

I. PAROLY.
SHEET METAL BOX.
APPLICATION FILED MAR. 31, 1917.

1,238,186.

Patented Aug. 28, 1917.

2 SHEETS—SHEET 1.

I. PAROLY.
SHEET METAL BOX.
APPLICATION FILED MAR. 31, 1917.

1,238,186.

Patented Aug. 28, 1917.
2 SHEETS—SHEET 2.

Fig. 5.

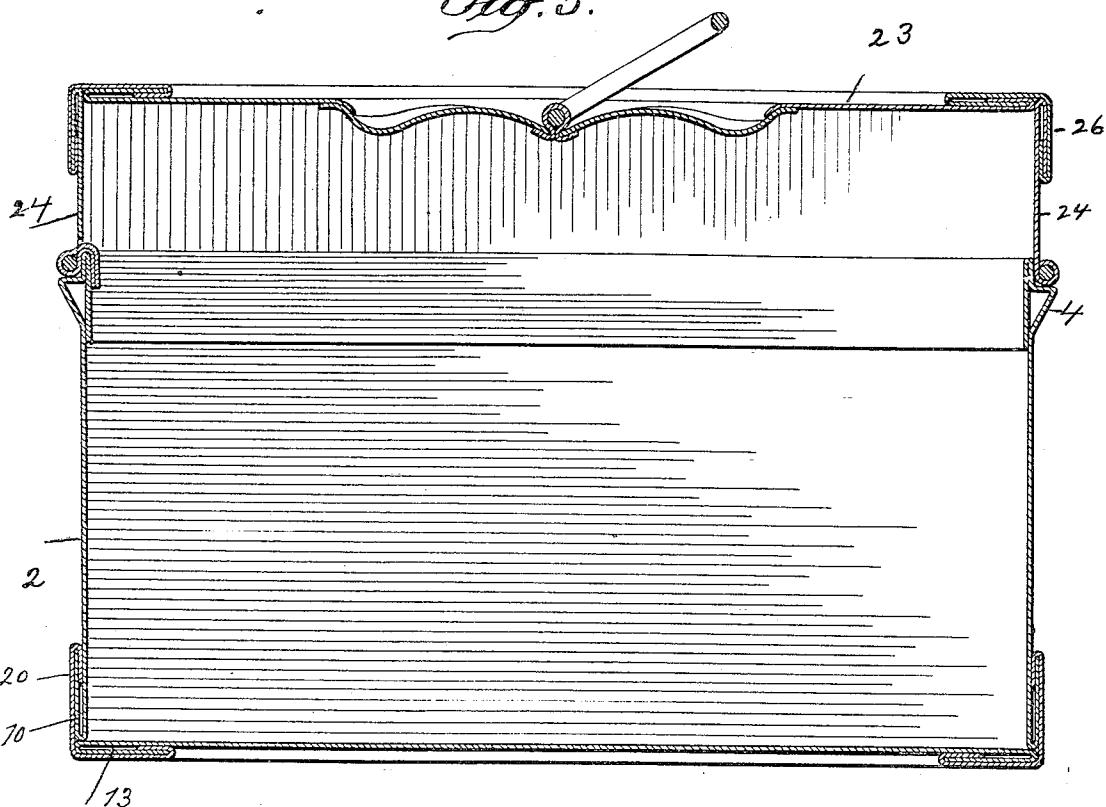
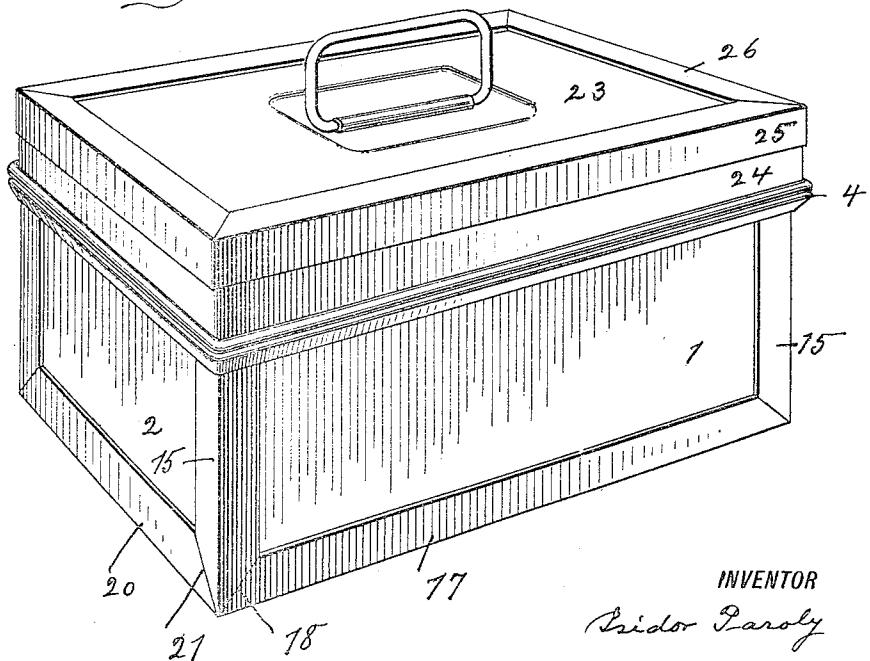



Fig. 6.

INVENTOR
Sidor Paroly
BY
Hank Brieser
ATTORNEY

UNITED STATES PATENT OFFICE.

ISIDOR PAROLY, OF NEW YORK, N. Y., ASSIGNOR TO MYER KAMENSTEIN, OF BROOKLYN, NEW YORK.

SHEET-METAL BOX.

1,238,186.

Specification of Letters Patent. Patented Aug. 28, 1917.

Application filed March 31, 1917. Serial No. 158,790.

To all whom it may concern:

Be it known that I, ISIDOR PAROLY, a citizen of Austria, and a resident of New York city, in the county of Bronx and State of New York, have invented certain new and useful Improvements in Sheet-Metal Boxes, of which the following is a specification.

This invention relates to a sheet metal box of novel construction, which possesses great strength, may be readily assembled, and is not dependent upon the use of solder for holding its component parts together.

In the accompanying drawing:

Figure 1, is a perspective view of the box 15 reversed, showing it dismembered, and with the bottom removed;

Fig. 2, a similar view with the bottom inserted;

Fig. 3, a plan of the lower corner shown 20 in Fig. 1;

Fig. 4, a section on line 4—4 Fig. 2;

Fig. 5, a vertical longitudinal section through the center of the box, and

Fig. 6 a perspective view of the box 25 complete.

The body of the sheet metal box is composed of a pair of side plates 1, a pair of end plates 2, and a bottom 3. Each side plate 1, is provided near its upper edge with a horizontal bead 4 that extends along the top of the box, and at each of its ends with an upright flange 5 that extends from the lower end of the plate up to the bead. Plate 1 is further provided at its lower edge with a 30 horizontal flange 6, which however, stops a distance short of both ends of the plate, so that a clearance 7 is formed between flange 6 and each of the flanges 5.

In like manner, each end plate 2, is provided 35 with an upper horizontal bead 8, a pair of upright flanges 9, and a lower horizontal flange 10, with clearances 11, between flanges 9 and 10.

The bottom 3 is provided with a pair of 40 longitudinal flanges 12, and a pair of end flanges 13, which are spaced from the longitudinal flanges as at 14.

For connecting the side plates 1 to the end plates 2, at each of the box corners, I employ 45 four sheet metal strips 15 bent axially at right angles and having inwardly turned upright flanges 16, which are adapted to interlock with flanges 5 and 9, the length of each angle strip 15, being such that it extends 50 from bottom 3 up to beads 4, 8.

For connecting the side plates 1 to the bottom 3, I employ a pair of longitudinal horizontal sheet metal angle strips 17, having beveled ends 18, and inwardly turned flanges 19. For connecting end plates 2 to bottom 3, I employ a pair of transverse horizontal sheet metal angle strips 20, having beveled ends 21 and inwardly turned flanges 22.

In assembling the parts, the slightly 65 spread angle strips 15 are slipped from the bottom upward through clearances 7, 11 over the flanges 5 and 9 of a pair of adjoining plates 1 and 2, until they abut against beads 4, 8 and then the corners are flattened 70 over a horn, so that the flanges will interlock. The beads 4 and 8 extend to the corners of the box where they meet, to here overlie and conceal the upper edges of the corner strips 15 which abut against the lower 75 sides of the beads. The longitudinal strips 17 are next slipped through clearances 7, 14, over abutting flanges 6, 12 of side plates 1 and bottom 3, and are flattened down in like manner. Finally the transverse strips 80 20 are slipped through clearances 11, 14 over abutting flanges 10, 13 of end plates 2 and bottom 3, and are flattened down, which completes the operation. If desired, the beveled edges of strips 17, 20 which by the operation described overlie upright strips 15, may be soldered to the latter. This soldering however, does not contribute to the self-sustaining character of the box, but serves to eliminate raw edges and to insure a neat 90 finish.

The cover of the box is composed of a flanged top plate 23 and of a flanged rim 24, which is connected to the top by a pair of flanged longitudinal angle strips 25, 95 and a pair of flanged transverse angle strips 26, substantially in the same manner as the bottom 3 is connected to the sides and ends of the box body.

It will be seen that a sheet metal box 100 constructed as described, possesses great strength, especially at the reinforced corners, that it may be assembled and is held together without soldering, and that owing to the absence of sustaining solder it will not be apt to fall apart when subjected to excessive heat. The box is therefore well adapted for holding cash, bonds, and other valuables which should be protected in a safe and fire proof manner.

I claim:

A sheet metal box comprising a pair of side plates and a pair of end plates, said side plates and end plates having lower horizontal flanges, upright end flanges and horizontal upper beads that extend along the top of the box, a flanged bottom, a plurality of

horizontal angle strips that connect the side plates and the end plates to the bottom, and a plurality of upright angle strips that abut 10 against said horizontal upper beads, and connect the side plates to the end plates.

ISIDOR PAROLY.