«» UK Patent Application .,GB ,2524075 .,A

(43)Date of A Publication 16.09.2015
(21) Application No: 1404524.9 (51) INT CL:
GO6F 17/30 (2006.01)
(22) Date of Filing: 14.03.2014
(56) Documents Cited:
US 8296394 B1 US 20080098173 A1
(71) Applicant(s): US 20060271557 A1 US 20030200194 A1
International Business Machines Corporation .)
New Orchard Road, Armonk 10504, New York, (68) Field of Search:
United States of America INT CL GO6F

Other: WPI, EPODOC

(72) Inventor(s):
Joachim Rese
Georg Mayer
Namik Hrle

(74) Agent and/or Address for Service:
IBM United Kingdom Limited
Intellectual Property Law, Hursley Park,
WINCHESTER, Hampshire, SO21 2JN,
United Kingdom

(54) Title of the Invention: Advanced result cache refill
Abstract Title: Updating queries in a cache

(57) A method for updating a cache comprising identifying in a query instance that has led to a filling of the cache, a
parameter whose values are monotonic in particular monotonically increasing or decreasing - over time, wherein
the query instance has a first execution time. When generating a new query instance, at a second, later execution
time - e.g., at ETL time - instead of the previous value of the parameter, a new value may be used that corresponds
to the monotonic previous value at the second execution time. Finally, the new query instance is executed whereby
the cache is updated with the results of the new query instance.

FIG. 1

100 method for updating a cache

\

102 identifying a monotonically increasing
parameter in a query at a first time

104 generating a new query at a second
time with a new value of the
monotonic parameter

A 4

106 executing the new query and
updating the cache

vV G/.0v¢G¢ 99

1/4

100 method for updating a cache

\

102 identifying a monotonically increasing
parameter in a query at a first time

l

104 generating a new query at a second
time with a new value of the
monotonic parameter

|

106 executing the new query and
updating the cache

FIG. 1

2/4

200

202 query

!

204 appropriate Y | 206 increase hit

result cache entry counter and

exists? return cached
N l result

208

execute query

210

replace chronological
condition(s)

212

write query result and
modified query to cache

FIG. 2

3/4

300

302 data load

304
invalidate affected
cache entires

!

306 cache entry

N

308

with high hit / >

counter exists?

Yy
310

substitute chronological
condition
312

execute query

314

write query result to
cache

FIG. 3

nothing to do

4/4

/

508

400
302 304 306
FIG. 4
500
S
=1 |7
— 502
monitor \\ memory CPU
400
cache n
K
<> update unit 514
% 508 network
c ﬁ 8 |
~ '(\ =N\
518
FIG. 5 \\\\\\\\\\\\\\\\\ “

510

DESCRIPTTION

ADVANCED RESULT CACHE REFILL

FIELD OF THE INVENTION

The invention relates generally to a method for updating a
cache. The invention relates further to a cache updating unit, a
computing system, a data processing program, and a computer

program product.

BACKGROUND OF THE INVENTION

As information volumes grow and more and more users having
access to data, there is a need for more analysis capabilities.
This can be a heavy burden for existing information systems and
databases storing the data. More and more poly-structured data
are being stored and more and more big data and business
information solutions are deployed in order to analyze and
aggregate a huge amount of data, usually stored in databases.
The relevant data need to be read for extracting relevant
information from it. The corresponding query instances are often
long-running while result sets are often rather small. The gquery
result is usually stored in a result cache in order to reduce

average query elapse time.

The result cache can be volatile - e.g., in-memory - oOr
persistent - in a database or file system. In either case, cache
entries become invalidated i1if one of the underlying data

container/table is updated.

In business intelligence systems (BI systems), updates typically

occur at load or batch ETL (extract transform load) processing.

Invalidated cache entries are rebuilt at query time. Thus, after
data has been updated or loaded in the underlying database,
average query elapsed time increases until the result caches are

updated and populated again.

Technologies exist already for updating caches: Document US
8,478,741 B2 discloses a method for automatically refreshing a
materialized query table (MQT) in a computer database to improve
database performance. The update is based on an estimated time

required for executing a gquery instance.

Document US 8,271,440 B2 discloses an apparatus with base table
storage sections that store base tables and delta tables for
base tables, a summary table storage section that stores a
summary table for storing results of query instances to a
plurality of base tables and delta information about summary
tables. There 1is also a delta data processing section that
inserts delta data of the base table into the delta tables and a
delta computing processing section that generates delta

information about summary tables.
However, there may still be a need to increase performance of

query 1instances in a flexible way without requiring database

administrator activities.

SUMMARY OF THE INVENTION

This need may be addressed by a method for updating a cache, a
cache updating unit, a computing system, a data processing
program, and a computer program product, according to the

independent claims.

According to one aspect, a method for updating a cache may be

provided. The method may comprise identifying in a query

instance that has led to a filling of the cache, a parameter
whose values may be monotonic over time. The query instance may
have a first execution time. The method may further comprise
generating a new query instance at a second execution time using
therein, instead of the previous value of the parameter, a new
value that corresponds to the monotonic previous value at the
second execution time. The method may additionally comprise

executing the new query instance, thereby updating the cache.

According to another aspect, a cache updating unit may be
provided. The cache updating unit may comprise an identifying
unit adapted for identifying in a query instance that has led to
a filling of the cache, a parameter whose values may be
monotonic over time, wherein the gquery instance has a first
execution time. The cache updating unit may further comprise a
generating unit adapted for generating a new query instance, at
a second execution time using therein, instead of the previous
value of the parameter, a new value that corresponds to the
monotonic previous value at the second execution time. Moreover,
there may be an execution unit as part of the cache updating
unit. The execution unit may be adapted for executing the new

query 1instance, thereby updating the cache.

DETATLED DESCRIPTION

It may be noted that the term monotonic may come in two flavors:

monotonically increasing or monotonically decreasing.

It may also be noted that the first time may be earlier than the
second time. At the second time a parameter with monotonically
increasing - or decreasing - wvalues may be set to an actual time

value and a cache may be updated dynamically.

In the context of this description, the following conventions,

terms and/or expressions may be used:

The term “query instance” may denote one specific occurrence of
a query execution in time. If a query instance itself is an
abstract expression having conditions and may be run against a
set of data - e.g., a database - the query instance may be an
actual incarnation of the abstract expression executed at a

specific point in time against a database.

The term monotonic may denote the mathematical understanding of
a value of a parameter that may have always increasing or always
decreasing values. For monotonically increasing parameters,
values of the parameters v; have the following characteristics:

vi(t1) <= vy(ty), 1f ti: < t,, wherein t; denotes time instances.

For monotonically decreasing parameter values, the equivalent

holds true.

The proposed method for updating a cache may offer a couple of
advantages: The cache may be updated automatically at load times
of the data in a database relating to the cache. Cache entries
may be updated reflecting the implicit knowledge of the
monotonic behavior of some parameters. These caches may undergo
updates, e.g., at ETL times of a BI system without any database
administrator involvement. The dynamic updates of the cache
increase the average response time of a database for query
instances. The bigger the database is and the more caches are
maintained, the higher the gain in terms of performance increase

may Dbe.

According to one embodiment of the method, the values of the
parameter are monotonically increasing over time. Alternatively
— in another embodiment - the wvalues of the parameter are

monotonically decreasing over time.

According to one specific embodiment of the method, the
parameter that may be monotonically increasing over time
represents time. Time may represent here the date or the time in
seconds, minutes, hours, day, month, and/or year. This may be a
typical application of the method. However, other data types may
exist having the same increasing characteristic. Serial numbers
of produced parts may be another example for a monotonic
parameter. A third example may be the numbering of incoming

invoices to a company, or of outgoing invoices.

In an advanced embodiment of the method, the monotonic
characteristic of the parameter may be stored in metadata
relating to the parameter. This way, an easy application of the
inventive method may be practiced. In a software-based
implementation of the method, one needs only to have a look at
the metadata in order to decide whether the method may be
applicable.

According to one further advanced embodiment of the method, the
query 1instance may be stored together with related cache
entries. The query instance may be stored in source code form;
thus, 1t may be compared at a later point in time to other query

instances.

According to an ever further advanced embodiment of the method,
a cache hit number may be stored - in particular, a hit count -
together with related cache entries. The hit counter may build
the basis for a decision about updating the cache at ETL time. A
cache with a low number of hits - e.g., below a threshold value
- may be not updated or even built at load time. - The cache hit
number may be increased - e.g., by 1 - every time data may be

read out of the cache after an incoming gquery instance.

As already mentioned above, in one embodiment, the second
execution time may correspond to a load time of an online
analytical processing system (OLAP). Thus, the update of the
cache may be performed not during an online access to the data
but upfront when preparing a new version of the underlying data
warehouse system and its data. Thus, the new cache may be ready
for use instantly after the update of the underlying data

containers or data tables have been finalized.

In order to guarantee cache insistence, in one embodiment of the
method, a cache wvalid flag of the cache may be reset if the
underlying data corresponding to the cache undergo an update.
The update may comprise an add-, a modify- or, a delete-

operation to the related data.

The cache may come in different implementations. According to
one embodiment of the method, the cache may be one out of the
group comprising a query result cache, a pre-calculated report,
a pre-calculated form, a pre-determined web page, an aggregate,
and a materialized table query. Also other data container types

may be applicable.

In order to keep computational load under control, according to
one embodiment of the method, the new query instance may only be
generated 1f the cache hit number may exceed a predefined hit
threshold number. This way, a dynamic rebuilding of caches may
be controlled according to performance needs and available
computing time and offline time of the underlying data

containers.

Furthermore, embodiments may take the form of a computer program
product, accessible from a computer-usable or computer-readable
medium providing program code for use, by or in connection with
a computer or any instruction execution system. For the purpose

of this description, a computer-usable or computer-readable

medium may be any apparatus that may contain means for storing,
communicating, propagating or transporting the program for use,
by or in a connection with the instruction execution system,

apparatus, or device.

The medium may be an electronic, magnetic, optical,
electromagnetic, infrared or a semi-conductor system for a
propagation medium. Examples of a computer-readable medium may
include a semi-conductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory (RAM), a
read-only memory (ROM), a rigid magnetic disk and an optical
disk. Current examples of optical disks include compact disk-
read only memory (CD-ROM), compact disk-read/write (CD-R/W), DVD
and Blu-Ray-Disk.

It should also be noted that embodiments of the invention have
been described with reference to different subject-matters. In
particular, some embodiments have been described with reference
to method type claims whereas other embodiments have been
described with reference to apparatus type claims. However, a
person skilled in the art will gather from the above and the
following description that, unless otherwise notified, in
addition to any combination of features belonging to one type of
subject-matter, also any combination between features relating
to different subject-matters, in particular, between features of
the method type claims, and features of the apparatus type

claims, 1s considered as to be disclosed within this document.

The aspects defined above and further aspects of the present
invention are apparent from the examples of embodiments to be
described hereinafter and are explained with reference to the
examples of embodiments, but to which the invention is not

limited.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention will now be described, by
way of example only, and with reference to the following

drawings:

Fig. 1 shows a block diagram of an embodiment of the

inventive method for updating a cache.

Fig. 2 shows an embodiment of a more detailed block diagram
of the method for updating a cache during online time of a

BI system.
Fig. 3 shows an embodiment of a more detailed block diagram
of the method for updating a cache during ETL time of the

BI system.

Fig. 4 shows a schematic embodiment of a cache updating

unit.

Fig. 5 shows an embodiment of a computing system comprising

the cache updating unit.

DETATILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

In the following, a detailed description of the figures will be
given. All instructions in the figures are schematic. Firstly,
block diagrams of embodiments of the inventive method for
updating a cache is given. Afterwards, further embodiments of a
cache updating unit and a related computing system will be

described.

Fig. 1 shows a block diagram of an embodiment of the method 100
for updating a cache, e.g., of a database. The method may
comprise identifying, 102, in a query instance that may have led
to a filling of the cache, a parameter, whose values may be
monotonic, in particular monotonically increasing or
monotonically decreasing over time. The parameter may indicate a
date, time, a serial number, or other parameter types which may
have natural sequencing. The monotonic data type may be defined
in metadata. The query instance may have a first execution time.
Furthermore, the method may comprise the step of generating,

104, a new query instance at a second execution time. The second
execution time may be later then the first execution time, e.qg.,
during an ETL process for the data in a database underlying the
cache. While executing the new query instance, instead of the
previous value of the parameter, a new value that may correspond
to the monotonic previous value at the second execution time may
be used. In other words, the new value corresponds to the
previous value that has been changed in accordance with the
monotonic property of the parameter, using the second execution

time.

As next step, the method may comprise executing, 106, the new
query 1instance, thereby updating the cache, in particular with
the results of the new query instance. Thus, the cache may be
updated during an ETL process. It may be not necessary to update
the cache during runtime of the database system which may lead

to a performance degradation.

Fig. 2 shows a more detailed block diagram 200 of an embodiment
of the method 100 for updating a cache during online time of,
e.g., a BI system. A gquery instance may reach the system, 202.
At 204, it may be checked whether an appropriate result cache
exists to satisfy the query requirements. If “yes” a hit counter

may be increased and the queried result may be returned, 206.

10

In case of “no” the query instance may be executed, 208. The
chronological condition or conditions may be updated and stored,
210 in source code form, and the query results may be updated in
the cache in the modified, more actual, form and may also be
returned as usual. Thus, the cache may constantly be updated
using the actual value of the monotonic parameter. This is
possible because of the monotonic character of the related

parameter.

Fig. 3 shows a more detailed block diagram 300 of an embodiment
of the method 100 for updating a cache during ETL time of the,
e.g., BI system. Here, not the online function but a method

steps at offline time, e.g., ETL time, are examined.

New data may be loaded, 302, to a database underlying the cache.
Firstly, caches that are affected by the new data may be
invalidated, 304. It may be tested whether during the loading
process of the underlying database a cache entry relating to the
loaded data may exist with a high hit counter. A test against a

threshold value may be used. In case of “no”, nothing needs to

happen.

In case of “yes”, the chronological condition or conditions
relating to the gquery instance may be updated to the actual
value, 310. The query instance may be executed, 312, and the
query result may be used to update, 314, the cache without an
external query instance. The query instance — in the expression
of the above terminology — may be the new gquery instance at a
second execution time. This second execution time may be the ETL

time of the BI system.

The generic structure of the cache may look like detailed in

table 1. As an example, the following context may be used:

11

At 2013/07/25 the table BIG TAB of a database may have been

loaded up to a package number 34 that may be shipped. It may be
noted that - in this example - package numbers only increase in
value, i.e., are monotonically increasing. A query instance may

be executed afterwards:
SELECT REVENUE FROM BIG TAB
WHERE CALENDER_DAY = 2013/07/24 AND

PACKAGE NO = 34

The related cache may look like shown in table 1.

Table 1:
RESULT [O hits SELECT REVENUE FROM BIG_TAB
SET recently WHERE CALENDER_DAY = #TODAY-1 AND

PACKAGE NO <= #CURRENT ID

Thus, the cache may comprise the RESULT SET as core component of
the cache. There may also be the hit counter “hits recently” as
well as the source code of the gquery instance which may be
stored together with the hit counter for the RESULT SET and the
RESULT SET itself. In the above example, a certain logic may be
required to conclude the value of “#TODAY-1” as well as

“#CURRENT ID”.

Over time, several query instances may be run against the cache,

as shown in the context of Fig. 2.

At a later point in time, e.g. at 2013/07/28, the table BIG TAB
may be loaded up with information to package 42. This may be
performed during a load process at ETL time of a BI system.
During the load process of data to the underlying database, the

cache may be updated as well.

12

After the data entry into the database underlying the cache, the

cache may look like shown in table 2.

Table 2:
RESULT SET 5164 SELECT REVENUE FROM BIG_TAB
invalidated | hits WHERE CALENDER_DAY = #TODAY-1 AND

recently PACKAGE NO <= #CURRENT ID

It may be noted that instead of the RESULT SET a flag may be set
indicating that the RESULT SET is invalid. Table 2 shows also

that recently 5164 hits to the cache may have happened.

The values of “#TODAY-1"” as well as “#CURRENT ID” may be filled
with actual values at the second query instance time. The query
instance to be executed - as already discussed in context of

Fig. 3 - may, in this example, have the form:

SELECT REVENUE FROM BIG TAB
WHERE CALENDER DAY = 2013/07/27 AND
PACKAGE NO = 42

Thus, the cache may be updated during the ETL process. It may be
not required to load the cache during later runtime of the
database and the cache. Such an online filling of the cache may
slow down the database with its cache(s). Consequently, an

increased performance of the database may be achieved.

Fig. 4 shows a block diagram of an embodiment of the cache
updating unit 400. The cache updating unit 400 may comprise an
identifying unit 402 adapted for identifying in a query instance
that may have led to a filling of the cache, a parameter whose
values are monotonic over time. The query instance may have a

first execution time, as explained above.

13

As second block, a generating unit 404 adapted for generating a
new query instance at a second execution time, is shown. Again,
as expressed above, here, instead of the previous value of the
parameter, a new value of the parameter may be used that
corresponds to the monotonic previous value at the second
execution time. Because of the monotonic characteristic of the

parameter, this may be a distinct value.

The third block of the cache updating unit 400 is an execution
unit 406 adapted for executing the new query instance. During

this, the cache may be updated accordingly.

EFmbodiments of the invention may be implemented together with
virtually any type of computer, regardless of the platform being
suitable for storing and/or executing program code. For example,
as shown in Fig. 5, a computing system 500 may include one or
more processor (s) 502 with one or more cores per processor,
associated memory elements 504, an internal storage device 506
(e.g., a hard disk, an optical drive, such as a compact disk
drive or digital video disk (DVD) drive, a flash memory stick, a
solid-state disk, etc.), and numerous other elements and
functionalities, typical of today's computers (not shown). The
memory elements 504 may include a main memory, e.dg., a random
access memory (RAM), employed during actual execution of the
program code, and a cache memory, which may provide temporary
storage of at least some program code and/or data in order to
reduce the number of times, code and/or data is retrieved from a
long-term storage medium or external bulk storage 516 for an
execution. Elements inside the computer 500 may be linked
together by means of a bus system 518 with corresponding
adapters. Additionally, the cache updating unit 400 may be
attached to the bus system 518.

The computing system 500 may also include input means such as a

keyboard 508, a pointing device such as a mouse 510, or a

14

microphone (not shown). Alternatively, the computing system may
be equipped with a touch sensitive screen as main input device.
Furthermore, the computer 500, may include output means such as
a monitor or screen 512 [e.g., a liquid crystal display (LCD), a
plasma display, a light emitting diode display (LED), or cathode
ray tube (CRT) monitor]. The computer system 500 may be
connected to a network [(e.g., a local area network (LAN), a
wide area network (WAN)], such as the Internet or any other
similar type of network, including wireless networks via a
network interface connection 514. This may allow a coupling to
other computer systems, or a storage network, or a tape drive.
Those, skilled in the art will appreciate that many different
types of computer systems exist, and the aforementioned input
and output means may take other forms. Generally speaking, the
computer system 500 may include at least the minimal processing,
input and/or output means, necessary to practice embodiments of

the invention.

While the invention has been described with respect to a limited
number of embodiments, those skilled in the art, having benefit
of this disclosure, will appreciate that other embodiments may
be devised, which do not depart from the scope of the invention,
as disclosed herein. Accordingly, the scope of the invention
should be limited only by the attached claims. Also, elements
described in association with different embodiments may be
combined. It should also be noted that reference signs in the

claims should not be construed as limiting elements.

As will be appreciated by one skilled in the art, aspects of the
present disclosure may be embodied as a system, method or
computer program product. Accordingly, aspects of the present
disclosure may take the form of an entirely hardware embodiment,
an entirely software embodiment (including firmware, resident
software, micro-code, etc.) or an embodiment combining software

and hardware aspects that may all generally be referred to

15

rr w rr

herein as a “circuit, module” or “system.” Furthermore,
aspects of the present disclosure may take the form of a
computer program product embodied in one or more computer
readable medium(s) having computer readable program code

embodied thereon.

Any combination of one or more computer readable medium(s) may
be utilized. The computer readable medium may be a computer
readable signal medium or a computer readable storage medium. A
computer readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, or device, or any
suitable combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having one
or more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or Flash memory),
an optical fiber, a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device, or
any suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be any
tangible medium that may contain, or store, a program for use,
by or in connection with an instruction execution system,

apparatus, or device.

A computer readable signal medium may include a propagated data
signal with computer readable program code embodied therein, for
example, in baseband or as part of a carrier wave. Such a
propagated signal may take any of a variety of forms, including,
but not limited to, electro-magnetic, optical, or any suitable
combination thereof. A computer readable signal medium may be
any computer readable medium that is not a computer readable

storage medium and that may communicate, propagate, or transport

16

a program for use by or in connection with an instruction

execution system, apparatus, or device.

Program code embodied on a computer readable medium may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc., or

any suitable combination of the foregoing.

Computer program code for carrying out operations for aspects of
the present invention may be written in any combination of one
or more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++, or the like
and conventional procedural programming languages, such as the
"C" programming language or similar programming languages. The
program code may execute entirely on the user's computer, partly
on the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote computer or
entirely on the remote computer or server. In the latter
scenario, the remote computer may be connected to the user's
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the connection
may be made to an external computer (for example, through the

Internet using an Internet Service Provider).

Aspects of the present disclosure are described with reference
to flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products according to
embodiments of the present disclosure. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, may be implemented by
computer program instructions. These computer program
instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data

processing apparatus to produce a machine, such that the

17

instructions, which execute via the processor of the computer or
other programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart

and/or block diagram block or blocks.

These computer program instructions may also be stored in a
computer readable medium that may direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions, which implement the
function/act specified in the flowchart and/or block diagram

block or blocks.

The computer program instructions may also be loaded onto a
computer, other programmable data processing apparatus, or other
devices to cause a series of operational steps to be performed
on the computer, other programmable apparatus, or other devices
to produce a computer implemented process such that the
instructions, which execute on the computer or other
programmable apparatus, provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram,

block, or blocks.

The block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of
systems, methods and computer program products, according to
various embodiments of the present disclosure. In this regard,
each block in the block diagrams may represent a module,
segment, or portion of code, which comprises one or more
executable instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions, discussed hereinabove, may occur
out of the disclosed order. For example, two functions taught in

succession may, in fact, be executed substantially concurrently,

18

or the functions may sometimes be executed in the reverse order
depending upon the functionality involved. It will also be noted
that each block of the block diagrams, and combinations of
blocks in the block diagrams, may be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hardware

and computer instructions.

The terminology used herein is for the purpose of describing
particular embodiments only and is not intended to limit the
invention. As used herein, the singular forms "a", "an" and
"the" are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will further be
understood that the terms "comprises" and/or "comprising," when
used in this specification, specify the presence of stated
features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of one
or more other features, integers, steps, operations, elements,

components, and/or groups thereof.

The corresponding structures, materials, acts, and equivalents
of all means or steps plus function elements in the claims below
are intended to include any structure, material, or act for
performing the function in combination with other claimed
elements, as specifically claimed. The description of the
present invention has been presented for purposes of
illustration and description, but is not intended to be
exhaustive or limited to the invention in the form disclosed.
Many modifications and variations will be apparent to those of
ordinary skills in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and described
in order to best explain the principles of the invention and the
practical application, and to enable others of ordinary skills

in the art to understand the invention for various embodiments

19

with various modifications, as are suited to the particular use

contemplated.

20

CLAIMS

A method (100) for updating a cache, comprising

- identifying (102) in a query instance that has led to a
filling of the cache, a parameter whose values are
monotonic over time, wherein the query instance has a first

execution time,

- generating (104) a new query instance, at a second
execution time, using therein, instead of the previous
value of the parameter, a new value that corresponds to the

monotonic previous value at the second execution time, and

- executing (106) the new query instance, thereby updating

the cache.

The method (100) according to claim 1, wherein the wvalues

of the parameter are monotonically increasing over time.

The method (100) according to claim 1, wherein the wvalues

of the parameter are monotonically decreasing over time.

The method (100) according to claim 2, wherein the
parameter that is monotonically increasing over time

represents time.

The method (100) according to any of the previous claims,
wherein the monotonic characteristic of the parameter is

stored in metadata relating to the parameter.

The method (100) according to any of the previous claims,

wherein the query instance is stored together with related

10.

11.

12.

13.

21

cache entries.

The method (100) according to any of the previous claims,
wherein a cache hit number is stored together with related

cache entries.

The method (100) according to any of the previous claims,
wherein the cache hit number is increased every time data

are read out of the cache.

The method (100) according to any of the previous claims,
wherein the second execution time corresponds to a load

time of an online analytical processing system.

The method (100) according to any of the previous claims,
wherein a cache valid flag of the cache is reset if
underlying data, corresponding to the cache, undergo an

update.

The method (100) according to any of the previous claims,
wherein the cache is one out of the group comprising a
query result cache, a pre-calculated report, a pre-
calculated form, a pre-determined web page, an aggregate,

and a materialized table query.

The method (100) according to any of the previous claims,
wherein the new query instance is only generated i1if the

cache hit number exceeds a predefined hit threshold number.

A cache update unit (400) comprising,

- an identifying unit (402) adapted for identifying in a
query instance that has led to a filling of the cache, a
parameter whose values are monotonic over time, wherein the

query instance has a first execution time,

22

- a generating unit (404) adapted for generating a new
query instance at a second execution time using therein,
instead of the previous value of the parameter a new value
that corresponds to the monotonic previous value at the

second execution time, and

- an execution unit (406) adapted for executing the new

query instance, thereby updating the cache.

14. A data processing program for performing the method (100)
for updating a cache, the data processing program
comprising software code portions for performing the method
(100), according to any of the claims 1 to 12, when said

data processing program is run on the computer (500).

15. A computer program product for the method (100) for
updating a cache, comprising computer readable program
means for causing a computer (500) to perform the method
(100), according to any of the claims 1 to 12, when the

program means is run on the computer (500).

) ™
7 B
Az R

Intellectual 53
Property
Office

Application No: GB1404524.9 Examiner: Jake Collins
Claims searched: 1-15 Date of search: 12 September 2014

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
X 1-15 US 2008/0098173 Al
(CHIDAMBARAN ET AL)
X 1,2, 4, 6-| US 2003/0200194 Al
8,11 and | (ARNOLD ET AL) See paragraph 66
13-15
A - US 8296394 B1
(ASHER)
A - US 2006/0271557 Al
(HARWARD ET AL)
Categories:
X Document indicating lack of novelty or inventive =~ A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step it P Document published on or after the declared priority date but
combined with one or more other documents of’ before the filing date of this invention.
same category.
& Member of the same patent tamily E Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

Worldwide search of patent documents classified in the following areas of the IPC
[GOGF |
The following online and other databases have been used in the preparation of this search report

[WPL EPODOC |

International Classification:
Subclass Subgroup Valid From

None

Intellectual Property Office is an operating name of the Patent Office www.ipo.gov.uk

	Front Page
	Drawings
	Description
	Claims
	Search Report

