US 20170147661A1
a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2017/0147661 A1l

Rambo et al. 43) Pub. Date: May 25, 2017
(54) DATA LOAD SYSTEM WITH DISTRIBUTED (52) US. CL
DATA FACILITY TECHNOLOGY CPC ..ocoivvrieriiecic GO6F 17/30563 (2013.01)
(71) Applicant: Bank of America Corporation,
Charlotte, NC (US) 7 ABSTRACT
(72) Inventors: Ron G. Rambo, West Coxsackie, NY A source data file can be loaded into a database by extracting
’ (US): lio dney Shannon Floyd ’ data from the source data file at a computing device,
Cu m;ni ng, GA (US); Nancy M’ validating the data from the source data file at the computing
C erniglia, Craryvill é NY (US)- device, transforming the data from the source data file at the
’ ’ computing device, requesting the data to be transferred to a
21) Appl. No.: 14/950.609 first database at a first message processor module, deliverin
(21) App) gep 2
the data to the first database, and responding that the data has
(22) Filed: Nov. 24, 2015 been transferred to the first database at the first message

processor module to acknowledge receipt of the data in the

database at the computing device. The data may be delivered

(51) Int. CL to one or more databases using, for example, a plurality of
GO6F 17/30 (2006.01) distributed data facility (DDF) threads.

Publication Classification

H
H

H

b e
| }

Genid source e 1 ndox Retievy inderface

30 F

o

Matve Mded Pdceduies

US 2017/0147661 Al

May 25, 2017 Sheet 1 of 4

Patent Application Publication

~ 1098

A 109¢

1090

WAN 5

- 109¢

101

_...{opt)

NETWORK INTERFACE S i :.
: 1005

Fig. 1

May 25, 2017 Sheet 2 of 4 US 2017/0147661 Al

Patent Application Publication

PG WRP NI M

—

BRINBBI0S PRI BAER

]

—

BUVLIBPR [ABIY R

Kmagary 4

%1eys poy shpmounsy.

S Pk soatig M

s e e} MeOssRLL

H

sapenogppysa fgdy T

s fagsos Ady m

Lo

R Rreneang slieennyg

i

DY} BBABOY PUBY

WIBISAR BOINGS

Patent Application Publication @ May 25, 2017 Sheet 3 of 4 US 2017/0147661 A1

- Source System:

A

Acknowledgemen :

| File thruNDW 4
............ . T i 206 [
Companent ¢ ¢reate contral |
: ‘i register the file table records |
Updatecontrot £ 7RISR R ET IREE :
tablerevords ﬁ
: ¢ ¢
Component extracts the Component validates : de::i\r/’gsfc);:gata :
data from the source and transforms the -3 t6 Messana 3
data file data i Processzés
Response ; Response:/ Request Request
{Message (Message {Message (Message
CoProgessor Processor Processor Processor
Al Muodulg A}

A S

Module A (Listener to pick
up message from queue or |
distributed data facility
connection for native
stored:pracedise to load
the data}

Module B {Listener to pick up
massage from queue or
distributed data facility

connection:for native stored

procedure Yo joad the data)

Patent Application Publication @ May 25, 2017 Sheet 4 of 4 US 2017/0147661 A1

e s
Sl

US 2017/0147661 Al

DATA LOAD SYSTEM WITH DISTRIBUTED
DATA FACILITY TECHNOLOGY

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is related to U.S. patent applica-
tion Ser. No. 14/262,014, filed Apr. 25, 2014, and entitled
DATA LOAD PROCESS. The related application is hereby
incorporated by reference in its entirety.

FIELD

[0002] Aspects of the disclosure generally relate to a data
load process. More specifically, aspects of the disclosure
provide example systems and example tools that provide a
data load process using native stored procedures to concur-
rently load multiple data files into a table or database at one
time.

BACKGROUND

[0003] Information technology infrastructures may
require several operating environments, vendor resource
deployment, authentication repositories and mechanisms,
application servers, and databases for storing, indexing, and
updating massive amounts of data constantly. In order to
operate a large entity’s information technology and be able
to store, index, and manage data received by the entity, these
systems and processes can be configured to work together.
[0004] Databases load data received by the entity for
indexing continuously in order to keep up with the volume
of data an entity receives and/or tracks on a daily basis.
Frequently, the data stored by the entity may need to be
updated. This may occur for a variety of reasons, including
mistakes in the loading, changing flags, changes in the
information, or the like. The process of database loading and
updating takes time, central processing units (CPU) away
from the infrastructure, logging time, and in some cases has
redundancies and other issues associated with the process.

BRIEF SUMMARY

[0005] The following presents a simplified summary of
various aspects described herein. This summary is not an
extensive overview, and is not intended to identify key or
critical elements or to delineate the scope of the claims. The
following summary merely presents some concepts in a
simplified form as an introductory prelude to the more
detailed description provided below.

[0006] In one example, a source data file can be loaded
into a database by performing one or more of: (1) extracting
data from the source data file at a computing device, (2)
validating the data from the source data file at the computing
device, (3) transforming the data from the source data file at
the computing device, (4) requesting the data to be trans-
ferred to a database at a message processor module, (5)
delivering the data to the database, or (6) responding that the
data has been transferred to the database at the message
processor module to acknowledge receipt of the data in the
database at the computing device.

[0007] Inanother example, a method may comprise one or
more mid-range servers receiving one or more data files. The
one or more mid-range servers may extract data from the one
or more data files. A plurality of distributed data facility
(DDF) threads may be generated between the one or more
mid-range servers and a first database. The one or more

May 25, 2017

mid-range servers may send a first portion of the extracted
data to the first database using the generated plurality of
DDF threads. On the other hand, a second portion of the
extracted data may be sent to a message queue accessible to
a second database.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] A more complete understanding of the present
disclosure and the advantages thereof may be acquired by
referring to the following description in consideration of the
accompanying drawings, in which like reference numbers
indicate like features, and wherein:

[0009] FIG. 1 illustrates one example of a network archi-
tecture and data processing device that may be used to
implement one or more illustrative aspects discussed herein;
[0010] FIG. 2 illustrates a schematic of an example data-
base loading system;

[0011] FIG. 3 depicts an example process for loading data;
and
[0012] FIG. 4 depicts a schematic of an alternative

example database loading system.

DETAILED DESCRIPTION

[0013] In the following description of the various embodi-
ments, reference is made to the accompanying drawings,
which form a part hereof, and in which is shown by way of
examples various examples in which the disclosure may be
practiced. It is to be understood that other embodiments may
be utilized and structural and functional modifications may
be made without departing from the scope of the present
disclosure. The disclosure is capable of other embodiments
and of being practiced or being carried out in various ways.
Also, it is to be understood that the phraseology and termi-
nology used herein are for the purpose of description and
should not be regarded as limiting. Rather, the phrases and
terms used herein are to be given their broadest interpreta-
tion and meaning. For example, the use of “including” and
“comprising” and variations thereof is meant to encompass
the items listed thereafter and equivalents thereof as well as
additional items and equivalents thereof, and the use of the
terms “mounted,” “connected,” “coupled,” “positioned,”
“engaged” and similar terms, is meant to include both direct
and indirect mounting, connecting, coupling, positioning
and engaging.

[0014] As noted above, various aspects of the disclosure
relate to a system and method for data loading. In one
example, the system is configured to conduct a data load
process using native stored procedures to concurrently load
multiple data files into a table at one time. Files can be sent
to a server where they will be extracted, validated, split into
units of work (e.g. 2500 records per job), and transformed
into the proper format (e.g. XML load files). These files can
be configured as messages on a message processor module
and picked up using a listener module, for example. Data can
be loaded into temporary tables prior to a final load. Before
discussing these aspects in greater detail, however, several
examples of network architectures and data processing
devices that may be used in implementing various aspects of
the disclosure will first be discussed.

[0015] FIG. 1 illustrates one example of a network archi-
tecture and data processing device that may be used to
implement one or more illustrative aspects. Various network
nodes 103, 105, 107, and 109A-F may be interconnected via

US 2017/0147661 Al

a wide area network (WAN) 101, such as the Internet. Other
networks may also or alternatively be used, including pri-
vate intranets, corporate networks, LANs, wireless net-
works, personal networks (PAN), and the like. Network 101
is for illustration purposes and may be replaced with fewer
or additional computer networks. A local area network
(LAN) may have one or more of any known LAN topology
and may use one or more of a variety of different protocols,
such as Ethernet. Devices 103, 105, 107, 109A-F and other
devices (not shown) may be connected to one or more of the
networks via twisted pair wires, coaxial cable, fiber optics,
radio waves or other communication media. For example,
the above connections can be made via the internet, blue
tooth, WiFi, infrared, or any other known method of wireless
transmission.

[0016] As shown in FIG. 1, devices 109A-F may include
personal computers such as desktops, laptops, notebooks,
mobile telephones or smartphones with applications and
other functionality, a handheld device with Wi-Fi or other
wireless connectivity (e.g., wireless enabled tablets, tablet
computers, PDAs, and the like), displays with built-in or
external memories and processors, or any other known
computer, computing device, or handheld computer can also
be connected to one or more of the networks described
herein. It is also contemplated that other types of devices
such as ATMs, kiosks, and other devices can be connected
to one or more of the networks described herein. These
devices can be enabled to communicate with wireless access
points which in one example can be a series of cellular
towers hosted by a service provider. Additionally, the wire-
less access points may be Wi-Fi (e.g., compatible with IEEE
802.11a/b/g/and the like wireless communication standards)
connections and the computing devices may obtain access to
the Internet at these connections. Other known techniques
may be used to allow devices to connect with a network.

[0017] The term “network”™ as used herein and depicted in
the drawings refers not only to systems in which remote
storage devices are coupled together via one or more com-
munication paths, but also to stand-alone devices that may
be coupled, from time to time, to such systems that have
storage capability. Consequently, the term “network”
includes not only a “physical network™ but also a “content
network,” which is comprised of the data—attributable to a
single entity—which resides across all physical networks.

[0018] The components may include data server 103, web
server 105, and client computers 107, and devices 109a-f.
Data server 103 provides overall access, control and admin-
istration of databases and control software for performing
one or more illustrative aspects as described herein. Data
server 103 may be connected to web server 105 through
which users interact with and obtain data as requested.
Alternatively, data server 103 may act as a web server itself
and be directly connected to the Internet. Data server 103
may be connected to web server 105 through the network
101 (e.g., the Internet), via direct or indirect connection, or
via some other network. Users may interact with the data
server 103 using remote computers 107, devices 109a-f; e.g.,
using a web browser to connect to the data server 103 via
one or more externally exposed web sites hosted by web
server 105. Client computers 107, 109 may be used in
concert with data server 103 to access data stored therein, or
may be used for other purposes. For example, from client
device 107 or devices 109a-f'a user may access web server
105 using an Internet browser, as is known in the art, or by

May 25, 2017

executing a software application or app that communicates
with web server 105 and/or data server 103 over a computer
network (such as the Internet).

[0019] Servers and applications may be combined on the
same physical machines, and retain separate virtual or
logical addresses, or may reside on separate physical
machines. FIG. 1 illustrates just one example of a network
architecture that may be used, and those of skill in the art
will appreciate that the specific network architecture and
data processing devices used may vary, and are secondary to
the functionality that they provide, as further described
herein. For example, services provided by web server 105
and data server 103 may be combined on a single server.
[0020] Each component 103, 105, 107, 109 may be any
type of known computer, server, or data processing device as
discussed herein. Data server 103, e.g., may include a
processor 111 controlling overall operation of the rate server
103. Data server 103 may further include RAM 113, ROM
115, network interface 117, input/output interfaces 119 (e.g.,
keyboard, mouse, display, printer, or the like.), and memory
121. /O 119 may include a variety of interface units and
drives for reading, writing, displaying, and/or printing data
or files. Memory 121 may further store operating system
software 123 for controlling overall operation of the data
server 103, control logic/data server software 125 for
instructing data server 103 to perform aspects as described
herein, and other application software 127 providing sec-
ondary, support, and/or other functionality which may or
may not be used in conjunction with one or more aspects
described herein. The control logic may also be referred to
herein as the data server software 125. Functionality of the
data server software may refer to operations or decisions
made automatically based on rules coded into the control
logic, made manually by a user providing input into the
system, and/or a combination of automatic processing based
on user input (e.g., queries, data updates, or the like).
[0021] Memory 121 may also store data used in perfor-
mance of one or more aspects, including a first database 129
and a second database 131. In some embodiments, the first
database may include the second database (e.g., as a separate
table, report, or the like). That is, the information can be
stored in a single database, or separated into different
logical, virtual, or physical databases, depending on system
design. Devices 105, 107, 109A-F may have similar or
different architecture as described with respect to device
103. Those of skill in the art will appreciate that the
functionality of data processing device 103 (or device 105,
107, 109A-F) as described herein may be spread across
multiple data processing devices, for example, to distribute
processing load across multiple computers, to segregate
transactions based on geographic location, user access level,
quality of service (QoS), or the like.

[0022] One or more aspects may be embodied in com-
puter-usable or readable data and/or computer-executable
instructions, such as in one or more program modules,
executed by one or more computers or other devices as
described herein. Generally, program modules include rou-
tines, programs, objects, components, data structures, or the
like that perform particular tasks or implement particular
abstract data types when executed by a processor in a
computer or other device. The modules may be written in a
source code programming language that is subsequently
compiled for execution, or may be written in a scripting
language such as (but not limited to) HTML or XML. The

US 2017/0147661 Al

computer executable instructions may be stored on a com-
puter readable medium such as a hard disk, optical disk,
removable storage media, solid state memory, RAM, or the
like. As will be appreciated by one of skill in the art, the
functionality of the program modules may be combined or
distributed as desired in various embodiments. In addition,
the functionality may be embodied in whole or in part in
firmware or hardware equivalents such as integrated circuits,
field programmable gate arrays (FPGA), and the like. Par-
ticular data structures may be used to more effectively
implement one or more aspects, and such data structures are
contemplated within the scope of computer executable
instructions and computer-usable data described herein.

[0023] A schematic of an exemplary system is shown in
relation to FIG. 2. As shown in FIG. 2, the system may
include one or more of a source system 152, a message
processor module 154, a database 156, a check system
monitoring facility (CSMF) module 160, and a business
activity monitoring (BAM) module 158. The source system
152 can be configured to request that source files be deliv-
ered to the database 156 through the message processor
module 154. The message processor module 154 can be
configured to apply sorting rules and to apply validation
rules to the data. The sorting rules can order the data by
database table clustering order for example, by listing the
date and then the account number. The validation rules may
include checking the data for redundancies, inconsistencies
or format issues associated with the data or, more particu-
larly, checking to see if dates are dates, numeric data is
numeric, and the like.

[0024] The message processor module 154 can also be
configured to transform the data files into an XML format
and to deliver XML formatted messages. Once the data is
transferred to the database 156, the message processor
module 154 can also acknowledge the loading status of the
files to either the check system monitoring facility (CSMF)
module 160 the business activity monitoring unit (BAM)
module 158, for example. The database 156 can be config-
ured to store the source file data. In this way, the delivery
process can be monitored by either the CSMF module 160
or the BAM module 158. The database 156 can also include
an index retrieval interface, native stored procedures, and a
check index archive. These can provide various functions
such as retrieval and insert interfaces, along with a response
function once the data is loaded. In one example, the
database 156 can be configured to send a response to the
message processor module 154 so the message processor
module 154 can acknowledge that the database 156 has
received the source file data.

[0025] An exemplary process for loading of data files is
depicted in relation to FIG. 3. As shown in FIG. 3, the
process can be initiated by a source system at step 202 in
sending a source data file to be stored into a database to a
landing zone at step 204. At step 204, the landing zone step
can be in a computing device in a network, server or cloud,
for example. The computing device can then register the file
at step 206 and create control table records at step 208. A
software component or module can extract the data from a
source data file at the computing device at step 210, and
validate and transform the data from the data source file at
the computing device in step 212. The software component
can also include a poller that watches for files from the
source system. In an alternative example, a quartz scheduler
could be used to find files that arrive.

May 25, 2017

[0026] In the validation step 212 the software component
can check for certain errors in the data by using a rule
engine, for example, by checking the various data fields. In
one example, the validation process can include reviewing
the data for redundancies, inconsistencies or format issues
associated with the data, such as, checking to see if dates are
dates, numeric data is numeric, and the like. Also along with
validation in step 212, the data can be transformed into a
readable format for the database, such as XML, text, image,
zipped data, SQL or another computer reusable format for
storage. The data may also be split into units of work (e.g.,
2500 records per job). Additionally or alternatively, the data
may be divided (e.g., split up) into, for example, up to 5000
records per load chunk (e.g., up to 5000 rows of XML data
at a time), resulting in data loading that is consistent, free of
formatting errors, and efficient. This efficient loading may be
performed via, for example, distributed data facility (DDF)
threads, as will be described in further detail below.
[0027] Once the data is validated, transformed and split up
accordingly, at step 214, the software component can deliver
the data to one or more message processor modules at either
step 216 or 218. In this process, the software component can
assign the data using round-robin scheduling or can deter-
mine which message processor module to send the data to
based on message processor bandwidth, or other techniques.
Also in this process the software component can effectively
request that the data be transferred to a certain database at
the message processor modules at steps 216 or 218, which
may depend on frequency, storage capacity, and/or speed to
meet a service level agreement (SLA).

[0028] One or more connections or threads (e.g., DDF
threads) may be created or otherwise generated between one
or more message processor modules, such as the message
processor module B, and one or more mainframe database,
such as the database B 226. In some aspects, DDF threads
might not be created for transferring data between a pro-
cessor module and a database if the data will not be
transferred using DDF threads and/or will be transferred
using other technologies. For example, if DDF threads are
created for transferring data between the message processor
module B and the database B 226, DDF threads might not
be created for transferring data between the message pro-
cessor module A and database A 224.

[0029] At steps 216, 218, the message processor modules
may send the data to one or more listener modules. For
example, at step 216, the message processor module(s) may
send the data to a listener module, such as module A, via a
message queue (MQ) based solution that might allow mes-
sages to stored and processed slower. For example, module
A may send the data as one or more messages to a message
queue at any point in time. The message may be temporarily
stored at the message queue. The database A may retrieve or
otherwise access (e.g., request) the data stored at the mes-
sage queue by module A at any point in time.

[0030] At step 218, the message processor module(s) may
send the data via Distributed Data Facility (DDF) connec-
tions or threads at a very high rate of speed for priority SLA.
DDF may use connections from a mid-range server to a
mainframe database (via a native stored procedure) and may
be used by an application to access one or more databases.
An exemplary DDF connection or thread is a database
access connection or thread. DDF connections may be used
to deliver large chunks of data, such as XML data, to
databases, such as relational database management system

US 2017/0147661 Al

(RDBMS) because multiple connections or threads (e.g.,
thousands) may be created and used to simultaneously (e.g.,
in parallel) send data to or receive data from the databases.
Once the data hits the DDF thread, the data may be perfected
and be ready to be sent to the table and/or databases, such
as mainframe databases. The perfected data may be verified
and/or validated before the data is sent to the databases via
DDF connections. Use of DDF threads may significantly
decrease the million instructions per second (MIPS) cost or
charges of loading data into databases, such as by up to 25%
(e.g., it 25% of the processing needed to load the data goes
away).

[0031] At step 220, 222, the listener modules may execute
a native stored procedure which will parse the XML and
load the unit of work into a global temporary table, which
can then be inserted or delivered into either database A at
step 224 or database B at step 226. Since the data was
previously validated, the data can easily be added onto the
selected database. Once the data is successfully transferred,
the message processor modules can post a response at step
228, 230, which can indicate that the data has been trans-
ferred to either database A or database B at the message
processor modules to acknowledge receipt of the data in the
database at the computing device. As depicted in FIG. 3, the
response may originate from either listener module A or
listener module B. In this way, the software component on
the computing device can acknowledge the data delivery.

[0032] The software component can also update the con-
trol records at step 234 based on the acknowledgment
message. At step 236 the acknowledgement receipt can then
be routed back to the source system through a NDM file
transfer. The acknowledgement can also be received at
check system monitoring facility (CSMF) module at step
238 or a business activity monitoring (BAM) module at step
240.

[0033] FIG. 4 shows another example process that can be
used for extraction, transformation, validation and delivery
of files. As shown in FIG. 4, an input file 304 can be received
from source systems 302 at a landing zone 306, which can
be a computing device in a network, server or cloud, for
example. The file can then undergo a data capture process
308 where the file is stored into data tables 310. First, the
poller 312 can identify existence of a new file and can apply
a trigger 316 to trigger the scheduler 314 for processing file.
A spring batch component 318 can then use modular rules
320 to split, sort, validate, clean, and transmit to database
component as defined for each file type. The message queues
322 can be used as the transport protocols which move the
data from the data capture platform to the database. Logging
services 324a, 324b can be called throughout the ingestion
and loading process. Modular rules 326 can be stored and
reused to define new spring batch flows. The spring JDBC
328 can be configured as a database communication layer
for event logging and processing state details.

[0034] The example systems and processes discussed
herein may help to reduce dependency on a mainframe
server, by conducting some of the validation prior to loading
the data into the database. This may also result in cost
savings, since less expensive processors can be used. The
process can also be more flexible in reducing the need for
having batch files. Also the use of DDF threads or connec-
tions can be reduced such that DDF thread use does not
compete with online retrieval, which saves on bandwidth

May 25, 2017

that can be used for other processes such as inserting and
requesting data from the database.

[0035] The processes disclosed herein may help to elimi-
nate a significant number of processors and may be run on
lower cost processors that do not require the payment of
fees. The system can also help to eliminate redundant data
extraction and transformation processes at dual database
sites because the validation and transformation can be done
up front before arriving at the database sites. This can help
reduce the amount of processing required since these steps
will only need to be performed once. The system can be
configured to reject any incoming file with invalid data from
the source system.

[0036] In one example, the system can help reduce the
overall dependency on the mainframe by validating the data
prior to loading the data into the database. Also the use of
DDF threads can reduced such that the current process does
not compete with online retrieval. This can help certain data
insert activity more efficient as data is constantly loaded into
the database and data is constantly requested from the
database.

[0037] In one example, a computer-implemented method
for loading a source data file can include one or more of the
following steps: extracting data from the source data file at
a computing device, validating the data from the source data
file at the computing device, transforming the data from the
source data file at the computing device, requesting the data
to be transferred to a first database at a first message
processor module, delivering the data to the first database, or
responding that the data has been transferred to the first
database at the first message processor module to acknowl-
edge receipt of the data in the database at the computing
device. The computing device can be a server in one
example. A first listener module can receive the data from
the first message processor and can load the data onto the
first database. The method may also include one or more of:
routing the acknowledgement receipt to a source system,
receiving the acknowledgement receipt at a check system
monitoring facility, receiving the acknowledgment receipt at
a business activity monitoring unit, or updating control
records based on the acknowledgment receipt.

[0038] Additionally, a second message processor module
can be configured to deliver the data to a second database.
The second listener module can receive the data from the
second message processor and can load the data onto the
second database.

[0039] In another example method for loading a data file
may include one or more of the following steps: send a data
file request from a source system, receive the request, apply
validation rules, and transform the data at a message pro-
cessor module, deliver the data by the message processor
module to a database, respond to the message processor
module that the data has been delivered, and acknowledge
that the data has been delivered by the message processor. A
second message processor module can be configured to
deliver the data to a second database. The apparatus can also
be configured to update control records based on the
acknowledgment receipt, route the acknowledgement
receipt to a source system module, receive the acknowl-
edgement receipt at a check system monitoring facility
module, or receive the acknowledgment receipt at a business
activity monitoring module.

[0040] In another example method for loading a data file
may include one or more of the following steps: send a

US 2017/0147661 Al

request from a source system module to deliver a source data
file to a first database, extract data from the source data file
at a computing device, validate the data from the data source
file at the computing device, transform the data from the data
source file at the computing device, request the data to be
transferred to a first database at a first message processor
module, deliver the data to the first database, and respond
that the data has been transferred to the first database at the
first message processor module to acknowledge receipt of
the data in the database at the computing device. The
computing device may be server, and a second message
processor module can be configured to deliver the data to a
second database. The method may also include updating
control records based on the acknowledgment receipt, rout-
ing the acknowledgement receipt to a source system. The
load process can be monitored by a check system monitoring
facility module, and the load process can also be monitored
by a business activity monitoring module.

[0041] In another example, an apparatus comprising: a
processor; and a memory for storing computer readable
instructions that, when executed by the processor, can cause
the apparatus to perform the methods discussed herein. In
another example, one or more non-transitory computer-
readable media may have instructions stored thereon that,
when executed, cause at least one computing device to
perform one or more aspects of the methods discussed
herein.

[0042] Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.

What is claimed is:

1. A method comprising:

receiving, at one or more mid-range servers, one or more

data files;

extracting, by the one or more mid-range servers, data

from the one or more data files;
generating a plurality of distributed data facility (DDF)
threads between the one or more mid-range servers and
a first database;

sending, by the one or more mid-range servers, a first
portion of the extracted data to the first database using
the generated plurality of DDF threads; and

sending a second portion of the extracted data to a

message queue accessible to a second database.

2. The method of claim 1, further comprising:

determining whether the extracted data has an error,

wherein sending the first portion of the extracted data to
the first database and sending the second portion of the
extracted data to the message queue are performed in
response to determining that the extracted data does not
have the error.

3. The method of claim 1, wherein the first portion of the
extracted data comprises a first data chunk and the second
portion of the extracted data comprises a second data chunk,
the method further comprising:

dividing, by the one or more mid-range servers, the

extracted data into the first data chunk and the second
data chunk,

wherein sending the first portion of the extracted data

comprises sending the first data chunk, and wherein

May 25, 2017

sending the second portion of the extracted data com-
prises sending the second data chunk.

4. The method of claim 1, further comprising:

receiving, from the second database, a request for the

second portion of the extracted data; and

in response to receiving the request, sending, via the

message queue, the second portion of the extracted data
to the second database.

5. The method of claim 1, further comprising:

transforming the extracted data into XML data,

wherein sending the first portion of the extracted data

comprises sending a first portion of the XML data, and
wherein sending the second portion of the extracted
data comprises sending a second portion of the XML
data.

6. The method of claim 1, wherein sending the first
portion of the extracted data to the first database using the
generated plurality of DDF threads comprises simultane-
ously sending a plurality of data from the first portion of the
extracted data across different DDF threads of the plurality
of DDF threads.

7. The method of claim 1, further comprising:

prior to sending the first portion of the extracted data to

the first database, verifying and validating the first
portion of the extracted data.

8. One or more server comprising:

a processor; and

memory storing computer-executable instructions that,

when executed by the processor, cause the one or more

server to:

receive one or more data files;

extract data from the one or more data files;

generate a plurality of distributed data facility (DDF)
threads between the one or more server and a first
database;

send a first portion of the extracted data to the first
database using the generated plurality of DDF
threads; and

send a second portion of the extracted data to a message
queue accessible to a second database.

9. The one or more server of claim 8, wherein the memory
stores computer-executable instructions that, when executed
by the processor, cause the one or more server to:

determine whether the extracted data has an error,

wherein sending the first portion of the extracted data to
the first database and sending the second portion of the
extracted data to the message queue are performed in
response to determining that the extracted data does not
have the error.

10. The one or more server of claim 8, wherein the first
portion of the extracted data comprises a first data chunk and
the second portion of the extracted data comprises a second
data chunk, and wherein the memory stores computer-
executable instructions that, when executed by the proces-
sor, cause the one or more server to:

divide the extracted data into the first data chunk and the

second data chunk,

wherein sending the first portion of the extracted data

comprises sending the first data chunk, and wherein
sending the second portion of the extracted data com-
prises sending the second data chunk.

11. The one or more server of claim 8, wherein the
memory stores computer-executable instructions that, when
executed by the processor, cause the one or more server to:

US 2017/0147661 Al

receive, from the second database, a request for the

second portion of the extracted data; and

in response to receiving the request, send, via the message

queue, the second portion of the extracted data to the
second database.

12. The one or more server of claim 8, wherein the
memory stores computer-executable instructions that, when
executed by the processor, cause the one or more server to:

transform the extracted data into XML data,

wherein sending the first portion of the extracted data

comprises sending a first portion of the XML data, and
wherein sending the second portion of the extracted
data comprises sending a second portion of the XML
data.

13. The one or more server of claim 8, wherein sending
the first portion of the extracted data to the first database
using the generated plurality of DDF threads comprises
simultaneously sending a plurality of data from the first
portion of the extracted data across different DDF threads of
the plurality of DDF threads.

14. The one or more server of claim 8, wherein the
memory stores computer-executable instructions that, when
executed by the processor, cause the one or more server to:

prior to sending the first portion of the extracted data to

the first database, verify and validate the first portion of
the extracted data.

15. A non-transitory computer-readable media storing
computer-readable instructions that, when executed by one
or more server, cause the one or more server to:

receive one or more data files;

extract data from the one or more data files;

generate a plurality of distributed data facility (DDF)

threads between the one or more server and a first
database;

send a first portion of the extracted data to the first

database using the generated plurality of DDF threads;
and

send a second portion of the extracted data to a message

queue accessible to a second database.

16. The non-transitory computer-readable media of claim
15, storing computer-readable instructions that, when
executed by the one or more server, cause the one or more
server to:

determine whether the extracted data has an error,

May 25, 2017

wherein sending the first portion of the extracted data to
the first database and sending the second portion of the
extracted data to the message queue are performed in
response to determining that the extracted data does not
have the error.

17. The non-transitory computer-readable media of claim
15, wherein the first portion of the extracted data comprises
a first data chunk and the second portion of the extracted
data comprises a second data chunk, and wherein the non-
transitory computer-readable media stores computer-read-
able instructions that, when executed by the one or more
server, cause the one or more server to:

divide the extracted data into the first data chunk and the

second data chunk,

wherein sending the first portion of the extracted data

comprises sending the first data chunk, and wherein
sending the second portion of the extracted data com-
prises sending the second data chunk.

18. The non-transitory computer-readable media of claim
15, storing computer-readable instructions that, when
executed by the one or more server, cause the one or more
server to:

receive, from the second database, a request for the

second portion of the extracted data; and

in response to receiving the request, send, via the message

queue, the second portion of the extracted data to the
second database.

19. The non-transitory computer-readable media of claim
15, storing computer-readable instructions that, when
executed by the one or more server, cause the one or more
server to:

transform the extracted data into XML data,

wherein sending the first portion of the extracted data

comprises sending a first portion of the XML data, and
wherein sending the second portion of the extracted
data comprises sending a second portion of the XML
data.

20. The non-transitory computer-readable media of claim
15, wherein sending the first portion of the extracted data to
the first database using the generated plurality of DDF
threads comprises simultaneously sending a plurality of data
from the first portion of the extracted data across different
DDF threads of the plurality of DDF threads.

#* #* #* #* #*

