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MULTISTABLE CHIRAL NEMATIC DISPLAYS

This application was made in part with Government support under
cooperative agreement number DMR 89-20147 awarded by the National

Science Foundation. The Government has certain rights in this invention.

BACKGROUND OF THE INVENTION

Related Applications
This application is a continuation in part of U.S. Serial No. 07/694,840

filed May 2, 1991, incorporated herein by reference, U.S. Serial No. 07/885,154,
filed May 18, 1992, incorporated herein by reference and U.S. Serial No. |
07/969,093, incorporated herein by reference.

Technical Field

The present invention relates generally to liquid crystalline light

modulating devices, and more specifically to new polymer free liquid crystalline
display cells and materials which exhibit different optical states under different
electrical field conditions and are characterized by a unique combination of
properties, including optical multistability and haze-free light transmission at all
viewing angles in both a field-ON or field-OFF mode.

Electrically switchable liquid crystal films intended for use in electro-
optical devices have been prepared using various types and concentrations of
liquid crystal and polymer. One such technique involves imbibing liquid crystal
into micropores of a pléstic or glass sheet. Another technique involves
evaporation of water from an aqueous emulsion of nematic liquid crystal in a
solution of water-soluble polymer such as polyvinyl alcohol or in a latex
emulsion.

A different procedure offering significant advantages over mechanical
entrapment techniques and the emulsification procedure involves phase

separation of liquid crystal from a homogeneous solution with a suitable
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synthetic resin to form a liquid crystal phase interspersed with a polymer phase.
These types of films, some of which are referred to as PDLC, have been shown
to be useful in many applications ranging from large area displays and
switchable coatings for windows to projection displays and high-definition tele-
vision.

All of the above-noted materials and procedures have the disadvantage
of requiring numerous and expensive reagents and starting materials. The
various imbibing, emulsification or polymerization procedures associated with
these systems significantly add to the cost and complexity of their manufacture.
Moreover, when significant amounts of polymer are used, they begin to exhibit
the characteristic drawback of "haze" at increasing oblique viewing angles until
an essentially opaque appearance is detected at an oblique enough angle due
to the perceived mismatch between the effective index of refraction of the
liquid crystal and the refractive index of the polymer.

In the parent application it was found that good color reflective displays
could be prepared using chiral nematic liquid crystal and polymer. These
displays had the advantages of exhibiting multiple stable color reflecting states
and, when the amount of polymer was low, haze free viewing. However, in
spite of their many advantages, these displays still require the use of polymers
and hence, have the drawbacks associated therewith.

Surprisingly, it has now been discovered that a polymer free multistable
color reflecting cell can be prepared that exhibits stable color reflecting and
light scattering states with multiple stable optical states therebetween
characterized by varying degrees of intensity of reflection. Depending upon the
voltage of the electric field addressing pulse, the material can be switched
between these multiple optical states, all of which are stable in the absence of

an applied field.

DISCLOSURE OF THE INVENTION

An important feature of the invention is that a reflective color display

cell can be prepared without polymer so that it exhibits multiple optically

different states, all of which are stable in the absence of an applied field. The
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display can be driven from one state to another by an electric field.

Depending upon the magnitude and shape of the electric field pulse, the
optical state of the material can be changed to a new stable state which reflects
any desired intensity of colored light along a continuum of such states, thus
providing a stable "grey scale." Surprisingly, these materials can be prepared
without the need for polymers and the added expense and manufacturing
complexities associated therewith. ’

Generally, a sufficiently low electric field pulse applied to the material
results in a light scattering state which is white in appearance. In this state, a
proportion of the liquid crystal molecules have a focal conic texture as a result
of competition between any surface effects, elastic forces and the electric field.
After application of a sufficiently high electric field pulse, i.e., an electric field

high enough to homeotropically align the liquid crystal directors, the material

telaxes to a light reflecting state that can be made to appear as green, red,

blue, or any pre-selected color depending upon the pitch length of the chiral
nematic liquid crystal. The light scattering and light reflecting states remain
stable at zero field. By subjecting the material to an electric field in between
that which will switch it from the reflecting state to the scattering state, or vise
versa, one obtains stable grey scale states characterized by varying degrees of
reflection in between that exhibited by the reflecting and scattering states.
When the chiral nematic liquid crystal is in a planar colored light reflecting
texture and an intermediate electric field pulse is applied, the amount of
material in the planar texture, and the intensity of reflectivity of the colored
light, decrease. Similarly, when the material is in the focal conic texture and an
intermediate electric field pulse is applied, the amount of material in the
planar texture will increase as will the intensity of reflection from the cell.
When the electric field is removed, the material is stable and remains in the
established texture to reflect that intensity of light indefinitely, regardiess of
which texture it started from.

If an electric field high enough to homeotropically align the liquid
crystal directors is maintained, the material is transparent until the field is

removed. When the field is turned off quickly, the material reforms to the
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light reflecting state and, when the field is turned off slowly, the material
reforms to the light scattering state. In each case, the electric field pulse is
preferably an AC pulse, and more preferably a square AC pulse, since a DC
pulse will tend to cause ionic conduction and limit the life of the cell.

While not wanting to be bound by theory, it is believed that when the
voltage is applied, a proportion of the material enters a turbid phase while the
field is on. Those portions of the material that exhibit the turbid phase tend to
relax to a focal conic, light scattering texture upon removal of the field. Those
portions of the material unaffected by the field, i.e., those portions that do not
enter the turbid phase, remain in the planar, light reﬂeéting texture. The
amount of light reflected from the cell depends on the amount of material in
the planar reflecting texture. When the voltage of the electric field is
increased, a higher proportion of the material enters the turbid phase while the
field is on, followed by relaxation to the focal conic texture when the field is
removed. Since the reflection from the cell is proportional to the amount of
material in the planar reflecting texture, reflection from the cell decreases
along a grey scale as a result of an increase in the magnitude of the field
because more of the material enters the turbid phase and is switched to the
focal conic texture. At a certain threshold voltage, which depends upon the
material, substantially all of the material is switched to the focal conic texture
upon removal of the field, characterized by a light scattering condition where
the reflectivity of the cell is at or near a minimum. When the voltage is
removed, the assumed texture is stable and will remain scattering indefinitely.
When the voltage is increased further, to a point high enough to untwist the
liquid crystal and homeotropically align the liquid crystal directors, the material
is transparent and will remain transparent until the voltage is removed. From
the homeotropic texture, the material tends to relax to the stable color
reflecting planar texture upon removal of the field.

When the material is in a light scattering focal conic texture and a low
voltage pulse is applied, the material begins to change texture and again stable
grey scale reflectivities are obtained. Since the material here starts in the

scattering focal conic texture, the grey scale reflectivities are characterized by
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an increase in the reflectivity from that exhibited when substantially all of the
material is in the scattering focal conic texture, although it has been observed
that the reflectivity may initially decrease in some samples. The increase in
reflectivity is believed to be attributable to proportions of the material that
become homeotropically aligned a.s a result of the applied field. Those
proportions that are homeotropically aligned relax to a stable planar light
reflecting texture upon removal of the field, while the remainder of the
material exhibits the turbid phase as a result of the field and relaxes back to
the focal conic texture upon removal thereof. When the voltage is increased
still further, to the point of homeotropically aligning substantially all of the
liquid crystal, the material again appears clear and relaxes to the stable planar
color reflecting texture upon removal of the field.

In short, it is believed that those proportions of the material that enter
the turbid phase as the result of an applied field relax to a stable focal conic
texture upon removal of the field, and those portions that become
homeotropically aligned due to the application of an applied field relax to a
stable planer texture upon removal of the field. It is believed that the material
returns to the scattering focal conic state when a high electric field is slowly
removed from the homeotropically aligned liquid crystal because slow removal
takes the material into the turbid phase from which it seems to consistently
relax to a focal conic texture after removal of a field. When a high field is
removed quickly, the material does not enter the turbid phase and thus, relaxes
to the planar reflecting texture. In any case, it can be seen that electric field
pulses of various magnitudes below that necessary to drive the material from
the stable reflecting state to the stable scattering state, or vise versa, will drive
the material to intermediate states that are themselves stable. These multiple
stable states indefinitely reflect colored light of an intensity between that
reflected by the reflecting and scattering states. Thus, depending upon the
magnitude of the electric field pulse the material exhibits stable grey scale
reflectivity without the need for polymer. The magnitude of the field necessary
to drive the material between various states will, of course, vary depending

upon the nature and amount of the particular liquid crystal and thickness of
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the cell. Application of mechanical stress to the material can also be used to
drive the material from a light scattering to a light reflecting state.

A major advantage of the multistable material is that it does not require
an active matrix to make a high-definition flat panel screen. The screen can be
prepared without active elements at each pixel site and a multiplexing scheme
used to address the display. This greatly simplifies production, increases yield
and reduces the cost of the display. Since the material does not require
polymer, even greater simplification of production and cost savings are realized
by the invention. Other advantages of the present invention are that the light
scattering and light reflecting states are stable without requiring polymer or
delicate surface conditions of the substrate. Display devices made with the
material of the invention do not require polarizers which limit the brightness of
the displays and color is introduced by the material itself without the need of
color filters which also can reduce brightness.

The advantageous properties described above are achieved in the
invention by providing a light modulating reflective cell comprising a polymer
free chiral nematic liquid crystalline light modulating material, including
nematic liquid crystal having positive dielectric anisotropy and chiral material in
an amount effective to form focal conic and twisted planar textures having a
pitch length effective to reflect light in the visible spectrum, wherein the focal
conic and twisted planar textures are stable in the absence of a field and the
liquid crystal material is capable of changing textures upon the application of a
field.

The addressing means can be of any type known in the art, such as an
active matrix, a multiplexing circuit, electrodes and lasers. As a result, the new
material can be made to exhibit different optical states, i.e., light transmitting,
light scattering, light reflecting and stable grey scale in between these states,
under different field conditions without the need for polymer and the
complicated manufacturing proéesses associated therewith.

The chiral nematic liquid crystal is a mixture of nematic liquid crystal
having positive dielectric anisotropy and chiral material in an amount sufficient

to produce a desired pitch length. Suitable nematic liquid crystals and chiral
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materials are commercially available and would be known to those of ordinary
skill in the art in view of this disclosure. The amount of nematic liquid crystal
and chiral material will vary depending upon the particular liquid crystal and
chiral material used, as well as the desired mode of operation.

The wavelength of the light that is reflected by the material is given by
the relation A=np, where n is the average refractive index and p is the pitch
length. Wavelengths between about 350 nm and 850 nm are in the visible
spectrum. Accordingly, one of ordinary skill in the art will be able to select
appropriate materials for the invention based upon the refractive indices of the
materials involved and on general principles of chiral doping of liquid crystals
to obtain optimum pitches, for example, the procedures taught in the manual
distributed by Hoffmann-La Roche, Ltd., entitled How to Dope Liquid Crystal

Mixtures in Order to Ensure Optimum Pitch and to Compensate the Temperature
Dependence, Schadt et al., (1990), incorporated herein by reference.

In a preferred embodiment the pitch length of the chiral nematic liquid
crystal is in a range of from about .25 to about 1.5 microns, more preferably
from about .45 to about .8 microns. Typical pitch lengths are 0.27 microns for
blue color, 0.31 microns for green color and 0.40 microns for red color.
Moreover, the chiral nematic liquid crystal preferably contains from about 20
to about 60% by weight chiral material based on the combined weight of
nematic liquid crystal and chiral material and, still more preferably, from about
20 to about 40% by weight chiral material based on the combined weight of
nematic liquid crystal and chiral material. The ranges can vary, however,
depending upon the chiral material and liquid crystal. The nematic liquid
crystal preferably has a positive dielectric anisotropy of at least about 5 and
more preferably at least about 10. It will be understood that the weight
amounts can vary depending upon the particular liquid crystal and chiral
material used.

In carrying out the invention, the solution containing the desired
amounts of nematic liquid crystal and chiral material is prepared and
introduced between cell substrates, at least one of which is transparent. The

cell is then sealed around its edges with, for example, epoxy or other materials
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known in the art. The cell can be filled by methods known to those of
ordinary skill in the art, such as by capillary action. A preferred technique is to
vacuum fill the cells. This improves cell uniformity and eliminates bubbles in
the cell. For electrically addressable cells the cell walls are coated with
transparent electrodes, such as indium tin oxide, prior to the introduction of
the liquid crystal.

While not necessary to the invention, in some instances it is desirable to
treat the cell walls with materials in addition to the electrodes, such as
detergent or chemicals, to obtain variations in the contrast or switching
characteristics. These treatments can be used to affect the uniformity of the
liquid crystal, alter the stability of the various textures and to alter the strength
of any surface anchoring. In addition to using a wide variety of materials for
such surface treatments, the treatments on opposite substrates may differ. For
example, the substrates may be rubbed in different directions, one substrate
may include the additional treatment while the other substrate does not, or
opposite substrates may be treated with different materials. As noted above,
such additional treatments can have the effect of altering the characteristics of
the cell response.

Optionally, other additives may be included in the chiral nematic liquid
crystal mixture to alter the characteristics of the cell. For example, while color
is introduced by the liquid crystal material itself, pleochroic dyes may be added
to intensify or vary the color reflected by the cell. Similarly, additives such as
fumed silica can be dissolved in the liquid crystal mixture to adjust the stability
of the various cholesteric textures.

The invention also features an improved method of addressing a
polymer free chiral nematic liquid crystal material capable of being switched
between a color reflecting state that reflects a maximum reference intensity,
and a light scattering state exhibiting a minimum reference intensity. The
improvement comprises applying voltage pulses of varying magnitude sufficient
to achieve color reflectivity between said maximum and minimum, thereby

producing stable grey scale reflectance from the material.



10

15

20

25

30

WO 94/10260 PCT/US93/09999

9

Preferably the method is characterized by subjecting the material to an
AC pulse of sufficient duration and voltage to cause a proportion of said chiral
nematic material to exhibit a first optical state and the remaining proportion of
the chiral nematic material to exhibit a second optical state that is different
than the first state. In the preferred embodiment, the proportion of the
material in the first optical state exhibits the planar texture and the remainder
of the material in the second optical state exhibits the focal conic texture, the
intensity of reflection being proportional to the amount of the material in the
planar reflecting texture.

Many additional features, advantages and a fuller understanding of the
invention will be had from the following detailed description of preferred

embodiments and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagrammatic, cross-sectional illustration of a light
modulating cell incorporating the liquid crystalline material of the invention.

Figure 2 is a diagrammatic, fragmentary, enlarged cross-sectional
illustration of the material when the liquid crystal is homeotropically aligned to
affect an optically clear state.

Figure 3 is a diagrammatic, fragmentary, enlarged cross-sectional
illustration of the material in a light scattering state.

Figure 4 is a diagrammatic, fragmentary, enlarged cross-sectional
illustration of the material when the liquid crystal has a twisted planar texture.

Figure 5 is a plot of the electro-optic response of a cell to AC pulses of
varying voltages demonstrating grey scale reflection in the voltage range of
about 30 and 140 volts starting from the planar texture, and between about 140

and 180 starting from the focal conic.

DESCRIPTION OF PREFERRED EMBODIMENTS
The diagrammatically illustrated cell in Figure 1 comprises glass plates
10, 11 which are sealed around their edges and separated by spacers 12. As

shown, the glass plates 10, 11 are coated with indium-tin oxide (ITO) or the
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like to form transparent electrodes 13. The reference character 14 represents
an optional surface coating which can be applied to the electrodes in order to
affect the liquid crystal directors, or to alter the contrast, reflection or switching
characteristics of the cell. The opposite coatings 14 may be the same material
or different material, may be rubbed in different directions, or one or both of
the coatings 14 may be eliminated altogether.

The cell of Figure 1 is filled with the polymer free liquid crystalline
material of the invention. The liquid crystalline light modulating material is
generally comprised of chiral nematic liquid crystal 16 having nematic liquid
crystal with positive dielectric anisotropy and chiral material. An AC voltage
source 17 is shown connected to the electrodes 13 in order to switch the cell
between different optical states.

It is to be understood that the form of the cell depicted in Figure 1 has
been chosen only for the purpose of describing a particular embodiment and
function of the polymer free liquid crystalline material of the invention, and
that the material can be addressed in various ways and incorporated in other
types of cells. For example, instead of being addressed by externally activated
electrodes, the material can be addressed by an active matrix, a multiplexing
scheme or other type of circuitry, all of which will be evident to those working
in the art. Similarly, the cells can be prepared without the optional surface
treatment layers 14. |

When the optional surface treatment layers are employed in addition to
rubbed or unrubbed ITO or other suitable electrodes for the purpose of
altering the characteristics of the cell, a wide variety of materials may be used.
Suitable materials include polymethylmethacrylate (PMMA), unrubbed
polyimide, polyisobutylmethacrylate, poly-n-butylmethacrylate, polyvinylformal
(PVF) and polycarbonate. Both plates may have the same or different
materials and may be rubbed, unrubbed or otherwise textured. Similarly,
opposite surfaces may be rubbed in different directions or textured in different
manners. Best results are obtained with rubbed ITO without any additional

surface treatments.
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The liquid crystal material comprises a nematic liquid crystal having
positive dielectric anisotropy and a chiral material, e.g., cholesteric liquid
crystal, but does not contain any polymer. Suitable nematic liquid crystals
include, for example, E7, E48, E31 and E80 manufactured by E. Merck,
although virtually any cyanobiphenyl known in the art having suitable positive
anisotropy will likely suffice. Suitable chiral agents include, for example, CB15,
CE2 and TM74A, also manufacture by E. Merck. Other nematic liquid crystals
and chiral materials suitable for use in the invention would be known to the
skilled artisan in view of the instant disclosure. Other optional components
that may be added to the chiral nematic liquid crystal mixture include, for
example, fumed silica to adjust the stability of the various textures and dyes to
adjust the color. |

In a preferred manner of preparing the cell shown in Figure 1, a
solution of the chiral nematic liquid crystal together with any additional dyes or
additives and the like is prepared. The solution is then introduced between the
glass plates 10, 11, shown here having the optional coatings 14. This can be
done by methods known to those of ordinary skill in the art, such as capillary
filling and, more preferably, vacuum filling. Once introduced between the
plates the cell is sealed around its edges as is known in the art.

Polymer free displays prepared according to the invention capable of
being switched between stable planar, focal conic and grey scale states are

shown in the following non-limiting examples.

Example 1
A chiral nematic liquid crystal mixture containing 37.5% by weight E48

(nematic liquid crystal from EM Chemicals) and 62.5% by weight TM74A
(chiral additive from EM Chemicals) was prepared. A one inch square cell
was then formed from two substrates coated with ITO. The ITO coatings of
both substrates were buffed parallel to each other. 10 pm glass spacers were
sprayed onto one substrate and the second substrate was sandwitched so that

two of its edges overlapped the first substrate and the cell held together with
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clamps. Five minute epoxy (Devcon) was then used to seal the two non-
overlapping edges.

The cell was held vertically and a bead of the chiral nematic liquid
crystal was placed along the top open edge of the cell. The cell then filled
spontaneously by capillary action over a period of approximately 15 minutes.
Once filled, the residual liquid crystal mixture is removed from the edge and
the open edges sealed with five minute epoxy.

The cell was initially in the planar reflecting state. A 100ms lower
voltage pulse of about 115 volts and 1 KHz, switched the cell into the focal
conic scattering state. A 100 ms higher voltage pulse of about 180 volts, and
1KHz switched the cell back to the planar reflecting state. Both the planar
and focal conic states were stable in the absence of a field and the cell
exhibited multiple stable grey scale reflecting states between the scattering and
reflecting states.

-

Example 2
A mixture of E48 and TM74A in a weight ratio of 0.6:1 was introduced

between ITO coated glass substrates spaced 10 micrometers apart as in the
previous example. The substrates were additionally coated with an unrubbed
polyimide layer. The cell was initially in the focal conic, scattering texture that
transmitted only about 30% of an HeNe beam through the cell. A 10 ms, 155
volt, 1 KHz Ac pulse switched the cell to a planar texture reflecting green
colored light. The transmission from the cell in the reflecting state was about
65%. A 95 volt pulse of the same duration and wavelength switched the cell
back to the focal conic, scattering state. The cell switched between states in

less than 10ms.

Example 3
A cell was prepared as in the preceding examples with a mixture of

CB15, CE2 (chiral materials from EM Chemicals) and E48 nematic liquid
crystal in a weight ratio of 0.15:0.15:0.7. In this cell the driving voltage was cut

approximately in half because the dielectric anisotropy of the mixture was
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higher then when TM74A was used. The electro-optic response of this

material was similar to that of example 1.

Table I shows numerous additional examples of materials prepared
according to the preceding examples. The concentration of chiral material, and
the type and concentration of nematic liquid crystal were varied in these cells.
In each case the chiral material was a 50:50 mixture of CE2 and CB15. Each
cell employed unrubbed ITO electrodes as the only surface treatment on the
substrates. The materials in Table I all exhibited multistability in the visible

spectrum, i.e., stable reflecting, scattering and grey scale states.

Table 1
Chiral Agent Nematic LC Thickness  Color Multistability Surface

4, CE2/CBI15 30% E48 70% 10 pm Red Yes ITO
5. CE2/CB15 40% E48 60% 10 pm Grn Yes ITO
6. CE2/CB15 50% E48 50% 10 pm Blu Yes ITO
7. CE2/CB15 30% E7 70% 10 pm Red Yes ITO
8. CE2/CB15 40% E7 60% 10 pm Gm Yes ITO
9. CE2/CB15 30% E31 70% 10 pm Red Yes ITO
10. CE2/CB1S5 40% E31 60% 10 pm Gm Yes ITO

Table II shows examples of materials prepared according to the
preceding examples exhibiting multistability with varying surface treatment
materials and cell thicknesses. In each case the nematic liquid crystal was E31
(EM Chemicals) in an amount of 60% by weight based on the combined
weight of nematic liquid crystal and chiral material. The chiral material in
each case was a 50:50 mixture of CE2 and CB15 (EM Chemicals) present in
an amount of 40% by weight based on the weight of chiral material and
nematic liquid crystal. Each cell exhibited a green reflecting state. The
reflecting and scattering states were stable in the absence of a field and the
cells exhibited stable grey scale states therebetween. In examples 17 and 18,
the PVF coatings on opposite substrates were rubbed parallel and
perpendicular to each other, respectively. Similarly, the coatings on opposite

substrates in examples 22 and 23 were rubbed parallel and perpendicular to
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each other, respectively. The coatings in examples 21 and 24 were simply
unrubbed ITO electrodes, and in the case of example 25, the ITO coatings on
opposite substrates were rubbed parallel to each other. The i-butyl and n-butyl
in exémples 13-15 stand for n-butyl and i-butyl methacrylate, respectively. The

spacing in these examples was adjusted by glass spheres as in the preceding

examples.
Table II
Surface Thickness Multistability

11.  100% n-Butyl 10 pm yes
12.  100% i-Butyl 10 pm yes
13.  75% i-Butyl/25% n-Butyl 10 pm yes
14.  25% i-Butyl/75% n-Butyl 10 pm yes
15.  50% i-Butyl/50% n-Butyl 10 pm yes
16.  polyvinyl formal (PVF) 5 pm yes
17.  PVF rubbed parallel 5 pm yes
18.  PVF rubbed perpendicular S pm yes
19.  polymethylmethacrylate (PMMA) 5 pm yes
20.  polycarbonate (PCBR) S pm yes
2. ITO 6.7 pm yes
22.  PI rubbed parallel 6.7 pm yes
23.  PI rubbed perpendicular 6.7 pm yes
24. ITO 10 pm yes
25.  ITO rubbed 10 pm yes

Table III is analogous to Table II in that it provides additional examples
of multistable materials obtained as in example 1 with varying surface
treatments and cell thicknesses. However, the materials in Table III consisted
of TM74A chiral material in an amount of 60% by weight based on the weight
of the chiral material and nematic liquid crystal. The nematic liquid crystal was
E48 present in an amount of 40% by weight. These cells also reflected green
colored light in the planar light reflecting texture and exhibited multistability as

in the preceding examples.
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Table I
Surface Thickness Multistability
26.  100% n-Butyl 10 pm yes
27.  100% i-Butyl 10 pm yes
28.  75% i-Butyl/25% n-Butyl 10 pm yes
29.  25% i-Butyl/75% n-Butyl 10 pm yes
30.  50% i-Butyl/50% n-Butyl 10 pm yes
31.  polymethylmethacrylate (PMMA) 5 pm yes
32. PMMA rubbed parallel 5 pm yes
33.  PMMA rubbed perpendicular 5 pm yes
34.  polycarbonate (PCBR) 5 pm yes
35. PCBR rubbed parallel 5 pm yes
36. PCBR rubbed perpendicular 5 pm yes
37. PI 10 pm yes
38. ITO 10 pm yes
39.  ITO rubbed 10 pm yes

The polymer free multistable color display cells of the invention exhibit
a stable grey scale phenomenon characterized by the ability of the material to
reflect indefinitely any selected intensity of light between the intensity reflected
by the reflecting state and that reflected by the scattering state, the former
being when substantially all of the material exhibits the planar texture and the
later being when substantially all of the material exhibits the focal conic
texture. For purposes of this invention, the reﬂectiﬁg state reflects colored
light at a maximum intensity for a given material, the color of the reflected
light being determined by the pitch lehgth of the chiral material. An electric
field puise of an appropriate threshold voltage will cause at least a portion of
the material to change its optical state and the intensity of reflectivity to
decrease. If the AC pulse is high enough, but still below that which will
homeotropically align the liquid crystal, the optical state of the material will
change completely to the scattering state which reflects light at a minimum
intensity for a given material. In between the reflecting state, which for a given
material can be considered to define the maximum intensity of reflectivity for
that material, and the scattering state, which can be considered to define the
minimum intensity of reflectivity, the intensity of reflectivity ranges along a grey

scale, which is simply a continuum of intensity values between that exhibited by
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the reflecting and scattering states. By pulsing the material with an AC pulse
of a voltage in between that which will convert the material from the reflecting

state to the scattering state, or visa versa, one obtains an intensity of reflectivity

in this grey scale range.

While not wanting to be bound by theory, it has been observed that the
intensity of reflectivity along the grey scale when the material begins in the
planar texture is approximately linearly proportional to the voltage of the
pulse. By varying the voltage of the pulse the intensity of reflectivity of a given
color can be varied proportionally. When the electric field is removed the
material will reflect that intensity indefinitely. It is believed that pulses within
this grey scale voltage range cause a proportion of the material to convert from
the planar texture characteristic of the reflecting state, to the focal conic
texture characteristic of the scattering state. The intensity of reflectivity along
the grey scale is proportional to the amount of chiral material switched from
the planar texture to the focal conic texture, or vise versa, which is in turn
proportional to the voltage of the AC pulse.

Figure 4 conceptually illustrates the polymer free multistable material of
the invention in its light reflecting state. In this state, the chiral liquid crystal
molecules 40 are oriented in a twisted planar structure parallel to the cell
walls. Because of the twisted planar texture the material will reflect light, the
color of which depends upon the particular pitch length. In this stable
reflecting state, the material exhibits maximum reflectivity that constitutes a
maximum reference intensity below which the grey scale intensities are
observed. The planar texture of the liquid crystal is stable without the
presence of polymer. As conceptually illustrated in Figure 3, the multistable
color display material is in its light scattering state. In this stable scattering
state the material exhibits its minimum intensity of reflection (i.e., maximum
scattering) which defines a minimum reference intensity of reflectivity above
which the grey scale intensities are observed.

Both the light reflecting state of Figure 4 and the light scattering state
of Figure 3, as well as the grey scale states therebetween, are stable in the

absence of an electric field. If the material is in the light reflecting state of
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Figure 4 and a low electric field pulse is applied, the material will be driven to
the light scattering state of Figure 3 and will remain in that state at zero field.
If the multistable material is in the light scattering state of Figure 3 and a
higher electric field puise sufficient to untwist the chiral molecules is applied,
the liquid crystal molecules will reform to the light reflecting state of Figure 4
at the end of the pulse and will remain in that condition. It is to be
understood that the voltages per micron of cell thickness necessary to drive the
material between optical states may vary depending on the composition of the
material, but that the determination of necessary voltages is well within the skill
in the art in view of the instant disclosure.

If the high electric field necessary to untwist the liquid crystal molecules
is maintained, the liquid crystal directors will be homeotropically aligned so
that the material is transparent. If the field is slowly removed, the liquid
crystal orientation will reform to the light scattering state of Figure 3,
presumably because slow removal allows a significant proportion of the
material to enter the turbid phase. When the field is quickly removed, the
orientation will reform to the light reflecting state of Figure 4. The intensities
of reflectivity reflected between the reflecting state of Figure 4 and the
scattering state of Figure 3 are stable grey scale reflectivities. Of course, the
intensity value of the reflecting and scattering states may vary as the
composition of the material varies, but the grey scale is defined by the range of
intensities therebetween.

At voltages less than that which will transform the material from the
reflecting state of Fig. 4 to the scattering state of Fig. 3, grey scale states which
are themselves stable at zero field are obtained. The reflection from the
material in these grey scale states is stable because a proportion of the
material is in the planer reflecting texture of Fig. 4 and a proportion of the
material is in the focal conic scattering texture of Fig. 3, both of which are
stable in the absence of a field.

Thus, for example, if the material is in the reflecting state of Fig. 4 and
an electric field pulse is applied having a voltage insufficient to drive all of the

liquid crystal 16 into the focal conic texture shown at 50 in Figure 3, ie.,
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insufficient to drive the material completely to the scattering state, the material
will reflect colored light of an intensity that is proportional to the amount of
material that remains in the planar reflecting texture. The reflectivity will thus
be lower than that reflected from the material when all of the chiral nematic
liquid crystal is in the planar reflecting texture, but still higher than when
switched completely to the focal conic scattering texture. As the voltage of the
electric field pulse is increased, more of the chiral material is switched from the
planar reflecting texture to the scattering focal conic texture and the reflectivity
decreases further until the voltage of the pulse is increased to the point where
all or most of the material enters the turbid phase from which it relaxes and is
completely switched to the scattering state. If the voltage of the pulse is
increased still further, the intensity of reflection begins to increase again until
the magnitude of the pulse is sufficient to untwist most of the chiral molecules
so that they will again reform to the planar light reflecting texture when the
pulse is quickly removed and the material is again in the light reflecting state of
Figure 4.

If the material is in the focal conic scattering state of Figure 5, an
applied electric field pulse will have a much less dramatic effect on the
reflectivity of the cell than when it starts in the planar texture, until the voltage
reaches a magnitude sufficient to untwist the chiral material, whereby it will
reform to the light reflecting state of Figure 4, as described above, when the
field is removed. Grey scale when the material starts in the focal conic texture
appears to result when a proportion of the molecules untwist and
homeotropically align as a result of the application of the field. This
proportion of molecules then relaxes to the planar reflecting texture upon
removal of the field.

The response of a cell as described above is illustrated in Figure 6,
which shows the response of the material prepared in Example 1 to varying
pulse voltages.

The reflectivity of the cell in response to AC pulse of varying voltages
was measured. In the measurement, 100 millisecond, 1 KHz AC pulses were

used. For this material an applied pulse above about 180V switched the cell
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into the reflecting state independent of whether the cell was in the scattering
or reflecting state prior to the pulse. Maximum reflection, i.e., transmission, is
observed here. The material exhibited maximum scattering when a voltage in
the 130 to 140V range was applied, regardless of whether the material was in
the planar of focal conic texture prior to the pulse.

The grey scale response of the cell in response to pulses of varying
voltage is also seen in Fig. 6. Here the voltage of the pulse was varied and the
reflection (% transmission) from the cell was measured. Curve A is the
response of the cell when the material is in the reflecting state prior to each
pulse. Prior to each pulse plotted on curve A the material was subjected to a
high AC pulse to ensure that it was completely in the reflecting state prior to
the pulse. When the voltage of the pulse is below about 30V, the reflection of
the cell is not significantly affected. When the voltage of the pulse is between
about 40V and 110V, the reflectivity of the cell decreases approximately
linearly as the voltage of the pulse is increased. Grey scale reflectivity is
observed in this voltage range. In each case the material continued to reflect
after the pulse was removed. When the voltage of the pulse was increased to
from about 120 to 130V, the material was in the scattering state and exhibited
near maximum scattering. When the magnitude of the pulse was increased still
further, above about 150 to 160V, the reflectivity of the cell increased until the
reflectivity approximated its original value, i.e., that of the reflecting state,
above 180V. |

Curve B shows the response of the cell when the material was initially in
the focal conic scattering state prior to the AC pulse. Here the reflectivity of
the cell does not significantly change for AC pulses below about 30V. Between
about 50 and 150V the scattering actually increases slightly and maximum
scattering is observed from the cell. Above about 160V the transmission
quickly increased and the cell switched to the reflecting state approximating the
maximum transmission above about 180V.

It can be seen that the linear relationship of the grey scale to voltage is
much more pronounced, and the grey scale more gradual, when the material

starts from the planar texture. Accordingly, most practical applications of the
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grey scale phenomenon will likely employ the material starting from the planar
texture.

Many modifications and variations of the invention will be apparent to
those of ordinary skill in the art in light of the foregoing disclosure. Therefore,
it is to be understood that, within the scope of the appended claims, the
invention can be practiced otherwise than has been specifically shown and

described.
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CLAIMS
WHAT IS CLAIMED:

1. A light modulating reflective cell comprising a polymer-free chiral
nematic liquid crystalline light modulating material, including nematic liquid
crystal having positive dielectric anisotropy and chiral material in an amount
effective to form focal conic and twisted planar textures, said chiral material

5  having a pitch length effective to reflect light in the visible spectrum, wherein
said focal conic and twisted planar textures are stable in the absence of a field
and the liquid crystal material is capable of changing textures upon the

application of a field.

2. The cell as claimed in Claim 1 wherein the pitch length of the
chiral nematic liquid crystal is in a range of from about .25 to about 1.5

microns.

3. The cell as claimed in Claim 1 wherein the pitch length of the

chiral nematic liquid crystal is in a range of from about .45 to about .8 microns.

4, The cell as claimed in Claim 1 wherein the nematic liquid crystal

has a positive dielectric anisotropy of at least about 5.

5. The cell as claimed in Claim 1 wherein the nematic liquid crystal

has a positive dielectric anisotropy of at least about 10.

6. The cell as claimed in Claim 1 wherein the chiral nematic liquid
crystal contains from about 20 to about 60% by weight chiral material based on

the combined weight of nematic liquid crystal and chiral material.

7. The cell as claimed in Claim 1 wherein the chiral nematic liquid
ci'ystal contains from about 20 to about 40% by weight chiral material based on

the combined weight of nematic liquid crystal and chiral material.
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8. The cell as claimed in Claim 1 wherein the liquid crystal exhibits
a stable light reflecting twisted planar structure in a field-OFF condition
following removal of a high field-ON condition, and a stable light scattering
focal conic texture in a field-OFF condition following removal of a low field-

ON condition.

9. A method of addressing a light modulating cell comprising a
polymer free chiral nematic liquid crystalline light modulating material,
including nematic liquid crystal having positive dielectric anisotropy and chiral
material in an amount effective to form focal conic and twisted planar textures,
said chiral material having a pitch length effective to reflect light in the visible
spectrum, said liquid crystal material being capable of being switched between
a stable color reflecting state that reflects a maximum reference intensity and a
stable light scattering state exhibiting a minimum reference intensity of
reflection by application of a voltage pulse, the method comprising the steps of
applying voltage pulses of varying magnitude sufficient to achieve a continuum
of stable states having color reflectivity of an intensity between said maximum

and minimum reference intensities.

10.  The improvement according to claim 9 comprising applying

square A.C. voltage pulses.

11.  The improvement according to claim 9 comprising applying said
A.C. pulses at a magnitude between that which will switch said material from

said reflecting state to said scattering state.

12. A method of selectively adjusting the intensity of reflection of
colored light from a polymer free chiral nematic liquid crystalline light
modulating material, including nematic liquid crystal having positive dielectric
anisotropy and chiral material in an amount effective to form focal conic and
twisted planar textures, said chiral material having a pitch length effective to

reflect light in the visible spectrum, said liquid crystal material being capable of
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changing textures upon the application of a field, between a maximum and a
minimum intensity, the method comprising subjecting said material to an
electric field pulse of sufficient duration and voltage to cause a first proportion
of said chiral nematic material to exhibit a first optical state and a second
proportion of said chiral nematic material to exhibit a second optical state,
whereby said material will continuously reflect a selected intensity between said
maximum and minimum that is proportional to the amount of said material in

said first optical state.

13.  The method according to claim 12 wherein said chiral nematic
material in said first optical state exhibits a planar texture and said chiral

nematic material in said second optical state exhibits a focal conic texture.

14. A light modulating device comprising liquid crystalline light
modulating material of chiral nematic liquid crystal consisting essentially of
nematic liquid crystal having positive dielectric anisotropy and chiral material in
an amount effective to form focal conic and twisted planar textures having a
pitch length effective to reflect light in the visible spectrum, wherein said focal
conic and twisted planar textures are stabilized in the absence of a field and
the liquid crystal material is capable of changing textures upon the application
of a field, wherein a first proportion of said material is in a first optical state
and second proportion of said material is in a second optical state, and means
for establishing an electrical field through said material, said means adapted to
provide a pulse of sufficient voltage and duration to change the proportion of
said material in said first optical state, whereby the intensity of light reflected

may be selectively adjusted.

15.  The device according to claim 14 wherein the material in said
first optical state exhibits a planar texture and the material in said second

optical state exhibits a focal conic texture.
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16.  The device according to claim 14 including cell wall structure

treated to align the liquid crystal.

17.  The device according to claim 14, wherein said means for

establishing a field through said material is adapted to provide an AC pulse.
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