
(12) STANDARD PATENT (11) Application No. AU 2009287433 B2
(19)-AUSTRALIAN PATENT OFFICE

(54) Title
System and method for detection of malware

(51) International Patent Classification(s)
G06F 11/00 (2006.01)

(21) Application No: 2009287433 (22) Date of Filing: 2009.08.31

(87) WIPONo: WO10/025453

(30) Priority Data

(31) Number (32) Date
61/092,848 2008.08.29
12/550,025 2009.08.28

(33) Country
US
US

(43)
(44)

Publication Date: 2010.03.04
Accepted Journal Date: 2014.06.05

(71) Applicant(s)
AVG Technologies CZ, S.R.O.

(72) Inventor(s)
Hicks, Ryan

(74) Agent / Attorney
Pizzeys, PO Box 291, WODEN, ACT, 2606

(56) Related Art
US 2007/0094734 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 March 2010 (04.03.2010)

(10) International Publication Number

PCT WO 2010/025453 Al

(51) International Patent Classification:
G06F11/00 (2006.01)

(21) International Application Number:
PCT/US2009/055524

(22) International Filing Date:
31 August 2009 (31.08.2009)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/092,848 29 August 2008 (29.08.2008) US
12/550,025 28 August 2009 (28.08.2009) US

(71) Applicant (for all designated States except US): AVG
TECHNOLOGIES CZ, S.R.O. [CZ/CZ]; Lidicka 31,
602 00 Brno (CZ).

(72) Inventor; and
(75) Inventor/Applicant for US only): HICKS, Ryan

[US/CZ]; Smetanova 10, 602 00 Brno (CZ).

(74) Agent: SINGER, James M.; Pepper Hamilton LLP, One
Mellon Center, 50th Floor, 500 Grant Street, Pittsburgh,
Pennsylvania 15219 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to the identity of the inventor (Rule 4.17 (if)

Published:
— with international search report (Art. 21(3))

(54) Title: SYSTEM AND METHOD FOR DETECTION OF MALWARE

Binary file structures
210 κ

Domain Expert
205

Worm defining operations
215 Kΐ=ν

Trojan Horse defining
operations

220 K.

Virus defining
operations

f

Expert System
Knowledge Base

200

W
O

 20
10

/0
25

45
3 A

l

FIG. 2

(57) Abstract: A method of automatically identifying malware may include receiving, by an expert system knowledge base, an as­
sembly language sequence from a binary file, identifying an instruction sequence from the received assembly language sequence,
and classifying, by the expert system knowledge base, the instruction sequence as threatening, non-threatening or non-classifiable
by applying one or more rules of the expert system knowledge base to the instruction sequence. If the instruction sequence is clas­
sified as threatening, information may be transmitted to a code analysis component and a user may be notified that the binary file
includes malware. The information may include one or more of the following: the instruction sequence, a label comprising an in­
dication that the instruction sequence is threatening, and a request that one or more other assembly language sequences from the
binary file be searched for at least a portion of the instruction sequence.

WO 2010/025453 PCT/US2009/055524

A. TITLE - SYSTEM AND METHOD FOR DETECTION OF MALWARE

B. CROSS REFERENCE TO RELATED APPLICATIONS

(00011 This application claims the benefit of the filing date of U.S. Patent

Application No. 12/550,025 filed August 28, 2009, which claims priority to U.S. Provisional

Patent Application No. 61/092.848 filed August 29, 2008.

C. - E. Not Applicable

F. BACKGROUND

(0002] A binary file is often transferred between many computing devices. A

computing device that receives a binary file is usually not aware of the origin of the file or

whether the code that it receives is safe. To ensure the security of a computing device, a

binary file can be disassembled to determine if the file contains malware such as viruses,

worms, Trojan Horses and/or the like.

(0003] Typically, a disassembler translates a binary file from machine language into

assembly language. Some disassemblers are interactive and allow an expert programmer to

make annotations, corrections, clarifications or decisions regarding how the disassembler

analyzes a file. For example, a disassembler may signal when a new function or particular

section of code appears. When an identified action occurs, a particular section of the code

may be labeled for future reference. However, analysis of unknown executables can be a

time consuming process that is usually performed manually bv specially trained personnel, or

automatically by the use of statistical methods.

WO 2010/025453 PCT/US2009/055524

G. SUMMARY

}0004j Before the present methods are described, it is to he understood that this

invention is not limited to the particular systems, methodologies or protocols described, as

these may vary. It is also to be understood that the terminology used herein is for the purpose

of describing particular embodiments only, and is not intended to l imit the scope of the

present disclosure which will be limited only by the appended claims.

|0005| it must be noted that as used herein and in the appended claims, die singular

forms “a,” “an,” and “the” include plural reference unless the context clearly dictates

otherwise. Unless defined otherwise, all technical and scientific terms used herein have the

same meanings as commonly understood by one of ordinary skill in the art. As used herein,

the term “comprising” means “including, but not limited to.”

J0006| in an embodiment, a method of automatically identifying malware may

include receiving, by an expert system knowledge base, an assembly language sequence from

a binary file, identifying an instruction sequence from die received assembly language

sequence, and classifying, by die expert system knowledge base, the instruction sequence as

threatening, non-threatening or non-classifiabie by apply ing one or more rules of the expert

system knowledge base to the instruction sequence. If the instruction sequence is classified

as threatening, information may be transmitted to a code analysis component and a user may

be notified that the binary tile includes malware. The information may include one or more

of the following', the instruction sequence, a label comprising an indication that the

instruction sequence is threatening, and a request that one or more other assembly language

sequences from the binary file he searched for at least a portion of the instruction sequence .

[0007j in an embodiment, a method of automatically identifying malware may

include receiving, by an expert system knowledge base, an assembly language sequence from

a binary file, identifying an instruction sequence from the received assembly language

•7

WO 2010/025453 PCT/US2009/055524

sequence, and classifying, by the expert system knowledge base, the instruction sequence as

threatening, non-threatening or non-classifiable by applying one or more rules of the expert

system knowledge base to the instruction sequence, if the instruction sequence is classified

as non-threatening, information may be transmitted to a code analysis component and a

second instruction sequence may be requested. The information may include one or more of

the following; the instruction sequence and a label comprising an indication that the

instruction sequence is non-threatening.

[0008] In an embodiment, a method of automatically identifying malware may

include

receiving, by an expert system knowledge base, an assembly language sequence from a

binary file, identifying an instruction sequence from the received assembly language

sequence, and classifying, by the expert system knowledge base, the instruction sequence as

threatening, non-threatening or non-classifiable by applying one or more rules of the expert

system to the instruction sequence, if the instruction sequence is classified as non­

classifiable, the method may include transmitting a request to a code analysis component that

the assembly language sequence be reanalyzed, receiving a new instruction sequence

corresponding to the reanalyzed assembly language sequence, and classifying the new

instruction sequence as threatening, non-threatening or non-classifiable,

]0009{ In an embodiment, a method of automatically identifying malware may

include analyzing, by a code analysis component, a binary file to generate an assembly

language sequence and a corresponding instruction sequence, transmitting the instruction

sequence to an expert system knowledge base and receiving, from the expert system

knowledge base, classification information associated with the instruction sequence. If the

classification information identifies the instruction sequence as threatening, the method may

include .Identifying one or more other assembly language sequences from the binary file that

WO 2010/025453 PCT/US2009/055524

comprise at least a portion of the instruction sequence, and transmitting at least one of the

identified assembly language sequences to the expert system knowledge base. If the

classification information identifies the instruction sequence as non-threatening, the method

may include transmitting a second instruction sequence to the expert system knowledge base.

If the classification information iden tifies the instruction sequence as non-classifiable, the

method may include reanalyzing the assembly language sequence to produce a new instruction

sequence, and transmitting the new instruction sequence to the expert system knowledge base,

[0010(In an embodiment, a system for automatically identifying malware may

include

a code analysis component configured to identify an assembly language sequence including

one or more instruction sequences from a binary file, and an expert system knowledge base in

communication with the code analysis component. The expert system knowledge base may

be configured to classify the instruction sequence as threatening, non-threatening or non­

classifiable using one or more rales.

FT BRIEF DESCRIPTION OF THE DRAWINGS

(00111 Aspects, features, benefits and advantages of the embodiments described

herein will be apparent with regard to the following description, appended claims, and

accompanying drawings where'.

(00121 FIG. 1 illustrates an exemplary malware detection system according to an

embodiment.

(0013(FIG. 2 illustrates an exemplary expert system knowledge base according to an

embodiment,

(0014(FIG . 3 illustrates a .flowchart of an exemplary method for detecting and

analyzing malware according to an embodiment.

.4.

WO 2010/025453 PCT/US2009/055524

(0015(FIG. 4 illustrates a block diagram of an exemplary system that may be used to

contain or implement program instructions according to an embodiment.

(0016(FIGS. 5 and 6 illustrate exemplary instruction sequences according to an

embodiment.

1. DETAILED DESCRIPTION

(0017(Before the present methods and systems are described, it is to be understood

that this invention is not limited to the particular systems, methodologies or protocols

described, as these may vary. It is also to be understood that the terminology used herein is

for the purpose of describing particular embodiments only, and is not intended to limit the

scope of the present disclosure which will be limited only by the appended claims.

(0018(As used herein and in the appended claims, the singular forms “a,” “an,” and

“the” include the plural reference unless the context clearly dictates otherwise. Unless

defined otherwise, ail technical and scientific terms used herein have the same meanings as

commonly understood by one of ordinary· skill in the art. As used herein, the term

“comprising” means “including, but not limited to.”

(0019(For the purpose of the description below, a “node” refers to a sequence of

instructions within an assembly language sequence that is executed by a processor.

(0020(An “assembly language” refers to a computer programming language that

implements a symbolic representation of numeric machine codes.

(0021(An “assembly language sequence” refers to a sequence of nodes written in

assembly language,

(0022(A “binary file” refers to a computer file that includes data encoded in binary

format. An executable file is a type of binary file.

-5-

WO 2010/025453 PCT/US2009/055524

[00231 ‘"Malware” is malicious software designed to disrupt, infiltrate or damage a

computer system. Examples of malware include viruses, worms, trojan horses, adware,

spyware, root kits and/or the like.

[0024| An “expert system” is artificial intelligence software and/or firmware that is

designed to simulate the decision making process of a human in a specific problem domain.

[00251 FIG. 1 illustrates a malware detection system according to an embodiment. A

malware detection system may include a code analysis component 100, an expert system

knowledge base 200 and/or a connector logic component 150. In an embodiment, the code

analysis component 100, expert system knowledge base 200 and/or connector logic

component 150 may be implemented using software, hardware or a combination of software

and hardware. In an embodiment, the code analysis component 100, expert system

knowledge base 200 and/or connector logic component 1.50 may reside on the same

computing device. Alternatively, the code analysis component 100, expert system knowledge

base 200 and/or connector logic component 150 may reside on different computing devices in

communication with one another.

J0O26[In an embodiment, a code analysis component 100 may analyze binary files

such as, but not limited to, executables, in an embodiment, a code analysis component 100

may statically or dynamically analyze binary files. Static analysis may include analyzing a

binary file that is not currently being executed, in comparison, dynamic analysis may include

analyzing a binary file while the binary file is being executed.

[00271 In an embodiment, a code analysis component may be implemented using

software, hardware or a combination of software and hardware. In an embodiment a code

analysis component 100 may include a disassembler, a debugger, a decompiler and/or the

like. For example, the code analysis component 100 may he a disassembler, such as IDA

Pro.

-6-

WO 2010/025453 PCT/US2009/055524

[0028(A code analysis component may analyze a binary file to create an assembly

language sequence. In an embodiment, the assembly language sequence may include a

human-readable representation of the binary file. The code analysis component 100 may

include internal rules and/or operations which may be used to create an assembly language

sequence from the binary file. The code analysis component 100 may analyze the assembly

language sequence to determine an instruction sequence.

(0029(in an embodiment, a code analysis component 1.00 may interact with external

devices to analyze a binary file. For example, as discussed below, the code analysis

component 100 may communicate with an expert system knowledge base 200.

10030(As illustrated by FIG. 1, the malware detection system may include an expert

system knowledge base 200. in an embodiment, an expert system knowledge base 200 may

include a representation of a human’s expertise in a particular area. For example, an expert

system knowledge base 200 may include inforniafion, data, rules and/or the like to model the

knowledge and practices of an experienced computer analyst.

[0031(in an embodiment, the expert system knowledge base 200 may be

implemented using the C Language Integrated Production System (“CLIPS"). CLIPS is a

programming language and software tool that may be used to create expert systems.

(0032(FIG. 2 illustrates an expert, system knowledge base according to an

embodiment. The expert system knowledge base 200 may include internal rules and/or

operations. In an embodiment, these internal rules and/or operations may be applied to an

instruction sequence from an assembly language sequence to determine whether the assembly

language sequence contains malware. In an embodiment, the internal rules and/or operations

may represent the encoding of human expertise.

[0033(In an embodiment, a domain expert 205 may populate the expert system

knowledge base 200. A domain expert may be, but is not limited to, a human being who has

*7

WO 2010/025453 PCT/US2009/055524

expertise in analyzing malware. In an embodiment, a domain expert 205 may be a computing

device configured to provide the expert system knowledge base 200 with internal rules and/or

operations that may represent the encoding of human expertise. For example, a computing

device may automatically provide the expert system knowledge base 200 with updates,

enhancements or the like for one or more internal rules and/or operations.

[0034] in an embodiment, the expert system knowledge base 200 may be populated

with binary file structures 210, A binary file structure may be a template that depicts one or

more portions of a binary file and/or a sequence of the portions in a binary file. The Binary

file structures 210 may be used to analyze whether a file structure is proper. For example, a

binary· file structure 210 may be analyzed to determine if the header on the file conforms to a

protocol.

[0035j an embodiment, the expert system knowledge base 200 may be populated

with worm defining operations 215. Worm defining operations 215 may identify instruction

sequences which replicate an assembly language sequence.

[0036j in an embodiment, the expert system knowledge base 200 may be populated

with Trojan Horse defining operations 220. Trojan Horse defining operations 220 may

identify instruction sequences in an assembly language sequence that are associated with one

or more Trojan Horses.

(0037[In an embodiment, the expert system knowledge base 200 may be populated

with virus defining operations 225. Virus defining operations 225 may identify self­

replicating instruction sequences in an assembly language sequence. Additional and/or

alternative operations may be included in the expert system knowledge base 200.

[0038j Referring back to FIG. I, the malware detection system may include a

connector logic component 150. A connector logic component ISO may enable

-8-

WO 2010/025453 PCT/US2009/055524

communication between the code analysis component 100 and the expert system knowledge

base 200.

(0039(In an embodiment, the assembly language sequence sent from the code

analysis component 100 may be in a format which cannot be directly processed by the expert

system knowledge base 200. The code analysis component 100 may communicate the

assembly language sequence to the connector logic component 150. The connector logic

component 150 may convert the instruction sequence into a format that the expert system

knowledge base 200 can process. The connector logic component 150 may send the newly

converted instruction sequence to the expert system knowledge base 200.

)0040(Similarly, the connector logic component may obtain information from the

expert system knowledge base 200. The connector logic component may convert the

information from the expert system knowledge base 200 into a format that is readable by the

code analysis component 100 and transmit the converted information to the code analysis

component,

)0041(FIG. 3 depicts a flowchart of a method for detecting and analyzing malware

according to an embodiment. A binary file may be received by the code analysis component.

The code analysis component may analyze the file to obtain an assembly language sequence

and an instruction sequence. The code analysis component may send the assembly language

sequence with the instruction sequence to the expert system knowledge base via the

connector logic component.

)0042(The expert system knowledge base may receive 300 the assembly language

sequence, in an embodiment, the expert system knowledge base may identify 305 the

instruction sequence from the assembly language sequence.

(0043(The expert system knowledge base may apply internal operations and/or rules

to classify 315 the instruction sequence. In an embodiment, the classification may be used to

-9-

WO 2010/025453 PCT/US2009/055524

determine if the instruction sequence contains malware. For example, in an embodiment, the

expert system knowledge base may classify the instruction sequence as non-threatening 315,

threatening 330 or non-elassifiable 345. Additional and/or alternate classifications may be

used within the scope of this disclosure.

[0044] In an embodiment, the expert system knowledge base may traverse through

the nodes and branches of a received instruction sequence using one or more internal rules

and/or operations. In an embodiment, the expert system knowledge base apply a group of

precedential rules to the received instruction sequence. Each rule in the set of precedential

rules may have a ranking with respect to the other precedential rules in the set. In an

embodiment, the rules may be ranked based on the number of matches between each rule and

the instruction sequence. For example, the instruction sequences that are most similar to the

match criteria of a rule may cause that rule to be given a highest priority for a given traversal.

Alternatively, the instruction sequences that are least similar to the match criteria of a rule

may cause that rule to be given a lowest priority for a given traversal.

[0045] CLIPS provides conflict resolution strategies such as a. complexity strategy

and a simplicity strategy which give precedence to the most and least specific matches,

respectively, in an embodiment, such strategies may be employed to rank the rules as to

those which most specifically match the instruction sequence,

[0046] In an embodiment, the expert system knowledge base may apply the rule

associated with the highest precedence to the instruction sequence, in an embodiment, one or

more additional precedential rules from the group may be appl ied, in the order of their

precedence, to the instruction sequence until the instruction sequence is classified or until all

precedential rules have been applied.

[0047] if when applying a rule or rules, the expert system knowledge base traverses

the instruction sequence from start to finish,, then the instruction sequence may be classified

-10-

WO 2010/025453 PCT/US2009/055524

as non-threatening 315. For example, FIG. 5 illustrates an exemplary instruction sequence

according to an embodiment. If the expert system knowledge base is able to traverse the

entire instruction sequence 500 from start (Instruction 1 505) to finish (Instruction 8 510),

then the instruction sequence 500 may be classified as non-threatening.

[0048j In an embodiment, the expert system knowledge base may transmit 320

information signifying that the instruction sequence is non-threatening to the code analysts

component, in an embodiment, the information may include a label attached to the

instruction sequence indicating that the instruction sequence is non-threatening.

[0049| In an embodiment, in response to classifying an instruction sequence as non­

threatening, the expert system knowledge base may request 325 a new assembly sequence

with a new instruction sequence to analyze from the code analysis component

[0050| in an embodiment, the expert system knowledge base may classify an

instruction sequence as threatening 330 if the expert system knowledge base is unable to

traverse each instruction of the instruction sequence. For example, die expert system

knowledge base may analyze die instruction sequence by traversing the instructions of die

instruction sequence to determine if there is malware. For example, a loop may be an

indicator of malware. If during the traversal, the expert system knowledge base arrives at an

instruction that it already analyzed, the expert system knowledge base may determine that the

instruction sequence forms a loop, in an embodiment, the expert system knowledge base

may classify an instruction sequence having one or more loops as threatening. FIG. 6

illustrates an exemplary instruction sequence according to an embodiment. As illustrated by

FIG. 6, the instruction sequence 600 may be classified as threatening because it includes a

loop from Instruction 6 605 to Instruction 4 610.

[0051] In an embodiment, other activities that may be indicative of malware or other

nefarious behaviors may include encryption/decryption routines, replicating code, key

-II-

WO 2010/025453 PCT/US2009/055524

logging, independent initiation of network communication, communication with known

hostile or suspicious network hosts and/or the like. As such, an instruction sequence that

includes one or more of these activities may be classified as threatening. Additional and/or

alternate acti vities may be indicative of malware within the scope of this disclosure.

(0052] In an embodiment, the expert system knowledge base may transmit 335

information signifying that the instruction sequence is threatening to the code analysis

component. The information may be sent to the code analysis component via the connector

logic component, which may translate the information into a form readable by the code

analysis component. In an embodiment, the information may include a label attached to the

instruction sequence indicating that the instruction sequence is threatening.

10053] In an embodiment, the information may include a request that the code

analysis component search other assembly language sequences for at least a portion of an

instruction sequence that was previously analyzed 340. For example, the code analysis

component may search other assembly language sequences for the loop discussed In the

previous example, in an embodiment, the code analysis component may use its internal

operations and/or rules to translate and/or analyze the information to determine whether at

least a portion of an instruction sequence is present inside the assembly language sequences.

If the code analysis component finds the same Instruction sequence or portion thereof, the

code analysis component may send the relevant assembly language sequence and instruction

sequence to the expert system knowledge base.

100541 In an embodiment, the expert system knowledge base may determine 345

whether an instruction sequence is non-classifiable. An instruction sequence may be

identified as being non-classifiable if the expert system knowledge base is unable to

determine whether the instruction sequence is threatening. For example, a programmer who

created a binary fi le may have intentionally used methods to obfuscate the workings of the

-12-

WO 2010/025453 PCT/US2009/055524

file prevent the code analysis component from issuing the correct instruction sequence. As

such, the code analysis component may send an incomplete or nonsensical instruction

sequence to the expert system knowledge base via the connector logic component.

[0055jT he expert system knowledge base may analyze each node of the instruction

sequence using its internal rules and/or operations. Based on its analysis, the expert system

knowledge base may transmit 350 a request to the code analysis component to reinterpret a

particular node or series of nodes. For example, the expert system knowledge base may

request that the code analysis component generate a new instruction sequence for a particular

node.

jO056j In an embodiment, the request may include alternate considerations for the

code analysis component in analyzing the assembly sequence. For example, in some

instances, the code analysis component may not be able to properly analyze an assembly

sequence. As such, it may be necessary for the expert system knowledge base to provide

information to the code analysis component that will allow the analysis to continue. For

example, the expert system knowledge base may detect that an incorrect instruction sequence

should be altered or ignored to allow the analysis to continue. In an embodiment, this

information may be included in a request to the code analysis component.

J0057] In an embodiment, the code analysis component may use its internal rules

and/or operations reanalyze the assembly language sequence and instruction sequence. The

expert system knowledge base may receive 345 the reanalyzed assembly language sequence

and new instruction sequence from the code analysis component via the connector logic

component. Πιε expert system knowledge base may traverse the new instruction sequence to

determine its classification,

[0058[FKl 4 depicts a block diagram of an exemplary system that may be used to

contain or implement program instructions according to an embodiment. Referring to FIG. 4,

WO 2010/025453 PCT/US2009/055524

a bus 400 serves as the main information highway interconnecting the other illustrated

components of the hardware. CPU 405 is the central processing unit of the system,

performing calculations and logic operations required to execute a program. Read only

memory (ROM) 410 and random access memory (RAM) 415 constitute exemplary memory

devices or storage media.

|0059| A disk controller 420 interfaces with one or more optional disk drives to the

system bus 400. These disk drives may include, for example, external or internal DVD drives

425, CD ROM drives 430 or hard drives 435. As indicated previously, these various disk

drives and disk controllers are optional devices.

(0060] Program instructions may be stored in the ROM 410 and/or the RAM 415,

Optionally, program instructions may be stored on a computer readable storage medium, such

as a hard drive, a compact disk, a digital disk, a memory or any other tangible recording

medium.

|00611 An optional display interface 440 may permit information from the bus 400 to

be displayed on the display 445 in audio, graphic or alphanumeric format. Communication

with external devices may occur using various communication ports 450.

[0062(In addition to the standard computer-type components, the hardware may also

include an interface 455 which allows for receipt of data from input devices such as a

keyboard 460 or other input device 465 such as a mouse, remote control, touch pad or screen,

pointer and/or joystick.

(0063] It will be appreciated that various of the above-disclosed and other features

and functions, or alternatives thereof may he desirably combined, into many other different

systems or applications. Also that various presently unforeseen or unanticipated alternatives,

modifications, variations or improvements therein may be subsequently made by those skilled

in the art which are also intended to be encompassed by the following embodiments.

-II-

1
Attorney Docket No. 113221,00301

20
09

28
74

33

15
Ju

l2
01

1 [0064] Reference to any prior art throughout this specification is not, and should not

be taken as, an acknowledgement or any form of suggestion that such prior art forms part of

the common general knowledge in Australia.

-14a-

20
09

28
74

33

23
 A

pr
 2

01
4 CLAIMSJ.

What Is Claimed Is:

1. A method of automatically identifying malware, the method comprising:

receiving, by an expert system knowledge base of a computing device, an assembly

language sequence from a binary file provided by a code analysis component;

identifying, by the expert system knowledge base, an instruction sequence from the

received assembly language sequence;

classifying, by the expert system knowledge base, the instruction sequence as

threatening, non-threatening or non-classifiable by applying one or more rules of the expert

system knowledge base to the instruction sequence, wherein classifying the instruction

sequence as threatening comprises determining that the instruction sequence is unable to be

traversed from start to finish;

if the instruction sequence is classified as threatening, transmitting, by the expert

system knowledge base, information to the code analysis component, wherein the

information comprises a request that one or more other assembly language sequences from

the binary file be searched for at least a portion of the instruction sequence and one or more

of the following:

the instruction sequence, and

a label comprising an indication that the instruction sequence is threatening;

and

notifying a user that the binary file includes malware.

2. The method of claim 1, wherein applying one or more rules comprises applying one

or more rules written in C Language Integrated Production System language.

-15-

20
09

28
74

33

23
 A

pr
 2

01
4 3. The method of claim 1, wherein classifying the instruction sequence comprises one or

more of the following:

applying one or more worm defining operations to determine whether the instruction

sequence comprises one or more instructions that replicate the assembly language sequence;

applying one or more Trojan Horse defining operations to determine whether the

instruction sequence comprises one or more instructions associated with one or more Trojan

Horses; and

applying one or more virus defining operations to determine whether the instruction

sequence comprises one or more self-replicating instructions.

4. The method of claim 1, wherein applying one or more rules comprises:

applying a set of precedential rules to the instruction sequence, wherein the set of

precedential rules comprises a plurality of precedential rules, wherein each precedential rule

is associated with a precedence with respect to the other precedential rules in the set.

5. The method of claim 4, wherein applying a set of precedential rules comprises

applying the precedential rules to the instruction sequence, in order of precedence, until the

instruction sequence is classified or each precedential rule has been applied.

6. The method of claim 4, wherein applying a set of precedential rules comprises

ranking the precedential rules by giving precedence to rules having a higher number of

matches to the instruction sequence.

7. The method of claim 1, wherein classifying the instructions sequence comprises, for

each node in the instruction sequence:

-16-

20
09

28
74

33

23
 A

pr
 2

01
4 traversing the node;

determining whether the node has previously been traversed; and

if so, classifying the instruction sequence as threatening.

8. The method of claim 1, wherein classifying the instruction sequence comprises

classifying the instruction sequence as threatening if it includes one or more of the following:

encryption routines;

decryption routines; and

one or more instructions for replicating at least a portion of the instruction sequence.

9. A method of automatically identifying malware, the method comprising:

receiving, by an expert system knowledge base of a computing device, an assembly

language sequence from a binary file provided by a code analysis component;

identifying, by the expert system knowledge base, an instruction sequence from the

received assembly language sequence;

classifying, by the expert system knowledge base, the instruction sequence as

threatening, non-threatening or non-classifiable by applying one or more rules of the expert

system knowledge base to the instruction sequence, wherein classifying the instruction

sequence as non-threatening comprises determining that the instruction is able to be traversed

in its entirety;

if the instruction sequence is classified as non-threatening, transmitting, by the

expert system knowledge base, information to the code analysis component, wherein the

information comprises one or more of the following:

the instruction sequence, and

-17-

20
09

28
74

33

23
 A

pr
 2

01
4 a label comprising an indication that the instruction sequence is non­

threatening; and

requesting, by the expert system knowledge base, a second instruction sequence.

10. A method of automatically identifying malware, the method comprising:

receiving, by an expert system knowledge base of a computing device, an assembly

language sequence from a binary file provided by a code analysis component;

identifying, by the expert system knowledge base, an instruction sequence from the

received assembly language sequence;

classifying, by the expert system knowledge base, the instruction sequence as

threatening, non-threatening or non-classifiable by applying one or more rules of the expert

system to the instruction sequence; and

if the instruction sequence is classified as non-classifiable:

transmitting, by the expert system knowledge base, a request to the code

analysis component that the assembly language sequence be reanalyzed,

receiving, by the expert system knowledge base, a new instruction sequence

corresponding to the reanalyzed assembly language sequence, and

classifying, by the expert system knowledge base, the new instruction

sequence as threatening, non-threatening or non-classifiable.

11. A method of automatically identifying malware, the method comprising:

analyzing, by a code analysis component of a computing device, a binary file to

generate an assembly language sequence and a corresponding instruction sequence;

transmitting, by the code analysis component, the instruction sequence to an expert

system knowledge base;

-18-

20
09

28
74

33

23
 A

pr
 2

01
4 receiving, by the code analysis component from the expert system knowledge base,

classification information associated with the instruction sequence;

if the classification information identifies the instruction sequence as threatening:

identifying, by the code analysis component, one or more other assembly

language sequences from the binary file that comprise at least a portion of the

instruction sequence, and

transmitting, by the code analysis component, at least one of the identified

assembly language sequences to the expert system knowledge base;

if the classification information identifies the instruction sequence as non-threatening,

transmitting, by the code analysis component, a second instruction sequence to the expert

system knowledge base; and

if the classification information identifies the instruction sequence as non-classifiable:

reanalyzing, by the code analysis component, the assembly language

sequence to produce a new instruction sequence, and

transmitting, by the code analysis component, the new instruction sequence to

the expert system knowledge base.

12. The method of claim 11, wherein analyzing a binary file comprises one or more of

statically analyzing the binary file and dynamically analyzing the binary file.

13. A system for automatically identifying malware, the system comprising:

a code analysis component configured to identify an assembly language sequence

from a binary file, wherein the assembly language sequence comprises one or more

instruction sequences; and

-19-

20
09

28
74

33

23
 A

pr
 2

01
4 an expert system knowledge base in communication with the code analysis

component, wherein the expert system knowledge base is configured to classify the

instruction sequence as threatening, non-threatening or non-classifiable using one or more

rules, wherein the expert system knowledge base is configured to classify the instruction

sequence as threatening in response to determining that the instruction sequence is unable to

be traversed from start to finish, wherein the expert system knowledge base is configured to

classify the instruction sequence as non-threatening in response to determining that the

instruction sequence is able to be traversed from start to finish..

14. The system of claim 13, further comprising a connector logic component in

communication with the code analysis component and the expert system knowledge base,

wherein the connector logic component is configured to enable communication between the

code analysis component and the expert system knowledge base.

15. The system of claim 14, wherein the connector logic component is configured to

perform one or more of the following:

convert the instruction sequence into a format that the expert system knowledge base

can process; and

convert information received from the expert system knowledge base into a format

that the code analysis component can process.

16. The system of claim 13, wherein the expert system knowledge base is populated with

one or more of the following:

C Language Integrated Production System rules;

binary file structures;

-20-

20
09

28
74

33

23
 A

pr
 2

01
4 worm defining operations;

Trojan Horse defining operations; and

virus defining operations.

17. The system of claim 13, wherein the expert system knowledge base is configured to

classify the instruction sequence by one or more of the following:

applying one or more rules to the instruction sequence to determine whether a binary

file structure of the binary file is proper;

applying one or more worm defining operations to determine whether the instruction

sequence comprises one or more instructions that replicate the assembly language sequence;

applying one or more Trojan Horse defining operations to determine whether the

instruction sequence comprises one or more instructions associated with one or more Trojan

Horses; and

applying one or more virus defining operations to determine whether the instruction

sequence comprises one or more self-replicating instructions.

18. The system of claim 13, wherein the expert system knowledge base is configured to

apply a set of precedential rules to the instruction sequence, wherein the set of precedential

rules comprises a plurality of precedential rules, wherein each precedential rule is associated

with a precedence with respect to the other precedential rules in the set.

19. The system of claim 18, wherein the expert system knowledge base is further

configured to apply the precedential rules to the instruction sequence, in order of precedence,

until the instruction sequence is classified or each precedential rule has been applied.

-21-

20
09

28
74

33

23
 A

pr
 2

01
4 20. The system of claim 18, wherein the expert system knowledge base is further

configured to rank the precedential rules by giving precedence to rules having a higher

number of matches to the instruction sequence.

21. A method of automatically identifying malware substantially as herein described.

22. A system for automatically identifying malware substantially as herein described.

-22-

WO 2010/025453 PCT/US2009/055524

X
χ

1/6

Code Analysis
Component

100

Connector Logic
Component

150

X

\

FIG. 1

WO 2010/025453 PCT/US2009/055524

2/6

r*
3«
«j
Q>
CL
o

/\

WO 2010/025453 PCT/US2009/055524
} V

FIG. 3

WO 2010/025453 PCT/US2009/055524

4 / 6

FIG. 4

WO 2010/025453 PCT/US2009/055524

5/6

instruction
sequence

instruction 1
505

V V V

instruction 2 instruction 3 instruction 4

V V

instruction 5

J instruction 6

1

instruction 7

1 r

instruction 8
510

FIG. 5

WO 2010/025453 PCT/US2009/055524

6/S

Instruction
sequence

600

FIG. 6

