A method for selecting between centralized and distributed maximum power point tracking in an energy generating system is provided. The energy generating system includes a plurality of energy generating devices, each of which is coupled to a corresponding local converter that includes a local controller. The method includes determining whether there is at least a threshold amount of mismatch between operating characteristics of the energy generating devices. The energy generating system is placed in a centralized maximum power point tracking (CMPPPT) mode when there is not at least the threshold amount of mismatch and is placed in a distributed maximum power point tracking (DMPPPT) mode when there is at least the threshold amount of mismatch.
US 7,991,511 B2
Page 2

U.S. PATENT DOCUMENTS
6,844,739 B2 1/2005 Kasai et al.
6,850,820 B2 2/2005 Tajima
6,875,522 B2 12/2005 Asano 363/50
6,894,967 B2 1/2006 Notman
7,046,527 B2 5/2006 West
7,701,083 B2 4/2010 Savage
7,735,805 B2 5/2010 Kitamura
2006/017327 A1 1/2006 Sieri et al.
2008/001347 A1 1/2008 Deng et al.
2008/008731 A1 4/2008 Schwartzenman
2010/001587 A1 1/2010 Casey et al.
2010/029683 A1 10/2010 Sarhan

FOREIGN PATENT DOCUMENTS
KR B1 102190133036 A 12/2009

OTHER PUBLICATIONS
Bjerre et al., "How to run an offshore wind farm like an conventional power plant", 2007, Modern Power Systems, p. 31-33.*
 cited by examiner
START

OPERATE IN DORMANT MODE

V_{\text{pan}} > V_{\text{th}}?

GENERATE CONVERSION RATIO COMMAND WITH INITIAL CONVERSION RATIO

I_{\text{pan}} AND I_{\text{out}} > I_{\text{th}}?

OPERATE IN TRACKING MODE; SET T=1 AND INITIALIZE COUNT

CALCULATE CURRENT POWER

MODIFY CONVERSION RATIO IN FIRST DIRECTION AND GENERATE CONVERSION RATIO COMMAND

MODIFY CONVERSION RATIO IN SAME DIRECTION AND GENERATE CONVERSION RATIO COMMAND

MODIFY CONVERSION RATIO IN OPPOSITE DIRECTION AND GENERATE CONVERSION RATIO COMMAND

CURRENT POWER > PREVIOUS POWER?

T=1?

T=2?

SET T=1 AND INCREMENT COUNT

SET T=2 AND INCREMENT COUNT

Count > C_{\text{in}}?

OPERATE IN HOLDING MODE

SET TIMER AND REINITIALIZE COUNT

TIMER EXPIRED?

OPERATE IN TRACKING MODE

FIG. 4
START

802 SET TIMER

804 ANALYZE DEVICES

NO

806 DEVICES OPERATING UNDER QUASI-IDEAL CONDITIONS?

YES

810 ENABLE LOCAL CONTROLLERS

812 HIGH PROBABILITY OF SHADED DEVICES?

NO

DISABLE GLOBAL CONTROLLER

YES

814 PERFORM FULL CHARACTERISTIC SCAN FOR POTENTIALLY SHADED DEVICES

816 PROVIDE CORRECTIONS FOR ANY UNDER-PERFORMING DEVICES

818 TIMER EXPIRED?

NO

820 YES

822 DISABLE LOCAL CONTROLLERS

824 ENABLE GLOBAL CONTROLLER

800 RESET TIMER

FIG. 8
FIG. 10

FIG. 11
START

1200

OPERATE DEVICE IN OPEN CIRCUIT CONDITION

1202

V_{pan} > V_{t-on}?

1204

YES

1206

TURN ON LOCAL CONTROLLER

1208

PERFORM ACTIVATION PROCEDURES

OPERATE POWER STAGE WITH PREDETERMINED CONVERSION RATIO

1210

NO

POWER STAGE OPERATING IN ALL DEVICES OF STRING?

1212

YES

I_{pan} > I_{min}?

1214

NO

1216

OPERATE LOCAL CONTROLLER NORMALLY

YES

1218

I_{pan} < I_{min}?

NO

1220

SET DEACTIVATION TIMER

YES

1222

PERFORM DEACTIVATION PROCEDURES

OPERATE POWER STAGE WITH PREDETERMINED CONVERSION RATIO

1224

NO

DEACTIVATION TIMER EXPIRED

1226

YES

TURN OFF POWER STAGE & LOCAL CONTROLLER AND OPERATE DEVICE IN OPEN CIRCUIT CONDITION

FIG. 12
METHOD AND SYSTEM FOR SELECTING BETWEEN CENTRALIZED AND DISTRIBUTED MAXIMUM POWER POINT TRACKING IN AN ENERGY GENERATING SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is related to U.S. patent application Ser. No. 12/152,479 entitled “METHOD AND SYSTEM FOR PROVIDING CENTRAL CONTROL IN AN ENERGY GENERATING SYSTEM,” U.S. patent application Ser. No. 12/152,491 entitled “METHOD AND SYSTEM FOR PROVIDING LOCAL CONVERTERS TO PROVIDE MAXIMUM POWER POINT TRACKING IN AN ENERGY GENERATING SYSTEM,” and U.S. patent application Ser. No. 12/152,478 entitled “METHOD AND SYSTEM FOR ACTIVATING AND DEACTIVATING AN ENERGY GENERATING SYSTEM,” all filed concurrently herewith. These patent applications are assigned to the assignee of the present application. The subject matter disclosed in each of these patent applications is hereby incorporated by reference into the present disclosure as if fully set forth herein.

TECHNICAL FIELD

This disclosure is generally directed to energy generating systems. More specifically, this disclosure is directed to a method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system.

BACKGROUND

Solar and wind energy provide renewable, non-polluting energy sources, as opposed to conventional non-renewable, polluting energy sources, such as coal or oil. Because of this, solar and wind energy have become increasingly important as energy sources that may be converted into electricity. For solar energy, photovoltaic panels arranged in an array typically provide the means to convert solar energy into electrical energy. Similar arrays may be implemented for harvesting energy from wind or other natural energy sources.

In operating a photovoltaic array, maximum power point tracking (MPPT) is generally used to automatically determine a voltage or current at which the array should operate to generate a maximum power output for a particular temperature and solar irradiance. Although MPPT for the entire array is relatively easy to perform when the array is operating under ideal conditions (i.e., the same irradiance, temperature and electrical features for each panel in the array), when there are mismatches or partially shaded conditions, MPPT for the array as a whole is more complicated. In this situation, MPPT techniques may not provide accurate results due to relative optima of the multi-peak power-to-voltage characteristics of the mismatched array. As a result, only a few of the panels in the array may be operating ideally. This causes a drastic drop in power production because, for an array that includes strings of panels, the least efficient panel in a string determines the current and efficiency for the entire string.

Because of this, some photovoltaic systems provide a DC-DC converter for each panel in the array. Each of these DC-DC converters performs MPPT to find a maximum power point for its corresponding panel. However, a DC-DC converter in this system may be deceived into selecting a local maximum for operating its panel instead of the panel’s actual maximum power point. In addition, the use of multiple DC-DC converters in such a system results in electrical losses incurred in operating the converters, which reduces the efficiency of the entire system.

SUMMARY

This disclosure provides a method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system. In one embodiment, a system is disclosed in which energy generating devices in an energy generating system are operating under quasi-ideal conditions. The energy generating system can be placed in a centralized maximum power point tracking (CMPPT) mode when the energy generating devices are operating under quasi-ideal conditions. The energy generating system can be placed in a distributed maximum power point tracking (DMPPPT) mode when the energy generating devices are not operating under quasi-ideal conditions.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of this disclosure and its features, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:

FIG. 1 illustrates an energy generating system capable of being centrally controlled in accordance with one embodiment of this disclosure;

FIG. 2 illustrates the local converter of FIG. 1 in accordance with one embodiment of this disclosure;

FIG. 3 illustrates details of the local converter of FIG. 2 in accordance with one embodiment of this disclosure;

FIG. 4 illustrates a method for implementing maximum power point tracking (MPPT) in the local converter of FIG. 2 in accordance with one embodiment of this disclosure;

FIG. 5 illustrates an energy generating system including a central array controller capable of selecting between centralized and distributed MPPT for the energy generating system in accordance with one embodiment of this disclosure;

FIG. 6 illustrates the array of FIG. 5 under partially shaded conditions in accordance with one embodiment of this disclosure;

FIGS. 7A-C illustrate voltage-to-power characteristics corresponding to three of the photovoltaic panels of FIG. 6;

FIG. 8 illustrates a method for selecting between centralized and distributed MPPT for the energy generating system of FIG. 5 in accordance with one embodiment of this disclosure;

FIG. 9 illustrates a system for activating and deactivating a local controller for a local converter in an energy generating system in accordance with one embodiment of this disclosure;

FIG. 10 illustrates an example of device voltage variation with time for the system of FIG. 9 in accordance with one embodiment of this disclosure;

FIG. 11 illustrates the activator of FIG. 9 in accordance with one embodiment of this disclosure; and

FIG. 12 illustrates a method for activating and deactivating the local converter of FIG. 9 in accordance with one embodiment of this disclosure.

DETAILED DESCRIPTION

FIGS. 1 through 12, discussed below, and the various embodiments used to describe the principles of the present...
invention in this patent document are by way of illustration only and should not be construed in any way to limit the scope of the invention. Those skilled in the art will understand that the principles of the present invention may be implemented in any type of suitably arranged device or system.

FIG. 1 illustrates an energy-generating system 100 capable of being centrally controlled in accordance with one embodiment of this disclosure. The energy-generating system 100 comprises a plurality of energy-generating devices (EGDs) 102a-102f, each coupled to a corresponding local converter 104a-104f; that together form an energy-generating array 106. For a particular embodiment, as described in this disclosure, the energy-generating system 100 may comprise a photovoltaic system and the energy-generating devices 102 may comprise photovoltaic (PV) panels (referred to as photovoltaic or PV panels 102a-102f). However, it will be understood that the energy-generating system 100 may comprise any other suitable type of energy-generating system, such as a wind turbine system, a fuel cell system or the like. For these embodiments, the energy-generating devices 102a-102f may comprise wind turbines, fuel cells or the like.

The illustrated photovoltaic system 100 comprises a central array controller 110 and may also comprise a DC-AC converter 112 or other suitable load for situations in which the system 100 is operated as an on-grid system. However, it will be understood that the system 100 may be operated as an off-grid system by coupling the array 106 to a battery charger or other suitable energy storage device instead of the DC-AC converter 112.

The PV panels 102a-102f in the array 106 are arranged in strings 114a-114b. For the illustrated embodiment, the array 106 comprises two strings 114a-114b, with each string 114a and 114b comprising three panels 102a-102e and 102a-102f, respectively. However, it will be understood that the array 106 may comprise any suitable number of strings, and each string may comprise any suitable number of panels. Also for the illustrated embodiment, the panels 102a-102e and 102a-102f in each string 114a-114b are implemented in a series connection. As a result, the output voltage of each local converter 104a-104f may still be close to its input voltage while supplying high voltage to the input port of the DC-AC converter 112, which for some embodiments may operate with an input voltage between 150 V and 500 V. Therefore, there is no need for a transformer-based converter such as would be used in a parallel-configuration string, resulting in the ability to implement highly efficient and low-cost local converters 104a-104f.

Each PV panel 102a-102f is capable of converting solar energy into electrical energy. Each local converter 104a-104f is coupled to its corresponding panel 102a-102f and is capable of reshaping the voltage-to-current relationship of inputs provided by the panel 102a-102f such that the electrical energy generated by the panel 102a-102f is usable by a load (not shown in FIG. 1) for the array 106. The DC-AC converter 112 is coupled to the array 106 and is capable of converting the direct current (DC) generated by the local converters 104a-104f into an alternating current (AC) for the load, which may be coupled to the DC-AC converter 112.

Maximum power point tracking (MPPT) automatically determines a voltage or current at which the panel 102a-102f should operate to maximize power output for a particular temperature and solar irradiance. MPPT for the entire array 106 is relatively easy to perform when the array 106 is operating under ideal conditions (i.e., the same irradiance, temperature and electrical features for each panel 102a-102f in the array 106). However, when there are mismatches or partially shaded conditions, for example, MPPT for the array 106 as a whole is more complicated. In this situation, MPPT techniques may not provide accurate results due to relative optima of the multi-peak power-to-voltage characteristics of the mismatched array 106. As a result, only a few of the panels 102a-102f in the array 106 may be operating ideally, causing a drastic drop in power production. Therefore, to resolve this issue, each local converter 104a-104f is capable of providing local MPPT for its corresponding panel 102a-102f.

In this way, each panel 102a-102f may operate at its own maximum power point (MPP) under both ideal and mismatched or shaded conditions. For embodiments in which the energy-generating devices 102a-102f comprise wind turbines, MPPT may be used to adjust the pitch of the blades of the wind turbines. It will also be understood that MPPT may be used to optimize systems 100 comprising other types of energy-generating devices 102a-102f.

The central array controller 110 is coupled to the array 106 and may be capable of communicating with the array 106 over either a wired link (such as a serial or parallel bus) or a wireless link. The central array controller 110 may comprise a diagnostic module 120 and/or a control module 125. The diagnostic module 120 is capable of monitoring the photovoltaic system 100, while the control module 125 is capable of controlling the photovoltaic system 100.

The diagnostic module 120 is capable of receiving from each local converter 104a-104f in the array 106 both local converter data for the local converter 104a-104f and device data for the local converter’s corresponding panel 102a-102f. As used herein, “device data” means output voltage, output current, temperature, radiation, output power and/or the like for the energy-generating device 102a-102f. Similarly, “local converter data” means local converter output voltage, local converter output current, local converter output power and/or the like.

The diagnostic module 120 may also be capable of generating reports on the system 100 and providing the reports to an operator. For example, the diagnostic module 120 may be capable of displaying some or all of the device data and local converter data to the operator. In addition, the diagnostic module 120 may be capable of providing some or all of the device data and local converter data to the control module 125.

The diagnostic module 120 may also be capable of analyzing the data in any suitable manner and providing the analysis results to the operator and/or the control module 125. For example, the diagnostic module 120 may be capable of determining statistics for each panel 102a-102f based on any suitable time frame, such as hourly, daily, weekly and monthly.

The diagnostic module 120 may also be capable of providing fault monitoring for the array 106. Based on the data received from the local converters 104a-104f, the diagnostic module 120 may identify one or more defective panels 102a-102f, such as panels 102a-102f that have failed, have malfunctioned, are shaded, are dirty and/or the like. The diagnostic module 120 may also notify an operator when a defective panel 102a-102f should be replaced, repaired or cleaned.

The control module 125 is capable of actually controlling the array 106 by sending control signals to one or more local converters 104a-104f. For example, the control module 125 may send a circumvent control signal to a particular local converter 104a-104f with a malfunctioning corresponding panel 102a-102f. The circumvent control signal prompts that local converter 104a-104f to circumvent its panel 102a-102f, effectively removing the panel 102a-102f from the array 106 without affecting the operation of other panels 102a-102f in the same string 114a-114b as the circumvented panel 102a-102f.
In addition, the control module 125 may be capable of sending control signals to one or more local converters 104a-104f to adjust their output voltages or currents. For some embodiments, the MPPT functionality of the local converters 104a-104f may be moved to the central array controller 110. For these embodiments, the control module 125 is also capable of calibrating the MPP of each panel 102a-102f and sending a conversion ratio command to each local converter 104a-104f based on the calibration in order to cause each panel 102a-102f to operate at its own MPP, as determined by the control module 125. The control module 125 may also be capable of receiving and acting on instructions from an operator. For example, the operator may direct the control module 125 that the system 100 is to go on-grid or off-grid, and the control module 125 may respond by placing the system 100 on-grid or taking the system 100 off-grid.

Thus, by implementing a central array controller 110, the photovoltaic system 100 provides better utilization on a per-panel basis. Also, this system 100 provides increased flexibility by making the mixing of different sources possible. The central array controller 110 also provides better protection and data gathering for the entire system 100.

FIG. 2 illustrates a local converter 204 in accordance with one embodiment of this disclosure. The local converter 204 may represent one of the local converters 104a-104f of FIG. 1; however, it will be understood that the local converter 204 may be implemented in any suitably arranged energy generating system without departing from the scope of this disclosure. In addition, although shown as coupled to an energy generating device 202 that is referred to as a PV panel, it will be understood that the local converter 204 may be coupled to a single cell of a PV panel or a subset of panels in a photovoltaic array or to another energy generating device 202, such as a wind turbine, a fuel cell or the like.

The local converter 204 comprises a power stage 206 and a local controller 208, which further comprises an MPPT module 210 and an optional communication interface 212. The power stage 206 may comprise a DC-DC converter that is capable of receiving as inputs a panel voltage and current from the PV panel 202 and reshaping the voltage-to-current relationship of the inputs to generate an output voltage and current.

The communication interface 212 of the local controller 208 is capable of providing a communication channel between the local converter 204 and a central array controller, such as the central array controller 110 of FIG. 1. However, for embodiments in which the local converter 204 does not communicate with a central array controller, the communication interface 212 may be omitted.

The MPPT module 210 is capable of receiving as inputs the panel voltage and current from the panel 202 and, if needed by the implemented algorithm, the output voltage and current from the power stage 206. Based on these inputs, the MPPT module 210 is capable of providing a signal to control the power stage 206. In this way, the MPPT module 210 of the local controller 208 is capable of providing MPPT for the PV panel 202.

By providing MPPT, the MPPT module 210 keeps the corresponding panel 202 functioning at an essentially fixed operating point (i.e., a fixed voltage V_{pan} and current I_{pan} corresponding to the maximum power point of the panel 202). Thus, for a given fixed solar irradiance, in steady state, the input power for the local converter 204 is fixed (i.e., $P_{pan} - V_{pan} I_{pan}$) as it corresponds to a relative or absolute maximum power point of the panel 202. In addition, the local converter 204 has a relatively high efficiency; therefore, the output power is approximately equal to the input power (i.e., $P_{out} = P_{pan}$).
For this embodiment, the power stage regulator 302 is capable of operating the power stage 206 in the buck-boost mode when the conversion ratio, CR, is within a buck-boost range, in the buck mode when the CR is less than the buck-boost range, and in the boost mode when the CR is greater than the buck-boost range. The buck-boost range includes values that are substantially equal to 1.

For example, for a particular embodiment, the buck-boost range may comprise 0.95 to 1.05. When the power stage 206 is in the buck mode, if the CR is less than a maximum buck conversion ratio, CR_{buck,max}, the power stage regulator 302 is capable of operating the power stage 206 entirely in a buck configuration. Similarly, when the power stage 206 is in the boost mode, if the CR is greater than a minimum boost conversion ratio, CR_{boost,min}, the power stage regulator 302 is capable of operating the power stage 206 entirely in a boost configuration.

Finally, the power stage regulator 302 is capable of alternately operating the power stage 206 in the buck configuration and the boost configuration when the conversion ratio is greater than CR_{buck,max} and less than CR_{boost,min}. In this situation, the power stage regulator 302 may perform time-division multiplexing to alternate between the buck configuration and the boost configuration. Thus, when the conversion ratio is closer to CR_{buck,max}, the power stage regulator 302 may operate the power stage 206 in the buck configuration more often than the boost configuration. Similarly, when the conversion ratio is closer to CR_{boost,min}, the power stage regulator 302 may operate the power stage 206 in the boost configuration more often than the buck configuration. When the power stage 206 is near the midpoint between CR_{buck,max} and CR_{boost,min}, the power stage regulator 302 may operate the power stage 206 in the buck configuration about as often as the boost configuration. For example, when the power stage 206 is in the buck-boost mode, the power stage regulator 302 may even alternate operating the power stage 206 in the buck configuration and the boost configuration.

For the illustrated embodiment, the power stage 206 comprises four switches 310a-310d, as well as an inductor L and a capacitor C. For some embodiments, the switches 310a-310d may comprise N-channel power MOSFETs. For a particular embodiment, these transistors may comprise Gallium Nitride-on-silicon devices. However, it will be understood that the switches 310a-310d may be otherwise suitably implemented without departing from the scope of this disclosure. In addition, the power stage 206 may comprise one or more drivers (not shown in FIG. 3) for driving the switches 310a-310d (e.g., the gates of the transistors). For example, for a particular embodiment, a first driver may be coupled between the power stage regulator 302 and transistors 310a and 310b to drive the gates of transistors 310a and 310b, while a second driver may be coupled between the power stage regulator 302 and transistors 310c and 310d to drive the gates of transistors 310c and 310d.

For this embodiment, the PWM signals generated by the power stage regulator 302 are provided to the drivers, which drive the gates of their respective transistors 310a-310d based on those PWM signals.

For the illustrated embodiment, in operating the power stage 206, the power stage regulator 302 is capable of generating digital pulses to control the switches 310a-310d of the power stage 206. For the embodiment described below, the switches 310a-310d comprise transistors. For the buck configuration, the power stage regulator 302 turns transistor 310c off and transistor 310d on. The pulses then alternately turn on and off transistor 310a and transistor 310b such that the power stage 206 is operating as a buck regulator. The duty cycle of transistor 310a for this embodiment is equal to the duty cycle, D, included in the conversion ratio command generated by the MPPT control block 304. For the boost mode, the power stage regulator 302 turns transistor 310a on and transistor 310b off. The pulses then alternately turn on and off transistor 310c and transistor 310d such that the power stage 206 is operating as a boost regulator. The duty cycle of transistor 310a for this embodiment is equal to 1-D.

For the buck-boost mode, the power stage regulator 302 performs time-division multiplexing between buck and boost configurations, as described above. The power stage regulator 302 generates control signals for the buck switch pair of transistors 310a and 310b and the boost switch pair of transistors 310c and 310d. The duty cycle for transistor 310a is fixed at the duty cycle corresponding to CR_{buck,max}, and the duty cycle for transistor 310c is fixed at the duty cycle corresponding to CR_{boost,min}. The ratio between buck-configuration and boost-configuration operation over a specified time period is linearly proportional to D.

The power stage 206 is operated in the buck-boost mode when the output voltage is close to the panel voltage. In this situation, for the illustrated embodiment, the inductor current ripple, as well as stress due to voltage switches, is much lower than that of SEPIC and traditional buck-boost converters. Also, the illustrated power stage 206 achieves a higher efficiency as compared to traditional buck-boost converters.

For some embodiments, as described in more detail below in connection with FIG. 4, the MPPT control block 304 is capable of operating in one of four modes: dormant, tracking, holding and bypass. When the panel voltage is less than a predetermined primary threshold voltage, the MPPT control block 304 may operate in the dormant mode. While in the dormant mode, the MPPT control block 304 causes the transistors 310a-310d to be turned off. For example, for some embodiments, the MPPT control block 304 may be capable of generating a conversion ratio command that prompts the power stage regulator 302 to turn off the transistors 310a-310d when the MPPT control block 304 is in the dormant mode. Thus, the power stage 206 is placed in the shutdown mode and the panel 202 is circuitously, effectively removing the panel 202 from the photovoltaic system in which it is implemented.

When the panel voltage rises above the primary threshold voltage, the MPPT control block 304 may operate in the tracking mode. In this mode, the MPPT control block 304 may perform maximum power point tracking for the panel 202 in order to determine an optimum conversion ratio for the power stage regulator 302. Also in this mode, the power stage regulator 302 places the power stage 206 in the buck mode, the boost mode or the buck-boost mode, depending on the currently generated conversion ratio command.

In addition, for some embodiments, the MPPT control block 304 may also comprise a shutdown register that may be modifiable by an operator of the system or any suitable control program, such as a control program implemented in a central array controller, in order to force the MPPT control block 304 to keep the power stage 206 in the shutdown mode. For this embodiment, the MPPT control block 304 does not begin to operate in the tracking mode until both (i) the panel voltage exceeds the primary threshold voltage and (ii) the shutdown register indicates that the MPPT control block 304 may move the power stage 206 out of the shutdown mode.

When the MPPT control block 304 has found the optimum conversion ratio, the MPPT control block 304 may operate in the holding mode for a predefined period of time. In this mode, the MPPT control block 304 may continue to provide to the power stage regulator 302 the same conversion ratio determined to be the optimum conversion ratio in the tracking
mode. Also in this mode, as with the tracking mode, the power stage 206 is placed in the buck mode, the boost mode or the buck-boost mode, depending on the optimum conversion ratio provided in the conversion ratio command. After the predefined period of time has passed, the MPPT control block 304 may revert to the tracking mode to ensure that the optimum conversion ratio has not changed or to find a new optimum conversion ratio if conditions for the panel 202 have changed.

As described in more detail below in connection with FIGS. 5-8, when each of the panels, such as the panel 202, in a photovoltaic array is under uniform illumination and there is no mismatch among the panels 202, a central array controller may be capable of placing the MPPT control block 304 and thus the power stage 206 in the bypass mode. In the bypass mode, for some embodiments, transistors 310a and 310b are turned on and transistors 310b and 310c are turned off such that the panel voltage equals the output voltage. For other embodiments, an optional switch 312 may be included in the power stage 206 that is capable of coupling the input port to the output port to cause the output voltage to equal the panel voltage. In this way, when MPPT is not needed locally, the local converter 204 may be essentially removed from the system, thereby maximizing efficiency by decreasing loss associated with the local converter 204 and increasing its lifetime.

Thus, as described above, the MPPT control block 304 may be capable of operating in the dormant mode and placing the power stage 206 in the shutdown mode, which causes the panel 202 to be circumvented. The MPPT control block 304 may also be capable of operating in the tracking mode or the holding mode. In either of these modes, the MPPT control block 304 is capable of placing the power stage 206 in one of the buck modes, the boost mode and the buck-boost mode. Finally, the MPPT control block 304 may be capable of operating in the bypass mode and placing the power stage 206 in the bypass mode, which causes the local converter 204 to be bypassed while allowing the panel 202 to be directly coupled to other panels 202 in the array.

By operating the local converter 204 in this manner, the string current for a string of panels that includes the panel 202 is independent of the individual panel current. Instead, the string current is set by the string voltage and total string power.

In addition, a non-shaded panel 202 may continue to operate at a peak power point regardless of the shading conditions of other panels in the string.

For an alternative embodiment, when the MPPT control block 304 has found an optimum conversion ratio, the MPPT control block 304 may operate in the bypass mode instead of the holding mode when the optimum conversion ratio corresponds to the buck-boost mode for the power stage 206. In the buck-boost mode, the output voltage is close to the panel voltage. Therefore, the panel 202 may be operated at close to its maximum power point by bypassing the local converter 204, which increases efficiency. As with the previously described embodiment, the MPPT control block 304 may periodically revert to the tracking mode from this bypass mode in order to verify that the optimum conversion ratio remains within the buck-boost mode range.

For some embodiments, the MPPT control block 304 may be capable of gradually adjusting the conversion ratio for the power stage regulator 302, as opposed to the normal step-wise variation, in order to avoid stress on the transistors, inductor and capacitor of the power stage 206. For some embodiments, the MPPT control block 304 is capable of implementing different MPPT techniques to adjust panel voltage or conduct-

In addition, the MPPT control block 304 is capable of enabling relatively fast and smooth transitions between the shutdown mode and other modes for the power stage 206. The MPPT control block 304 may comprise a non-volatile memory that is capable of storing a previous maximum power point state, such as the conversion ratio or the like. For this embodiment, when the MPPT control block 304 is transitioning to the dormant mode, the maximum power point state is stored in this non-volatile memory. When the MPPT control block 304 subsequently returns to the tracking mode, the stored maximum power point state may be used as an initial maximum power point state. In this way, the transition time between shutdown and other modes may be reduced significantly for the power stage 206.

For some embodiments, the MPPT control block 304 is also capable of providing over power and/or over voltage protection for the local converter 204. The MPPT control block 304 tries to extract maximum power because the signals V_{p,m} and I_{p,m} are fed forward to the MPPT control block 304 via the ADC 306. The output voltage for the local converter 204 reaches a maximum if there is an open circuit at the power stage 206 output. Therefore, for over power protection, the output current of the local converter 204 may be used as a signal to turn the MPPT control block 304 on and off.

For this embodiment, if the output current drops too low, the conversion ratio may be set by the MPPT control block 304 such that the panel voltage is approximately equal to the output voltage.

For over voltage protection, the MPPT control block 304 may have a maximum conversion ratio for the conversion ratio command which the MPPT control block 304 will not exceed. Thus, if the conversion ratio would continue higher past the maximum conversion ratio, the MPPT control block 304 limits the conversion ratio to the maximum value. This ensures that the output voltage will not increase beyond a corresponding maximum value. The value of the maximum conversion ratio may be either fixed or adaptive. For example, adaptive conversion ratio limitation may be achieved by sensing the panel voltage and, according to the conversion ratio of the power stage 206, computing an estimation of the output voltage corresponding to the next programmed value of the conversion ratio.

In addition, for the illustrated embodiment, the power stage 206 comprises an optional unidirectional switch 314. This optional switch 314 may be included to allow the panel 202 to be circumvented when the power stage 206 is in the shutdown mode, thereby removing the panel 202 from the array while allowing other panels 202 to continue operating. For a particular embodiment, the unidirectional switch 314 may comprise a diode. However, it will be understood that the unidirectional switch 314 may comprise any other suitable type of unidirectional switch without departing from the scope of this disclosure.

FIG. 4 illustrates a method 400 for implementing MPPT in the local converter 204 in accordance with one embodiment of this disclosure. The embodiment of the method 400 is for illustration only. Other embodiments of the method 400 may be implemented without departing from the scope of this disclosure.

The method 400 begins with the MPPT control block 304 operating in the dormant mode (step 401). For example, the MPPT control block 304 may generate a conversion ratio command to prompt the power stage regulator 302 to turn off
the transistors 310a-310d of the power stage 206, thereby placing the power stage 206 in the shutdown mode and circumventing the panel 202.

While in the dormant mode, the MPPT control block 304 monitors the panel voltage, V_{panel}, and compares the panel voltage to a primary threshold voltage, V_{th} (step 402). For example, the ADC 306 may convert the panel voltage from an analog signal to a digital signal and provide the digital panel voltage to the MPPT control block 304, which stores the primary threshold voltage for comparison to the digital panel voltage.

As long as the panel voltage remains below the primary threshold voltage (step 402), the MPPT control block 304 continues to operate in the dormant mode. In addition, as described above, the MPPT control block 304 may remain in the dormant mode when a shutdown register indicates that the power stage 206 is to remain in the shutdown mode. However, once the panel voltage exceeds the primary threshold voltage (step 402), the MPPT control block 304 generates a conversion ratio command for operating the power stage 206 that includes an initial conversion ratio (step 403). For example, for one embodiment, the MPPT control block 304 may begin with a conversion ratio of 1. Alternatively, the MPPT control block 304 may be capable of storing an optimum conversion ratio determined during a previous tracking mode. For this embodiment, the MPPT control block 304 may initialize the conversion ratio to be the same as the previously determined optimum conversion ratio.

Also, the conversion ratio command generated by the MPPT control block 304 is provided to the power stage regulator 302, which operates the power stage 206 using the initial conversion ratio.

At this point, the MPPT control block 304 monitors the panel current, I_{panel}, and output current, I_{out}, and compares the panel current and output current to a threshold current, I_{th} (step 404). For example, the ADC 306 may convert the panel current from an analog signal to a digital signal and provide the digital panel current to the MPPT control block 304 and the ADC 308 may convert the output current from an analog signal to a digital signal and provide the digital output current to the MPPT control block 304, which stores the threshold current for comparison to the digital panel current and the digital output current. As long as at least one of these currents, I_{panel} and I_{out}, remains below the threshold current (step 404), the MPPT control block 304 continues to monitor the current levels. However, once both of these currents exceed the threshold current (step 404), the MPPT control block 304 begins to operate in the tracking mode, which includes initially setting a tracking variable, T, to 1 and initializing a count (step 406).

Although not shown in the method 400 of FIG. 4, it will be understood that the MPPT control block 304 may continue to monitor the panel voltage while in the tracking mode and compare the panel voltage to a secondary threshold voltage that is less than the primary threshold voltage. If the panel voltage drops below this secondary threshold voltage, the MPPT control block 304 may revert to the dormant mode. By using a secondary threshold voltage that is less than the primary threshold voltage, the MPPT control block 304 is provided with noise immunity, which prevents the MPPT control block 304 from frequently switching between the dormant and tracking modes.

After setting the value of the tracking variable and initializing the count, the MPPT control block 304 calculates an initial power for the panel 202 (step 408). For example, the ADC 306 may provide the digital panel current and panel voltage signals (I_{panel} and V_{panel}) to the MPPT control block 304, which then multiplies these signals together to determine an initial value for the device (or panel) power (P_{panel}).

After calculating an initial power, the MPPT control block 304 modifies the conversion ratio in a first direction and generates a conversion ratio command comprising the modified conversion ratio (step 410). For example, for some embodiments, the MPPT control block 304 may increase the conversion ratio. For other embodiments, the MPPT control block 304 may decrease the conversion ratio. After giving the system time to stabilize, the MPPT control block 304 then calculates the current power for the panel 202 (step 412). For example, the ADC 306 may provide the digital panel current and panel voltage signals to the MPPT control block 304, which then multiplies these signals together to determine a current value for the panel power.

The MPPT control block 304 then compares the currently calculated power to the previous calculated power, which is initially the initial power (step 414). If the current power is greater than the previous power (step 414), the MPPT control block 304 modifies the conversion ratio in the same direction as the previous modification and generates an updated conversion ratio command (step 416). For some embodiments, the conversion ratio is modified higher or lower in smaller increments. For other embodiments, the conversion ratio may be modified higher or lower in linear or non-linear increments to optimize system response. For example, if the conversion ratio is far from an optimum value, using larger increments initially followed by smaller increments as the optimum value is approached may be desirable for some systems.

The MPPT control block 304 also determines whether the tracking variable, T, is equal to 1, indicating that the conversion ratio was modified in the same direction for the previous calculation as it was modified for the calculation prior to the previous calculation (step 418). Thus, when T equals 1, the panel power has increased with a previous modification of the conversion ratio in the same direction. In this case, after giving the system time to stabilize, the MPPT control block 304 again calculates a current power for the panel 202 (step 412) and compares it to the previous power (step 414). However, if the MPPT control block 304 determines that T is not equal to 1, indicating that the conversion ratio was modified in the opposite direction for the previous calculation as it was modified for the calculation prior to the previous calculation (step 418), the MPPT control block 304 sets T to 1 and increments the count (step 420).

The MPPT control block 304 then determines whether the count has exceeded a count threshold, C_{th} (step 422). If the count threshold is not exceeded by the current value of the count (step 422), after giving the system time to stabilize, the MPPT control block 304 again calculates a current power for the panel 202 (step 412) and compares it to the previous power (step 414) to determine if the panel power is increasing or decreasing.

If the MPPT control block 304 determines that the current power is not greater than the previous power (step 414), the MPPT control block 304 modifies the conversion ratio in the opposite direction as the previous modification and generates an updated conversion ratio command (step 424). The MPPT control block 304 also determines whether the tracking variable, T, is equal to 2, indicating that the conversion ratio was modified in the opposite direction for the previous calculation as it was modified for the calculation prior to the previous calculation (step 426). In this case, after giving the system time to stabilize, the MPPT control block 304 again calculates a current power for the panel 202 (step 412) and compares it to the previous power (step 414).
However, if the MPPT control block 304 determines that \(T \) is not equal to 2, indicating that the conversion ratio was modified in the same direction for the previous calculation as it was modified for the calculation prior to the previous calculation (step 426), the MPPT control block 304 sets \(T \) to 2 and increments the counter (step 428). The MPPT control block 304 then determines whether the count has exceeded the count threshold, \(C_{ah} \) (step 422), as described above.

If the count does exceed the count threshold (step 422), indicating that the conversion ratio has been modified alternately in the first direction and a second direction for a number of times greater than the count threshold, the MPPT control block 304 has found the optimum conversion ratio that corresponds to the maximum power point for the panel 202, and the MPPT control block 304 begins to operate in the holding mode (step 430).

When in the holding mode, the MPPT control block 304 may set a timer and reinitialize the count (step 432). When the timer expires (step 434), the MPPT control block 304 may revert to the tracking mode (step 436) and calculate a current power (step 412) to compare to the last power calculated when the MPPT control block 304 was previously in the tracking mode (step 414). In this way, the MPPT control block 304 may ensure that the optimum conversion ratio has not changed or may find a different optimum conversion ratio if conditions for the panel 202 have changed.

Although FIG. 4 illustrates an example of a method 400 for tracking a maximum power point for an energy generating device 202, various changes may be made to this method 400. For example, although the method 400 is described with reference to a photovoltaic panel, the method 400 may be implemented for other energy generating devices 202, such as wind turbines, fuel cells or the like. Furthermore, although the method 400 is described with reference to the MPPT control block 304 of FIG. 3, it will be understood that the method 400 may be implemented in any suitably arranged MPPT control block without departing from the scope of this disclosure. In addition, for some embodiments, the MPPT control block 304 may operate in the dormant mode instead of the holding mode in step 430 if the MPPT control block 304 determines that the optimum conversion ratio corresponds to the buck-boost mode for the power stage 206. For these embodiments, the amount of time after which the timer expires during the dormant mode may be the same as or different from the amount of time associated with the timer during the holding mode. Also, while shown as a series of steps, the steps in the method 400 may overlap, occur in parallel, occur multiple times, or occur in a different order.

FIG. 5 illustrates an energy generating system 500 including a plurality of energy generating devices 502a-502d and a central array controller 510 that is capable of selecting between centralized and distributed MPPT for the energy generating system 500 in accordance with one embodiment of this disclosure. For the described embodiment, the energy generating system is referred to as a photovoltaic system 500 that comprises an array of photovoltaic panels 502a-502d, each coupled to a corresponding local converter 504a-504d.

Each local converter 504a-504d comprises a power stage 506a-506d and a local controller 508a-508d. In addition, for some embodiments, each local converter 504a-504d may be bypassed via an optional internal switch, such as switch 312. When bypassed, the output voltage of the local converter 504a-504d is essentially equal to its input voltage. In this way, losses associated with the operation of the local converter 504a-504d may be minimized or even eliminated when the local converter 504a-504d is not needed.

In this way, losses associated with the operation of the local converter 504 may be minimized or even eliminated when the local converter 504 is not needed.

In addition to the central array controller 510, the illustrated embodiment of the system 500 may also comprise a conversion stage 512, a grid 514 and a data bus 516. The central array controller 510 comprises a diagnostic module 520, a control module 525 and an optional conversion stage (CS) optimizer 530. In addition, the illustrated embodiment provides for a global controller 540 in the conversion stage 512. However, it will be understood that the global controller 540 may be implemented in the central array controller 510 instead of the conversion stage 512. Also, the CS optimizer 530 may be implemented in the conversion stage 512 instead of the central array controller 510.

For some embodiments, the panels 502a-502d and local converters 504a-504d may represent the panels 102a-102f and local converters 104a-104f of FIG. 1 and/or the panels 202 and local converters 204 of FIG. 2 or 3, the central array controller 510 may represent the central array controller 110 of FIG. 1, and/or the conversion stage 512 may represent the DC-AC converter 112 of FIG. 1. In addition, the diagnostic module 520 and the control module 525 may represent the diagnostic module 120 and the control module 125 of FIG. 1, respectively. However, it will be understood that the components of the system 500 may be implemented in any suitable manner. The conversion stage 512 may comprise a DC-AC converter, a battery charger or other energy storage device, or any other suitable component. The grid 514 may comprise any suitable load capable of operating based on the energy generated by the photovoltaic system 500.

Each of the local controllers 508a-508d is capable of providing device data and local converter data for a corresponding panel 502a-502d to the central array controller 510 over the data bus 516 or, alternatively, over a wireless link. Based on this data, the diagnostic module 520 may be capable of determining whether the panels 502a-502d are operating under quasi-ideal conditions, i.e., the panels 502a-502d are not mismatched and are illuminated essentially the same amount as each other. In this situation, the diagnostic module 520 is capable of prompting the control module 525 to place the system 500 in a centralized MPPT (CMPT) mode. To accomplish this, the control module 525 is capable of sending a disable signal over the data bus 516 to each of the local controllers 508a-508d in order to disable the local converters 504a-504d by operating the local converters 504a-504d in a bypass mode. The control module 525 is also capable of sending an enable signal to the global controller 540.

In the bypass mode, the local controller 508a-508d no longer performs MPPT, and the output voltage of the power stage 506a-506d is essentially equal to the panel voltage from the panel 502a-502d. Thus, losses associated with operating the local converters 504a-504d are minimized and the efficiency of the system 500 is maximized. When the local converters 504a-504d are operating in bypass mode, the global controller 540 is capable of performing CMPT for the array of panels 502a-502d.

The diagnostic module 520 is also capable of determining whether some of the panels 502a-502d may be shaded or mismatched (i.e., some panels 502a-502d have different characteristics as compared to other panels 502a-502d in the array). In this situation, the diagnostic module 520 is capable of prompting the control module 525 to place the system 500 in a distributed MPPT (DMPT) mode. To accomplish this, the control module 525 is capable of sending an enable signal over the data bus 516 to each of the local controllers 508a-508d in order to enable the local converters 504a-504d by
allowing the normal operation of the local converters \(504a-504d\). The control module \(525\) is also capable of sending a disable signal to the global controller \(540\).

When some of the panels \(502a-502d\) are shaded, the diagnostic module \(520\) is also capable of determining that some of the shaded panels \(502a-502d\) may be partially shaded. In this situation, in addition to prompting the control module \(525\) to place the system \(500\) in the DMPPT mode, the diagnostic module \(520\) may also be capable of performing a full diagnostic scan of the system \(500\) in order to ensure that the local controllers \(508a-508d\) for partially shaded panels \(502a-502d\) are finding their actual maximum power points and not local maxima. For embodiments in which the energy generating devices \(502a-502d\) comprise wind turbines, the diagnostic module \(520\) may be capable of determining whether some of the wind turbines are “shaded” due to changing wind patterns, hills or other structures blocking wind, or other wind-affecting conditions.

A partially shaded situation for a photovoltaic system \(500\) is illustrated in FIGS. 6 and 7A-C. FIG. 6 illustrates a photovoltaic array \(600\) under partially shaded conditions. FIGS. 7A-C are graphs \(700\), \(705\) and \(710\) illustrating voltage-to-power characteristics corresponding to the photovoltaic panels of FIG. 6.

The illustrated array \(600\) comprises three strings \(610a-610c\) of photovoltaic panels. Three of the panels in the string \(610c\) are labeled as panel A, panel B and panel C. It will be understood that these panels may represent the panels of FIG. 5 or panels in any other suitably arranged photovoltaic system. Some of the panels are covered completely or partially by a shaded region \(620\).

In the illustrated example, panel A is fully illuminated, while panel B is partially shaded and panel C is fully shaded by the shaded region \(620\). The voltage-to-power characteristics in the graph \(700\) of FIG. 7A corresponds to panel A, the voltage-to-power characteristics in the graph \(705\) of FIG. 7B corresponds to panel B, and the voltage-to-power characteristics in the graph \(710\) of FIG. 7C corresponds to panel C.

Thus, as shown in the graph \(705\), the partially shaded panel \(B\) has a local maximum \(720\) different from its actual maximum power point \(725\). The diagnostic module \(520\) of the central array controller \(510\) is capable of determining that panel \(B\) may be partially shaded and performing a full diagnostic scan to ensure that panel \(B\) is being operated by its local controller (such as controller \(508b\)) at its actual maximum power point \(725\) as opposed to the local maximum \(720\). A panel that is operating at a local maximum power point, such as point \(720\), instead of an actual maximum power point, such as point \(725\), is referred to as an “under-performing” panel.

For a particular embodiment, the diagnostic module \(520\) may identify partially shaded panels \(502a-502d\) as follows. First, the diagnostic module \(520\) assumes that panels \(1, \ldots, N\) are a subset of panels \(502a-502d\) in the considered array with equal characteristics and assumes that \(P_{\text{pan},i}\) is the output power of the \(i^{th}\) panel belonging to the set \(\{1, \ldots, N\}\). Then, \(P_{\text{pan},\text{max}} \geq P_{\text{pan},\text{i}} \geq P_{\text{pan},\text{min}}\)

where \(P_{\text{pan},\text{max}}\) is the output power of the best-performing panel \(502a-502d\) and \(P_{\text{pan},\text{min}}\) is the output power of the worst-performing panel \(502a-502d\).

The diagnostic module \(520\) also defines a variable \(\varphi_i\) by the following equation:

\[
\varphi_i = \frac{P_{\text{pan},\text{max}} - P_{\text{pan},i}}{P_{\text{pan},\text{max}}}.
\]

The probability that the \(i^{th}\) panel is fully or partially shaded can then be expressed as follows:

\[
\rho_i = k \varphi_i = \frac{k(P_{\text{pan},\text{max}} - P_{\text{pan},i})}{P_{\text{pan},\text{max}}},
\]

where \(k\) is a constant that is less than or equal to 1. Then it follows that

\[
\rho_{\text{min}} = \rho_i < \rho_{\text{max}},
\]

where

\[
\rho_{\text{min}} = \frac{k(P_{\text{pan},\text{max}} - P_{\text{pan},\text{min}})}{P_{\text{pan},\text{min}}} = 0
\]

and

\[
\rho_{\text{max}} = \frac{k(P_{\text{pan},\text{max}} - P_{\text{pan},\text{min}})}{P_{\text{pan},\text{min}}}
\]

The diagnostic module \(520\) also defines \(\rho_{\text{DMPPT}}\) as the minimum value of the probability function \(\rho_{\text{max}}\) such that DMPPT is needed. Thus, if \(\rho_{\text{max}}\) is greater than \(\rho_{\text{DMPPT}}\), DMPPT will be enabled. In addition, \(\rho_{\text{diag}}\) is defined as the minimum value of the probability function \(\rho_{\text{max}}\) such that diagnostic functions are needed to determine whether any panels \(502a-502d\) that may be partially shaded are not operating at their MPPs. Thus, if \(\rho_{\text{max}}\) is greater than \(\rho_{\text{diag}}\), the diagnostic module \(520\) will identify panels \(502a-502d\) that may be partially shaded and will perform the scan on those identified panels \(502a-502d\).

The diagnostic module \(520\) is capable of enabling DMPPT for even relatively small mismatches among the panels \(502a-502d\), but for larger mismatches the diagnostic module \(520\) is also capable of performing the full diagnostic scan. As such, the value of \(\rho_{\text{DMPPT}}\) is generally less than \(\rho_{\text{diag}}\).

Thus, for some embodiments, the diagnostic module \(520\) is capable of determining that the system \(500\) should be in the CMPPT mode when \(\rho_{\text{max}} < \rho_{\text{DMPPT}}\) in the DMPPT mode when \(\rho_{\text{DMPPT}} < \rho_{\text{max}} < \rho_{\text{diag}}\) and in the DMPPT mode along with the full diagnostic scan when \(\rho_{\text{max}} < \rho_{\text{diag}}\).

For these embodiments, the full diagnostic scan may comprise a complete scan of the voltage-to-power characteristic of each panel \(j\) for which \(\rho_{\text{max}} < \rho_{\text{diag}}\). The diagnostic module \(520\) may individually scan the characteristics of each such panel \(502a-502d\) based on a timing given by the central array controller \(510\). In this way, the conversion stage \(512\) may continue to operate normally.

When the system \(500\) is operating in the DMPPT mode, the CS optimizer \(530\) is capable of optimizing the operating point of the conversion stage \(512\). For one embodiment, the operating point of the conversion stage \(512\) may be set to a constant value. However, for the embodiments in which the CS optimizer \(530\) is implemented, the operating point of the conversion stage \(512\) may be optimzed by the CS optimizer \(530\).

For a particular embodiment, the CS optimizer \(530\) may be capable of determining an optimized operating point for the conversion stage \(512\) as described below. For the \(i^{th}\) power stage, the duty cycle is defined as \(D_i\), and its conversion ratio is defined as \(M(D_i)\). The power stages \(506a-506d\) are designed to have a nominal conversion ratio of \(M_0\). Thus, operating the power stages \(506a-506d\) as closely to \(M_0\) as possible provides a higher efficiency, lowers stress and lowers
the possibility of output voltage saturation. For a power stage \(506a-506d\) that comprises a step-up-down converter, \(M_i\) may be 1.

Because of this, an optimization principle may be defined as:

\[
\sum_{i=1}^{N} \frac{M(D_i)}{N} = M_b
\]

Then,

\[
\sum_{i=1}^{N} M(D_i) = \sum_{i=1}^{N} \frac{I_{out,i}}{\eta_i} = \frac{1}{I_{LOAD}} \sum_{i=1}^{N} \sum_{j=1}^{N} I_{out,ij}
\]

where \(I_{out,i}\) is the output current of the \(i\)'th power stage, \(I_{LOAD}\) is the input current for the conversion stage \(512\). As a result, the optimization principle may be rewritten as:

\[
I_{LOAD} = \frac{\sum_{i=1}^{N} I_{out,i}}{N M_b}
\]

The CS optimizer \(530\) may achieve this optimization by using a standard current mode control technique at the input port of the conversion stage \(512\) such that the input current of the conversion stage \(512\) is set to \(I_{LOAD}\).

FIG. 8 illustrates a method \(800\) for selecting between centralized and distributed MPPPT for the energy generating system \(500\) in accordance with one embodiment of this disclosure. The embodiment of the method \(800\) is for illustration only. Other embodiments of the method \(800\) may be implemented without departing from the scope of this disclosure.

The method \(800\) begins with the diagnostic module \(520\) setting a timer (step \(802\)). The timer may be used by the diagnostic module \(520\) to trigger the initiation of the method \(800\) on a recurring basis. The diagnostic module \(520\) then analyzes the energy generating devices, such as panels \(502a-502d\) in the energy generating system \(500\) (step \(804\)). For example, for some embodiments, the diagnostic module \(520\) may analyze the panels \(502a-502d\) by calculating a power, \(P_{out}\), for each panel \(502a-502d\) and then determining a number of other values based on these calculated values of \(P_{out}\) as described in more detail above in connection with FIG. 5. For example, the diagnostic module \(520\) may determine the maximum and minimum values of the calculated \(P_{out}\) values (\(P_{out,max}\) and \(P_{out,min}\), respectively) and then use these maximum and minimum values to calculate a probability for each panel \(502a-502d\) that the panel \(502a-502d\) is fully or partially shaded (\(P\)). The diagnostic module \(520\) may also determine the maximum value of the calculated probabilities (\(P_{max}\)).

After analyzing the panels \(502a-502d\) (step \(804\)), the diagnostic module \(520\) may then determine whether the photovoltaic system \(500\) is operating under quasi-ideal conditions (step \(806\)). For example, for some embodiments, the diagnostic module \(520\) may compare the maximum value of the calculated probabilities that the panels \(502a-502d\) are shaded (\(P_{max}\)) to a predefined DMPPT threshold (\(P_{DMPPT}\)). If \(P_{max}\) is less than \(P_{DMPPT}\) the maximum output power and the minimum output power of the panels \(502a-502d\) are close enough together that the probability of a mismatch among the panels \(502a-502d\) may be considered extremely low, and the system \(500\) may be considered to be operating under quasi-ideal conditions. Similarly, if \(P_{max}\) is less than \(P_{DMPPT}\) the maximum output power and the minimum output power of the panels \(502a-502d\) are far enough apart that the probability of a mismatch among the panels \(502a-502d\) may not be considered extremely low, and the system \(500\) may be considered not to be operating under quasi-ideal conditions.

If the diagnostic module \(520\) determines that the system \(500\) is not operating under quasi-ideal conditions (step \(806\)), the control module \(525\) enables the local controllers \(508a-508d\) (step \(808\)) and disables the global controller \(540\) (step \(810\)), thereby placing the system \(500\) in the DMPPT mode. Thus, in this situation, the local controllers \(508a-508d\) perform MPPPT for each individual panel \(502a-502d\).

Because the DMPPT mode is used for even relatively small mismatches among the panels \(502a-502d\), the diagnostic module \(520\) may determine that the system \(500\) is not operating under quasi-ideal conditions even when the probability of shaded panels \(502a-502d\), though not considered extremely low, is still considered low. Thus, after entering the DMPPT mode, the diagnostic module \(520\) determines whether the probability of shaded panels \(502a-502d\) is high (step \(812\)). For example, the diagnostic module \(520\) may compare the maximum probability that a panel \(502a-502d\) is shaded (\(P_{max}\)) to a predefined diagnostic threshold (\(P_{d,diag}\)). If \(P_{max}\) is greater than \(P_{d,diag}\) the maximum output power and the minimum output power of the panels \(502a-502d\) are far enough apart that the probability of a mismatch among the panels \(502a-502d\) may be considered relatively high, and thus the probability of at least one shaded panel \(502a-502d\) is high.

If there is a high probability of shaded panels \(502a-502d\) (step \(812\)), the diagnostic module \(520\) performs a full characteristic scan for any potentially shaded panels \(502a-502d\) (step \(814\)). For example, the diagnostic module \(520\) may identify potentially shaded panels \(502a-502d\) by comparing, for each panel \(502a-502d\), the probability that the panel \(502a-502d\) is shaded (\(P\)) to the diagnostic threshold (\(P_{d,diag}\)). If for a particular panel \(502a-502d\) is greater than \(P_{d,diag}\) the output power of that particular panel \(502a-502d\) is far enough apart from the maximum output power provided by a panel \(502a-502d\) in the system \(500\) that the probability is relatively high that the particular panel \(502a-502d\) is at least partially shaded.

In performing the full characteristic scans, the diagnostic module \(520\) may individually perform a scan of the voltage-to-power characteristic for each potentially shaded panel \(502a-502d\) based on a timing provided by the central array controller \(510\). In this way, the conversion stage \(512\) may continue to operate normally during the scans.

If during the course of performing any full characteristic scans the diagnostic module \(520\) determines that any panels \(502a-502d\) are under-performing (i.e., operating at a local maximum power point (MPP), such as the local MPP 720, instead of an actual MPP, such as the MPP 725), the control module \(525\) may provide corrections to these under-performing panels \(502a-502d\) (step \(816\)).

At this point, or if there is not a high probability of shaded panels \(502a-502d\) (step \(812\)), the diagnostic module \(520\) determines whether the timer has expired (step \(818\)), indicating that the method \(800\) is to be initiated again. Once the timer does expire (step \(818\)), the diagnostic module \(520\) resets the timer (step \(820\)) and begins to analyze the panels \(502a-502d\) again (step \(804\)).

If the diagnostic module \(520\) determines that the system \(500\) is operating under quasi-ideal conditions (step \(806\)), the control module \(525\) disables the local controllers \(508a-508d\)
(step 822) and enables the global controller 540 (step 824), thereby placing the system 500 in the CMPPT mode. Thus, in this situation, the global controller 540 performs MPPT for the entire system 500.

At this point also, the diagnostic module 520 determines whether the timer has expired (step 818), indicating that the method 800 is to be initiated again. Once the timer does expire (step 818), the diagnostic module 520 resets the timer (step 820) and begins to analyze the panels 502a-502d again (step 804).

Although FIG. 8 illustrates an example of a method 800 for selecting between centralized and distributed MPPT, various changes may be made to this method 800. For example, although the method 800 is described with reference to a photovoltaic system, the method 800 may be implemented for other energy generating systems 500, such as a wind turbine system, a fuel cell system or the like. Furthermore, although the method 800 is described with reference to the system 500 of FIG. 5, it will be understood that the method 800 may be implemented in any suitably arranged energy generating system without departing from the scope of this disclosure. In addition, while shown as a series of steps, the steps in the method 800 may overlap, occur in parallel, occur multiple times, or occur in a different order.

FIG. 9 illustrates a system 900 for activating and deactivating a local controller 908 for a local converter 904 in an energy generating system in accordance with one embodiment of this disclosure. The system 900 comprises an energy generating device 902, which is referred to as a photovoltaic panel 902, and a local converter 904. The local converter 904 comprises a power stage 906, a local controller 908 and an activator 910.

The local converter 904 may represent one of the local converters 104a-104f of FIG. 1, the local converter 204 of FIG. 2 or 3, and/or one of the local converters 504a-504d of FIG. 5; however, it will be understood that the local converter 904 may be implemented in any suitably arranged energy generating system without departing from the scope of this disclosure. Thus, it will be understood that the system 900 may be coupled to other similar systems 500 in series and/or in parallel to form an energy generating array.

For the illustrated embodiment, the activator 910 is coupled between the panel 902 and the local controller 908. For some embodiments, the activator 910 is capable of activating and deactivating the local controller 908 based on the output voltage of the panel 902. When the output voltage of the panel 902 is too low, the activator 910 may be capable of providing a supply voltage to the local controller 908 that is essentially zero, thereby shutting off the local controller 908.

When the output voltage of the panel 902 is higher, the activator 910 may be capable of providing a non-zero supply voltage to the local controller 908 such that the local controller 908 is operable.

It will be understood that the activator 910 may be capable of activating and deactivating the local controller 908 in any suitable manner other than providing the supply voltage to the local controller 908. For example, for one alternative, the activator 910 may be capable of setting one or more pins of the local controller 908 in order to activate and deactivate the local controller 908. For another alternative, the activator 910 may be capable of writing a first predefined value to a first register in the local controller 908 in order to activate the local controller 908 and writing a second predefined value (which may be the same as or different from the first predefined value based on the particular implementation) to either the first register or a second register in the local controller 908 in order to deactivate the local controller 908.

Thus, the system 900 provides for the autonomous operation of the local converter 904 without the use of batteries or external power supplies. When the solar irradiance is high enough, the output panel voltage, V\textsubscript{pout}, increases to a level that causes the activator 910 to begin generating the non-zero supply voltage, V\textsubscript{cc}. At this point, the local controller 908 and/or a central array controller (not shown in FIG. 9) may begin performing activation procedures, such as initialization of registers, preliminary voltage comparisons among the panels 902, analog-to-digital converter calibrations, clock synchronization or interleaving, synchronous activation of the power stages 906 and/or the like. Similarly, before deactivating the system 900, deactivation procedures may be performed, such as synchronization with a back-up unit in cases of stand-alone applications, synchronous deactivation of the power stages 906 and/or the like. During these deactivation procedures, the activator 910 is capable of remaining activated itself.

In addition, for some embodiments, the activator 910 may be capable of providing power protection for the local converter 904. As described above in connection with FIG. 3, the MPPT control 304, which is part of the local controller 208, may provide over power protection. However, as an alternative for systems including an activator 910, the activator 910 may be capable of providing this protection instead. Thus, for this alternative, if the output current drops too low, the activator 910 may switch off the MPPT functionality of the local controller 908 such that the panel voltage, V\textsubscript{pout}, is approximately equal to the output voltage, V\textsubscript{out}.

FIG. 10 is a graph 920 illustrating an example of device voltage variation with time for the system 900 in accordance with one embodiment of this disclosure. For a photovoltaic panel 902, in situations in which the solar irradiance level oscillates around the voltage activation level (V\textsubscript{cc}) for the activator 910, using the same voltage activation level as a voltage deactivation level (V\textsubscript{pout}) would generate undesirable multiple activations and deactivations of the system 900. Thus, as shown in the graph 920, a lower voltage deactivation level may be used in order to prevent this scenario. By using this lower voltage deactivation level, the system 900 may remain consistently activated until the solar irradiance level decreases enough such that the panel voltage falls to a level somewhat lower than the voltage activation level. As a result, frequent activations and deactivations are avoided, providing noise immunity for the system 900.

For some embodiments, after the panel voltage exceeds the voltage activation level resulting in the activation of the local controller 908, the local controller 908 may begin the deactivation procedure if the panel voltage drops below the voltage activation level in order to be more quickly deactivate if the panel voltage continues to fall to a level lower than the voltage deactivation level. In addition, for some embodiments, the local controller 908 may be capable of shutting off the activator 910, and thus itself, before the voltage deactivation level is reached for particular situations.

FIG. 11 illustrates the activator 910 in accordance with one embodiment of this disclosure. For this embodiment, the activator 910 comprises a power supply 930, a plurality of resistors R1, R2 and R3, and a diode D. The resistors R1 and R2 are coupled in series between an input node (IN) of the power supply 930 and ground. The diode and the resistor R3 are coupled in series between an output node (OUT) of the power supply 930 and a node 940 at which the resistors R1 and R2 are coupled together. In addition, a shutdown node (SD) of the power supply 930 is also coupled to the node 940.

The power supply 930 is capable of receiving the panel voltage, V\textsubscript{pout}, at the input node and generating a supply
voltage, \(V_{ic} \), for the local controller 908 at the output node. The shutdown node of the power supply 930 enables the operation of the power supply 930 if the voltage level at the shutdown node as determined by a control circuit of the power supply 930 exceeds a specified voltage, \(V_{ic} \), and disables the operation of the power supply 930 if the voltage level at the shutdown node falls below the specified voltage, \(V_{ic} \).

When the power supply 930 is turned off, the diode is not conducting and the voltage at the shutdown node is given by

\[
V_{SD,R-off} = \frac{R_2}{R_1 + R_2} V_{ic}.
\]

When the voltage \(V_{SD,R-off} \) exceeds the value \(V_{ic} \), the diode starts conducting and the voltage at the shutdown node becomes

\[
V_{SD,R-off} = \frac{R_2}{R_1 + R_2} V_{ic} + \frac{R_1}{R_1 + R_2} (V_{ce} - V_d) = \frac{R_1}{R_1 + R_2} V_d,
\]

where \(V_d \) is the diode voltage drop and

\[
x / y = \frac{xy}{x + y}.
\]

When the voltage \(V_{SD,R-off} \) drops below \(V_{ic} \), the power supply 930 is turned off. The turn-on and turn-off voltage thresholds are thus determined based on the resistances provided by the resistors R1, R2, and R3.

FIG. 12 illustrates a method 1200 for activating and deactivating the local converter 904 in accordance with one embodiment of this disclosure. The embodiment of the method 1200 is for illustration only. Other embodiments of the method 1200 may be implemented without departing from the scope of this disclosure.

The method 1200 begins with the energy generating device, or panel, 902 operating in an open circuit condition (step 1202). In this condition, the activator 910 has not activated the local controller 908 because the panel voltage output by the panel 902 is too low. The activator 910 monitors this panel voltage (\(V_{pan} \)) until it exceeds the voltage activation level (\(V_{pan,act} \)) (step 1204).

Once the activator 910 determines that the panel voltage has exceeded the voltage activation level (step 1204), the activator 910 begins to activate the local converter 904 by turning on the local controller 908 (step 1206). For example, the activator 910 may begin to activate the local converter 904 by generating a non-zero supply voltage, \(V_{ic} \), for the local controller 908. For other embodiments, the activator 910 may begin to activate the local converter 904 by setting one or more pins of the local controller 908 or by writing a first predefined value to a first register in the local controller 908. The local controller 908 and/or a central array controller then perform activation procedures for the local converter 904 (step 1208). For example, the activation procedures may include initialization of registers, preliminary voltage comparisons among panels 902, analog-to-digital converter calibrations, clock synchronization or interleaving, synchronous activation of a string of panels that include the power stage 906 and/or like.

The local controller 908 operates the power stage 906 with a predetermined conversion ratio (step 1210) until the other power stages 906 in the string are operational (step 1212). Once each of the panels 902 in the string has an operational power stage 906 (step 1212), the local controller 908 compares the panel current (\(I_{pan} \)) to an activation current level \((I_{act}) \) (step 1214). If the panel current is greater than the activation current level (step 1214), the local controller 908 begins to operate normally (step 1216). Thus, the local controller 908 begins performing MPPT for the power stage 906.

In this way, the activation of all local controllers 908 in an energy generating system may be automatically synchronized. In addition, if only a subset of the panels 902 in the photovoltaic system produce a voltage that is high enough to result in activation by the activator 910, a unidirectional switch, such as switch 314, may be included in each of the power stages 906 to allow the remaining panels 902 to be operated.

The local controller 908 continues to compare the panel current to the activation current level (step 1218). If the panel current is less than the activation current level (step 1218), the local controller 908 sets a deactivation timer (step 1220). The local controller 908 then reverts to operating the power stage 906 with a predetermined conversion ratio (step 1222). The local controller 908 and/or a central array controller then perform deactivation procedures for the local converter 904 (step 1224). For example, the deactivation procedures may include synchronization with a back-up unit in cases of stand-alone applications, synchronous deactivation of power stages 906 and/or like.

The local controller 908 then determines whether the deactivation timer has expired (step 1226). This allows time for the panel current to increase above the activation current level. Thus, the local controller 908 prepares for deactivation but waits to ensure that deactivation should actually be performed.

Therefore, as long as the deactivation timer has not expired (step 1226), the local controller 908 compares the panel current to the activation current level (step 1228). If the panel current continues to remain less than the activation current level (step 1228), the local controller 908 continues to wait for the deactivation timer to expire (step 1226). If the panel current becomes greater than the activation current level (step 1228) before the deactivation timer expires (step 1226), the local controller 908 again operates normally by performing MPPT for the power stage 906 (step 1216).

However, if the deactivation timer does expire (step 1226) while the panel current is less than the activation current level (step 1228), the local controller 908 turns off the power stage 906 and the local controller 908, and the panel 902 is again operated in the open circuit condition (step 1230). For some embodiments, the activator 910 may complete deactivation of the local converter 904 by generating a zero supply voltage, \(V_{ic} \), for the local controller 908. For other embodiments, the activator 910 may complete deactivation of the local converter 904 by setting one or more pins of the local controller 908 or by writing a second predefined value to a first register or a second register in the local controller 908. At this point, the activator 910 once again monitors the panel voltage until it exceeds the voltage activation level (step 1204), reinitiating the activation process.

Although FIG. 12 illustrates an example of a method 1200 for activating and deactivating the local converter 904, various changes may be made to this method 1200. For example, although the method 1200 is described with reference to a photovoltaic panel, the method 1200 may be implemented for other energy generating devices 902, such as wind turbines, fuel cells or the like. Furthermore, although the method 1200 is described with reference to the local controller 908 and the
activator 910 of FIG. 9, it will be understood that the local controller 908 and the activator 910 may be implemented in any suitably arranged energy generating system without departing from the scope of this disclosure. Also, while shown as a series of steps, the steps in the method 1200 may overlap, occur in parallel, occur multiple times, or occur in a different order.

Although the above descriptions refer to particular embodiments, it will be understood that some of the described components, systems and methods may be applied to a subcell, a single cell, a panel (i.e., a cell array), a panel array and/or a system of panel arrays. For example, although the local converters described above are each associated with a panel, similar systems may be implemented with a local converter for each cell in a panel or for each string of panels. In addition, some of the described components, systems and methods may be applied to energy generating devices other than photovoltaic devices, such as wind turbines, fuel cells or the like.

It may be advantageous to set forth definitions of certain words and phrases that have been used within this patent document. The term “couple” and its derivatives refer to any direct or indirect communication between two or more components, whether or not those components are in physical contact with one another. The terms “transmit,” “receive,” and “communicate,” as well as derivatives thereof, encompass both direct and indirect communication. The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The term “each” means every one of at least a subset of the identified items. The phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like.

While this disclosure has described certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure, as defined by the following claims.

What is claimed is:

1. A method for selecting between centralized and distributed maximum power point tracking in an energy generating system comprising a plurality of energy generating devices, each of the energy generating devices coupled to a corresponding local converter comprising a local controller, the method comprising:
 determining whether there is at least a threshold amount of mismatch between operating characteristics of the energy generating devices;
 placing the energy generating system in a centralized maximum power point tracking (CMPPT) mode when there is not at least the threshold amount of mismatch; and
 placing the energy generating system in a distributed maximum power point tracking (DMPPT) mode when there is at least the threshold amount of mismatch.

2. The method of claim 1, wherein placing the energy generating system in the CMPPT mode comprises disabling the local controllers and enabling a global controller.

3. The method of claim 1, wherein placing the energy generating system in the DMPPT mode comprises enabling the local controllers and disabling a global controller.

4. The method of claim 1, further comprising, when the energy generating system is in the DMPPT mode, determining whether a probability that at least one of the energy generating devices is shaded is above a threshold.

5. The method of claim 4, further comprising, when the probability that at least one of the energy generating devices is shaded is determined to be above the threshold:
 identifying at least one potentially shaded energy generating device; and
 performing a full characteristic scan for each identified potentially shaded energy generating device.

6. The method of claim 5, further comprising:
 identifying at least one under-performing energy generating device based on the full characteristic scan; and
 providing a correction to each identified under-performing energy generating device.

7. The method of claim 1, wherein determining whether there is at least the threshold amount of mismatch comprises:
 for each energy generating device, calculating a probability that the energy generating device is shaded;
 identifying a maximum value of the calculated probabilities;
 comparing the maximum value of the calculated probabilities to a DMPPT threshold; and
 determining that there is at least the threshold amount of mismatch when the maximum value of the calculated probabilities is greater than the DMPPT threshold.

8. The method of claim 7, further comprising, when the energy generating system is in the DMPPT mode, comparing the maximum value of the calculated probabilities to a diagnostic threshold.

9. The method of claim 8, further comprising, when the maximum value of the calculated probabilities is greater than the diagnostic threshold:
 identifying as a potentially shaded energy generating device each of the energy generating devices having a calculated probability that is greater than the diagnostic threshold; and
 performing a full characteristic scan for each identified potentially shaded energy generating device.

10. The method of claim 9, further comprising:
 identifying at least one under-performing energy generating device based on the full characteristic scan; and
 providing a correction to each identified under-performing energy generating device.

11. The method of claim 1, wherein the energy generating devices comprise photovoltaic panels.

12. A method for selecting between centralized and distributed maximum power point tracking in an energy generating system comprising a plurality of energy generating devices, each of the energy generating devices coupled to a corresponding local converter comprising a local controller, the method comprising:
 calculating an output power value for each of the energy generating devices;
 for each energy generating device, calculating a probability that the energy generating device is shaded based on the output power values for the energy generating devices;
 identifying a maximum value of the calculated probabilities;
 comparing the maximum value of the calculated probabilities to a distributed maximum power point tracking (DMPPT) threshold;
placing the energy generating system in a centralized maximum power point tracking (CMPPT) mode when
the maximum value of the calculated probabilities is less than the DMPPT threshold; and
placing the energy generating system in a DMPPT mode when the maximum value of the calculated probabilities is greater than the DMPPT threshold.

13. The method of claim 12, further comprising, when the energy generating system is in the DMPPT mode, determining whether at least one of the calculated probabilities is above a diagnostic threshold.

14. The method of claim 13, wherein determining whether at least one of the calculated probabilities is above the diagnostic threshold comprises comparing the maximum value of the calculated probabilities to the diagnostic threshold.

15. The method of claim 14, further comprising, when the maximum value of the calculated probabilities is greater than the diagnostic threshold:
identifying as a potentially shaded energy generating device each of the energy generating devices having a calculated probability that is greater than the diagnostic threshold;
performing a full characteristic scan for each identified potentially shaded energy generating device;
identifying at least one under-performing energy generating device based on the full characteristic scan; and
providing a correction to each identified under-performing energy generating device.

16. The method of claim 12, wherein the energy generating devices comprise photovoltaic panels.

17. A central array controller capable of selecting between centralized and distributed maximum power point tracking for an energy generating system comprising a plurality of energy generating devices, each of the energy generating devices coupled to a corresponding local converter comprising:
a diagnostic module configured to determine whether there is at least a threshold amount of mismatch between operating characteristics of the energy generating devices; and

25. a control module configured to:
place the energy generating system in a centralized maximum power point tracking (CMPPT) mode when there is not at least the threshold amount of mismatch; and
place the energy generating system in a distributed maximum power point tracking (DMPPT) mode when there is at least the threshold amount of mismatch.

18. The central array controller of claim 17, wherein the control module is configured to place the energy generating system in the CMPPT mode by disabling the local controllers and enabling a global controller.

19. The central array controller of claim 17, wherein the control module is configured to place the energy generating system in the DMPPT mode by enabling the local controllers and disabling a global controller.

20. The central array controller of claim 17, wherein the diagnostic module is further configured to determine, when the energy generating system is in the DMPPT mode, whether a probability that at least one of the energy generating devices is shaded is above a threshold.

21. The central array controller of claim 20, wherein the diagnostic module is further configured to, when the probability that at least one of the energy generating devices is shaded is determined to be above the threshold:
identify at least one potentially shaded energy generating device; and
perform a full characteristic scan for each identified potentially shaded energy generating device.

22. The central array controller of claim 21, wherein the diagnostic module is further configured to:
identify at least one under-performing energy generating device based on the full characteristic scan; and
provide a correction to each identified under-performing energy generating device.

23. The central array controller of claim 17, wherein the energy generating devices photovoltaic panels.