td>40209</td>
<td>130481</td>
<td>33832</td>
</tr>
<tr>
<td>(n=74)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Fusionsprodukte der Chimären A und C (die keine Epitope für TSAb aufweisen) wechselwirkten mit pathologischen Autoantikörpern in allen 74 Fällen schlechter als WT-TSHR-Produkte. Unerwarteterweise zeigte sich, daß das Fusionsprodukt der Chimäre B (die keine Epitope für TBAb enthält) die pathologischen Autoantikörper in allen Fällen wirksamer band als Fusionsprodukte des WT-TSHR. Möglicherweise ist das auf eine für die TSAb-Bindung vorteilhafte Veränderung der Rezeptorstruktur zurückzuführen.

Ferner zeigte sich, daß Seren von Normalpersonen eine Bindung an alle Fusionsprodukte, d.h. WT-TSHR und alle Chimären, mit etwa der gleichen Wirksamkeit zeigten, wobei die Unterschiede in allen Fällen im Bereich von 10 bis 15% lagen. Die in Tabelle 1 gezeigten Ergebnisse gestatten es, zu errechnen, daß der mittlere Gehalt der verschiedenen Autoantikörpertypen für die 74 vermessenen Seren von Morbus Basedow-Patienten etwa 59% TSAb, etwa 7% TBAb und etwa 35% neutrale TSHR-Auto-Ab, angegeben als Prozentsatz bezogen auf die Gesamtmenge an TSHR-Auto-Ab, betrug. Es bestand eine positive Korrelation der Bindungswerte für jede Kombination von Fusionsprodukten, wenn ihr Immunpräzipitationsverhalten in 74 Seren von Morbus Basedow-Patienten verglichen wurde (r im Bereich von 0,57 bis 0,91; p < 0,001, vgl. Tabelle 2).
Tabelle 2

<table>
<thead>
<tr>
<th>Vergleichene Chimären</th>
<th>WT und A</th>
<th>WT und B</th>
<th>WT und C</th>
<th>A und B</th>
<th>A und C</th>
<th>B und C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korrelation</td>
<td>0,60</td>
<td>0,89</td>
<td>0,57</td>
<td>0,63</td>
<td>0,91</td>
<td>0,66</td>
</tr>
</tbody>
</table>

Die gezeigten Daten deuten auf eine hohe Spezifität des TSHR-LUC bzw. TSHR/LH-CGR-LUC-Immunpräzipitationsassays. Bei einem direkten Vergleich wurde auch eine positive Korrelation \(r = 0,61; p < 0,001 \) zwischen den mit dem Immunpräzipitationsassay erhaltenen Ergebnissen und den Ergebnissen einer TBII-Messung der 74 Seren von Morbus Basedow-Patienten mit dem kompetitiven TRAK Assay erhalten. Kontrollversuche ergaben, daß Seren von Patienten, die an einer anderen Autoimmunerkrankung litten (Seren von zehn Patienten mit juvenilem Diabetes mellitus) TSHR-Fusionsprodukte nur mit einer sehr niedrigen Wirksamkeit präzipitierten. Die Präzipitationsaktivitäten waren dabei vergleichbar mit denen, die für Normalpersonen erhalten wurden, indem die Bindungswerte
im Bereich von 10000 bis 23000 RLU lagen.

Nachweis von "neutralen" TSHR-Auto-Ab in Seren von Morbus Basedow-Patienten unter Verwendung von TSHR/LH-CGR-LUC-Chimären

Fig. 4 zeigt die Unterschiede des Präzipitationsgrads mit Fusionsprodukten des Wildtyp-TSHR und der Chimäre C bei den gleichen Seren. Die erhaltenen Werte ergeben die Summe aus TSAb und TBAb (ohne neutrale Antikörper) in den untersuchten Seren. In diesem Fall ist der Unterschied zwischen Kontrollserien und Patientenserien stärker ausgeprägt, indem alle 74 Patientenserien im vorliegenden Assay klar positiv waren. Von den Kontrollseren andererseits waren nur zwei als positiv anzusehen, was darauf hinweist, daß möglicherweise einige Normalpersonen eine gewisse Menge an sowohl stimulierenden als auch blockierenden TSHR-Auto-Ab enthalten können. Die Korrelation zwischen den bei diesem Assay und dem TRAK Assay® erhaltenen Ergebnissen war positiv (r = 0.56; p < 0.001; n = 74).

Nachweis von TSAb in Seren von Morbus Basedow-Patienten unter Verwendung von TSHR/LH-CGR-LUC-Chimären

Die Menge an TSAb (stimulierenden TSHR-Auto-Ab) in Patientenserien wurde aufgrund des Unterschieds der Bindungswirksamkeit der
Fusionsprodukte mit dem WT-TSHR bzw. derjenigen mit der Chimäre A errechnet. Fig. 5 zeigt den Vergleich für den Stimulationsindex (SI) von 62 Kontrollseren und 63 Patientenseren, bestimmt in einem herkömmlichen cAMP-Bioassay, gegenübergestellt dem Unterschied der Bindungswirksamkeit der Fusionsprodukte mit WT-TSHR bzw. Chimäre A (WT-A) in diesen Seren. Im Immunpräzipitationsassay waren 59 von 62 Kontrollseren negativ (Bindungswirksamkeit < 7000 RLU), während drei Seren als schwach positiv angesehen werden können (Bindungswirksamkeiten von 8400, 7340 bzw. 7160 RLU). Zwei der Normalseren, auf die in Fig. 5 mit einem Pfeil verwiesen wird, waren im cAMP-Bioassay positiv (SI = 2930 bzw. 3080%; SI-cutoff für Normalpersonen liegt im Bereich von 200%). Diese beiden Patienten waren jedoch nach Maßgabe des Immunpräzipitationsassays sowie der klinischen Bewertung keine Morbus Basedow-Patienten. Bei den Seren von Morbus Basedow-Patienten waren 40 von 63 Seren (63%) im cAMP-Bioassay positiv (SI ≥ 200%), während im Immunpräzipitationsassay 61 von 63 Seren (97%) positiv waren (WT-A). Es bestand eine positive Korrelation zwischen den Ergebnissen, die im cAMP-Bioassay erhalten wurden, und denen, die im Immunpräzipitationsassay (WT-A) erhalten wurden (r = 0,43; p < 0,001; n = 63). Wenn man nur solche Seren berücksichtigte, die auch im cAMP-Bioassay positiv reagierten (SI≥200%), dann wurde die Korrelation sehr viel besser (r = 0,61; p < 0,001; n = 40).

Nachweis von TBAb in Seren von Morbus Basedow-Patienten unter Verwendung von TSHR/LH-CGR-LUC-Chimären

TBAb wurden in den Patientenserens anhand des Unterschieds des Bindungsverhaltens der LUC-Fusionsprodukte der Chimären A und C bestimmt. Fig. 6 zeigt den Vergleich des Inhibierungsindex (II) von 62 Kontrollseren und 63 Patientenseren (bestimmt im cAMP-Bioassay) mit dem Unterschied des Bindungsverhaltens für die Fusionsprodukte mit den Chimären A und C (A-C). 58 von 62 Kontrollseren waren im cAMP-Bioassay negativ (II < 10%), und alle Kontrollseren waren im Immunpräzipitationsassay negativ (Bindungswirksamkeit < 835 RLU). Unter Verwendung des cAMP-Bioassays
wurde in 31 von 63 Patientenserien (49%) eine TBAb-Aktivität festgestellt, während im Immunpräzipitationsassay (A-C) 45 von 63 Patientenserien (71%) als TBAb-positiv ermittelt wurden. Neun Immunpräzipitations-positive Basedow-Seren waren negativ im cAMP-Bioassay, und umgekehrt waren neun cAMP-Bioassay-positive Seren im Immunpräzipitationsassay negativ. Es bestand eine schwache positive Korrelation zwischen den Ergebnissen im cAMP-Bioassay und denen vom (A-C)-Immunpräzipitationsassay ($r=0,25$; $p < 0,05$; $n = 63$). Wenn man nur solche Patientenserien berücksichtigte, die im cAMP-Bioassay als TBAb-positiv gemessen wurden (II $\geq 10\%$), wurde jedoch eine signifikante Korrelation erhalten ($r = 0,57$; $p < 0,001$; $n = 31$). Eine Korrelation zwischen den II-Werten von unterschiedlichen Patientenserien und der Fähigkeit dieser Seren, TSHR- oder TSHR/LH-CGR-Fusionsprodukte zu präzipitieren, bestand nicht (Daten sind nicht gezeigt).

Patentansprüche

1. Verfahren zur differentialdiagnostischen Bestimmung von gegen den TSH-Rezeptor (TSHR) gebildeten Autoantikörpern (TSHR-Auto-Ab) in einer Serum- oder Plasmaprobe eines Patienten, der an einer Schilddrüsen-Autoimmunerkrankung leidet oder bei dem der Verdacht auf eine derartige Erkrankung besteht, dadurch gekennzeichnet, daß man

in der Probe die Menge von wenigstens einem Typ von Autoantikörpern (TSHR-Auto-Ab), die ausgewählt sind aus (i) stimulierenden Autoantikörpern (TSAb), (ii) blockierenden Autoantikörpern (TBAb) und/oder (iii) weder stimulierend noch blockierend wirken den, nicht pathogenen TSHR-Auto-Ab, sowie gegebenfalls, zur Gewinnung eines Bezugsgehalts, die Menge von allen an den TSH- Rezeptor bindenden Autoantikörpern (TSHR-Auto-Ab) in der Probe bestimmt,

indem man in einer Reaktionsmischung eine Teilmenge der Probe in flüssiger Phase mit einem solubilisierten und direkt markierten Bindungsreagens in Form einer markierten rTSHR-Chimäre, in der die für die Bindung von stimulierenden und/oder blockierenden Autoantikörpern (TSAb und/oder TBAb) wesentlichen Sequenzen des TSHR durch entsprechende, keine Bindung des jeweiligen Typs von Autoantikörpern bewirkende Sequenzen eines anderen Receptors aus der Klasse der G-Protein gekoppelten Rezeptoren ersetzt sind, sowie gegebenenfalls eine weitere Teilmenge der Probe auch noch mit einem solubilisierten und direkt markierten vollständigen rhTSHR-Präparat umsetzt,

und die bei der Umsetzung gebildeten Komplexe aus Autoantikörper-rTSHR-Chimäre bzw. Autoantikörper-rTSHR in ein Präzipitat überführt, dieses von der flüssigen Phase der Reaktionsmischung abtrennt und die Menge der Markierung im Präzipitat bestimmt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die solubilisierte und direkt markierte rTSHR-Chimäre als Fusionsprotein eingesetzt wird, in dem die Sequenz der rTSHR-Chimäre unter Erhaltung der gewünschten Funktionalität mit einem radioaktiv markierten Peptidrest oder einem Enzym verknüpft ist, das Teil eines Nachweissystems für die enzymatische Analyse ist.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die gebildeten Komplexe aus Autoantikörper und markiertem Bindungsreagens durch Fällung mit einem selektiven Fällungsmittel für humane Antikörper, insbesondere mit Protein A, in ein Präzipitat überführt werden.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man als direkt markierte rTSHR-Chimären Fusionsproteine einsetzt, die ein Enzym für eine Chemilumineszenz-Nachweissreaktion sowie hTSHR-Chimären-Sequenzen enthalten, in denen die Aminosäuren 8-165 und/oder 261-370 des vollständigen humanen TSHR durch entsprechende Sequenzen eines Ratten-LH/CG-Receptors ersetzt sind.

6. Fusionsproteine, die die vollständige rTSHR-Sequenz oder die Sequenz einer rTSHR-Chimäre, in der Teilsequenzen des vollständigen rTSHR durch vergleichbare Sequenzen eines verwandten G-Protein-gekoppelten Rezeptors ersetzt sind, in Verknüpfung mit einem Enzym, das Teil eines Nachweissystems für die enzymatische Analyse ist, enthalten, wobei die rTSHR-Sequenzen oder -Teilsequenzen ihre Funktionalität wenigstens im Hinblick auf die Bindung der verschiedenen Typen von TSHR-Autoantikörpern (TSHR-Auto-Ab) beibehalten haben.

7. Fusionsproteine nach Anspruch 6, die als Enzym Luciferase,
Meerrettich-Peroxidase, alkalische Phosphatase, β-Galactosidase oder Chloramphenicol-Acetyltransferase enthalten.

8. Fusionsproteine nach Anspruch 6 oder 7, die die Sequenz einer rTSHR-Chimäre enthalten, die eine TSHR-LH-CGR-Chimäre ist, in der für die Bindung stimulierender und/oder blockierender TSHR-Autoantikörper wichtige Teilsequenzen des vollständigen rTSHR durch LH-CGR-Teilsequenzen ersetzt sind.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6