47077262 A2 IO 0O O O O

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
10 September 2004 (10.09.2004)

(10) International Publication Number

WO 2004/077262 A2

(51) International Patent Classification’: GOOF
(21) International Application Number:
PCT/US2004/005488

(22) International Filing Date: 25 February 2004 (25.02.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/450,074
10/784,375

UsS
UsS

25 February 2003 (25.02.2003)
23 February 2004 (23.02.2004)

(71) Applicant (for all designated States except US): BEA
SYSTEMS INC. [US/US]; 2315 North First Street, San
Jose, CA 95131 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TAKACSI-NAGY,
Pal [HU/US]; 10553 Farallone Drive, Cupertino, CA
95014 (US). BLOW, Michael, Douglas [US/US]; 4994
New Compton Court, San Jose, CA 95136 (US).

(74) Agents: MEYER, Sheldon, R. et al.; FLIESLER MEYER
LLP, Four Embarcadero Center, Fourth Floor, San Fran-
cisco, CA 94111 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: SYSTEMS AND METHODS UTILIZING A WORKFLOW DEFINITION LANGUAGE

100 ~
\

o0 E

Call MIS System
104

MIS
System

Handle MIS Reply
106

Call MIS System
110
HR
System

Handle MIS Reply
114

108

118\

oo g

-

116

(57) Abstract: An easy-to-use workflow language can be created by extending an existing, common language such as Java. The
language can be extended by adding those constructs that are missing but desirable. Such desirable constructs can include parallelism,
& asynchrony, loops over asynchronous events, and flexible handling of XML. Such constructs can allow a user to define a virtual
program using the extended Java syntax. For example, XML can be placed inside a Java class that defines the high-level orchestration
logic a workflow should follow. That orchestration logic can refer to the Java class to carry out work, such that the logic to handle
an incoming message is really in Java. This description is not intended to be a complete description of, or limit the scope of, the
invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and

the claims.

WO 2004/077262 A2 I} NN N0VOH0 T 00000 D AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2004/077262 PCT/US2004/005488

SYSTEMS AND METHODS UTILIZING A WORKFLOW DEFINITION
LANGUAGE

CLAIM OF PRIORITY

This application claims priority to U.S. Provisional Patent Application No.
60/450,074 filed February 25, 2003, entitled “SYSTEMS AND METHODS
UTILIZING A WORKFLOW DEFINITION LANGUAGE” (Attorney Docket
No. BEAS-01389US0), which is hereby incorporated herein by reference; and

U.S. Utility Patent Application No. entitled “SYSTEMS AND
METHODS UTILIZING A WORKFLOW DEFINITION LANGUAGE” by Pal
Takacsi-Nagy and Michael Douglas Blow, filed February 24, 2004 (Attorney
Docket No. BEAS-01389US1), which is hereby incorporated herein by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material

which is subject to copyright protection. The copyright owner has no objection to
the facsimile reﬁ@ié‘duction by anyone of the patent document of the patent
disclosure, as iﬁa,f)&ears in the Patent and Trademark Office patent file or records,

but otherwise resérv,es all copyright rights whatsoever.

CROSS-REFERENCED CASES

The following applications are cross-referenced and incorporated herein

by reference:

U.S. Provisional Patent Application No. 60/376,906 entitled
“COLLABORATIVE BUSINESS PLUG-IN FRAMEWORK,” by Mike Blevins,
filed May 1, 2002;

U.S. Provisional Patent Application No. 60/377,157 entitled “SYSTEM
AND METHOD FOR COLLABORATIVE BUSINESS PLUG-INS” by Mike
Blevins, filed May 1, 2002,

U.S. Patent Application No. 10/404,552 entitled “COLLABORATIVE

- 1.

WO 2004/077262 PCT/US2004/005488

BUSINESS PLUG-IN FRAMEWORK,” by Mike Blevins, filed April 01, 2003;
and

U.S. Patent Application No. 10/404,296 entitled “SYSTEMS AND
METHODS FOR COLLABORATIVE BUSINESS PLUG-INS” by Mike
Blevins, filed April 01, 2003.

FIELD OF THE INVENTION

The present invention relates to workflow languages, and to the extension of

programming languages.

BACKGROUND

Many businesses have adopted the concept of workflows to automate

business processes. A workflow generally refers to a software component that is
capable of performing a specific set of tasks. These tasks, which can include
work items or other workflows, are typically connected in a way that allows the
tasks to be ordered upon the completion. In a workflow, information such as files,
documents, or tasks are passed between system resources according to a set of
procedural rules so that the system can act upon the information. .

In order to incorporate and develop workflows, several companies have
developed a workflow language (WFL). Many workflow languages are simple,
with each component in the WFL having one input and at least one output. The
input can accept a token that triggers the component to perform the appropriate
task. After completing the task, the component can generate a token that contains
the result of the task. This token can be passed to any other component needing to
execute a task utilizing that result.

While many of these workflow languages and workflow management
systems are currently being used, each typically utilizes some amount of
proprietary information. The existing workflow languages attempt to be complete
programming languages, and consequently the developers end up reinventing a lot
of things that popular programming languages already do. Further, it is necessary
for developers to take on the time and expense to learn these new programming

languages.

WO 2004/077262 PCT/US2004/005488

BRIEF SUMMARY

Systems and methods in accordance with embodiments of the present

invention overcome many of the deficiencies in existing workflow languages by
simply extending the syntax of an existing and popular programming language
that is already familiar to developers. One such workflow language extends the
Java programming language.

Other features, aspects, and objects of the invention can be obtained from a

review of the specification, the figures, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagram of a workflow that can be used in accordance with one

embodiment of the present invention.

Figure 2 shows a workflow language code example for the workflow of
Figure 1.

Figure 3 shows an example of a Java workflow file that can be used in

accordance with embodiments of the present invention.

DETAILED DESCRIPTION

Systems and methods in accordance with the present invention can take

advantage of users’ knowledge and preference for existing programming
languages by simply extending such a language. People like to use these existing
languages because they already know and are familiar with them. For instance,
many developers like to use Java because they are familiar with the variables and
simple procedure logic. Systems and methods in accordance with the present
invention attempt to capitalize on this by simply extending Java with those
constructs that are missing but desirable. For instance, such desirable constructs
can include parallelism, asynchrony, loops over asynchronous events, and flexible
handling of XML. Such constructs can allow a user to define a virtual program
using the extended Java syntax. XML can be placed inside a Java class that
defines the high-level orchestration logic a workflow should follow. That
orchestration logic can refer to the Java class to carry out work, such that the lo gic
to handle an incoming message is really in Java.

Languages such as have constructs such as a “while...do” construct and a

-3-

WO 2004/077262 PCT/US2004/005488

"for" loop conmstruct, which can each happen in a short period of time with no
interruption or pause in execution. Constructs in accordance with embodiments of
the present invention can happen over a long period of time, and are not limited to
specific time intervals. For example, a user can utilize a loop construct to receive
certain messages, but that user will typically have no control over the frequency at
which messages are received. In such a situation, a system in accordance with the
present invention can be set to allow a user to define a special "for" loop. This
special “for” loop allows the system to receive a specified type or class of
messages until a specified condition is met. The actual logic to handle the
received messages, or to determine that the condition is not validated, can be done
using Java in a way that is similar to how a user would use a normal Java
program. By using an extended syntax and construct, the user can create such
"for" loop without wasting system resources.

Another aspect to such a construct in accordance with embodiments of the
present invention is that the construct cannot only execute for a long period of
time, but can also “remember” what happens during that time. The construct can
allow information to be processed in an efficient manner. Instead of maintaining
tens of thousands of little programming objects, dormant programs can be stored
away efficiently and then revived when needed. Further, such systems can handle
server clusters running virtual programs that can actually "pop-up" on any
machine in the cluster, further increasing resource efficiency. It may not be
enough to simply revive dormant programs, as it may be necessary to revive a
program in the exact state the program was in before going dormant. It can also be
desirable to allow a dormant program to be revived in the proper state on any
machine in the appropriate cluster.

One implementation of such a workflow langnage (WFL) includes a Java
program with an appropriate extension. In order to provide the ability for an
application component go dormant efficiently and then come back at a later time,
a light-weight virtual machine can be used for the workflow that is able to save
execution space, including the program stack and variable state, and is then able

to revive the program.

The looping construct described above is just one example. In another

simple example using such a workflow program, a user can write a Java program
-4.

WO 2004/077262 PCT/US2004/005488

designating that message A and message B are to be received, followed by
message C. If the messages are received in the wrong order, a workflow container
can be used to handle the ordering. The container can save later messages until
after the earlier messages are received and/or processed. This approach is a
simple looping-style example that can be used to add ordering functionality to
Java, which does not itself include an efficient order process.

Workflow annotations

In one embodiment, a workflow can be defined in a Java Web Service
(IWS) file, by placing the WFL definition to an annotation of the Java class of the
JWS.E.g.:

JE*E

* @jwft:flow flow::

*

* <process name="PurchaseOrder">

®
* </process>
b .

**/

public class PurchaseOrder {...}

The name of the annotation that contains the workflow definition is
Jwfiflow. The Java methods and variables defined in the JWS file can be
referenced by the flow logic.

Process can be the top-level container for workflow logic. A process can
be made up of a set of activities with defined ordering. Activities can be simple,
like an action or complex, like a loop. Activity types that can be supported can
include, for example:

e Action — a basic building block used in a workflow, which can allow a
workflow to call an operation on a control, call a piece of Java code, or a

control to call back the workflow

o Various loop types — can execute a set of activities multiple times depending

on at least one condition

WO 2004/077262 PCT/US2004/005488

e Parallel — can allow for multiple parallel branches

e Switch — can provide a conditional branch in the workflow
o multiReceive — can execute input-guarded branching

o End— can mark the end of the workflow

In addition to activities, processes can contain declarations for correlation,

transactions and exceptions.

A workflow can use variables that are referred to herein as “workflow
variables.” Flow logic can reference variables in actions, conditions and
correlations. All workflow variables can be declared in Java, as class variables or
fields. There may be no special scoping for workflow variables, as all workflow
variables can be “global” to a workflow instance. Workflow variables can be
persisted along with the workflow state unless, for example, the variables are
marked transient.

A special XML interface can be used to store XML content as XML (i.e.
not converting to schema-influenced Java types). E.g.:

XML savedPO;

void getPO (XML po) {

savedPO = po;

}

Workflow variables can be shown on a GUI canvas if the variables are of
primitive Java types, e.g. int, Boolean, String etc. or of the XML type. Variables
of other types can be still used by Java code inside the Java Work Flow (JWF)
file, but may not be displayed on the GUL. The JWF can be a Java class with
annotations that describe the flow logic, with the annotations referencing Java or

Xquery methods within the class that implement the detailed business logic.

Controls can also be declared as Java class variables with special

annotations, similarly to controls in a plain JWS file. E.g.:

/ sfesfe

* @jws:control

WO 2004/077262 PCT/US2004/005488
*/
OrderProcessor orderService;
Actions

An action can be one of the basic building blocks of a process. An action
can represent an atomic invocation of an operation on a control, or an invocation

of local Java code. There can be at least four kinds of operations, such as:

e incoming - the conirol or the “client” can call the workflow and not expect a

reply or callback
e outgoing - the workflow can call the control and not expect a reply

e request/response - the workflow can call the control and expect a synchronous

reply

e solicit/response - the control or the “client” can call the workflow and expect a

synchronous reply

Since JWS already provides a way to handle operation invocations and
callbacks, the significance of the action construct is not to provide an additional
way to do the same thing. The added value of an action construct can include the
ability to allow a developer sequence, as well as to parallelize operation
invocations and callbacks. Workflows can handle operations including incoming,
outgoing, and request/response operations. Solicit/response type operations may
not be handled by workflows, as there is no way for a workflow engine to
properly sequence out-of-bound requests in this case since the invoker expects a
quick, or synchronous, reply.

There can be at least two elements in a workflow language for actions,
including receive and perform elements. Both of these elements can reference
Java methods inside a JWF file that carry out work related to the action. A
receive action can mark the receipt of a message that comes either via the
workflow’s primary interface, such as from a “client,” or from a control as a
callback operation. A method attribute can be used to identify the Java method
that handles the message. The workflow engine may store the message before
invoking the Java handler function in case the message arrives at a time when the

-7-

WO 2004/077262 PCT/US2004/005488
workflow is not ready to receive the message, according to the flow logic.

In one example of using a receive tag, the workflow declares a receive
action for a message from the “client”:

<receive name="Receive PO" method="getPO"/>

void getPO(XML po) {

inputPo = po;

In a second example, the receive action is used to mark a callback
operation from a control. The method attribute of <receive> references a Java

method that is defined to handle the callback operation from the control.

<receive name="Handle service ack."

method="orderService sendAck"/>

private void orderService_sendAck(XML ackedLine)
throws Exception {
poAckList = myQueries.concat(poAckList, ackedLine);

WSDL interface of the workflow
A WSDL interface of a workflow can be defined by non-control callback

handler methods referenced by <receive> nodes, as well as the operation on the
Callback interface. The exact shape of each operation can be determined in one

embodiment as follows:

e If the operation is a normal Java method, then the same rules can apply as for
JWS, i.e. the type of the message part of the corresponding WSDL operation
can be auto-generated from the Java signature. A notable exception can
include the situation where there is jws:wsdl annotation on the class that

defines all operations of the JWS.

© Another provision can include the ability to define message parts in an

-8-

WO 2004/077262 PCT/US2004/005488

annotation above the operation. This can be allowed, in one instance, only
when all parameters and the return type of the method are of the XML type.
E.g.

/**

* @jws:operation

* @jws:schema import="myschema.xsd"

* @jws:return-xml schema="mytypel"

* @jws:parameter-xml schema="mytype2"
s/

XML foo(XML body)

This example defines the output message to be mytype! and the input message to
be mytype2 respectively. The schema annotation references the schema file, where

these types and element are defined.

Perform
A perform tag can be used to tell the workflow engine to execute a “black
box”” Java operation that is identified by the method attribute of the tag. E.g.:
<perform name="Send reply to the client" method="sendReply"/>
/**
* @jwf:transforms
*/

POTransforms transforms;

public void sendReply() {
callback.reply(transforms.buildReply(poAckList));

}

Starting Workflows

Workflows can be started by messages. The first activity in a workflow,
such as the first child of the process tag, can be either a <receive> or a
<multiReceive>. When a client invokes such an operation, a workflow instance

can be started. When <multiReceive> is defined, < multiReceive > can be the first
-9-

WO 2004/077262 PCT/US2004/005488

activity as well, in order to support multiple ways of starting the same workflow.
A special case of message-started workflows can involve a message broker
starting a workflow as a result of a subscription. The subscription parameters can
be defined by annotating the JWS operation that is invoked by the message
broker, such as when the broker delivers the message. E.g.:
/* &
* @jws:mb-static-subscription message-topic-name="myapp.POAck”
* filter-name="myFilter”
* filter-value-match="myvalue”
* filter-body="msgbody”

void foo(XML msg)

The jws:mb-static-subcription annotation can be used to specify the subscription
parameters, such as the kind of messages that cause the message broker to start a
workflow of this kind.
Decision

A decision node or activity can be used to select exactly one path of
execution based on the evaluation of one or more conditions. When on a
<decision> node, the workflow engine can.evaluate the conditions on the enclosed
<if> nodes. Execution can continue with activities inside the first <if> node, with
a true condition. An optional enclosed <default> node can be executed if no other
conditions are met. In the example below, the PO is approved by different people

depending on the amount:

-10-

WO 2004/077262 PCT/US2004/005488

<decision name="Check amount>
<if condition="vpApproval” parameters="po”>
<perform name="assign approval to VP” ... />
</if>
<if condition="mgrApproval” parameters="po”>
<perform name="assign approval to director” ... />
</if>
<default>
<perform name="assign approval to mgr” ... />
</default>

</decision>

xquery::
define function vpApproval(element $po) returns xs:boolean {
return $po/amount/text() > S000
}
define function dirApproval(element $po) returns xs:boolean {
return $po/amount/text() > 1000

The condition attribute can contain a reference to a Java operation that
returns boolean. The Java operation can be locally in the JWF file, can be an
inlined XQuery function. If the referenced condition is an inlined XQuery
function, a parameters attribute can specify the workflow variable(s) to be passed
into the function identified. Multiple variables can be separated by spaces. String
constants can be passed in enclosed by a single quotation mark. E.g.:

<if condition="checkCo" parameters="lineitem,” IBM’">
Switch

A <switch> node can be used to select one path of execution, based on the
value of a single expression that is associated with the node. When on a <switch>
node, the workflow engine can first execute the expression, then compare the
result to the values associated with the <case> nodes inside the <switch>.

Execution can continue with activities inside the first <case>, with a matching

11 -

WO 2004/077262 PCT/US2004/005488

value. An optional enclosed <default> node can be executed if no other
conditions are met.
<switch name="where to send” expression="getProduct”
parameters="po” >
<case value="widgetA”>
. <perform name="order widgetA” handler="orderA”/>
</case>
<case value="widgetB”>
. <perform name="order widgetB” handler="orderB”/>
</case>
<default>
<perform name="throw on unknown product” ... />
</default>

</switch>

xquery::
define function getProduct(element $po) returns string {
return $po/product-name }

multiReceive

A < multiReceive > activity can provide a way to wait on multiple input
events simultaneously, and to proceed on a particular branch of execution, based
on which event occurred first. The children of < multiReceive > can all be
<onMessage> elements. Each <onMessage™ can represent an input event, as well
as a branch of execution that should be taken, provided that the input event of the
<onMessage> occurred first inside the enclosing < multiReceive >. The input
event can be represented by a <receive> action, which can be the first activity or
tag inside <onMessage>. The activities after <receive> can be the activities that
are executed subsequent to the event selection. All <onMessage> tags can contain
different input events. The workflow compiler can flag an error if <receive> tags
referring to the same Java method appear as input events inside < multiReceive >.
The same can be done for <parallel> In addition to <onMessage>,
<multiReceive> can have a single <onTimeout> sub-element as well, which can

cause the workflow engine to generate special timeout event that is considered
-12-

WO 2004/077262 PCT/US2004/005488

alongside with the regular input events.

Due to the serial nature of the workflow container, there may never be a
race condition between input events. Events can be delivered one at a time to the
entity bean that represents the workflow. Once the first matching event of
<multiReceive> has been delivered to a workflow instance, the other input events
that are potentially delivered later can be discarded, unless they are referenced
later in the workflow.

In the example below, the workflow uses the < multiReceive > activity to
wait for a callback from a "backend" control, a cancellation message from the
client of the workflow, or for a timeout of 10 seconds. The condition or event that
happens first will determine the flow of execution. In case the callback comes
first, the workflow can send a message to the client, which can be referred to as
the "normal" path of execution.‘ If a "cancel" message from the workflow client
arrives first, the next activity after < multiReceive > can be performed:

< multiReceive >

<onMessage> .
<receive name="get availability" method="backend getAvailability"/>
<perform name="send reply to client" method="sendReply"/>
</onMessage>
<onMessage>
<receive name="get cancellation" method="cancel"/>
</onMessage>
<onTimeout duration="P10S">
<perform name="send error to the client" method="sendError"/>

</onTimeout>

</ multiReceive >

<done/>

[

* @jws:control

it

BackendWS backend;

-13-

WO 2004/077262 PCT/US2004/005488

void backend_getAvailability(XML msg) {...}

[

* @jws:operation
ke /

void cancel(){...}

void sendReply(){...}

void sendError(){...}

forEach

A forEach activity can perform a set of activities repeatedly, such as once
for each item in a list. For instance, the example below defines a forEach activity

to iterate through the line items of a purchase order.

<forEBach variable="lineitem"
expression=" getLineltems”

parameters="inputPO”>

<perform name="processLine" method="processOrder"/>
<receive name="gotAck" method="orderService_sendAck"/>

</forEach>

xquery::
define function getLineltems(element $po) returns element™ {

return $po/DATAAREA/PROCESS_PO/POORDERLIN }

The expression attribute can point to a method whose return type is

- 14 -

WO 2004/077262 PCT/US2004/005488

java.util.Iterator, or to an inlined XQuery function. The variable attribute can
reference a workflow variable where the current item of the iteration is stored.
The parameters attribute can specify the workflow variable(s) to be passed to the
Java operation, identified by the expression attribute. The format can be similar
to the parameters attribute of <switch>.

doWhile and whileDo (loop)

A <whileDo> activity can perform the enclosed activities repeatedly, as
long as the loop condition is true. The loop condition can be defined by the
condition attribute of <whileDo>. This condition can be evaluated before the
enclosed activities are performed, such as the activities inside <doWhile> being
performed zero or many times. Similar to <switch>, the condition attribute can
contain a reference to a Java operation that returns boolean. The Java operation
can be locally in a JWF file, or can be an inlined XQuery function. T he
parameters attribute can specify the workflow variable(s) to be passed in to the
Java operation, identified by a condition attribute. Multiple variables can be
separated by spaces, and string constants can be passed that are enclosed by a

single quotation mark.

In the example below, the "receive line item" action is executed as long as
the "lastLine" attribute is not present in the XML document held in the lineltem
variable:

<receive name="receive line item" method="getLineltem"/>

<whileDo condition="notLast" parameters="lineltem">

<receive name="receive line item" method="getLineltem"/>

<whileDo/>

/ e
* xquery::

* define function notLast(element $po) returns boolean {

* return empty($po/@lastLine) }

-15-

WO 2004/077262 PCT/US2004/005488

*/

JH
* (@jws:operation

&/

void getLineltem(XML x) {

lineltem = x;

<doWhile> can be similar to <whileDo>, except that the loop condition is
checked after the activities have been performed. So, the activities inside
<doWhile> are performed one or many times. Below is the - modified - example
that uses <doWhile> instead of <whileDo>:

<doWhile condition="notLast" parameters="lineltem">

<receive name="receive line item" method="getLineltem"/>

<doWhile/>

Parallel

A majority of mainstream programming languages does not offer high-level
abstractions for parallel execution. Writing parallel programs remains a tricky
task, which can require the mastering of low-level APIs and a deep understanding
of the underlying execution model. Users still can require parallel execution to
increase throughput by performing tasks in parallel that are not dependent on each
other. There are at least two typical cases, where parallelism helps:

e Complex computations, such as matrix multiplication, where the algorithm
can easily be broken into multiple independent parts. In the matrix
multiplication case each element of the resultant can be computed
separately, which can allow for massive parallelization.

o Programs including long waits on an external resource. For example, if a
program reads data from a file and then from the network, these items can

be processed in parallel, such that the network read does not wait due to

-16 -

WO 2004/077262 PCT/US2004/005488

potential disk /O time caused by the file read.
Workflows can be capable of utilizing the benefits of parallelism, due at least in
part to the second item above. Workflows often communicate with external
systems that are slow to react, so breaking up message exchanges with different
systems into multiple paths of execution can be advantageous.

Parallelism Challenges

While parallel execution can bring some clear benefits, such execution can
also cause additional problems for a programmer. One such problem centers on
accessing shared state from multiple threads of execution. Since the threads can
be part of a larger programming unit, mutual exclusion in the threads’ access to
shared state, such as global variables, can be a problem. A second challenge can
involve synchronizing the execution of multiple threads. This can range from the
simple ability to wait for termination of several threads to complexity of arbitrary
inter-thread communication. High-level programming languages can contain
abstractions to handle both challenges. The “synchronized” keyword in Java can
be a mechanism to achieve mutual exclusion.

‘Workflows and parallelism

As discussed above, workflows can utilize parallelism because of the
common pattern that involves exchanging messages with multiple slow running
systems. There can be certain important characteristics to parallel patterns in
workflows:

e The number of parallel branches is small (2-3).

e The cross-traffic between parallel branches can be minimal, typically no
shared variables and only simple synchronization: wait for termination of
multiple branches.

e In existing products, developers often use parallel branches of workflow to
handle exceptional cases: a branch is dedicated to just waiting on a message
that is only received in exceptional cases, such as a “cancel” message. In
systems and methods in accordance with the present invention, there will be
no need to use parallelism to handle this, as an exception handling mechanism
can be used instead.

Additionally, an EJB container can serialize execution of workflow steps. What

may appear to be parallel branches can in fact be only “logically” parallel, as

-17-

WO 2004/077262 PCT/US2004/005488

physically the branches are going to be executed serially.

Language syntax

A <parallel> tag can define a complex activity that consists of a number of
<branch> activities, each representing parallel branches of execution. Activities
that make up a branch can be placed inside a <branch> tag. There can be several
branches inside a single <parallel> tag, and nesting of <parallel> tags can be
supported.

For example, a “New Employee” workflow can be run every time
somebody starts with the company. The HR system can be notified to get benefits
arranged for the person, and the MIS web service can be invoked to enter an email
address for the new employee. These systems can be loosely coupled both from
each other and from the orchestrating workflow, so the flow sends them a
message first with the request and they asynchronously reply, once they carried
out their respective tasks. At that point the workflow can reply to the invoker that

“initialization” of the employee is done. Figure 1 shows a graphical view of the
| use case, as the developer might draw it. Input device 100 is coupled to workflow
node 102 that starts the workflow which branches into notifying MIS System 106
and HR System 112. The MIS System 106 notifying branch consists of the
activities Call MIS System 104 and Handle MIS Reply 108. The HR System 112
notifying branch consists of the activities Call HR System 110 and Handle HR
Reply 114. The workflow after handling the MIS Reply 108 and HR Reply 114
finishes at the node 116 which is coupled to processing device 118. The flow
language for this use case can look as shown in Figure 2. Each branch can have
access to all workflow variables at all times. In order to avoid potential problems,
is can be desirable in certain systems to name global variables according to their
association with a branch.

The only synchronization point between branches can be their termination
point. There may be no mechanism for the branches to synchronize with each
other in the middle of their execution. A join-condition attribute of a <parallel>
tag can specify how branch termination can cause termination of the <parallel>
activity itself. The attribute can have at least two values, including AND and OR.
If the join-condition attribute is set to AND, the <parallel> activity can terminate

once all of its <branch> activities have terminated. If the join-condition is set to

-18-

WO 2004/077262 PCT/US2004/005488

OR, the <parallel> activity can terminate once one of its <branch> activities has
terminated. Other active branches can be terminated prematurely. Since an EJB
container can provide non pre-emptive scheduling of the branches, all other
branches can be in a "wait" state, blocking on a <receive>, when one of the

branches terminates.

Using Composition

One way to achieve mutual exclusion of variables and complex
synchronization between branches is to package up the flow of the branch into a
separate workflow and call that workflow as a control from the branch:

/**

* @jwi:flow flow ::

%

* <process>

* <parallel>

* <branch>
* <perform name="start subflow 1" method="startBranch1"/>
* <receive name="wait for subflow 1 to end" method="brl_end"/>

* </branch>

* <branch>

* <perform name="start subflow 2" method="startBranch2"/>

* <receive name="wait for subflow 2 to end" method="br2_end"/>
* </branch>

* </parallel>
* <perform name="Reply to requestor" method="end"/>

*</process>

%

dk/

This solution can achieve mutual exclusion of variable access, since the branches
can execute as separate workflows, protected by separate EJB instances.
Complex synchronization, such as rendezvous, may not be possible using such a
solution.

Exception Handling

-19-

WO 2004/077262 PCT/US2004/005488

Workflow exceptions can include Java exceptions that are not caught by

Java handler methods. These will be referred to herein as "system exceptions.”

Examples of workflow exceptions can include:

®

o

6]

Trying to use the JMS control, but the underlying JMS queue is not there.
The EJB called by the workflow throws an exception that is not handled
by the Java handler code.

The web service called by the workflow is not reachable

An exception-handling block, or shortly block, is a piece of workflow that is

enclosed inside an <block> element. For example:

<block onException="handleIt”>
<receive .../>

<perform .../>

</block>

<exceptionHandlers>
<exceptionHandler name="handlelt">
<!-- actions -->
</exceptionHandler>

</exceptionHandlers>

If an exception occurs inside the block, the engine can stop the normal flow of

execution, and can execute the activities inside the exception handler pointed to

by the onException attribute. Exception handlers are pieces of workflow that can

be defined under the <exceptonHandlers> element. Exception handlers are named

and can be scoped to the process. Blocks can also contain <onMessage> tags. The

first child of an <onMessage> tag can be a <receive>. During the execution of

activities contained inside a block, whenever a message arrives that is referenced

by the <receive> tag inside <onMessage>, the workflow engine can switch to the

activities inside <onMessage>.

Having performed the exception handler on an <onMessage> block, the

workflow engine can execute the activities after the block. If the desired behavior

is to terminate the workflow as a consequence of the exception, the exception

-20-

WO 2004/077262 PCT/US2004/005488

handler can contain an abort activity. If there is no exception handler defined by
the user, the engine can automatically handle the exception by simply freezing the
workflow.

The exception handling behavior with respect to parallel branches can be
somewhat different. Blocks may be unable to span multiple branches of
<parallel>, but can contain a <parallel> block in its entirety or can just be
constrained to a single branch. E.g., the following may be valid:

<block>

<paralle]>

<branch>

<branch/>

<branch>

<branch/>
<parallel/>

</block>

If the block contains the whole <parallel> block, an exception can
terminate all branches of parallel. If the block is constrained only to a single
branch, then an exception occurring in that branch may not affect execution of
other branches. An onException attribute on the process element can be supported
that is equivalent to an implied <block> around the entire process. This can be a
shorthand notation to cover perhaps 80% of the use cases. The Java exception that
caused the last workflow exception can be retrieved using an operation such as a
JwfContext.getException() operation. If no exception handler is specified, then
<block> canbe a way to persist a grouping of several nodes together for the
purposes of the workflow designer GUL

Short Running Transactions

Workflow activities can be grouped to transaction blocks. Activities inside
a transaction block can be executed inside a single JTA transaction:
<transaction™>

<receive name="get PO from queue" .../>

-21-

WO 2004/077262 PCT/US2004/005488

<perform name="update log" .../>
<perform name="register PO with ERP EIB" .../>

</transaction>

In the above example the state of the workflow, including variables and a
program counter, can be updated in the same JTA transaction as the resources that
are accessed by the actions enclosed inside the <transaction>, including the
message queue where the PO was read form, the log database, and finally the EJB
front-ending the ERP system. If, for example, the write to the log database fails in
the <perform> action, the PO message can remain in the queue.

A retryCount attribute of the <transaction> can specify how many times
the workflow engine should retry to perform the activities inside the transaction.
If all retry attempts have failed, the workflow engine can generate a workflow
exception. Workflows can access resources via operations on controls. Some
controls can support JTA transactions. If an operation on the control is called
inside a JTA transaction, the work carried out inside the operation can be
"infected" by the transaction. Examples of such "transactional controls" or
"transactional operations" include the JMS control, the EJB control, and the DB
control. The service control and its methods in general are not transactional, since
the web services stack may not support transaction propagation. In case a service
control operation is called via JMS "buffering", the front-end of the call can
become transactional. If a non-transactional operation is called inside a
transaction block, the work inside the operation may not be included in the
transaction. For instance, if the transaction is rolled back, the work that has been

performed by the operation can remain unaffected.

Rules for the shape of a transaction block

There are certain rules that should be observed when defining transaction
blocks. These can include, for example:

e a <receive> and < multiReceive > can only appear as the first activity
inside a transaction block, as <receive> (and < multiReceive >) can force a
transaction boundary for the workflow context. Other types of activities
can appear at any position.

e transaction blocks cannot contain multiple branches of a <parallel>
-22-

WO 2004/077262 PCT/US2004/005488

Implied Transaction Blocks

If a developer does not define transaction blocks, the workflow engine can
separate its execution into transactional chunks according to a simple rule, such as
a rule to commit the current transaction every time, when the next activity is a
<receive>, < multiReceive >, or <parallel>, If the transaction blocks cover only
part of the workflow, the workflow engine can apply this simple rule for the rest
of the workflow, or the "uncovered" part.

Long-Running Transactions

Workflows may often perform long running activities that can last for hours
or days. Due to the long duration, it may not be possible to enclose these long-
running activities in a transaction block, which can be implemented using a short
running JTA transaction. To ensure atomicity in long running workflows, the
developer can define sagas. Similar to transaction blocks, sagas can contain
activities. One key difference between sagas and transaction blocks can include
the way that aborts are handled. For transaction blocks the resource managers
involved in the underlying JTA transaction can automatically undo all the work
that has been done since the beginning of the transaction. This can include
possible changes in the workflow state, such as values stored in workflow
variables. For sagas this may not be possible, since the resource managers may
not understand sagas, or long-running transactions. Therefore there can be a need
for another way of undoing work, referred to herein as compensation. A logical
place to define compensations can be in the transaction blocks, since a transaction
block by definition constitutes an atomic unit of work. Each transactional block
inside a <saga> can have a compensating section, where the compensating
activities for the transaction block can be placed. Compensation can be performed
if any of the enclosed transaction blocks abort. For example:

<saga>

<transaction>
<receive .../>
<perform .../>
<compensation>
<!-- perform for un-perform -->

<perform .../>

-93-

WO 2004/077262 PCT/US2004/005488

</compensation>
</transaction>
<transaction>
<perform .../>
<compensation>
<!-- send for un-send -->
<perform .../>
</compensation>
</transaction>

</saga>

For sections that are not inside a transaction block, no special compensation will
be done. E.g.:
<saga>
<transaction>
<receive .../>
<perform .../>
<compensation>
<!-- perform for un-perform -->
<perform .../>
</compensation>
</transaction>
<perform ../>

</saga>

For the <perform> in the above example, no compensating action may be
invoked. The compensation blocks can be performed in reverse order relative to
the original execution, with the last transaction block to commit being
compensated first. Compensations for transaction blocks that have been defined
on parallel branches can be executed in parallel. Each compensation block can be
started in a separate JTA, or short running, transaction. Compensations may not
include sagas. If a workflow fails with an unhandled exception during

compensation, the engine can freeze the workflow such that manual intervention

- 24 -

WO 2004/077262 PCT/US2004/005488

from an administrator can be required.
Examples

In one example that can be used in accordance with embodiments of the
present invention, the scenario involves passing in a PO to start a workflow. The
workflow iterates over the line items in the PO, For each item, the workflow sends
a request to a backend system. The request to the backend system includes part of
the PO plus the individual line items. The replies are gathered, concatenated into
a PO Acknowledgement, and sent back to the client. An example of this JWF is
shown in Figure 3.

In another example, a business process can be created to handle purchase
orders. A workflow can expose a SOAP operation that accepts a purchase order
asynchronously, places orders for the line items contained in the purchase order,
and respond to the requestor with a purchase order reply message by performing a
SOAP callback. The process can use 2 JWF forEach loop construct to iterate over
the set of line items in the purchase order. In the underlying JWF file for the
business process, the incoming purchase order is stored in an XML workflow
variable and an XQuery expression is used to control the looping by enumerating
each line item in turn from within the XML purchase order variable. Inside the
loop, a web service call can be made to send the line item to a backend order
management system, and the response can come back in the form of a web service
callback. JWE can include constructs to specify such flow actions as message
sending and receiving, looping, conditional branching, parallel execution, waiting
for one of a possible set of messages, Java method invocations, and transaction
and exception handling.

The line item callbacks can take a large amount of time to occur, such as
hours or even days depending on the nature of the backend system. Another
benefit is that the flow language can enable such applications to be easily
constructed by corporate developers. A JWF runtime container can use
transactions and queuing to reliably execute, sequence, and recover the individual
Java- and/or XQuery-based workflow steps, it can handle call/callback
correlation, and it can enable the application to be deactivated, such as by utilizing
entity beans and persistent storage, during long periods of inactivity, even in the

midst of loops in the flow. The flow description can indicate the types of

-925-

WO 2004/077262 PCT/US2004/005488

messages expected by the workflow, and when those messages are expected,

which can differ from the order of receipt.

Element Definitions

o Process
<process name=QName onException=>
Content: {any activity}*
name: the GUI label for the process
onException: the process wide exception handler
e exceptionHandlers
<exceptionHandlers>
Content: <exceptionHandler>+
e exceptionHandler
<exceptionHandler name=>
Content: {any activity}*
name: the name of this handler, referenced by <process> or <block>
exceptionHandler cannot contain <transaction>.
e done
<done/>
Content: empty
e receive
<receive name=QName method=QName/>
Content: empty
name: the GUI label for the action
method: points to a Java operation inside the JWF file that will either be
exposed as a client operation, or it is a control callback handler
e perform
<perform name=QName handler=QName/>
Content: empty
name: the GUI label for the action
method: points to a Java operation inside the JWF file
o decision
<decision name=QName>

-26-

WO 2004/077262 PCT/US2004/005488

switch

Content: <if>+

<if condition= parameters=>

Content: {any activity}*

condition: refers to a Java or to an inlined XQuery operation that returns
boolean.

parameters: a comma separated list of workflow variables and constants to
pass to the Java operation, identified by the condition attribute. Constants

must be in single quotes.

<switch name= expression= parameters=. >
Content <case>+
<case value=>
Content: {any activity}*
name: descriptive name for the switch node
expression: refers to a Java or to an inlined XQuery operation (via
jwf:queries) that returns a Java primitive type (String included) or a XML
Schema simple type equivalent.
value: a constant or a Java method, whose (return) type matches the type

of the expression attribute

multiReceive

< multiReceive>

Content: <onMessage>+ [<onTimeout>]

OnMessage

<onMessage>

Content: <receive> {any activity}*

onTimeout

<onTimeout duration= >

Content: {any activity}*

duration: specifies how soon from the time the <choice> activity gets
scheduled should

a timeout event be raised. Uses the XML Schema "duration" data type.

forEach

<forEach expression= variable= parameters=>

-27-

WO 2004/077262 PCT/US2004/005488

Content: {any activity}*
expression: an inlined Xquery function or a Java operation, which returns
java.util.Iterator
variable: the variable to hold the value of the current iteration
parameters: a comma separated list of workflow variables and constants
to pass to the Java operation, identified by the expression attribute.
Constants must be in single quotes.

e parallel
<parallel join-condition= >
Content: <branch>+
join-condition: defines when does the parallel activity terminate. If it is set
to OR, the parallel activity terminates, when the first branch has
terminated. If it is set to AND, the parallel activity terminates, when all the
branches have been terminated.

e branch
<branch>
Content: {any activity}*

o doWhile
<DoWhile condition= parameters>
Content: {any activity}*
condition: refers to a Java operation or an inlined XQuery function that
return a boolean. In the latter case the class name should include the full
package name.
parameters: a comma separated list of workflow variables and constants to
pass to the Java operation, identified by the condition attribute. Constants
must be in single quotes.

e whileDo
<whileDo condition= parameters>
Content: {any activity}*
condition: refers to a Java operation or operation on an inlined XQuery
function that return a boolean. In the latter case the class name should
include the full package name.
parameters: a comma separated list of workflow variables and constants to

-28-

WO 2004/077262 PCT/US2004/005488

pass to the Java operation, identified by the condition attribute. Constants
must be in single quotes.
e block
<block onException=>
Content: <onMessage>* {any activity}*
onException: the exception handlers
o onMessage
Content: <receive>{any activity}*
e {ransaction
<transaction timeout= retryCount= >
Content: {any activity}+[<compensate>]
Another <transaction> cannot be nested inside.
timeout: the JTA transaction timeout
retryCount: the transaction will be retried this many times
e compensate
<compensate>
Content: {any activity}+

Cannot contain any <saga> elements.

e saga
<saga>
Content: {any activity}+
Business Processes

One example of a workflow language application is a workflow language for a
business process manager (BPM) component. This workflow language (WFL) can define
the processing rules of workflows that are executed by the BPM. The WFL can use a
format such as XML format, wherein all WFL constructs are expressed as XML elements

and attributes.

The foregoing description of preferred embodiments of the present
invention has been provided for the purposes of illustration and description. It is
not intended to be exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations will be apparent to one of ordinary
skill in the art. The embodiments were chosen and described in order to best

explain the principles of the invention and its practical application, thereby

-29-

WO 2004/077262 PCT/US2004/005488

enabling others skilled in the art to understand the invention for various
embodiments and with various modifications that are suited to the particular use
contemplated. It is intended that the scope of the invention be defined by the

following claims and their equivalence.

-30-

WO 2004/077262 PCT/US2004/005488

CLAIMS

What is claimed is:

1. A method for creating a workflow language, comprising the steps of:
selecting an existing programming language; and,
extending said existing programming language by adding workflow

constructs to the existing language.

2. A method according to claim 1, wherein:
the step of extending said existing programming language by adding
workflow constructs further comprises embedding constructs defined by a second

language in the existing programming language.

3. A method according to claim 1, wherein:
the workflow constructs are selected from the group consisting of
parallelism, asynchrony, loops over asynchronous events, and flexible language

handling.

4, A method according to claim 1, wherein:

the existing programming language is Java.

5. A method according to claim 2, wherein:
the second language is XML.
6. A method according to claim 1, further comprising:

allowing a user to define a virtual program with the extended

programming language.

7. A method for utilizing a workflow language, comprising:

creating a workflow definition using a workflow language, wherein the
workflow language comprises existing programming language extended with
workflow constructs defined by a second language.

creating a workflow program comprising of said workflow definition.

-31-

WO 2004/077262 PCT/US2004/005488

8. A method according to claim 7, wherein:
said workflow definition is added to an annotation of the workflow

program.

9. A method according to claim 7, wherein:
said workflow definition further comprises flow logic that references the

variables of the workflow program.

10. A method according to claim 7, wherein:
said workflow definition further comprises flow logic that references the

methods of said workflow program.

11. A method according to claim 7, further comprising:
providing ability for said workflow program to go dormant; and,
providing ability to revive said dormant workflow program to the exact

state the workflow program was in before going dormant.

12. A computer-readable medium, comprising:

an existing programming language; and

means for extending said existing programming language by adding
workflow constructs defined by a second language to said existing programming

language.

13. A computer program product for execution by a server computer for
creating a workflow language, comprising:

an existing programming language; and

computer code for extending an existing programming language by adding
workflow constructs defined by a second language to the existing programming

language.

14. A system for creating a workflow language, comprising:
an existing programming language; and

means for extending an existing programming language by adding

-32-

WO 2004/077262 PCT/US2004/005488

workflow constructs defined by a second language to the existing programming

language.
15. A computer system comprising:
a Processor;

object code executed by said processor, said object code configured to:
extend an existing programming language by adding workflow

constructs defined by a second language to said existing programming language.

16. A computer data signal embodied in a transmission medium, comprising:
a code segment including instructions to extend an existing programming
language by adding workflow constructs defined by a second language to the

existing programming language.

17. A system for handling the ordering of messages received in a program
using a workflow language, comprising:

a workflow language comprising of looping construct with ordering of
messages received defined by a second language added to an existing
programming language;

a program written using said workflow language; and,

a workflow container to handle ordering of said messages received in said

program.

18. A system for utilizing a workflow language, comprising:

a workflow definition created using a workflow language, wherein said
workflow language comprises existing programming language extended with
workflow constructs defined by a second language; and,

means for creating a workflow program comprising of said workflow

definition.

19. A system according to claim 18, further comprising:
means for providing ability for said workflow program to go dormant;

and,

-33-

WO 2004/077262 PCT/US2004/005488

means for providing ability to revive said dormant workflow program to

exact state the program was in before going dormant.

20. A system according to claim 18, wherein:
said workflow definition is added to an annotation of said workflow

program.

21. A system according to claim 20, wherein:
said workflow definition further comprises flow logic that references the

variables of said workflow program.

22. A system according to claim 20, wherein:
said workflow definition further comprises flow logic that references the

methods of said workflow program.

23. A method for creating a workflow language, comprising the steps of:
selecting Java programming language; and,
extending said Java programming language by adding workflow constructs
to said Java programming language, wherein said extending further comprises
embedding said workflow constructs defined by XML in the Java programming
language.

24. A system for creating a workflow language, comprising:

Java programming language; and,

means for extending said Java programming language by adding workflow
constructs to said Java programming language, wherein said extending further
comprises embedding said workflow constructs defined by XML in the Java

programming language.

25. A system for utilizing a workflow language, comprising:
a workflow definition created using a workflow language, wherein said
workflow language comprises existing programming language extended with

workflow constructs defined by a second language;

-34-

WO 2004/077262 PCT/US2004/005488

a workflow program comprising of said workflow definition; and

a workflow engine executing said workflow program.

26. A method for utilizing a workflow language, comprising:

creating a workflow definition using a workflow language, wherein said
workflow language comprises existing programming language extended with
workflow constructs defined by a second language; and

creating a workflow program comprising of said workflow definition.

27. A method for utilizing a workflow language, comprising:

selecting a workflow definition created using a workflow language,
wherein said workflow language comprises existing programming language
extended with workflow constructs defined by a second language; and

using a workflow program comprising of said workflow definition.

28. A computer program product created utilizing a workflow language,
comprising:

a workflow definition created using a workflow language, wherein said
workflow language comprises existing programming language extended with
workflow constructs defined by a second language; and

a workflow program comprising of said workflow definition.

29. A method for extending an existing programming language, comprising
the steps of:

selecting an existing programming language; and,

extending an existing programming language by adding at least one

language construct defined by a second language.

30. A method according to claim 29, wherein:

said existing programming language is Java.

31. A method according to claim 29, wherein:

said second language is XML.

-35-

WO 2004/077262 PCT/US2004/005488

32. A method according to claim 29, wherein:
said language construct is a parallelism construct representing parallel

branch of program execution.

33. A method according to claim 32, wherein:
said parallelism construct further comprises plurality of branch constructs
defined by said second language, wherein said branch constructs represent parallel

branches of program execution comprising of at least one software activity.

34. A method according to claim 32, wherein:
said parallelism construct is further nested within a similar parallelism

construct.

35. A method according to claim 29, wherein:
said language construct is a transaction construct representing transaction

block of at least one software activity.

36. A method according to claim 35, wherein:
said transaction construct further specifies the number of retry attempts to

perform the software activities inside said transaction block.

37. A method according to claim 35, wherein:
said transaction construct is further enclosed within a saga construct
comprising of compensation construct with at least one compensating software

activity, where in the saga construct represents a long running transaction.

38. A method according to claim 37, wherein:

said saga construct further comprises of plurality of transaction blocks.

39. A method according to claim 29, wherein:
said language construct is an exception handlers construct representing an
execution mechanism comprising of exception handler construct defined by said

second language, which represents exception not caught by the existing

-36-

WO 2004/077262 PCT/US2004/005488

programming language handler methods.

40. A method according to claim 29, wherein:

said language construct is an action construct representing an activity that
allows a first software component written using the extended existing
programming language to call an operation on a second software component

written using said existing programming language.

41. A method according to claim 40, wherein:
said action construct allows said software component call a piece of Java

code.

42. A method according to claim 40, wherein:
said action construct further allows said second software component call

back the said first software component.

43. A method according to claim 29, wherein:
said language construct is a multiple receive construct that allows a
software component written using the extended existing programming language

to wait on multiple input events received.

44. A method according to claim 43, wherein:
said multiple receive construct further allows said software component
proceed on a particular branch of program execution, based on the input event that

occurred first within the said multiple input events.

45. A method according to claim 29, wherein:
said language construct is a looping construct with ordering of messages
received, representing looping functionality, wherein the ordering allows said

messages to be received in an order.

46. A system for extending an existing programming language, comprising:

an existing programming language; and,

-37-

WO 2004/077262 PCT/US2004/005488

means for extending an existing programming language by adding at least

one language construct defined by a second language.

47. A system according to claim 46, wherein:

said existing programming language is Java.

48. A system according to claim 46, wherein:

said second language is XML.

49. A system according to claim 46, wherein:
said language construct is a parallelism construct representing parallel

branch of program execution.

50. A system according to claim 49, wherein:
said parallelism construct further comprises plurality of branch constructs
defined by said second language, wherein said branch constructs represent parallel

branches of program execution comprising of at least one software activity.

51. A system according to claim 49, wherein:
said parallelism construct is further nested within a similar parallelism

construct.

52. A system according to claim 46, wherein:
said language construct is a transaction construct representing transaction

block of at least one software activity.

53. A system according to claim 52, wherein:
said transaction construct further specifies the number of retry attempts to

perform the software activities inside said transaction block.

54. A system according to claim 52, wherein:
said transaction construct is further enclosed within a saga construct

comprising of compensation construct with at least one compensating software

-38-

WO 2004/077262 PCT/US2004/005488

activity, where in the saga construct represents a long running transaction.

55. A system according to claim 54, wherein:

said saga construct further comprises of plurality of transaction blocks.

56. A system according to claim 46, wherein:

said language construct is an exception handlers construct representing an
execution mechanism comprising of exception handler construct defined by said
second language, which represents exception not caught by the existing

programming language handler methods.

57. A system according to claim 46, wherein:

said language construct is an action construct representing an activity that
allows a first software component written using the extended existing
programming language to call an operation on a second software component

written using said existing programming language.

58. A system according to claim 57, wherein:
said action construct allows said software component call a piece of Java

code.

59. A system according to claim 57, wherein:
said action construct further allows said second software component call

back the said first software component.

60. A system according to claim 46, wherein:
said language construct is a multiple receive construct that allows a
software component written using the extended existing programming language

to wait on multiple input events received.

61. A system according to claim 60, wherein:
said multiple receive construct further allows said software component

proceed on a particular branch of program execution, based on the input event that

-39-

WO 2004/077262 PCT/US2004/005488

occurred first within the said multiple input events.

62. A system according to claim 46, wherein:
said language construct is a looping construct with ordering of messages
received, representing looping functionality, wherein the ordering allows said

messages to be received in an order.

63. A computer system comprising:
a Processor;
object code executed by said processor, said object code configured to:
extend an existing programming langnage by adding a

language construct defined by a second language.

64. A method for extending Java programming language, comprising the steps
of:

selecting Java programming language; and,

extending Java programming language by adding at least one language
construct defined by XML.

65. A system for extending Java programming language, comprising:
a Java programming language; and,
means for extending Java programming language by adding at least one

language construct defined by XML.

66. A method for creating a program, comprising the steps of:
selecting an existing programming language extended with at least one
language construct defined by a second language; and

creating a program using the extended existing programming language.

67. A computer program product, comprising;
a program created by using an existing programming
language extended with at least one langnage construct defined by a second

language.

- 40 -

WO 2004/077262

100\

PCT/US2004/005488

1/3

00

Call MIS System
104

Handle MIS Reply
108

I Call MIS System
110
MIS 4 HR
System System
Handle MIS Reply
106 112 114

118\

116
- Qj

” =

WO 2004/077262 PCT/US2004/005488

2/3

/:'::":
* @jwf:flow flow ::

¥ <process>
* <receive name="Receive employee info" method="start"/>
<parallel join-condition="AND">
<branch>
<perform name="Request e-mail" method="regMail"/>
<receive name="Get e-mail" method="MIS_mailReady"/>
<perform name="Notify client about e-mail"
method="mailNotification"/>
</branch>
<branch>
<perform name="Request benefits" method="reqBenefits"/>
<receive name="Get benefits" method="hr_benefitsReady"/>
<perform name="Noitify client about benefits"
method="benefitsNotification"/>
</branch>
</parallel> * <perform name="Reply to requestor" method="end"/>
</process>

* % % %k ok % X % % ¥ Gk k¥ * Ok

o)

WO 2004/077262

3/3

/*'k

* @jwf:flow flow::

* <process name="PurchaseOrder">

* <receive name="Receive PO" method="getPO"/>

<forEach name="processLineltems" var="linsitem"
expression="getLineltems"
parameters="inputPO">

<receive name="Handle service ack."
method="orderService_sendAck"/>
</forEach>

* 0% % ok % X o
o

¥ </process>
* .

*

* xquery::

* define function getLineltems (element $po) returns element* {

* $po/DATAAREA/PROCESS_PO/POORDERLIN }

* define function concat (element $x1, element $x2) returns element {

* gx1+$x2}

* define function buildReply (element $x1) returns element {

¥ <reply>$x1</reply> }
**/“

public class PurchaseOrder {
public XML inputPO;
public XML lineitem;
/**
* @jwf:xml-sequence
*
public XML poAckList;
/**
* @jwi:transforms
*

PoTransforms transforms;
/**
* @jws:control
Wi
public OrderProcessor orderService;
void getPO(XML po) {
inputPo = po;

public void processOrder() {
orderService.processOrder(lineltem);

}

public void orderService_sendAck(XML ackedLine)
throws Exception {
poAckList = transforms.concat(poAckList, ackedLine);

}
public void sendReply() {
callback.reply(transforms.buildReply(poAckList));

public Callback callback;
public interface Callback {
public void reply(XML ack);
}
}

Figure 3

<perform name="Process line item" method="processOrder"/>

<perform name="Send reply to the client" method="sendReply"/>

PCT/US2004/005488

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

