(54) Process for laminating plies of tissue paper and laminated tissue paper

(57) In a process for laminating plies of tissue paper, at least two plies (1, 2) of tissue paper are combined and are embossed together in at least one embossing nip so that they are provided with substantially identical embossing patterns which consist of embossing protrusions. The embossed plies (1, 2) are then separated, and the separated plies (1, 2) are then displaced relatively to each other and are recombined. In the resultant recombed tissue, the maximum distance \(D \) in the displacement direction between an embossing protrusion of a first ply (1) and an embossing protrusion of a second ply (2), which has been displaced relatively to said first ply (1), is set as a function of the height \(H \) of the embossing protrusions and the length \(L \) of the embossing protrusions in the displacement direction of the two plies (1, 2), so that \(D \) is equal to the smaller one of the values of \(12H \) and \(14L \). A tissue paper laminated by way of the afore-mentioned process is also described.
Technical field

[0001] The present invention relates to a process for laminating plies of tissue paper according to the preamble of claim 1, and to a laminated tissue paper according to the preamble of claim 10.

[0002] It is known to create bulk in a hygiene paper product, e.g. toilet paper, household towels, hand wipes, handkerchiefs, napkins, serviettes or the like by embossing. Embossment patterns are produced by feeding tissue plies through at least one embossing unit. Subsequently, the tissue plies are generally ply bonded to produce, for example, a 2-ply or a 4-ply tissue paper.

[0003] The creation of bulk by embossing is limited by various factors. The depth of the pattern, the hardness of the backing roll in an embossing unit for steel/rubber embossing, the type of embossing pattern, if union embossing is used and, last but not least, the tissue paper itself are all factors which can limit the bulk that is achievable in a hygiene paper product.

Prior art

[0004] EP-A-0,344,056 describes a process and apparatus for producing a multi-ply embossed fibrous sheet. Separate non-woven fibrous webs are combined into a multi-ply sheet before embossment, embossed as a multi-ply sheet, the embossed webs separated from one another and longitudinally displaced relative to one another, and then recombined into an embossed multi-ply sheet with the embossments out of register with one another. However, the disclosed process results in a multi-ply sheet with a thickness essentially the same as that embossed with the same pattern and not separated and recombined in a displaced manner after embossing.

[0005] US 3,668,055 discloses superimposed embossed packaging sheets. A series of sheets of relatively heavy paper or similar matted fibrous materials are embossed and then passed through shorter or longer paths of travel before again being assembled so that their matching mounds and recesses are offset in such a manner that they no longer match. The disclosed method is, however, designed for kraft paper and is not suitable for tissue paper.

[0006] Generally, the superimposed sheets are intended to be offset so that nesting of the embossing protrusions of the respective plies is prevented. However, depending on the spacing between the embossing protrusions, there may be a tendency toward partial nesting of the embossing protrusions, leading to a decrease in the thickness of the superimposed embossed sheets.

Summary of the invention

[0007] The object underlying the present invention is to provide a process for laminating plies of tissue paper, as well as a laminated tissue paper, of the above mentioned kind, wherein bulk is increased in an easy manner.

[0008] This object is achieved by a method as described in claim 1 and a laminated tissue paper as described in claim 10, respectively.

[0009] According to the invention, at least two plies of tissue as it is used for manufacturing hygiene paper products, for example toilet paper, household towels, or the like, are embossed with one and the same embossing nip. Both plies are provided with substantially the same embossing pattern consisting of embossing protrusions. The protrusions of the ply which is nearest to the embossing roll stack backwards into the indentations (protrusions) of the second ply. The generated bulk of the paper depends on the height of the protrusions, i.e. the embossing depth.

[0010] In accordance with the invention, the plies are then separated, for example in a so-called separating nip, and subsequently merged (recombined), for example, in a so-called merging nip. The embossing protrusions of the plies extend in the same direction. The path length for each individual ply between separation and merging is set to be different. According to the present invention, the maximum distance D in the displacement direction between an embossing protrusion of a first ply and an embossing protrusion of a second ply, which has been displaced relatively to said first ply, is set as a function of the height H of the embossing protrusions and the length L of the embossing protrusions in the displacement direction of the two plies, so that D is equal to the smaller one of the values of $12H$ and $14L$. The embossing displacement can be subsequently fixed by any conventional, well-known ply bonding technique. In this manner, by setting the phase displacement between the tissue paper plies at a specified value such that the embossing patterns of the respective plies are not in register, and recombining the plies with this displacement, the resulting laminated tissue paper has an increased thickness, which creates more volume in the product. Thus, according to the invention, an improved laminated tissue paper or sheet and process of manufacturing same in an easy and reliable manner is provided while simultaneously increasing the bulk as compared to conventional techniques and products.

[0011] The embossing protrusions of the respective tissue plies are reliably prevented from nesting, and the recom
bined tissue paper has an increased volume as compared to the two plies the protrusions of which are in register,
before having displaced the plies. Moreover, the defined distance D in the displacement direction between an emboss-
ning protrusion of a first ply and an embossing protrusion of a second ply prevents the unembossed areas on one ply
from being pressed down under the effect of gravity by the embossing protrusions of the other ply.

[0012] The higher bulk gives an improved sensation of bulk softness, a critical feature for the feeling of softness.
The increase in thickness moreover creates a textile-like appearance which is a very desirable feature of high quality
tissue paper products.

[0013] The plies of laminated tissue paper may then be ply bonded in a mechanical or adhesive ply bonding process
which is per se known in the art. Mechanical ply bonding can e.g. be achieved by application of high pressure in an
additional embossing nip or the like. Ultrasonic welding can also be used for ply bonding (see US patent application
No. 60-341803). In the case of adhesive ply bonding, the glue can be added to all the protrusions of one ply or to just
some of them. The paper can also be further embossed in a further embossing nip.

[0014] On one side of the recombined tissue, the embossing protrusions will extend outwards. This might slightly
impair the aesthetic appearance and the haptics of the product. To avoid this, another ply, either unembossed or em-
bossed, can be joined to the laminate. In case an embossed ply is used, the embossing protrusions thereof ought to
be directed inwards.

Brief description of the drawings

[0015] The invention will be explained below with reference to the attached schematic drawings, wherein:

Figs. 1 to 5 show five different apparatuses for carrying out the process according to the invention;

Fig. 6 shows a laminated tissue paper according to the invention, a) before displacing the two plies and b)
after displacing the two plies; and

Fig. 7 shows an apparatus for carrying out a conventional tissue laminating process, without displacing the
plies.

Preferred embodiments of the invention

[0016] Preferred, exemplary embodiments of the process according to the invention will now be explained with ref-
erence to the Figures, wherein like elements are shown with the same reference signs.

[0017] Fig. 1 shows a first embodiment of an apparatus for carrying out the process according to the invention. The
apparatus serves for embossing and combining four plies 1, 2, 3, 4 of tissue in the form of a fibrous web, and operates
as follows. Two plies 1, 2 are combined and fed to a bottom embossing roll 10 by means of which they are embossed
in combination. The two plies 1, 2 are embossed with one and the same nip and, therefore, provided with the same
embossing pattern consisting of embossing protrusions. The protrusions of the ply 2 which is nearer to the embossing
roll 10 stack into the protrusions of the other ply 1.

[0018] The embossed tissue plies 1, 2 are then separated and displaced relatively to one another so that the em-
bossing protrusions are not in register with each other. In this first embodiment, this displacement or phase difference
between plies 1 and 2 is effected by passing ply 1 over a deviating roll 15 so that it travels along a longer path than
ply 2. Although it does not follow directly from Figure 1, the maximum distance D in the displacement direction between
an embossing protrusion of the first ply 1 and an embossing protrusion of the second ply 2, which is displaced relatively
to said first ply 1, is set as a function of the height H of the embossing protrusions and the length L of the embossing
protrusions in the displacement direction of the two plies 1, 2, so that D is equal to the smaller one of the values of
12H and 14L (see also Figure 6, which will be explained in more detail further below).

[0019] Subsequently, the plies 1, 2 are recombined at a merging roll which, in this case, is a design roll 20. Thus,
plies 1 and 2 are recombined such that their respective embossing patterns are no longer in phase, i.e. out of register,
to the degree that D is equal to the smaller one of the values of 12H and 14L.

[0020] Meanwhile, two further plies 3, 4 are fed to a top embossing roll 11 and are also embossed in combination.
Afterwards, they are also fed to the design roll 20. A glue application roll 30 is provided for applying glue to the upper
one of the plies 3, 4. It is to be noted that design roll 20 can also correspond to a further embossing roll to apply a
further embossing pattern to all the plies 1 to 4. Subsequently, the plies 3, 4 are fixed to the previously mentioned plies
1, 2 at a marrying roll 40. The resultant 4-ply sheet, comprising the two embossed, relatively displaced plies 1, 2 and
the two further plies 3, 4 which are also embossed, is then discharged from the apparatus.

[0021] An alternative apparatus for carrying out the process according to a second embodiment of the invention is
shown in Figure 2, which is a modification of the process of Fig. 1. In this modification, by means of passing ply 4 over
designs being those used by SCA Hygiene Products GmbH, Mannheim, Germany:

The column "embossing combination" shows which embossing and design rolls were used, the embossing pattern is applied to plies 1, 2 and 4, while a different pattern may be applied to ply 3. After embossing, plies 1, 2 and 4 are separated by means of deviating rolls 15 and 17, 18, 19 and 21, respectively, and glue is applied to ply 4 by means of the glue application roll 30. The four plies 1, 2, 3, 4 are then recombined at the design roll 20 and marrying roll 40.

Figure 4 shows a fourth inventive embodiment in an arrangement wherein plies 1, 2 and 4 are simultaneously fed to the bottom embossing roll 10, while only ply 3 is fed to the top embossing roll 11. In this modification, the same embossing pattern is applied to plies 1, 2 and 4, while a different pattern may be applied to ply 3. After embossing, plies 1, 2 and 4 are separated by means of deviating rolls 15 and 17, 18, 19 and 21, respectively, and glue is applied to ply 4 by means of the glue application roll 30. The four plies 1, 2, 3, 4 are then recombined at the design roll 20 and marrying roll 40.

Figure 5 shows, as a fifth embodiment, a similar arrangement to that of Fig. 4 wherein, however, ply 1 is directed to the glue application roll 30 by means of deviating rolls 17, 18 and 19, whereas ply 4, after having been embossed together with plies 1 and 2, is fed directly to the design roll 20 by means of deviating rolls 22, 23 and 24.

Finally, Figure 7 shows a known apparatus for embossing and combining four plies of tissue. Contrary to the process according to the invention, plies 1, 2 and 3, 4, respectively, are not separated after having been embossed in combination, so that there is less bulk created than in the process according to the invention explained above with reference to Figures 1 to 6.

Table 1 shows some comparative examples of tissues manufactured according to the invention in an apparatus according to one of the Figures 1 to 5, and in an apparatus according to Fig. 7, without separating and displacing the plies.

The abbreviations in the column "base tissue" have the following meaning, the base tissues being manufactured by SCA Hygiene Products GmbH, Mannheim, Germany:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1: BSQ-A Prelotioned Toilet Paper 15[g/m²]</td>
<td>1238</td>
<td>1030</td>
</tr>
<tr>
<td>S2: BSQ-A (Strong quality) 2 ply</td>
<td>Com.No:1238</td>
<td></td>
</tr>
<tr>
<td>S1: (Toilet paper brand "Zewa Soft" quality) 2 ply</td>
<td>Com.No:1030</td>
<td></td>
</tr>
</tbody>
</table>

The column "embossing combination" shows which embossing and design rolls were used, the embossing designs being those used by SCA Hygiene Products GmbH, Mannheim, Germany:

1: Ebonit roll (Goffra Feather design) (as design roll 20)
2: Steel roll (Micro embossing 40 dots per cm² design) (as top embossing roll 11)
3: Steel roll (Micro embossing 25 dots per cm² design) (as top embossing roll 11)
4: Steel roll (waffle design) (as bottom embossing roll 10)
5: Steel roll (Union 6409 design) (as bottom embossing roll 10)
6: Steel roll (Micro embossing 60 dots per cm2 design) (as top embossing roll 11)
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Base tissue</th>
<th>Amount of samples</th>
<th>Embossing combination</th>
<th>Production method</th>
<th>Ply count</th>
<th>Marrying pressure (bar)</th>
<th>Top (Ebonit) embossing pressure (design roll) (bar)</th>
<th>Bottom (Waffle) embossing pressure (bar)</th>
<th>Top (Micro) embossing pressure (bar)</th>
<th>Tension</th>
<th>Roll diameter</th>
<th>Number of sheets</th>
<th>Sheet length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S1/S2</td>
<td>15</td>
<td>1/2/5</td>
<td>Fig. 7 (prior art)</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>122</td>
<td>150</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>2</td>
<td>S1/S2</td>
<td>15</td>
<td>1/2/5</td>
<td>Fig. 1</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>150</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>3</td>
<td>S1/S2</td>
<td>15</td>
<td>1/2/5</td>
<td>Fig. 2</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>600</td>
<td>150</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>S1/S2</td>
<td>15</td>
<td>1/2/5</td>
<td>Fig. 3</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>150</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>5</td>
<td>S1/S2</td>
<td>15</td>
<td>1/2/5</td>
<td>Fig. 4</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>150</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>6</td>
<td>S1/S2</td>
<td>15</td>
<td>1/2/5</td>
<td>Fig. 4</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>150</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>7</td>
<td>S1/S2</td>
<td>15</td>
<td>1/2/5</td>
<td>Fig. 5</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>150</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>8</td>
<td>S1/S2</td>
<td>15</td>
<td>1/3/5</td>
<td>Fig. 7</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>150</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>9</td>
<td>S1/S2</td>
<td>15</td>
<td>1/3/5</td>
<td>Fig. 2</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>150</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>10</td>
<td>S1/S2</td>
<td>15</td>
<td>1/3/5</td>
<td>Fig. 5</td>
<td>4</td>
<td>1.0</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>ca. 155</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>11</td>
<td>C1/C1</td>
<td>15</td>
<td>1/3/5</td>
<td>Fig. 3</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>150</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>12</td>
<td>S1/S2</td>
<td>15</td>
<td>1/6/5</td>
<td>Fig. 7 (prior art)</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>150</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>13</td>
<td>S1/S2</td>
<td>15</td>
<td>1/6/5</td>
<td>Fig. 2</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>150</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>14</td>
<td>S1/S2</td>
<td>15</td>
<td>1/3/4</td>
<td>Fig. 7 (prior art)</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>150</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>15</td>
<td>S1/S2</td>
<td>12</td>
<td>1/3/4</td>
<td>Fig. 2</td>
<td>4</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
<td>500</td>
<td>146</td>
<td>150</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

Table 1: Tissues produced according to the invention (Figs. 1 to 5) and according to the prior art (Fig. 7)
[0033] The inventive process will, in a simple way, increase the bulk of the tissue paper. However, even if all the other parameters in the process are kept the same, the result will not automatically be a bigger finished roll. This is especially true if the winding machine is configured to make rolls of a certain length with a certain diameter. In such a case, however, the roll firmness will be higher than with a roll when the embossing has not been displaced. If, however, the winding tension is decreased, the same length of paper will give a higher roll diameter or a smaller amount of paper will give the same roll diameter than a roll in which the paper has not been displaced.

[0034] In one example a prior art 21 meter of paper was made into a roll with a width of 125 cm by a roll firmness of 86% while according to the invention 18 m was enough to make a roll on the same diameter and roll firmness. This may not seem much if one do not take into consideration the amount of tissue paper that is sold every year.

[0035] The example above was made for roll products such as rolled toilet paper and household towels. This invention is of course useful also for tissue paper types that are not rolled but folded, e.g. handwipes, handkerchiefs and serviettes. In all products, the higher bulk achieved gives a higher sensation of bulk softness, a critical feature for the feel of softness. Furthermore, this increase in thickness also results in a textile-like appearance, a very desired feature of high quality tissue paper products.

[0036] All of what has been said above in respect of tissue paper, of course, also applicable for non-woven materials, such as wipes or similar products.

[0037] The embossing patterns falling within the scope of the present invention can be of any conventional design. The embossing protrusions have dimensions usually up to about 5 mm in the machine and cross machine directions. However, certain embossing patterns can also have dimensions up to about 20 mm in length in the machine direction and about 2 mm in the cross machine direction. Additionally, the embossing protrusions can extend at an angle to the machine direction. The height of the embossing protrusions can be about 1 mm to 2 mm. Naturally, however, the dimensions and shapes of the embossing protrusions are not limited to the examples given and are well known in the art.

[0038] The plies of the laminated tissue paper and the laminated tissue paper product may be plybonded with mechanical or adhesive plybonding as known in the art. Mechanical plybonding as known in the art can be achieved by application of a high pressure, e.g. in an additional embossing nip. Another way that is not so common is to use, ultrasonic welding for plybonding, a method that is explained in the US pending provisional patent application No. 60/341803. In the case of adhesive plybonding, the glue can, for example, be added to all the protrusions of one ply or with a structured glue application roller to just some of the protrusions. Furthermore, in the case of adhesive embossing, the paper can also be further embossed in a further embossing nip, for example by giving the paper an embossed spot pattern. In this case, often only the spot protrusions will be covered with glue and will be the part that bonds to the other plies.

Claims

1. Process for laminating plies of tissue paper, wherein

- at least two plies (1, 2) of tissue paper are combined and are embossed together in at least one embossing nip (10) so that they are provided with substantially identical embossing patterns which consist of embossing protrusions,
- the embossed plies (1, 2) are then separated, and
- the separated plies (1, 2) are then displaced relatively to each other and are recombed, with the embossing protrusions of the plies extending in the same direction, to form a laminated tissue paper,

characterized in that the displacing and recombing step is performed such that, in the resultant laminated tissue paper, the maximum distance D in the displacement direction between an embossing protrusion of a first ply (1) and an embossing protrusion of a second ply (2), which is displaced relatively to said first ply (1), is set as a function of the height H of the embossing protrusions and the length L of the embossing protrusions in the displacement direction of the two plies (1, 2), so that D is equal to the smaller one of the values of 12H and 14L.

2. Process as claimed in claim 1, wherein D is equal to the smaller one of the values of 8H and 10L.

3. Process as claimed in claim 1 or 2, wherein D is equal to the smaller one of the values of 6H and 8L.

4. Process as claimed in any one of claims 1 to 3, wherein at least one further tissue ply (3, 4) is superposed to the resultant recombed tissue paper.

5. Process as claimed in claim 4, wherein the at least one further tissue ply is also a recombed tissue paper man-
6. Process as claimed in any one of claims 1 to 5, wherein the plies are laminated by being ply bonded mechanically and/or by means of adhesive.

7. Process as claimed in claim 6, wherein mechanical ply bonding is achieved by high pressure and/or ultrasonic welding.

8. Process as claimed in claim 6, wherein adhesive ply bonding is achieved by covering at least some of the protrusions of at least one of the plies with glue before the plies are recombined.

9. Process as claimed in claim 6 or 8, wherein adhesive ply bonding is achieved by applying glue in narrow strips along the edge of at least one of the tissue plies.

10. Process as claimed in any one of claims 1 to 9, wherein the displacement of the separated plies (1, 2) relatively to each other is effected in the direction of movement of the paper plies through the embossing nips (machine direction).

11. Process as claimed in any one of claims 1 to 10, wherein the displacement of the separated plies (1, 2) relatively to each other is effected in the direction transverse to the movement of the paper plies through the embossing nips (cross machine direction).

12. Laminated tissue paper comprising at least two plies (1, 2) with substantially identical embossing patterns, said embossing patterns consisting of embossing protrusions, wherein said at least two plies (1, 2) are displaced relatively to each other in a displacement direction, and laminated with the protrusions of the plies extending in the same direction, characterized in that the maximum distance D in the displacement direction between an embossing protrusion of a first ply (1) and an embossing protrusion of a second ply (2), which is displaced relative to the first one (1), is set as a function of the height H of the embossing protrusions and the length L of the embossing protrusions in the displacement direction so that D is equal to the smaller one of the values of $12H$ and $14L$.

13. Laminated tissue paper as claimed in claim 12, wherein D is equal to the smaller one of the values of $8H$ and $10L$.

14. Laminated tissue paper as claimed in claim 12 or 13, wherein D is equal to the smaller one of the values of $6H$ and $8L$.

15. Laminated tissue paper as claimed in any of claims 12 to 14, comprising at least one further tissue ply (3, 4) which is superimposed to the resultant laminated tissue paper.

16. Laminated tissue paper as claimed in claim 15, wherein the at least one further tissue ply is also a laminated tissue paper as claimed in any of claims 12 to 14.

17. Process as claimed in any one of claims 12 to 16, wherein the plies are laminated by being ply bonded mechanically and/or by means of adhesive.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (Int.Cl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D, X</td>
<td>EP 0 344 056 A (JAMES RIVER CORP) 29 November 1989 (1989-11-29) * the whole document *</td>
<td>1-17</td>
<td>B31F1/07</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 905 318 A (FORT JAMES CORP.) 31 March 1999 (1999-03-31) * the whole document *</td>
<td>1-17</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUNICH</td>
<td>25 April 2003</td>
<td>Farizon, P</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS
- T: theory or principle underlying the invention
- E: earlier patent document, but published on, or after the filing date
- D: document cited in the application
- L: document cited for other reasons
- X: particularly relevant if taken alone
- Y: particularly relevant if comprised with another document of the same category
- A: technological background
- D: non-written disclosure
- P: intermediate document
- &: member of the same patent family, corresponding document
ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

25-04-2003

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5093068 A</td>
<td></td>
<td>US 5093068 A</td>
<td>03-03-1992</td>
</tr>
<tr>
<td>EP 0905318 89 A</td>
<td></td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>AT 186674 T</td>
<td></td>
<td>AT 186674 T</td>
<td>15-12-1999</td>
</tr>
<tr>
<td>AU 1108497 A</td>
<td></td>
<td>AU 1108497 A</td>
<td>27-06-1997</td>
</tr>
<tr>
<td>BR 9611687 A</td>
<td></td>
<td>BR 9611687 A</td>
<td>02-03-1999</td>
</tr>
<tr>
<td>CA 2239435 A1</td>
<td></td>
<td>CA 2239435 A1</td>
<td>12-06-1997</td>
</tr>
<tr>
<td>CN 1203550 A</td>
<td></td>
<td>CN 1203550 A</td>
<td>30-12-1998</td>
</tr>
<tr>
<td>DE 69605210 D1</td>
<td></td>
<td>DE 69605210 D1</td>
<td>23-12-1999</td>
</tr>
<tr>
<td>DE 69605210 T2</td>
<td></td>
<td>DE 69605210 T2</td>
<td>13-07-2000</td>
</tr>
<tr>
<td>ES 2138392 T3</td>
<td></td>
<td>ES 2138392 T3</td>
<td>01-01-2000</td>
</tr>
<tr>
<td>GR 3032079 T3</td>
<td></td>
<td>GR 3032079 T3</td>
<td>31-03-2000</td>
</tr>
<tr>
<td>IL 124774 A</td>
<td></td>
<td>IL 124774 A</td>
<td>20-05-2001</td>
</tr>
<tr>
<td>JP 2000501349 T</td>
<td></td>
<td>JP 2000501349 T</td>
<td>08-02-2000</td>
</tr>
<tr>
<td>RU 2162414 C2</td>
<td></td>
<td>RU 2162414 C2</td>
<td>27-01-2001</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82