(12) STANDARD PATENT (11) Application No. AU 2009287433 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
System and method for detection of malware

(51) International Patent Classification(s)
GO6F 11/00 (2006.01)

(21) Application No: 2009287433 (22) Date of Filing: 2009.08.31
(87) WIPO No: WO10/025453

(30) Priority Data

(31) Number (32) Date (33) Country
61/092,848 2008.08.29 us
12/550,025 2009.08.28 us

(43) Publication Date: 2010.03.04

(44) Accepted Journal Date: 2014.06.05

(71) Applicant(s)
AVG Technologies CZ, S.R.O.

(72) Inventor(s)
Hicks, Ryan

(74) Agent/ Attorney
Pizzeys, PO Box 291, WODEN, ACT, 2606

(56) Related Art
US 2007/0094734 A1

20107025453 A1 |10 000 00 0 0 00 A

©

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

A T 0O A 0O
(10) International Publication Number

WO 2010/025453 A1

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 March 2010 (04.03.2010)

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GO6F 11/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
. L DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
PCT/US2009/055524 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
31 August 2009 (31.08.2009) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,

(25) Filing Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
61/092,848 29 August 2008 (29.08.2008) Us GM, KE, LS, MW, MZ, NA, 8D, SL, 82, TZ, UG, ZM,
12/550,025 28 August 2009 (28.08.2009) US ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(71) Applicant (for all designated States except US): AVG ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
TECHNOLOGIES CZ, S.R.O. [CZ/CZ]; Lidicka 31, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
602 00 Brno (CZ). TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

(72) Inventor; and ML, MR, NE, SN, TD, TG).

(75) Inventor/Applicant (for US only): HICKS, Ryan Declarations under Rule 4.17:
[US/CZ]; Smetanova 10, 602 00 Brno (CZ).

— as to the identity of the inventor (Rule 4.17(i))
(74) Agent: SINGER, James M.; Pepper Hamilton LLP, One Published:
Mellon Center, 50th Floor, 500 Grant Street, Pittsburgh, .
Pennsylvania 15219 (US). — with international search report (Art. 21(3))

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(54) Title: SYSTEM AND METHOD FOR DETECTION OF MALWARE

Binary file structures
210

Worm defining operations

215
. Expert System
Domain Expert Trojan Horse defining Kno‘\)v;ecg[ye Base
205 operations 200
220 l[:

Virus defining
operations
225

&

FIG. 2

(57) Abstract: A method of automatically identifying malware may include receiving, by an expert system knowledge base, an as-
sembly language sequence from a binary file, identifying an instruction sequence from the received assembly language sequence,
and classifying, by the expert system knowledge base, the instruction sequence as threatening, non-threatening or non-classifiable
by applying one or more rules of the expert system knowledge base to the instruction sequence. If the instruction sequence is clas-
sified as threatening, information may be transmitted to a code analysis component and a user may be notified that the binary file
includes malware. The information may include one or more of the following: the instruction sequence, a label comprising an in-
dication that the instruction sequence is threatening, and a request that one or more other assembly language sequences from the
binary file be searched for at least a portion of the instruction sequence.

WO 2010/025453 PCT/US2009/055524

A TITLE - SYSTEM AND METHOD FOR DETECTION OF MALWARE

7.

B. CROSS REFERENCE TO RELATED APPLICATIONS
{0001} This application claims the benefit of the filing date of U.S. Patent
Applicatton No. 12/550.025 filed August 28, 2009, which claims priority to U.S. Provisional

Patent Application No. 617092 848 filed Angust 29, 2008,

C. - E. Not Applicable

F. BACKGROUND

{0002} A binary file 1s often transferred between many computing devices. A
compuating device that receives a binary file i1s usually not aware of the origin of the file or
whether the code that it receives is safe. To ensure the security of 2 computing device, a
binary file can be disassembled to determine if the file contans malware such as viruses,
wornts, Trojan Horses andfor the like.

{0003} Typically, a disassembler translates a binary file fromt machine language into
assembly language. Some disassemblers are interactive and allow an expert programmer to
make annotations, corrections, clartfications or decisions regarding how the disassembler
analyzes a file. For example, a disassembler may signal when a new function or particular
section of code appears. When an identified action occurs, a particular section of the code
mayv be labeled for future reference. However, analysis of unknown executables can be a
time consynung process that is usually performed manually by specially wrained personnel, or

automatically by the use of statistical methods.

WO 2010/025453 PCT/US2009/055524

G. SUMMARY

{0004} Before the present methods arve described, 1t is to be understood that this
mvention is not mited to the particular systems, methodologies or protocols desenbed, as
these may vary. lItis also to be understood that the terminology used herein is for the purpose
of describing particular embodiments only, and is not intended to funit the scope of the
present disclosure which will be hmited only by the appended claims.

0005} It must be noted that as used herein and in the appended claims, the singular
forms “a,” “an,” and “the” include plaral reference unless the contexi clearly dictates
otherwise. Unless defined otherwise, all technical and scientific texms used herein have the
same meanings as commonly understood by one of ordinary skill in the art. As used herein,
the term “comprising” means “including, but not limited to.”

[0006] In an embodiment, a method of automatically identifving malware may
include receiving, by an expert system knowledge base, an assembly language sequence from
a binary file, identifying an instruction sequence from the received assembly language
sequence, and classifving, by the expert system knowledge base, the instruction sequence as
threatening, non-threatening or non-classifiable by applying one or move rules of the expert
system knowledge base to the instruction sequence. f the mstruction sequence is classified
as threatening, information may be ransmitted to a code analysis component and a user may
be notified that the binary file includes malware. The information may include one or more
of the following: the mstraction sequence, a label comprising an indication that the
istruction sequence is threatening, and a request that one or more other assembly language
sequences from the binary file be searched for at least a portion of the instruction sequence.

[0007] In an embodiment, a method of automatically identifying malware may
mnclude receiving, by an expert system knowledge base, an assembly language sequence from

a binary file, identifving an mstruction sequence from the received assembly language

32

WO 2010/025453 PCT/US2009/055524

sequence, and classifving, by the expert system knowledge base, the instruction sequence as
threatening, non-threatening or non-classifiable by applying one or more rules of the expert
system knowledge base to the mstruction sequence. 1f the instruction sequence s classified
as non-threatening, information may be transmitted to a code analysis component and a
second instruction sequence may be requested. The information may include one or more of
the following: the mstruction sequence and a tabel comprising an indication that the
nstruction sequence is non-threatening,

{0008} In an embodiment, a method of antomatically identifying malware may

mclude

recelving, by an expert system knowledge base, an assembly language sequence from a
binary file, identifving an instruction sequence from the received assembly langnage
sequence, and classifving, by the expert system knowledge base, the instruction sequence as
threatening, non-threatening or non-~classifiable by applying one or more rules of the expert
system to the instruction sequence. 1t the instruction sequence is classified as non-
classifiable, the method may include transmitting a request to a code analysis component that
the assembly language sequence be reanalyzed, receiving a new instruction sequence
cogresponding to the reanalyzed assembly language sequence, and classifying the new
instruction sequence as threatening, non-threatening or non-classifiable,

[0609] In an embodiment, a method of automatically identifving malware may
mnchude analvzing, by a code analysis component, a binary fite to generate an assembly
language sequence and a corresponding instruction sequence, transmitting the instruction
sequence to an expert system knowledge base and receiving, from the expert system
knowledge base, classification information associated with the instruction sequence. If the
classification information identifies the instruction sequence as threatening, the method may

mclude dentifying one or more other asserubly language sequences from the bmary file that

WO 2010/025453 PCT/US2009/055524

comprise at least a portion of the instruction sequence, and transmitting at feast one of the
tdentified assembly langoage sequences to the expert systent knowledge base. f the
classification information identifies the instruction sequence as non-threatemng, the method
may include transmitting a second instruction sequence to the expert system knowledge base.
If the classification iformation wdentifies the instruction sequence as non-classifiable, the
method may include reanalyzing the assembly language sequence to produce a new instraction
sequence, and transmitting the new justruction sequence to the expert system knowledge base.
[0016] In an embodiment, a system for atomatically wdentifving malware may
mclude
a code analysis component configured to identify an assembly language sequence including
one or more instruction sequences from a binary file, and an expert system knowledge base in
communication with the code analysis component. The expert system knowledge base may
be configured to classify the instruction sequence as threatening, non-threatening or non-

classifiable using one or more rules.

H. BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Aspects, features, benefits and advantages of the embodiments described
herein will be apparent with regard to the following description, appended claims, and
accompanying drawings where:

{0012} FIG. 1 illustrates an exemplary malware detection svstem according to an
embodinment.

{0013} FIG. 2 illustrates an exemplary expert svstem knowledge base according to an
embodiment.

{0014} FIG. 3 i}lustrates a flowchart of an exemplary method for detecting and

analyzing malware according to an embodument.

4.

WO 2010/025453 PCT/US2009/055524

{0015} FIG. 4 illustrates a block diagram of an exemplary system that may be used to
contain or implement program instractions according to an embodiment,
{0016} FIGS. S and 6 illustrate exemplary instruction sequences according to an

embodiment.

I DETAILED DESCRIPTION

{0017} Before the present methods and svstens are described, it is to be understood
that this invention is not humnited to the particular systems, methodologies or protocols
described, as these may vary. It is also to be understood that the terminology used herein is
for the purpose of describing particular embodiments only, and is not intended to limut the
scope of the present disclosure which will be limited only by the appended claims.

{0018} As used herein and in the appended claims, the singular forms “a,” “an,” and
“the” include the plural reference unless the context clearly dictates otherwise. Unless
defined otherwise, all technical and scientific terms used herein have the same meanings as
commonly understood by one of ordinary skill in the art. As used herein, the term
“comprising” means “including, but not limited to.”

[0619] For the purpose of the description below, a “node” refers to a sequence of
instructions within an assembly language sequence that is executed by a processor.

{0020} An “assembly language” refers to a computer programming language that
implements a symbolic representation of numeric machine codes.

{0021} An “assembly language sequence” refers to a sequence of nodes written in
assembly fanguage.

{0022} A “binary file” refers to a computer file that includes data encoded in binary

format. An executable file is a type of binary file.

5.

WO 2010/025453 PCT/US2009/055524

[0023] “Malware™ 1s malicious software designed to disrupt, infiltrate or damage a
computer system. Examples of mabware include viruses, worms, trojun horses, adware,
spyware, root kits andfor the like.

[0024] An “expert system” is agtificial intefligence software and/or firmware that is
designed to sunulate the decision making process of a human in a specific problem domain.

[0025] FIG. 1 illustrates a malware detection system according to an embodiment. A
malware detection system may include a code analysis component 168, an expert system
knowledge base 200 and/or a connector logic component 150, In an embodiment, the code
analysis component 180, expert svstemy knowledge base 200 and/or connector logic
component 18 may be implemented using software, hardware or a combination of software
and bardware. In an embodiment, the code analysis component 100, expert system
knowledge base 200 and/or connector logie component 1588 may reside on the same
computing device. Alternatively, the code analysis component 180, expert system knowledge
base 200 and/or comnector logic component 150 may reside on different conputing devices in
comnwnication with one another.

{0026} In an embodiment, a code analysis component 100 may analyze binary files
such as, but not himited to, executables. In an embodiment, a code analysis component 160
may statically or dynamically analyze binary files. Static analysis may include analyzing a
bmary file that is not currently being executed. In comparison, dynamic analysis may include
analvzing a binary file while the binary file 15 being executed.

10027} In an embodiment, a code analysis component may be implemented using
software, hardware or a combination of software and hardware. In an embodiment a code
analysis component 100 may include a disassembler, a debugger, a decompiler andfor the
fike. For example, the code analysis component 108 may be a disassembler, such as IDA

Pro.

-6

WO 2010/025453 PCT/US2009/055524

[0028] A code analysis component may analyze a binary file to create an assembly
language sequence. In an embodinent, the assembly langoage sequence may include a
human-readable represeutation of the binary file. The code analysis component 160 may
mnclude internal rules and/or operations which may be used to create an assembly language
sequence from the binary file. The code analysis component 100 may analyze the assembly
language sequence to determine an mstruction seguence.

0029} In an embodiment, a code analysis component 100 may interact with external
devices to analyze a binary file. For example. as discussed below, the code analysis
component 180 may communicate with an expert system knowledge base 200.

0030} As illustrated by FIG. 1, the malware detection system may include an expert
system knowledge base 200. In an cmbodiment, an expert system knowledge base 200 may
include a representation of a human’s expertise i a particular area. For example, an expert
system knowledge base 200 may include information, data, rules and/or the like to model the
knowledie and practices of an expertenced conputer analyst.

{0031} In an embodiment, the expert system knowledge base 200 may be
implemented using the € Language Integrated Production System (“CLIPS™). CLIPSisa
programmng language and software tool that may be used to create expert systems.

{0032} FIG. 2 tllustrates an expert system knowledge base according to an
embodiment. The expert svstem knowledge base 200 may mclude mternal rules andfor
operations. In an embodiment, these mternal rules andfor operations may be applied to an
instruction sequence from an assembly language sequence to determine whether the assembly
language sequence contains malware. In an embodiment, the mnternal rules and/or operations
may represent the encoding of human expertise.

{00331 In an embodiment, a domain expert 205 may populate the expert system

knowledge base 200. A domain expert may be, but 1s not limited to, a human being who has

WO 2010/025453 PCT/US2009/055524

expertise i analyzing malware. In an embodiment, a domain expert 205 may be a computing
device configured to provide the expert system knowledge base 260 with internal rules and/or
operations that may represent the encoding of human expertise. For example, a compating
device may automatically provide the expert system knowledge base 200 with updates,
enhancements or the like for one or more mternal rules and/or operations.

{0034} In an embodiment, the expert system knowledge base 200 may be populated
with binary file structures 210, A binary file structure may be a template that depicts one or
more portions of a binary file and/or a sequence of the portions in a binary file. The Binavy
file structures 210 may be used to analyze whether a file structure is proper. For example, a
binary file structure 210 may be analyzed to determine if the header on the file conforms to a
protocol.

[0035] In an embodiment, the expert system knowledge base 200 may be populated
with worm defining operations 215, Worm defining operations 215 may dentify nstruction
sequences which replicate an assembly language sequence.

0036} In an embodiment, the expert system knowledge base 200 may be populated
with Trojan Horse defining operations 220. Trojan Horse defining operations 220 may
wdentify mstruction sequences w an assembly language sequence that are associated with one
or more Trojan Horses.

{0037} In an embodiment, the expert system knowledge base 200 may be populated
with virus defining operations 228, Virus defining operations 228 may identify self-
replicating instruction sequences in an assembly language sequence. Additional and/or
alternative operations may be included in the expert system knowledge base 200

0038} Referring back to FIG. 1, the malware detection system may include a

connector logic component 150, A connector fogic component 130 may enable

WO 2010/025453 PCT/US2009/055524

communication between the code analysis component 100 and the expert system knowledge
base 200

{0039} In an embodiment, the assembly language sequence sent from the code
analysis component 100 may be in a format which cannot be directly processed by the expert
system knowledge base 200. The code analysis component 100 may communicate the
assembly tanguage sequence to the connector fogic component 150, The counector logic
component 180 may convert the instruction sequence into a format that the expert system
knowledge base 200 can process. The connector fogic component 150 may send the newly
converted instruction sequence to the expert systeny knowledge base 200,

{0040} Sinularlv, the connector logic component may obtain information from the
expert system knowledge base 200. The connector logic component may convert the
mformation from the expert system knowledge base 200 mto a format that is readable by the
code analysis component 100 and transmit the converted information to the code analysis
component.

j0041] FI1G. 3 depicts a flowchart of a method for detecting and analyzing malwave
according to an embodiment. A binary file may be received by the code analysis component.
The code analysis component may analyze the file to obtain an assembly language sequence
and an instruction sequence, The code analysis component may send the assembly language
sequence with the instruction sequence to the expert system knowledge base via the
connector togic component.

{0042} The expert system knowledge base may receive 300 the assembly language
sequence. In an embodiment, the expert system knowledge base may identify 3035 the
instruction sequence from the assembly language sequence.

[0043] The expert system knowledge base may apply internal operations and/or rules

to classify 315 the instruction sequence. inan embodiment, the classification may be used to

9.

WO 2010/025453 PCT/US2009/055524

determine if the wstruction sequence contains malware. For example, in an embodument, the
expert system knowledge base nuay classity the instruction sequence as non-threatening 3185,
threatening 339 or non-classifiable 345, Additional andi/or alternate classifications may be
used within the scope of this disclosure.

{0044} In an embodiment, the expert system knowledge base may traverse through
the nodes and branches of a received instruction sequence using one or more internal rules
and/or operations. In an embodiment, the expert system knowledge base apply a group of
precedential rules to the received instruction sequence. Each rule in the set of precedential
rules may have a ranking with respect to the other precedential rules m the set. In an
embodiment, the rules may be ranked based on the number of matches between each rule and
the mstraction sequence. For example, the instruction sequences that are most similar to the
match criteria of a rule may cause that rule to be given a highest priority for a given traversal.
Alternatively, the nstruction sequences that are least simmlar to the match criteria of a rule
may cause that rule to be given a lowest priority for a given traversal.

0045} CLIPS provides contlict resolution strategies such as a complexity strategy
and a simplicity strategy which give precedence to the most and least specific matches,
respectively. In an embodiment, such strategies may be emploved to rank the rules as to
those which most specifically match the instraction sequence.

{0046] In an embodiment, the expert system knowledge base may apply the rule
associated with the bighest precedence to the mstruction sequence. In an embodiment, one or
more additional precedential rules from the group may be applied, in the order of their
precedence, to the instruction sequence until the instruction sequence is classitied or untit all
precedential rules have been applied.

{00471 1f. when applying a rule or rules, the expert system knowledge base traverses

the instruction sequence from start to finish, then the instruction sequence may be classified

-10-

WO 2010/025453 PCT/US2009/055524

as non-threatening 315, For example, FIG. 5 illustrates an exemplary instruction sequence
according to an embodiment, If the expert system knowledge base is able to traverse the
entire instruction sequence 300 from start (Instruction 1 508) to finish (Instruction 8 $10),
then the instruction sequence 508 may be classified as non-threatening.

{0048} In an embodiment, the expert system knowledge base may transmit 320
mformation signifving that the justruction sequence 18 non-threatening to the code analysis
component. In an embodiment, the information may inclode a label attached to the
mstruction sequence ndicating that the nstruction sequence is non-threatening.

{0049} In an embodiment, i response to classifyving an instruction sequence as non-
threatening, the expert system knowledge base may request 328 a new assembly sequence
with a new instruction sequence to analyze from the code analysis component.

{0050} In an embodiment, the expert system knowledge base may classify an
nstruction sequence as threatening 330 if the expert system knowledge base is unable to
traverse cach instruction of the instruction sequence. For example, the expert system
knowledge base may analyze the instruction sequence by traversing the instructions of the
instruction sequence to determine if there is malware. For example, a loop may be an
wmdicator of malware. If during the waversal, the expert system knowledge base arrives at an
instruction that it already analvzed, the expert system knowledge base may determine that the
mstruction sequence forms a loop. In an embodiment, the expert system knowledge base
may classify an instruction sequence having one or more loops as threatening. ¥I1G. 6
itlustrates an exemplary instruction sequence according to an embodiment. As iflustrated by
FIG. 6, the instruction sequence 600 may be classified as threatening because it includes a
toop from Instruction 6 603 to Instruction 4 610

{0051} In an embodiment, other activities that may be indicative of mahware or other

nefarious behaviors may melude encryption/decryption routines, replicating code, key

~1i-

WO 2010/025453 PCT/US2009/055524

logging, independent imitiation of network communication, communication with known
hostile or suspicious network hosts and/or the bke. As such, an mstruction sequence that
mcludes one or more of these activities may be classified as threatening. Additional and/or
alternate activities may be mdicative of malware within the scope of this disclosure.

{0052} In an embodiment, the expert system knowledge base may transmit 335
mformation signifving that the justruction sequence 1s threatening to the code analysis
component. The information may be sent to the code analysis component via the connector
logic component, which may translate the information into a form readable by the code
analysis component. {n an embodiment, the information may include a label attached to the
instruction sequence indicating that the instruction sequence is threatening.

{0053} In an embodiment, the information may include a request that the code
analysis component search other assembly language sequences for at least a portion of an
instruction sequence that was previously analyzed 340. For example, the code analysis
component may scarch other assembly language sequences for the loop discussed in the
previous example. In an embodiment, the code analysis component may use its internal
operations and/or rules to translate and/or analyze the information to determine whether at
least a portion of an instruction sequence 1s present inside the assembly language sequences.
If the code analysis component finds the same instruction sequence or portion thereof, the
code analysis component may send the relevant assembly language sequence and instruction
sequence to the expert system knowledge base.

{0054} In an embodiment, the expert system knowledge base may determine 345
whether an instruction sequence is non-classifiable. An instruction sequence may be
identified as being non~-classifiable if the expert system knowledge base is unable to
determine whether the imstruction sequence 1s threatening. For example, a programmer who

created a binary file may have mtentionally used methods to obfuscate the workings of the

WO 2010/025453 PCT/US2009/055524

file prevent the code analysis component from issuing the correct instruction sequence. As
such, the code analysis component may send an tncomplete or nonsensical instruction
sequence to the expert system knowledge base via the connector logic component.

[0055] The expert system knowledge base may analyze each node of the instruction
sequence using its internal rules and/or operations. Based on its analysis, the expert system
knowledge base may transmit 350 a request to the code analysis component to reinterpret a
particular node or series of nodes. For example, the expert system knowledge base may
request that the code analysis component generate a new imstroction sequence for a particalar
node.

{0056} In an embodiment, the request may include alternate considerations for the
code analysis component in analyzing the assembly sequence. For example, in some
mmstances, the code analysis component may not be able 1o properly analyze an assembly
sequence. As such, it may be necessary for the expert system knowledge base to provide
mformation to the code analysis component that will allow the analysis to continue. For
example, the expert system knowledge base may detect that an incorrect instruction sequence
should be altered or ignored to allow the analysis to continue. In an embodiment, this
mformation may be included in a request to the code analysis component.

{0057} In an embodiment, the code analysis component may use its internal rules
and/or operations reanalyze the assembly langoage sequence and instruction sequence. The
expert svstem knowledge base may receive 3458 the reanalyzed assembly language sequence
and new instruction sequence from the code analysis component via the connector fogic
component, The expert system knowledge base mayv traverse the new instruction sequence to
determine its classification,

{0058} FIG. 4 depicts a block diagram of an exemplary system that may be used to

contain or implement program instructions according to an embodiment. Referring to FIG. 4,

WO 2010/025453 PCT/US2009/055524

a bus 400 serves as the main information highway interconnecting the other llustrated
components of the hardware. CPU 405 is the central processing umit of the system,
perforning calculations and logic operations required to execute a program. Read only
memory (ROM) 410 and random access memory (RAM) 415 constitute exemplary memory
devices or storage media.

{00591 A disk controtler 420 interfaces with one or nwore optional disk drives to the
system bus 400. These disk drives may include, for example, external ov internal DVD drives
425 CD ROM drives 430 or hard dvives 435, As indicated previously, these various disk
drives and disk controllers are optional devices.

{0060} Program mnstructions may be stored in the ROM 418 and/or the RAM 415
Optionally, program instructions may be stored on a computer readable storage medium, such
as a hard drive, a compact disk, a digital disk, a memory or any other tangible recording
medium.

{0061} An optional display interface 440 may permit information front the bus 400 to
be displayed on the display 445 in audio, graphic or alphanumeric format. Communication
with external devices may occur using various communication ports 450

[0062] In addition to the standard computer-type components, the hardware may also
include an interface 435 which allows for receipt of data from input devices such as a
kevboard 460 or other input device 463 such as a mouse, remote control, touch pad or sereen,
pointer and/or joystick.

10863} It will be appreciated that various of the above-disclosed and other features
and functions, or alternatives thereof, may be desirably combined into many other different
systems or applications. Also that various presently unforeseen or unanticipated alternatives,
modifications, variations or improvements therein may be subsequently made by those skilled

m the art which are also intended to be encompassed by the following embodiments.

-14-

15 Jul 2011

2009287433

Attorney Docket No. 113221.00301

[0064] Reference to any prior art throughout this specification is not, and should not
be taken as, an acknowledgement or any form of suggestion that such prior art forms part of

the common general knowledge in Australia.

-14a-

23 Apr 2014

2009287433

J. CLAIMS
What Is Claimed Is:
l. A method of automatically identifying malware, the method comprising:

receiving, by an expert system knowledge base of a computing device, an assembly
language sequence from a binary file provided by a code analysis component;

identifying, by the expert system knowledge base, an instruction sequence from the
received assembly language sequence;

classifying, by the expert system knowledge base, the instruction sequence as
threatening, non-threatening or non-classifiable by applying one or more rules of the expert
system knowledge base to the instruction sequence, wherein classifying the instruction
sequence as threatening comprises determining that the instruction sequence is unable to be
traversed from start to finish;

if the instruction sequence is classified as threatening, transmitting, by the expert
system knowledge base, information to the code analysis component, wherein the
information comprises a request that one or more other assembly language sequences from
the binary file be searched for at least a portion of the instruction sequence and one or more
of the following:

the instruction sequence, and
a label comprising an indication that the instruction sequence is threatening;
and

notifying a user that the binary file includes malware.

2. The method of claim 1, wherein applying one or more rules comprises applying one

or more rules written in C Language Integrated Production System language.

-15-

23 Apr 2014

2009287433

3. The method of claim 1, wherein classifying the instruction sequence comprises one or
more of the following:

applying one or more worm defining operations to determine whether the instruction
sequence comprises one or more instructions that replicate the assembly language sequence;

applying one or more Trojan Horse defining operations to determine whether the
instruction sequence comprises one or more instructions associated with one or more Trojan
Horses; and

applying one or more virus defining operations to determine whether the instruction

sequence comprises one or more self-replicating instructions.

4. The method of claim 1, wherein applying one or more rules comprises:
applying a set of precedential rules to the instruction sequence, wherein the set of
precedential rules comprises a plurality of precedential rules, wherein each precedential rule

is associated with a precedence with respect to the other precedential rules in the set.

S. The method of claim 4, wherein applying a set of precedential rules comprises
applying the precedential rules to the instruction sequence, in order of precedence, until the

instruction sequence is classified or each precedential rule has been applied.

6. The method of claim 4, wherein applying a set of precedential rules comprises

ranking the precedential rules by giving precedence to rules having a higher number of

matches to the instruction sequence.

7. The method of claim 1, wherein classifying the instructions sequence comprises, for

each node in the instruction sequence:

-16-

23 Apr 2014

2009287433

traversing the node;
determining whether the node has previously been traversed; and

if so, classifying the instruction sequence as threatening.

8. The method of claim 1, wherein classifying the instruction sequence comprises
classifying the instruction sequence as threatening if it includes one or more of the following:
encryption routines;
decryption routines; and

one or more instructions for replicating at least a portion of the instruction sequence.

9. A method of automatically identifying malware, the method comprising:

receiving, by an expert system knowledge base of a computing device, an assembly
language sequence from a binary file provided by a code analysis component;

identifying, by the expert system knowledge base, an instruction sequence from the
received assembly language sequence;

classifying, by the expert system knowledge base, the instruction sequence as
threatening, non-threatening or non-classifiable by applying one or more rules of the expert
system knowledge base to the instruction sequence, wherein classifying the instruction
sequence as non-threatening comprises determining that the instruction is able to be traversed
in its entirety;

if the instruction sequence is classified as non-threatening, transmitting, by the
expert system knowledge base, information to the code analysis component, wherein the
information comprises one or more of the following:

the instruction sequence, and

-17-

23 Apr 2014

2009287433

10.

a label comprising an indication that the instruction sequence is non-
threatening; and

requesting, by the expert system knowledge base, a second instruction sequence.

A method of automatically identifying malware, the method comprising:

receiving, by an expert system knowledge base of a computing device, an assembly

language sequence from a binary file provided by a code analysis component;

identifying, by the expert system knowledge base, an instruction sequence from the

received assembly language sequence;

classifying, by the expert system knowledge base, the instruction sequence as

threatening, non-threatening or non-classifiable by applying one or more rules of the expert

system to the instruction sequence; and

11.

if the instruction sequence is classified as non-classifiable:

transmitting, by the expert system knowledge base, a request to the code
analysis component that the assembly language sequence be reanalyzed,

receiving, by the expert system knowledge base, a new instruction sequence
corresponding to the reanalyzed assembly language sequence, and

classifying, by the expert system knowledge base, the new instruction

sequence as threatening, non-threatening or non-classifiable.

A method of automatically identifying malware, the method comprising:

analyzing, by a code analysis component of a computing device, a binary file to

generate an assembly language sequence and a corresponding instruction sequence;

transmitting, by the code analysis component, the instruction sequence to an expert

system knowledge base;

-18-

23 Apr 2014

2009287433

receiving, by the code analysis component from the expert system knowledge base,
classification information associated with the instruction sequence;
if the classification information identifies the instruction sequence as threatening:
identifying, by the code analysis component, one or more other assembly
language sequences from the binary file that comprise at least a portion of the
instruction sequence, and
transmitting, by the code analysis component, at least one of the identified
assembly language sequences to the expert system knowledge base;
if the classification information identifies the instruction sequence as non-threatening,
transmitting, by the code analysis component, a second instruction sequence to the expert
system knowledge base; and
if the classification information identifies the instruction sequence as non-classifiable:
reanalyzing, by the code analysis component, the assembly language
sequence to produce a new instruction sequence, and
transmitting, by the code analysis component, the new instruction sequence to

the expert system knowledge base.

12. The method of claim 11, wherein analyzing a binary file comprises one or more of

statically analyzing the binary file and dynamically analyzing the binary file.

13. A system for automatically identifying malware, the system comprising:
a code analysis component configured to identify an assembly language sequence
from a binary file, wherein the assembly language sequence comprises one or more

instruction sequences; and

-19-

23 Apr 2014

2009287433

an expert system knowledge base in communication with the code analysis
component, wherein the expert system knowledge base is configured to classify the
instruction sequence as threatening, non-threatening or non-classifiable using one or more
rules, wherein the expert system knowledge base is configured to classify the instruction
sequence as threatening in response to determining that the instruction sequence is unable to
be traversed from start to finish, wherein the expert system knowledge base is configured to
classify the instruction sequence as non-threatening in response to determining that the

instruction sequence is able to be traversed from start to finish..

14. The system of claim 13, further comprising a connector logic component in
communication with the code analysis component and the expert system knowledge base,
wherein the connector logic component is configured to enable communication between the

code analysis component and the expert system knowledge base.

15. The system of claim 14, wherein the connector logic component is configured to
perform one or more of the following:

convert the instruction sequence into a format that the expert system knowledge base
can process; and

convert information received from the expert system knowledge base into a format

that the code analysis component can process.

16. The system of claim 13, wherein the expert system knowledge base is populated with
one or more of the following:
C Language Integrated Production System rules;

binary file structures;

-20-

23 Apr 2014

2009287433

worm defining operations;
Trojan Horse defining operations; and

virus defining operations.

17. The system of claim 13, wherein the expert system knowledge base is configured to
classify the instruction sequence by one or more of the following:

applying one or more rules to the instruction sequence to determine whether a binary
file structure of the binary file is proper;

applying one or more worm defining operations to determine whether the instruction
sequence comprises one or more instructions that replicate the assembly language sequence;

applying one or more Trojan Horse defining operations to determine whether the
instruction sequence comprises one or more instructions associated with one or more Trojan
Horses; and

applying one or more virus defining operations to determine whether the instruction

sequence comprises one or more self-replicating instructions.

18. The system of claim 13, wherein the expert system knowledge base is configured to
apply a set of precedential rules to the instruction sequence, wherein the set of precedential
rules comprises a plurality of precedential rules, wherein each precedential rule is associated

with a precedence with respect to the other precedential rules in the set.

19. The system of claim 18, wherein the expert system knowledge base is further

configured to apply the precedential rules to the instruction sequence, in order of precedence,

until the instruction sequence is classified or each precedential rule has been applied.

21-

23 Apr 2014

2009287433

20. The system of claim 18, wherein the expert system knowledge base is further

configured to rank the precedential rules by giving precedence to rules having a higher

number of matches to the instruction sequence.

21. A method of automatically identifying malware substantially as herein described.

22. A system for automatically identifying malware substantially as herein described.

22-

WO 2010/025453

PCT/US2009/055524

1/6

Code Analysis
Component N
100 .
N\
/;
/
Comnector Logic //
Component 4
150 N
N\
\
A
|
/
f/
Expert System /
Knowladge Base d
200

FIG. 1

PCT/US2009/055524

WO 2010/025453

81474
aseq sbpejpouyy
wayshs padxg

¢ 9Old

St
suogesedo
Buiuysp snaa

, 02Z
suaesado
Busuyop osioH uefai g

SiZ
suoiriado Buuyap wioas

oLe
SSINONUIS 8y Areuig

1874
Usdxg wewog

WO 2010/025453 PCT/US2009/055524

(SR

Renmwe & frst assembly
BNGUIGE SRQuUENGK
A
ARG

v

lcantify & frsd instrucihon sequence
frem the fiest assenbly lanquage
SRGUBIC
RIS

¥

the firsti
sequane
R$1

stroction

¥ L 4 ¥

Qetermine whethsr e finst {oteeming whether the fieal Deturniing whether the first
SN FOTUENRCR 18 ok SN SeRUEnCR i INSURACHON SRS IS 10N
ihraRtening theparoning clasadtisbia

418 330 R

¥ Y ¥

Transrut ioemation sig
fhaet te frst Insioschion se

5%

Teansani informiation signifyiag that
the firsd inglruction seguens is

#

Transrait 3 eequest g & secand

~ Y ") Mstes \ﬁ-i M SRGUANDR
i3 nanhregioning thveatening AIBTEICTON BaGUANDR
336 X5

SR

4 ¥

.) Receivs o secom wairect
Raquast a second avsemby Request 8 setend assernbiy PIECEIRE & BECUS I
BT, ALRTIAG N fraun @ resnaiyred 3asemp
IINGUAGY seUuRNCH RHERIGRKT GEUence ’
RYR 240 QLR

FIG. 3

WO 2010/025453 PCT/US2009/055524

2/6
480 N . -~ 465
Keyboard Mouse
,«“‘"’445
Display
405 1455
CPU Interface 440
Display
Interface
| ’ | (400
Disk , I 1 Communication
Controller ROM RAM Ports
430~
" Hord] 220
b RoM Drive
1425

DVD

FIG. 4

WO 2010/025453

PCT/US2009/055524

instruction
sequence
500

 instruction
505

Instruction 2

instruction 3

instruction 4

l

instruction &

l

Instruction 7

instruction 8
510

l

instruction 6

FIG. 5

WO 2010/025453

PCT/US2009/055524

instruction
sequence
800

 instruction 1

Instruction 2

l

Instruction 4
810

l

fhstruction 8
805

instruction 3

l

instruction B

FIG. 6

