GOLF BALL COMPOSITION

Inventors: Hyun J. Kim, Carlsbad, CA (US); Hong G. Jeon, Carlsbad, CA (US)

Correspondence Address:
KLARQUIST SPARKMAN, LLP
121 S.W. SALMON STREET
PORTLAND, OR 97204 (US)

Appl. No.: 12/646,688
Filed: Dec. 23, 2009

Related U.S. Application Data
Provisional application No. 61/204,020, filed on Dec. 30, 2008.

Publication Classification
Int. Cl.
A63B 37/12 (2006.01)
A63B 37/00 (2006.01)

U.S. Cl. 473/374; 473/377; 473/378

ABSTRACT
A two piece ball golf ball having a core, and an outer cover layer or a ball having a core, an outer cover layer; and one or more intermediate layers, where at least one of the outer cover layer, or intermediate layer is made from a blend composition of about 1 to about 99 wt % of a block copolymer having no polar functionality; and from about 1 to about 99 wt % of an ionomer. Also included in the blend is from about 0.5 to about 10 pph (based on the combined weight of the block copolymer and ionomer) of a compound having the general formula:

$\text{(R}_2\text{N)}_n\text{--R'}\text{--(X(O)R_B)}_m\text{--}$

where R is hydrogen, or a C$_1$-C$_{20}$ aliphatic, cycloaliphatic or aromatic group; R' is a bridging group comprising one or more C$_1$-C$_{20}$, straight chain or branched aliphatic or acyclic groups, or one or more C$_1$-C$_{20}$, substituted straight chain or branched aliphatic or cyclic groups, or one or more C$_1$-C$_{20}$ aromatic groups, or an oligomer of up to 12 repeating units including, but not limited to, polypeptides derived from an amino acid sequence of up to 12 amino acids; and X is C or S or P with the proviso that when X=C, n=1 and y=1 and when X=S, n=2 and y=1, and when X=P, n=2 and y=2; and m=1-3. The blend composition has a melt index of greater than about 5 g/10 min, a flexural modulus of from about 500 to about 100,000 psi, a material Shore D hardness of from about 25 to about 70; and the golf ball has a cover layer Shore D hardness as measured on the ball of from about 35 to about 70 and a shear cut resistance of less than about 4.
GOLF BALL COMPOSITION

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 61/204,020, filed Dec. 30, 2008, the contents of which are incorporated herein by reference in their entirety.

BACKGROUND

[0002] The present disclosure relates to sports equipment in general and more particularly to golf balls comprising a particular composition suitable for use in golf ball manufacture. In one embodiment, the presently described composition is used in the manufacture of a golf ball comprising a core, a cover layer and, optionally, one or more inner cover layers. In one preferred embodiment, a golf ball is disclosed in which the cover layer comprises the presently described novel composition. In another preferred embodiment, a golf ball is disclosed in which at least one intermediate layer comprises the presently described novel composition.

DESCRIPTION OF RELATED ART

[0003] The application of synthetic polymer chemistry to the field of sports equipment has revolutionized the performance of athletes in many sports. One sport in which this is particularly true is golf, especially as relates to advances in golf ball performance and ease of manufacture. For instance, the earliest golf balls consisted of a leather cover filled with wet feathers. These “feathery” golf balls were subsequently replaced with a single piece golf ball made from “gutta percha,” a naturally occurring rubber-like material. In the early 1900’s, the wound rubber ball was introduced, consisting of a solid rubber core around which rubber thread was tightly wound with a gutta percha cover.

[0004] More modern golf balls can be classified as one-piece, two-piece, three-piece or multi-layered golf balls. One-piece balls are molded from a homogeneous mass of material with a dimple pattern molded thereon. One-piece balls are inexpensive and very durable, but do not provide great distance because of relatively high spin and low velocity. Two-piece balls are made by molding a cover around a solid rubber core. These are the most popular types of balls in use today. In attempts to further modify the ball performance especially in terms of the distance such balls travel and the feel transmitted to the golfer through the club on striking the ball, the basic two-piece ball construction has been further modified by the introduction of additional layers between the core and outer cover layer. If one additional layer is introduced between the core and outer cover layer, a so-called “three-piece ball” results and similarly, if two additional layers are introduced between the core and outer cover layer, a so-called “four-piece ball” results, and so on.

[0005] Golf ball covers were previously made from balata rubber which was favored by some players because the softness of the cover allows them to achieve spin rates sufficient to allow more precisely control of ball direction and distance, particularly on shorter approach shots. However balata-covered balls, although exhibiting high spin and soft feel, were often deficient in terms of the velocity of the ball when it leaves the club face which in turn affects the distance the ball travels.

[0006] This distance is directly related to the coefficient of restitution (“C.O.R.”) of the ball. The coefficient of restitution of a one-piece golf ball is a function of the ball’s composition. In a two-piece or a multi-layered golf ball, the coefficient of restitution is a function of the properties of the core, the cover and any additional layer. While there are no United States Golf Association (“USGA”) limitations on the coefficient of restitution values of a golf ball, the USGA requires that the golf ball cannot exceed an initial velocity of 255 feet/second. As a result, golf ball manufacturers generally seek to maximize the coefficient of restitution of a ball without violating the velocity limitation.

[0007] Accordingly, a variety of golf ball constructions have been developed in an attempt to provide spin rates and a feel approaching those of balata covered balls, while also providing a golf ball with a higher durability and overall distance. This has resulted in the emergence of balls, which have a solid rubber core, a cover, and one, or more so-called intermediate layers, as well as the application of new materials to each of these components.

[0008] A material which has been often utilized in more modern golf balls is the family of ionomer resins developed in the mid-1960’s, by E.I. DuPont de Nemours and Co., and sold under the trademark SURLYN®. These ionomer resins have, to a large extent, replaced balata as a golf ball cover stock material. Preparation of such ionomers is well known, for example see U.S. Pat. No. 3,264,272 (the entire contents of which are herein incorporated by reference). Generally speaking, commercial ionomers consist of a polymer of a mono-olefin, e.g., an alkene, with an unsaturated mono- or dicarboxylic acids having 3 to 12 carbon atoms. An additional monomer in the form of a mono- or dicarboxylic acid ester may also be incorporated in the formulation as a so-called “softening comonomer.” The acid groups in the polymer are then neutralized to varying degrees by addition of a neutralizing agent in the form of a basic metal salt.

[0009] Today, there are a wide variety of commercially available ionomer resins based both on copolymers of ethylene and (meth)acrylic acid or terpolymers of ethylene and (meth)acrylic acid and (meth)acrylate, all of which many of which are used as a golf ball component. The properties of these ionomer resins can vary widely due to variations in acid content, softening comonomer content, the degree of neutralization, and the type of metal ion used in the neutralization.

[0010] More recent developments in the field have attempted to utilize the various types of ionomers, both singly and in blend compositions to optimize the often conflicting golf ball performance requirements of high C.O.R., ball velocity, and cover durability, with the need for a ball to spin and have a so-called soft feel on shorter iron shots. However, the incorporation of more acid in the ionomer and/or increasing its degree of neutralization results in a material with increased polarity, and hence one which is often less compatible with other potential blend materials. Also increasing the acid content of the ionomer while increasing C.O.R. may render the ball too hard and brittle causing a loss of shot feel, control (i.e., the ability to spin the ball) and may render the cover too brittle and prone to premature failure. Finally, the incorporation of more acid in the ionomer and/or increasing its degree of neutralization typically results in an increase in melt viscosity which in turn greatly decreases the processability of these resins. Attempts to mediate these effects by adding softer terpolymeric ionomers to high acid ionomer.
compositions to adjust the hardness and improve the shot “feel” often result in concomitant loss of C.O.R. and hence distance.

[0011] Another particular elastomeric material that provides for good performance when used in making ball covers and intermediate layers is a block copolymer having a first polymer block comprising an aromatic vinyl compound, and a second polymer block comprising a diene compound. However, it has been observed that covers incorporating these triblock copolymers can suffer from cracks after being hit during play. During endurance testing of balls having covers incorporating such block copolymers, crack initiation and propagation was observed in the covers. This cracking leads to substantial deterioration in ball performance and long-term durability. These cracks also can initiate in an intermediate layer and subsequently propagate to a cover. Additionally, shear-cut resistance in the covers needs to be further improved for optimal performance.

[0012] In view of the above, it is apparent that golf ball cover and intermediate layers are needed that allow the optimization of golf ball performance properties by incorporating block copolymers into the layers, while eliminating or reducing formation of cracks in the covers and intermediate layers. The ball layers also should provide little or no processing and preparation difficulties beyond that provided by present layers. We have now found that a multicomponent blend composition (“MCBC”) comprising a block copolymer, an ionomer and a compound having the general formula:

$$(R_2N)m - R^- - (X(O)_{y}(OR))_n$$

(where R is hydrogen, or a C1-C20 aliphatic, cycloaliphatic or aromatic group; R’ is a bridging group comprising one or more C1-C20 straight chain or branched aliphatic or aliphatic groups, or substituted straight chain or branched aliphatic or aliphatic groups, or aromatic groups, or an oligomer of up to 12 repeating units including, but not limited to, polypeptides derived from an amino acid sequence of up to 12 amino acids; and X is C or S or O with the proviso that when X=C, n=1 and y=1 and when X=S, n=2 and y=1, and when X=P, n=0 or 1 and y=2 or 4; and m=1-3, the blend composition has a melt index of greater than about 5 g/10 min, a flexural modulus of from about 500 to about 100,000 psi, a material Shore D hardness of from about 25 to about 70; and the golf ball has a cover layer Shore D hardness as measured on the ball of from about 35 to about 70 and a shear cut resistance of less than about 4).

[0014] In another aspect disclosed herein is a golf ball having a core, an outer cover layer, and one or more intermediate layers, where at least one of the outer cover layer, or intermediate layer is made from a blend composition of about 1 to about 99 wt % of a block copolymer having no polar functionality; and from about 1 to about 99 wt % of an ionomer. Also included in the blend is from about 0.5 to about 10 pph (based on the combined weight of the block copolymer and ionomer) of a compound having the general formula:

$$(R_2N)m - R^- - (X(O)_{y}(OR))_n$$

where R is hydrogen, or a C1-C20 aliphatic, cycloaliphatic or aromatic group; R’ is a bridging group comprising one or more C1-C20 straight chain or branched aliphatic or aliphatic groups, or one or more C1-C20 substituted straight chain or branched aliphatic or aliphatic groups, or one or more C1-C20 aromatic groups, or an oligomer of up to 12 repeating units including, but not limited to, polypeptides derived from an amino acid sequence of up to 12 amino acids; and X is C or S or O with the proviso that when X=C, n=1 and y=1 and when X=S, n=2 and y=1, and when X=P, n=0 or 1 and y=2 or 4; and m=1-3, the blend composition has a melt index of greater than about 5 g/10 min, a flexural modulus of from about 500 to about 100,000 psi, a material Shore D hardness of from about 25 to about 70; and the golf ball has a cover layer Shore D hardness as measured on the ball of from about 35 to about 70 and a shear cut resistance of less than about 4.

[0015] As used herein, a “blend composition” can be a physical mixture of components A, B and C and/or a reaction product produced by a reaction between components A, B and/or C.

BRIEF DESCRIPTION OF DRAWINGS

[0016] FIG. 1 illustrates a three-piece golf ball comprising a solid center or core 2, an intermediate layer 3, and an outer cover layer 4.

[0017] FIG. 2 illustrates a 4-piece golf ball comprising a core 2, and an outer cover layer 5, an inner intermediate layer 3, and an outer intermediate layer 4.

[0018] Although FIGS. 1 and 2 illustrate only three- and four-piece golf ball constructions, golf balls of the present invention may comprise from 1 to at least 5 intermediate layer(s), preferably from 1 to 3 intermediate layer(s), more preferably from 1 to 2 intermediate layer(s).

DETAILED DESCRIPTION

[0019] Any numerical values recited herein include all values from the lower value to the upper value in increments of one unit provided that there is a separation of at least 2 units between any lower value and any higher value. As an example, if it is stated that the amount of a component or a value of a process variable is from 1 to 90, preferably from 20 to 80, more preferably from 30 to 70, it is intended that values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32 etc. are expressly enumerated in this specification. For values, which have less than one unit difference, one unit is considered to be 0.1, 0.01,
0.001, or 0.0001 as appropriate. Thus all possible combinations of numerical values between the lowest value and the highest value enumerated herein are said to be expressly stated in this application.

[0020] The term “(meth)acrylic acid copolymers” is intended to mean copolymers of methacrylic acid and/or acrylic acid.

[0021] The term “(meth)acrylate” is intended to mean an ester of methacrylic acid and/or acrylic acid.

[0022] The term “partially neutralized” is intended to mean an ionomer with a degree of neutralization of less than 100 percent.

[0023] The term “hydrocarbyl” is intended to mean any aliphatic, cycloaliphatic, aromatic, aryl substituted aliphatic, aryl substituted cycloaliphatic, aliphatic substituted aromatic, or cycloaliphatic substituted aromatic groups. The aliphatic or cycloaliphatic groups are preferably saturated. Likewise, the term “hydrocarbyloxy” means a hydrocarbyl group having an oxygen linkage between it and the carbon atom to which it is attached.

[0024] As used herein, the term “block copolymer” is intended to mean a polymer comprising two or more homopolymer subunits linked by covalent bonds. The union of the homopolymer subunits may require an intermediate non-repeating subunit, known as a junction block. Block copolymers with two or three distinct blocks are called diblock copolymers and triblock copolymers, respectively. It is a particular feature of the present invention that the block copolymer contain no polar functionality including pendant or terminal hydroxyl or acid groups.

[0025] As used herein, the term “core” is intended to mean the elastic center of a golf ball. The core may have one or more “core layers” of elastic material, which are usually made of rubbery material such as diene rubbers.

[0026] The term “cover layer” is intended to mean the outermost layer of the golf ball; this is the layer that is directly in contact with paint and/or ink on the surface of the golf ball. If the cover consists of two or more layers, only the outermost layer is designated the cover layer, and the remaining layers (excluding the outermost layer) are commonly designated intermediate layers as herein defined. The term “outer cover layer” as used herein is intended interchangeably with the term “cover layer.”

[0027] The term “intermediate layer” may be used interchangeably herein with the terms “mantle layer” or “inner cover layer” and is intended to mean any layer(s) in a golf ball disposed between the core and the outer cover layer. Should a ball have more than one intermediate layer, these may be distinguished as “inner intermediate” or “inner mantle” layers which are used interchangeably to refer to the intermediate layer nearer the core and further from the outer cover, as opposed to the “outer intermediate” or “outer mantle layer” which are also used interchangeably to refer to the intermediate layer further from the core and closer to the outer cover.

[0028] The term “prepolymer” as used herein is intended to mean any material that can be further processed to form a final polymer material of a manufactured golf ball, such as, by way of example and not limitation, a polymerized or partially polymerized material that can undergo additional processing, such as crosslinking.

[0029] A “thermoplastic” as used herein is intended to mean a material that is capable of softening or melting when heated and of hardening again when cooled. Thermoplastic polymer chains often are not cross-linked or are lightly crosslinked using a chain extender, but the term “thermoplastic” as used herein may refer to materials that initially act as thermoplastics, such as during an initial extrusion process or injection molding process, but which also may be crosslinked, such as during a compression molding step to form a final structure.

[0030] A “thermoset” as used herein is intended to mean a material that crosslinks or cures via interaction with a crosslinking or curing agent. Crosslinking may be induced by energy, such as heat (generally above 200° C.), through a chemical reaction (by reaction with a curing agent), or by irradiation. The resulting composition remains rigid when set, and does not soften with heating. Thermosets have this property because the long-chain polymer molecules cross-link with each other to give a rigid structure. A thermoset material cannot be melted and re-molded after it is cured. Thus thermosets do not lend themselves to recycling unlike thermoplastics, which can be melted and re-molded.

[0031] The term “thermoplastic polyurethane” as used herein is intended to mean a material prepared by reaction of a diisocyanate with a polyol, and optionally addition of a chain extender.

[0032] The term “thermoplastic polyurea” as used herein is intended to mean a material prepared by reaction of a diisocyanate with a polyamine, with optionally addition of a chain extender.

[0033] The term “thermoset polyurethane” as used herein is intended to mean a material prepared by reaction of a diisocyanate with a polyol, and a curing agent.

[0034] The term “thermoset polyurea” as used herein is intended to mean a material prepared by reaction of a diisocyanate with a polyamine, and a curing agent.

[0035] A “urethane prepolymer” as used herein is intended to mean the reaction product of diisocyanate and a polyol.

[0036] A “urea prepolymer” as used herein is intended to mean the reaction product of a diisocyanate and a polyamine.

[0037] The term “zwitterion” as used herein is intended to mean a form of the compound having both an amine group and carboxylic acid group. Component (B), where both are charged and where the net charge on the compound is neutral.

[0038] The term “bimodal polymer” refers to a polymer comprising two main fractions and more specifically to the form of the polymers molecular weight distribution curve, i.e., the appearance of the graph of the polymer weight fraction as function of its molecular weight. When the molecular weight distribution curves from these fractions are superimposed into the molecular weight distribution curve for the total resulting polymer product, that curve will show two maxima or at least be distinctly broadened in comparison with the curves for the individual fractions. Such a polymer product is called bimodal. It is to be noted here that also the chemical compositions of the two fractions may be different.

[0039] Similarly the term “unimodal polymer” refers to a polymer comprising one main fraction and more specifically to the form of the polymers molecular weight distribution curve, i.e., the molecular weight distribution curve for the total polymer product shows only a single maximum.

[0040] The term “sports equipment” refers to any item of sports equipment such as sports clothing, boots, sneakers, cleats, sandals, flip on sandals and shoes, golf shoes, tennis shoes, running shoes, athletic shoes, hiking shoes, skis, ski masks, ski boots, cycling shoes, soccer boots, golf clubs, golf bags, and the like.
The present invention can be used in forming golf balls of any desired size. "The Rules of Golf" by the USGA dictate that the size of a competition golf ball must be at least 1.680 inches in diameter; however, golf balls of any size can be used for leisure golf play. The preferred diameter of the golf balls is from about 1.680 inches to about 1.800 inches. The more preferred diameter is from about 1.680 inches to about 1.760 inches. A diameter of from about 1.680 inches to about 1.740 inches is most preferred; however, diameters anywhere in the range of from 1.70 to about 2.0 inches can be used. Oversize golf balls with diameters above about 1.760 inches to as big as 2.75 inches are also within the scope of the invention.

Multi Component Blend Composition ("MCBC").

The outer cover and/or one or intermediate layers of the golf balls includes a multi component blend composition ("MCBC") prepared by blending together at least three materials, identified as Components A, B, and C.

The first of these blend compositions (blend Component A) include block copolymers including di and triblock copolymers, incorporating (a) a first polymer block having an aromatic vinyl compound, and (b) a second polymer block having an olefinic and/or conjugated diene compound. Preferred aromatic vinyl compounds include styrene, α-methyl styrene, o-, m- or p-methyl styrene, 4-propylstyrene, 1,3-dimethyl styrene, vinyl naphthalene and vinyl anthracene. In particular, styrene and α-methyl styrene are preferred. These aromatic vinyl compounds can each be used alone, or can be used in combination of two or more kinds. The aromatic vinyl compound is preferably contained in the block copolymer A in an amount of from 5 to 75% by weight, and more preferably from 10 to 65% by weight.

The conjugated diene compound, that constitutes the polymer block (b) in the block copolymer A may be, e.g., 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and 1,3-hexadiene. In particular, isoprene and 1,3-butadiene are preferred. Illustrative olefinic compounds include ethylene, propylene, and butene. These conjugated olefinic or diene compounds can each be used alone, or can be used in combination of two or more kinds. Preferred block copolymers include the styrenic block copolymers such as styrene-butadiene-styrene (SBS), styrene-ethylene/butylene-styrene, (SEBS) and styrene-ethylene/propylene-styrene (SEPS). Commercial examples include SEPTON marketed by Kuraray Company of Kurashiki, Japan; TOPRENE by Kumho Petrochemical Co., Ltd and KRATON marketed by Kraton Polymers. We have surprisingly found that in order to achieve the improved performance it is a feature of the block copolymer that it has no functionality imparting polarity to the molecule such as for example pendant or terminal hydroxyl or acid groups.

The second blend component, Component B, is an ionomer. One preferred material which may be used as a component of the cover layer or intermediate layer(s) of the golf balls of the present invention comprises an ionomer resin. One family of such resins was developed in the mid-1960's, by E.I. DuPont de Nemours and Co., and is sold under the trademark SURLYN®. Preparation of such ionomers is well known, for example see U.S. Pat. No. 3,264,272. Generally speaking, most commercial ionomers are unimodal and consist of a polymer of a mono-olefin, e.g., an alkene, with an unsaturated mono- or dicarboxylic acids having 3 to 12 carbon atoms. An additional monomer in the form of a mono- or dicarboxylic acid ester may also be incorporated in the formulation as a so-called "softening comonomer". The incorporated carboxylic acid groups are then neutralized by a basic metal ion salt, to form the ionomer. The metal cations of the basic metal ion salt used for neutralization include Li⁺, Na⁺, K⁺, Zn²⁺, Ca²⁺, Co²⁺, Ni²⁺, Cu²⁺, Pb²⁺, and Mg²⁺, with the Li⁺, Na⁺, Ca²⁺, Zn²⁺, and Mg²⁺ being preferred. The basic metal ion salts include those of for example formic acid, acetic acid, nitric acid, and carboxylic acid, hydrogen carbonate salts, oxides, hydroxides, and alkoxides.

The first commercially available ionomer resins contained up to 16 weight percent acrylate or methacrylic acid, although it was also well known at that time that, as a general rule, the hardness of these cover materials could be increased with increasing acid content. Hence, in Research Disclosure 29703, published in January 1989, DuPont disclosed ionomers based on ethylene/acrylic acid or ethylene/methacrylic acid containing acid contents of greater than 15 weight percent. In this same disclosure, DuPont also taught that such so called "high acid ionomers" had significantly improved stiffness and hardness and thus could be advantageously used in golf ball construction, when used either singly or in a blend with other ionomers.

More recently, high acid ionomers can be ionomer resins with acrylate or methacrylic acid units present from 16 wt. % to about 35 wt. % in the polymer. Generally, such a high acid ionomer will have a flexural modulus from about 50,000 psi to about 125,000 psi.

Ionomer resins further comprising a softening comonomer, present from about 10 wt. % to about 50 wt. % in the polymer, will have a flexural modulus from about 2,000 psi to about 10,000 psi, and are sometimes referred to as "soft" or "very low modulus" ionomers. Typical softening comonomers include n-butyl acrylate, iso-butyl acrylate, n-butyl methacrylate, methyl acrylate and methyl methacrylate.

Today, there are a wide variety of commercially available ionomer resins based both on copolymers of ethylene and (meth)acrylic acid or terpolymers of ethylene and (meth)acrylic acid and (meth)acrylate, all of which may of which are used as a golf ball component. The properties of these ionomer resins can vary widely due to variations in acid content, softening comonomer content, the degree of neutralization, and the type of metal ion used in the neutralization. The full range commercially available typically includes ionomers of polymers of general formula, E/X/Y polymer, wherein E is ethylene, X is a C₃ to C₈ α, β ethylenically unsaturated carboxylic acid, such as acrylic or methacrylic acid, and is present in an amount from about 2 to about 30 weight % of the E/X/Y copolymer, and Y is a softening comonomer selected from the group consisting of alkyl acrylate and alkyl methacrylate, such as methyl acrylate or methyl methacrylate, and wherein the alkyl groups have from 1-8 carbon atoms, Y is in the range of 0 to about 50 weight % of the E/X/Y copolymer, and wherein the acid groups present in said ionomeric polymer are partially neutralized with a metal selected from the group consisting of lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc or aluminum, or a combination of such cations.

The ionomer may also be a so-called bimodal ionomer as described in U.S. Pat. No. 6,562,906 (the entire contents of which are herein incorporated by reference). These ionomers are bimodal as they are prepared from blends com-
prising polymers of different molecular weights. Specifically they include bimodal polymer blend compositions comprising:

[0051] a) a high molecular weight component having a weight average molecular weight, Mw, of about 80,000 to about 500,000 and comprising one or more ethylene/alpha, beta-ethylenically unsaturated C3-a carboxylic acid copolymers and/or one or more ethylene, alkyl (meth) acrylate, (meth)acrylic acid terpolymers; said high molecular weight component being partially neutralized with metal ions selected from the group consisting of lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc or aluminum, and any and all mixtures thereof; and

[0052] b) a low molecular weight component having a weight average molecular weight, Mw, of about from 2,000 to about 30,000 and comprising one or more ethylene/alpha, beta-ethylenically unsaturated C3-a carboxylic acid copolymers and/or one or more ethylene, alkyl (meth) acrylate, (meth)acrylic acid terpolymers; said low molecular weight component being partially neutralized with metal ions selected from the group consisting of lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc or aluminum, and a mixture of any these; and

[0053] In addition to the unimodal and bimodal ionomers, also included are the so-called “modified ionomers” examples of which are described in U.S. Pat. Nos. 6,100,321, 6,329,458 and 6,616,552 and U.S. Patent Publication US 2003/0153121 A1, the entire contents of all of which are herein incorporated by reference.

[0054] The modified unimodal ionomers may be prepared by mixing:

[0055] a) an ionomeric polymer comprising ethylene, from 5 to 25 weight percent (meth)acrylic acid, and from 0 to 40 weight percent of a (meth)acrylate monomer, said ionomeric polymer neutralized with metal ions selected from the group consisting of lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc or aluminum, and any and all mixtures thereof; and

[0056] b) from about 5 to about 40 weight percent (based on the total weight of said modified ionomeric polymer) of one or more fatty acids or metal salts of said fatty acid, the metal selected from the group consisting of lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc or aluminum, and any and all mixtures thereof; and

[0057] the fatty acid preferably being stearic acid.

[0058] The modified bimodal ionomers, which are ionomers derived from the earlier described bimodal ethylene/ carboxylic acid polymers (as described in U.S. Pat. No. 6,562, 906, the entire contents of which are herein incorporated by reference), are prepared by mixing:

[0059] a) a high molecular weight component having a weight average molecular weight, Mw, of about 80,000 to about 500,000 and comprising one or more ethylene/alpha, beta-ethylenically unsaturated C3-a carboxylic acid copolymers and/or one or more ethylene, alkyl (meth) acrylate, (meth)acrylic acid terpolymers; said high molecular weight component being partially neutralized with metal ions selected from the group consisting of lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc or aluminum, and any and all mixtures thereof; and

[0060] b) a low molecular weight component having a weight average molecular weight, Mw, of about from about 2,000 to about 30,000 and comprising one or more ethylene/alpha, beta-ethylenically unsaturated C3-a carboxylic acid copolymers and/or one or more ethylene, alkyl (meth)acrylate, (meth)acrylic acid terpolymers; said low molecular weight component being partially neutralized with metal ions selected from the group consisting of lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc or aluminum, and any and all mixtures thereof; and

[0061] c) from about 5 to about 40 weight percent (based on the total weight of said modified ionomeric polymer) of one or more fatty acids or metal salts of said fatty acid, the metal selected from the group consisting of lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc or aluminum, and any and all mixtures thereof; and

[0062] the fatty acid preferably being stearic acid.

The fatty or waxy acid salts utilized in the various modified ionomers are composed of a chain of alkyl groups containing from about 4 to 75 carbon atoms (usually even numbered) and characterized by —COOH terminal group. The generic formula for all fatty and waxy acids above acetate acid is CH3(CH2)nCOOH, wherein the carbon atom count includes the carboxyl group (i.e. n=2-73). The fatty or waxy acids utilized to produce the fatty or waxy acid salts modifiers may be saturated or unsaturated, and they may be present in solid, semi-solid or liquid form.

Examples of suitable saturated fatty acids, i.e., fatty acids in which the carbon atoms of the alkyl chain are connected by single bonds, include but are not limited to stearic acid (C18, i.e., CH3(CH2)17COOH), palmitic acid (C16, i.e., CH3(CH2)14COOH), pelargonic acid (C9, i.e., CH3(CH2)6COOH) and lauric acid (C12, i.e., CH3(CH2)10COOH). Examples of unsaturated fatty acids, i.e., fatty acids in which there are one or more double bonds between the carbon atoms in the alkyl chain, include but are not limited to oleic acid (C18, i.e., CH3(CH2)7CH=CH(CH2)7COOH).

The source of the metal ions used to produce the metal salts of the fatty or waxy acid salts used in the various modified ionomers are generally various metal salts which provide the metal ions capable of neutralizing, to various extents, the carboxylic acid groups of the fatty acids. These include the sulfite, carbonate, acetate and hydroxylate salts of zinc, barium, calcium and magnesium.

Since the fatty acid salts modifiers comprise various combinations of fatty acids neutralized with a large number of different metal ions, several different types of fatty acid salts may be utilized in the invention, including metal stearates, laureates, oleates, and palmitates, with calcium, zinc, sodium, lithium, potassium and magnesium stearate being preferred, and calcium and sodium stearate being most preferred.

The fatty or waxy acid or metal salt of said fatty or waxy acid is present in the modified ionomeric polymers in an amount of from about 5 to about 40, preferably from about 7 to about 35, more preferably from about 8 to about 20 weight percent (based on the total weight of said modified ionomeric polymer).

As a result of the addition of the one or more metal salts of a fatty or waxy acid, from about 40 to 100, preferably from about 50 to 100, more preferably from about 70 to 100 percent of the acidic groups in the final modified ionomeric polymer composition are neutralized by a metal ion.

An example of such a modified ionomer polymer is DuPont® HPF-1000 available from E. I. DuPont de Nemours and Co. Inc.
The third blend component, Component C, is a compound having the general formula:

$$(R_2)_n - R' - (X(O)(OR))_m - R'$$

where R is hydrogen, or a C$_1$-C$_{20}$ aliphatic, cycloaliphatic or aromatic group; R' is a bridging group comprising one or more C$_1$-C$_{20}$ straight chain or branched aliphatic or alkylene groups, substituted straight chain or branched aliphatic or alkylene groups, aromatic groups, or an oligomer of up to 12 repeating units including, but not limited to, polypeptides derived from an amino acid sequence of up to 12 amino acids; and X is C or S or P with the proviso that when X = C, n = 1 and y = 1 and when X = S, n = 2 and y = 1, and when X = P, n = 0 or 1 and y = 2 or 4; and m = 1-3. These materials are more fully described in copending U.S. patent application Ser. No. 11/182,170, filed on Jul. 14, 2005, the entire contents of which are incorporated herein by reference.

Preferably the material is selected from the group consisting of 4,4'-methylene-bis(cyclohexylamine)carbamate (commercially available from R.T. Vanderbilt Co., Norwalk, Conn. under the tradename Diak® 4), 11-aminoundecanoic acid, 12-aminododecanoic acid, epsilon-caprolactam, and any and all combinations thereof.

Component C is a processing aid that facilitates the blending of Components A and B.

The MCBC composition preferably is prepared by mixing the above materials into each other thoroughly, either by using a dispersive mixing mechanism, a distributive mixing mechanism, or a combination of these. These mixing methods are well known in the manufacture of polymer blends. In certain embodiments, Components A, B and C are mixed together prior to the addition of any other components. For example, Components A, B and C may be mixed together to form a masterbatch and then additional components may be mixed with the masterbatch.

The resulting MCBC compositions may be further modified by the addition of an impact modifier, which can include copolymers or terpolymers having a glycidyl group, hydroxyl group, maleic anhydride group or carboxylic group, collectively referred to as functionalized polymers. These copolymers and terpolymers may comprise an α-olefin. Examples of suitable α-olefins include ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 1-dococene, 1-tetraecone, 1-hexacocene, 1-octacocene, and 1-triacitene. One or more of these α-olefins may be used.

Examples of suitable glycidyl groups in copolymers or terpolymers in the polymeric modifier include esters and ethers of aliphatic glycidyl, such as allylglycidyl ether, vinylglycidyl ether, glycidyl maleate and itaconate glycidyl acrylate and methacrylate, and also aliphatic glycidyl esters and ethers, such as 2-cyclohexene-1-glycidyl ether, cyclohexene-4,5 diglycidylcarboxylate, cyclohexene-4-glycidyl carboxylate, 5-norbornene-2-methyl-2-glycidyl carboxylate, and endocis-bicyclo(2,2,1)5-heptene-2,3-diglycidyl dicarboxylate. These polymers having a glycidyl group may comprise other monomers, such as esters of unsaturated carboxylic acid, for example, alkyl(meth)acrylates or vinyl esters of unsaturated carboxylic acids. Polymers having a glycidyl group can be obtained by copolymerization or graft polymerization with homopolymers or copolymers.

Examples of suitable terpolymers having a glycidyl group include LOTADER AX8900 and AX8920, marketed by Atofina Chemicals, ELVALOY marketed by E.I. Du Pont de Nemours & Co., and REXPEARL marketed by Nippon Petrochemicals Co., Ltd. Additional examples of copolymers comprising epoxy monomers and which are suitable for use within the scope of the present invention include styrene-butadiene-styrene block copolymers in which the polybutadiene block contains epoxy group, and styrene-isoprene-styrene block copolymers in which the polyisoprene block contains epoxy. Commercially available examples of these epoxy functional copolymers include ESBS A1005, ESBS A1010, ESBS A1020, ESBS A1018, and ESBS A1019, marketed by Duccel Chemical Industries, Ltd.

Examples of polymers or terpolymers incorporating a maleic anhydride group suitable for use within the scope of the present invention include maleic anhydride-modified ethylene-propylene copolymers, maleic anhydride-modified ethylene-propylene-diene terpolymers, maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylenes, ethylene-ethylene-oxide-maleic anhydride terpolymers, and maleic anhydride-ethylene-propylene-cumaron polymers. Examples of commercially available copolymers incorporating maleic anhydride include BONDINE, marketed by Sumitomo Chemical Co., such as BONDINE AX8390, an ethylene-ethyl acrylate-maleic anhydride terpolymer having a combined ethylene acrylate and maleic anhydride content of 32% by weight, and BONDINE TX8030, an ethylene-ethyl acrylate-maleic anhydride terpolymer having a combined ethylene acrylate and maleic anhydride content of 15% by weight and a maleic anhydride content of 1% to 4% by weight; maleic anhydride-containing LOTADER 3200, 3210, 6200, 8200, 3300, 3400, 3410, 7500, 5500, 4720, and 4700, marketed by Atofina Chemicals; EXXELOR VA1803, a maleic anhydride-modified ethylene-propylene copolymer having a maleic anhydride content of 0.7% by weight, marketed by Exxon Chemical Co.; and KRAION FG 1901X, a maleic anhydride functionalized tri-block copolymer having polystyrene endblocks and poly(ethylene/propylene) midblocks, marketed by Shell Chemical. Preferably the functional polymer component is a maleic anhydride grafted polymers preferably maleic anhydride grafted polyolefins (for example, Exxelor VA1803).

Additional Polymer Components

Other polymeric materials generally considered useful for making golf balls may also be included as a component other than the MCBC of the one or more layers of the golf balls of the present invention. These include, without limitation, synthetic and natural rubbers, thermoset polymers such as other thermoset polyurethanes or thermoset polyureas, as well as thermoplastic polymers including thermoplastic elastomers such as metallocene catalyzed polymer, unimodal ethylene/1-carboxylic acid copolymers, unimodal ethylene/1-carboxylic acid/1-carboxylate terpolymers, bimodal ethylene/1-carboxylic acid copolymers, bimodal ethylene/1-carboxylic acid/1-carboxylate terpolymers, thermoplastic polyurethanes, thermoplastic polyureas, polyamides, copolyamides, polysters, polyesters, polycarbonates, polyolefins, halogenated (e.g. chlorinated) polyolefins, halogenated polyalkene compounds, such as halogenated polyethylene [e.g. chlorinated polyethylene (COPE)], polyalkenamers, polyphenylene oxides, polyphenylene sulfides, diisyl phthalate polymers, polyimides, polyvinyl chlorides, polyanamide-tonomers,
polyurethane-ionomers, polyvinyl alcohols, polyarylates, polycarbonate, polyphenylene ethers, impact-modified polyphenylene ethers, polyurethanes, high impact polyurethanes, acrylonitrile-butadiene-styrene copolymers, styrene-acrylonitriles (SAN), acrylonitrile-styrene-acrylonitriles, styrene-maleic anhydride (SMA) polymers, styrenic block copolymers including styrene-butadiene-styrene (SBS), styrene-ethylene-butylenestyrene (SEBS) and styrene-ethylene-propylene-styrene (SEPS), styrenic terpolymers, functionalized styrenic block copolymers including hydroxylated, functionalized styrenic copolymers, and terpolymers, cellulosic polymers, liquid crystal polymers (LCP), ethylene-propylene-diene terpolymers (EPDM), ethylene-vinyl acetate copolymers (EVA), ethylene-propylene copolymers, propylene elastomers (such as those described in U.S. Pat. No. 6,525,157, to Kim et al., the entire contents of which is hereby incorporated by reference in its entirety), ethylene vinyl acetate, polyureas, and polysiloxanes and any and all combinations thereof.

Another preferred material which may be used as a component of the cover layer or intermediate layer(s) of the golf balls of the present invention are the polyalkenamers which may be prepared by ring opening metathesis polymerization of one or more cycloalkenes in the presence of organometallic catalysts as described in U.S. Pat. Nos. 3,492,235, and 3,804,803, the entire contents of both of which are herein incorporated by reference. Examples of suitable polyalkenamer rubbers are polypropylenamer rubber, polypropylenamer rubber, polypropylenamer rubber and polypropylenamer rubber. For further details concerning polyalkenamer rubber, see Rubber Chem. & Techn., Vol. 47, page 511-596, 1974, which is incorporated herein by reference. Polyalkenamer rubbers are commercially available from Huls AG of Marl, Germany, and through its distributor in the U.S., CreaNova Inc. of Somerset, N.J., and sold under the trademark VESTENAMER®.

Two grades of the VESTENAMER® trans-polyalkenamer are commercially available: VESTENAMER 8012 designates a material having a trans-content of approximately 80% (and a cis-content of 20%) with a melting point of approximately 54°C; and VESTENAMER 6213 designates a material having a trans-content of approximately 60% (and a cis-content of 40%) with a melting point of approximately 50°C. Both of these polymers have a double bond at every eighth carbon atom in the ring.

The polyalkenamer rubbers used in the present invention exhibit excellent melt processability above their sharp melting temperatures and exhibit high miscibility with various rubber additives as a major component without deterioration of crystallinity which in turn facilitates injection molding. Thus, unlike synthetic rubbers typically used in golf ball preparation, polyalkenamer-based compounds can be prepared which, are injection moldable. The polyalkenamer rubbers may also be blended within other rubbers and an especially preferred blend is that of a polyalkenamer and a polyamide. A more complete description of the polyalkenamer rubbers and blends with polyamides is disclosed in copending U.S. application Ser. No. 11/355,070, filed on Jan. 18, 2006, in the name of Hyun Kim et al., the entire contents of which is hereby incorporated by reference.

Another preferred material for either the outer cover and/or one or more intermediate layers of the golf balls of the present invention is a blend of a homopolyamide or copolyamide modified with a functional polymer modifier. Illustrative polyamides for use in the polyamide compositions include those obtained by: (1) polycondensation of a dicarboxylic acid, such as oxalic acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, or 1,4-cyclohexanediacarboxylic acid, with (b) a diamine, such as ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, decamethylenediamine, 1,4-cyclohexyldiamine, or n-nonylenediamine; (2) a ring-opening polymerization of cyclic lactam, such as ε-caprolactam or co-laurolactam; (3) polycondensation of an aminoacrylic acid, such as 6-aminocaproic acid, 9-aminononanoic acid, 11-aminoundecanoic acid or 12-aminododecanoic acid; (4) copolymerization of a cyclic lactam with a dicarboxylic acid and a diamine; or any combination of (1)-(4). In certain examples, the dicarboxylic acid may be an aromatic dicarboxylic acid or a cycloaliphatic dicarboxylic acid. In certain examples, the diamine may be an aromatic diamine or a cycloaliphatic diamine. Specific examples of suitable polyamides include polyamide 6; polyamide 11; polyamide 12; polyamide 4,6; polyamide 6,6; polyamide 6,9; polyamide 6,10; polyamide MXD6; PA12; CX; PA12; IT; PPA; PA6, IT; and PA6/PP.

The functional polymer modifier of the polyamide used in the ball covers or intermediate layers of the present invention can include copolymers or terpolymers having a glycidyl group, hydroxyl group, maleic anhydride group or carboxyl group, collectively referred to as functionalized polymers. These copolymers and terpolymers may comprise an α-olefin. Examples of suitable α-olefins include ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 1-deocene, 1-tetracocene, 1-hexacosene, 1-octacosene, and 1-triacontene. One or more of these α-olefins may be used.

Examples of suitable glycidyl groups in copolymers or terpolymers in the polymeric modifier include esters and ethers of aliphatic glycidyl, such as allylglycidylether, vinylglycidylether, glycidyl maleate and itaconate glycidyl acrylate and methacrylate, and also cyclic glycidyl esters and ethers, such as 2-cyclohexene-1-glycidylether, cyclohexene-4,5-diglycidylcarboxylate, cyclohexene-4-glycidyl carbonylate, 5-norbornene-2-methyl-2-glycidylcarboxylate, and endocis-bicyclo(2,2,1)-5-heptene-2,3-diglycidyl dicarbonylate. These polymers having a glycidyl group may comprise other monomers, such as esters of unsaturated carboxylic acid, for example, alkyl(meth)acrylates or vinyl esters of unsaturated carboxylic acids. Polymers having a glycidyl group can be obtained by copolymerization or graft polymerization with homopolymers or copolymers.

Examples of suitable terpolymer having a glycidyl group include LOTADER AX8900 and AX8920, marketed by Atoker Chemicals, ELVALOY marketed by E.I. Du Pont de Nemours & Co., and REXPEARL marketed by Nippon Petrochemicals Co., Ltd. Additional examples of copolymers comprising epoxy monomers and which are suitable for use within the scope of the present invention include styrene-butadiene-styrene block copolymers in which the polybutadiene block contains epoxy group, and styrene-isoprene-styrene block copolymers in which the polystyrene block contains epoxy. Commercially available examples of these epoxy functional copolymers include ESBS A1005, ESBS A1010, ESBS A1020, ESBS AT018, and ESBS AT019, marketed by Daicel Chemical Industries, Ltd.
[0083] Examples of polymers or terpolymers incorporating a maleic anhydride group suitable for use within the scope of the present invention include maleic anhydride-modified ethylene-propylene copolymers, maleic anhydride-modified ethylene-propylene-diene terpolymers, maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, ethylene-ethylactylate-maleic anhydride terpolymers, and maleic anhydride-indene-styrene-cumarene polymers. Examples of commercially available copolymers incorporating maleic anhydride include: BONDINE, marketed by Sumitomo Chemical Co., such as BONDINE AX8390, an ethylene-ethyl acrylate-maleic anhydride terpolymer having a combined ethylene acrylate and maleic anhydride content of 32% by weight, and BONDINE TX TX8030, an ethylene-ethyl acrylate-maleic anhydride terpolymer having a combined ethylene acrylate and maleic anhydride content of 15% by weight and a maleic anhydride content of 1% to 4% by weight; maleic anhydride-containing LOTADER 3200, 3210, 6200, 8200, 3300, 3400, 3410, 7500, 5500, 4720, and 4720, marketed by Atosina Chemicals; EXXELOR VA1803, a maleic anhydride-modified ethylene-propylene copolymer having a maleic anhydride content of 0.7% by weight, marketed by Exxon Chemical Co.; and KRAFON FG 1901x, a maleic anhydride functionalized tri-block copolymer having polystyrene endblocks and poly(ethylene/butylene) midblocks, marketed by Shell Chemical. Preferably the functional polymer component is a maleic anhydride grafted polymers preferably maleic anhydride grafted polyolefins (for example, Exxelor VA1803).

[0084] Another preferred material which may be used as a component of the cover layer or intermediate layer of the golf balls of the present invention is the family of polyurethane or polyureas which are typically prepared by reacting a diisocyanate with a polyol (in the case of polyurethanes) or with a polyanime (in the case of a polyurea). Thermoplastic polyurethanes or polyureas may consist solely of this initial mixture or may be further combined with a chain extender to vary properties such as hardness of the thermoplastic. Thermoset polyurethanes or polyureas typically are formed by the reaction of a diisocyanate and a polyol or polyanime respectively, and an additional crosslinking agent to crosslink or cure the material to result in a thermoset.

[0085] In what is known as a one-shot process, the three reactants, diisocyanate, polyol or polyanime, and optionally a chain extender or a curing agent, are combined in one step. Alternatively, a two-step process may occur in which the first step involves reacting the diisocyanate and the polyol (in the case of polyurethane) or the polyanime (in the case of a polyurea) to form a so-called prepolymer, to which can then be added either the chain extender or the curing agent. This procedure is known as the prepolymer process.

[0086] In addition, although depicted as discrete component packages as above, it is also possible to control the degree of crosslinking, and hence the degree of thermoplastic or thermoset properties in a final composition, by varying the stoichiometry not only of the diisocyanate-to-chain extender or curing agent ratio, but also the initial diisocyanate-to-polyol or polyanime ratio. Of course in the prepolymer process, the initial diisocyanate-to-polyol or polyanime ratio is fixed on selection of the required prepolymer.

[0087] In addition to discrete thermoplastic or thermoset materials, it is also possible to modify a thermoplastic polyurethane or polyureas composition by introducing materials in the composition that undergo subsequent curing after mold-
groups may include, but are not limited to, halogens, primary, secondary, or tertiary hydrocarbon groups, or a mixture thereof.

Examples of isocyanates that can be used with the present invention include, but are not limited to, substituted and isomeric mixtures including 2,2'-, 2,4'-, and 4,4'-diphenylmethane diisocyanate (MDI); 3,3'-dimethyloxy-4,4'-biphenyl diisocyanate (TODI); tolulene diisocyanate (TDI); polymeric MDI; carbodiimide-modified liquid 4,4'-diphenylmethane diisocyanate; para-phenylene disiocyanate (PPDI); meta-phenylene diisocyanate (MPDI); triphenyl methane-4, 4'-triphenyl methane-4,4'-trisocyanate; naphthylene-1, 5-disocyanate; 2,4'-, 4,4'-, and 2,2-biphenyl disiocyanate; polyphenylene polymethylene polysiocyanate (PMDI) (also known as polymeric PMDI); mixtures of MDI and PMDI; mixtures of PMDI and TDI; ethylene disiocyanate; propylene-1, 2-disiocyanate; trimethylene disiocyanate; butylenes disiocyanate; butylene disiocyanate; toldime disiocyanate; tetramethylene-1,2-disiocyanate; tetramethylene-1,3-disiocyanate; tetramethylene-1,4-disiocyanate; pentamethylene diisocyanate; 1,6-hexamethylene diisocyanate (HDI); octamethylene diisocyanate; decamethylene diisocyanate; 2,2,4-trimethyl hexamethylene diisocyanate; 2,4,4-trimethyl hexamethylene diisocyanate; dodecane-1,12-disiocyanate; cyclohexane-1,2-disiocyanate; cyclohexane-1,3-disiocyanate; cyclohexane-1,4-disiocyanate; cyclohexylidene diisocyanate; methylcyclohexyl diisocyanate (HITDI); 2,4-methylene cyclohexane diisocyanate; 2,6-methylene cyclohexane diisocyanate; 4,4'-dicyclohexyl diisocyanate; 2,4'-dicyclohexyl diisocyanate; 1,3,5-cyclohexane trisocyanate; isocyanomethylphenyl diisocyanate; 1-isocyanato-3,3,5-trimethylene-5-isocyanatomethyl cyclohexane; isocyanatoethyl cyclohexane isocyanate; bis(isocyanatomethyl) cyclohexane; 4,4'-bis(isocyanatomethyl) dicyclohexane; 2,4'-bis(isocyanatomethyl) dicyclohexane; isophorone disiocyanate (IPDI); dimerly disiocyanate, dodecane-1,12-disiocyanate; 1,10-decamethylene diisocyanate; cyclohexylene-1,2-disiocyanate; 1,10-decamethylene diisocyanate; 1-chlorobenzene-2,4-diisocyanate; furfurlidene diisocyanate; 2,4,4-trimethyl hexamethylene disiocyanate; 2,2,4-trimethyl hexamethylene diisocyanate; 1,3-cyclopentane diisocyanate; 1,3-cyclohexane diisocyanate; 1,3-cyclobutanediisocyanate; 1,4-cyclohexane diisocyanate; 4,4'-methylenebis(cyclohexyl isocyanate); 4,4'-methylenebis(phenyl isocyanate); 1-methyl-2,4-cyclohexane disiocyanate; 1-methyl-2,6-cyclohexane disiocyanate; 1-bis(isocyanato-methyl)cyclohexane; 1,6-diisocyanatoo-2,2,4,4-tetramethylhexane; 1,6-diisocyanato-2,4,4-tetramethylhexane; 3-isocyanato-methyl-3,5,5-trimethyl-cyclohexyl isocyanate; 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane; cyclohexyl isocyanate, dicyclohexylmethane 4,4'-disiocyanate, 1,4-bis(isocyanatomethyl)cyclohexane, m-phenylene disiocyanate, m-xylene diisocyanate, m-tetramethylylene disiocyanate, p-phenylene disiocyanate, p,p'-biphenyl disiocyanate, 3,3'-dimethyloxy-4,4'-biphenyl diisocyanate, 3,3'-dimethoxy-4, 4'-biphenyl diisocyanate, 3,3'-diphenyl-4,4'-biphenyl diisocyanate, 4,4'-biphenyl diisocyanate, 3,3'-dichloro-4, 4'-biphenyl diisocyanate, 1,5-naphthalene diisocyanate, 4-chloro-1,3-phenylene diisocyanate, 1,5-tetrahydroxynaphthalene diisocyanate, metaxylene diisocyanate, 2,4-toluene diisocyanate, 2,4'-diphenylmethane diisocyanate; 2,4-chlorophenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, p,p'-diphenylmethane disiocyanate, 2,4-toluene disiocyanate, 2,6-toluene disiocyanate, 2,2-diphenylpropane-4,4'-disiocyanate, 4,4'-toluidine disiocyanate, diamidine disiocyanate, 4,4'-diphenyl ether disiocyanate, 1,3,xyylene disiocyanate, 1,4-naphthalene disiocyanate, azobenzene-4, 4'-disiocyanate, diphenyl sulfone-4,4'-disiocyanate, triphenylmethane 4,4', 4'-trisocyanate, isocyanatoethyl methacrylate, 3-isopropylamin-α-amidobenzyl-isocyanate, dichlorohexamethylene diisocyanate, o,o'-disocyanato-1,4-diethylenbenzene, polymethylene polyphenylene polysiocyanate, isocyanurate modified compounds, and carbodiimide modified compounds, as well as biuret modified compounds of the above polysiocyanates. These isocyanates may be used either alone or in combination. These combination isocyanates include triisocyanates, such as biuret of hexamethylene disiocyanate and triphenylmethane triisocyanates, and polysiocyanates, such as polymeric diphenylmethane disiocyanate.HDI triisocyanate of 2,2,4,4-tetramethyl-1,6-hexane disiocyanate (TMDI); 4,4'-dicyclohexylmethane disiocyanate (H16MDI); 2,4-hexahydroxytoluene disiocyanate; 2,6-hexahydroxytoluene disiocyanate; 1,2-, 1,3-, and 1,4-phenylene diisocyanate; aromatic aliphatic isocyanate, such as 1,2-, 1,3-, and 1,4-xylene diisocyanate; meta-tetramethylylene disiocyanate (m-TMXDI); para-tetramethylylene disiocyanate (p-TMXDI); trimierized isocyanurate of any polysiocyanate, such as isocyanurate of toluene disiocyanate, trimer of diphenylmethane diisocyanate, trimer of tetramethylylene disiocyanate, isocyanurate of hexamethylene diisocyanate, and mixtures thereof, dimerized uretone of any polysiocyanate, such as uretone of toluene disiocyanate, uretone of hexamethylene disiocyanate, and mixtures thereof; modified polysiocyanate derived from the above isocyanates and polysiocyanates; and mixtures thereof.

Any polyol now known or hereafter developed is suitable for use according to the invention. Polyols suitable for use in the present invention include, but are not limited to, polyester polyls, polyether polyls, polycarbonate polyls and polydiene polyls such as polybutadiene polyls.

Any polyamine available to one of ordinary skill in the polylurethane art is suitable for use according to the invention. Polamines suitable for use in the compositions of the present invention include, but are not limited to, amine-terminated compounds typically are selected from amine-terminated hydrocarbons, amine-terminated polyethers, amine-terminated polyesters, amine-terminated polycaprolactones, amine-terminated polycarbonates, amine-terminated polyamides, and mixtures thereof. The amine-terminated compound may be a polyether amine selected from polytetramethylene ether diamines, polyoxypropylene diamines, poly(ethylene oxide capped oxypropylene) ether diamines, triethyleneglycoldiamines, propylene oxide-based triamines, trimethylolpropane-based triamines, glycine-based trimines, and mixtures thereof.

The diisocyanate and polyl or polyanime components may be combined to form a prepolymer prior to reaction with a chain extender or curing agent. Any such prepolymer combination is suitable for use in the present invention.

One preferred prepolymer is a toluene disiocyanate prepolymer with polypropylene glycol. Such polypropylene glycol terminated toluene disiocyanate prepolymer are available from Uniroyal Chemical Company of Middlebury, Conn., under the trade name ADIPRENER LFG963A and LFG640D. Most preferred prepolymer are the polytetram-
ethylenediamine and diisocyanate precursors including those available from Unipol and Dow Chemical Company, Middlesbrough, UK, under the trade name ADI-PRENE®, LF6903, LF6905, LF6501D, and LF751D.

In one embodiment, the number of free NCO groups in the urethane or urea prepolymer may be less than about 14 percent. Preferably the urethane or urea prepolymer has from about 3 percent to about 11 percent, more preferably from about 4 to about 9.5 percent, and even more preferably from about 3 percent to about 9 percent, free NCO on an equivalent weight basis.

Polyol chain extenders or curing agents may be primary, secondary, or tertiary polyols. Non-limiting examples of monomers of these polyols include: trimethylolpropane (TMP), ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, propylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, 1,2-pentanediol, 2,3-pentanediol, 1,5-hexanediol, 2,4-hexanediol, 2-ethyl-1,3-hexanediol, cyclohexanediol, and 2-ethyl-2-(hydroxymethyl)-1,3-propanediol.

Diamines and other suitable polyamines may be added to the compositions of the present invention to function as chain extenders or curing agents. These include primary, secondary and tertiary amines having two or more amines as functional groups. Exemplary diamines include aliphatic diamines, such as tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, aliphatic diamines, such as 3,3’-diaminomethyl-4,4’-dicyclohexyl methylene; or aromatic diamines, such as diethyl-2,4-toluenediamine, 4,4’-methylenebis(3-chloro, 2,6-diethylyl)-aniline (available from Air Products and Chemicals Inc., of Allentown, PA, under the trade name LONZACURE®); 3,3’-dichlorobenzidine; 3,3’-dichloro-4,4’-diaminodiphenyl methane (MOCA); N,N,N’,N-tetrakis(2-hydroxypropyl)ethylendiamine, 3,5-dimethylthio-2,4-toluenediamine, 3,5-dimethylthio-2,6-toluenediamine; N,N’,N-dialkylhexamethylenediamine and polytetramethylenediamine; 4,4’-methylene bis-2-chloroaniline, 2,2,3,3’-tetrachloro-4,4’-diamino-phenyl methane, p,p’-methylene, p-phenylenediamine, 4,4’-diaminodiphenyl, and 2,4,6-tris(dimethylaminomethyl)phenol.

Depending on their chemical structure, curing agents may be slow- or fast-reacting polyol and polyols. As described in U.S. Pat. Nos. 6,793,864, 6,719,646 and copending U.S. Patent Publication No. US 2004/0201133 A1, the contents of all of which are hereby incorporated herein by reference, slow-reacting polyol diamines are diamines having amine groups that are sterically and/or electronically hindered by electron withdrawing groups or bulky groups situated proximate to the amine reaction sites. The spacing of the amine reaction sites will also affect the reactivity speed of the polyamines.

Suitable curatives for use in the present invention are selected from the slow-reacting polyamine group include, but are not limited to, 3,5-dimethylthio-2,4-toluenediamine; 3,5-dimethylthio-2,6-toluenediamine; N,N,N-dialkylhexamethylenediamine and polytetramethylenediamine; 4,4’-methylene bis-2-chloroaniline, 2,2,3,3’-tetrachloro-4,4’-diamino-phenyl methane, p,p’-methylene, p-phenylenediamine, 4,4’-diaminodiphenyl, and 2,4,6-tris(dimethylaminomethyl)phenol.

The 1,4-polybutadiene rubbers have a molecular weight distribution (Mw/Mn) of from about 1.2 to about 4.0, preferably from about 1.7 to about 3.7, even more preferably from about 2.0 to about 3.5, most preferably from about 2.2 to about 3.2. The polybutadiene rubbers have a Mooney viscosity (ML1+4 (100°C)) of from about 20 to about 80, preferably from about 30 to about 70, even more preferably from about 30 to about 60, most preferably from about 35 to about 50. The term “Mooney viscosity” used herein refers in each case to an industrial index of viscosity as measured with a Mooney viscometer, which is a type of rotary plastometer (see JIS K6300). This value is represented by the symbol ML1+4 (100°C), wherein “M” stands for Mooney viscosity, “L” stands for large rotor (L-type), “1+4” stands for a pre-heating time of 1 minute and a rotor rotation time of 4 minutes, and “100°C” indicates that measurement was carried out at a temperature of 100°C. As readily appreciated by one skilled in the art, blends of polybutadiene rubbers may also be utilized in the golf balls of the present invention, such blends may be prepared with any mixture of rare earth-based catalysts, nickel-based catalysts, or cobalt-based catalysts derived materials, and from materials having different molecular weights, molecular weight distributions and Mooney viscosity.

The cores of the golf balls of the present invention may also include 1,2-polybutadienes having differing tacticity, all of which are suitable as unsaturated polymers for use in the presently disclosed compositions, are atactic 1,2-polybutadiene, isotactic 1,2-polybutadiene, and syndiotactic 1,2-polybutadiene. Syndiotactic 1,2-polybutadiene having crystallinity suitable for use as an unsaturated polymer in the presently disclosed compositions are polymerized from a
1,2-addition of butadiene. The presently disclosed golf balls may include syndiotactic 1,2-polybutadiene having crystallinity and greater than about 70% of 1,2-bonds, more preferably greater than about 80% of 1,2-bonds, and most preferably greater than about 90% of 1,2-bonds. Also, the 1,2-polybutadiene may have a mean molecular weight between about 10,000 and about 350,000, more preferably between about 50,000 and about 300,000, more preferably between about 80,000 and about 200,000, and most preferably between about 10,000 and about 150,000. Examples of suitable syndiotactic 1,2-polybutadienes having crystallinity suitable for use in golf balls are sold under the trade names RB810, RB820, and RB830 by JSR Corporation of Tokyo, Japan.

[0106] The cores of the golf balls of the present invention may also include the polyalkenamer rubbers as previously described herein and disclosed in copending U.S. application Ser. No. 11/335,070, filed on Jan. 18, 2006, in the name of Hyun Kim et al., the entire contents of which are hereby incorporated by reference.

[0107] When synthetic rubbers such as the aforementioned polybutadienes or polyalkenamers and their blends are used in the golf balls of the present invention they may contain further materials typically often used in rubber formulations including crosslinking agents, co-crosslinking agents, peptizers and accelerators.

[0108] Suitable cross-linking agents for use in the golf balls of the present invention include peroxides, sulfur compounds, or other known chemical cross-linking agents, as well as mixtures of these. Non-limiting examples of suitable cross-linking agents include primary, secondary, or tertiary aliphatic or aromatic organic peroxides. Peroxides containing more than one peroxy group can be used, such as 2,5-dimethyl-2,5-di-(tert-butylperoxy)hexane and 1,4-di-(2-tert-butyl peroxyisopropyl)benzene. Both symmetrical and asymmetrical peroxides can be used, for example, tert-butyl perbenzoate and tert-butyl cumyl peroxide. Peroxides incorporating carboxyl groups also are suitable. The decomposition of peroxides used as cross-linking agents in the present invention can be brought about by applying thermal energy, shear, irradiation, reaction with other chemicals, or any combination of these. Both homolytically and heterolytically decomposed peroxide can be used in the present invention. Non-limiting examples of suitable peroxides include: diacetyl peroxide; di-tert-butyl peroxide; dibenzoyl peroxide; dicumyl peroxide; 2,5-dimethyl-2,5-di-(benzoylperoxy)hexane; 1,4-bis-(t-butylperoxyisopropyl)benzene; t-butylperoxybenzene; 2,5-dimethyl-2,5-di-(t-butylperoxy)hexyne-3, such as Trigonox 145-45L, marketed by Akrochem Corp. of Akron, Ohio; 1,1-bis(t-butylperoxy)-3,5,3 tris-methylene chlorohexane, such as Varox 231-XL, marketed by R.T. Vanderbilt Co., Inc. of Norwalk, Conn.; and di-(2,4-dichlorobenzoyl)peroxide. The cross-linking agents can be blended in total amounts of about 0.05 part to about 5 parts, more preferably about 0.2 part to about 3 parts, and most preferably about 0.2 part to about 2 parts, by weight of the cross-linking agents per 100 parts by weight of the unsaturated polymer.

[0109] Each cross-linking agent has a characteristic decomposition temperature at which 50% of the cross-linking agent has decomposed when subjected to that temperature for a specified time period (t₁₂). For example, 1,1-bis-(t-butylperoxy)-3,5,3,5-tri-methylethylene chloride at t₁₂ < 0.1 hr has a decomposition temperature of 138°C. and 2,5-dimethyl-2,5-diy-(t-butylperoxy)hexyne-3 at t₁₂ < 0.1 hr has a decomposition temperature of 182°C. Two or more cross-linking agents having different characteristic decomposition temperatures at the same t₁₂ may be blended in the composition. For example, where at least one cross-linking agent has a first characteristic decomposition temperature less than 150°C., and at least one cross-linking agent has a second characteristic decomposition temperature greater than 150°C., the composition weight ratio of the at least one cross-linking agent having the first characteristic decomposition temperature to the at least one cross-linking agent having the second characteristic decomposition temperature can range from 5:95 to 95:5, or more preferably from 10:90 to 50:50.

[0110] Besides the use of chemical cross-linking agents, exposure of the composition to radiation also can serve as a cross-linking agent. Radiation can be applied to the unsaturated polymer mixture by any known method, including using microwave or gamma radiation, or an electron beam device. Additives may also be used to improve radiation curing of the diene polymer.

[0111] The rubber and cross-linking agent may be blended with a co-cross-linking agent, which may be a metal salt of an unsaturated carboxylic acid. Examples of these include zinc and magnesium salts of unsaturated fatty acids having 3 to 8 carbon atoms, such as acrylic acid, methacrylic acid, maleic acid, and fumaric acid, palmitic acid with the zinc salts of acrylic and methacrylic acid being more preferred. The unsaturated carboxylic acid metal salt can be blended in a rubber either as a preformed metal salt, or by introducing an α,β-unsatuated carboxylic acid and a metal oxide or hydroxide into the rubber composition, and allowing them to react in the rubber composition to form a metal salt. The unsaturated carboxylic acid metal salt can be blended in any desired amount, but preferably in amounts of about 10 parts to about 60 parts by weight of the unsaturated carboxylic acid per 100 parts by weight of the synthetic rubber.

[0112] The core compositions used in the present invention may also incorporate one or more of the so-called “peptizers”. The peptizer preferably comprises an organic sulfur compound and/or its metal or non-metal salt. Examples of such organic sulfur compounds include thiophenols, such as pentachlorothiophenol, 4-buty1-o-thiophenol, 4-buty1-p-thiophenol, and 2-benzamidothiophenol; thioacrylic acids, such as thiobenzoic acid; 4,4’-dithio dimorpholene; and, sulfides, such as dixylyl disulfide, dibenzoyl disulfide; dibenzothiazyl disulfide; di(pentachlorophenyl) disulfide; dibenzamido diphenyldisulfide (DBBD), and alkylated phenol sulfides, such as VULICAC marketed by Atofina Chemicals, Inc. of Philadelphia, Pa. Preferred organic sulfur compounds include pentachlorothiophenol, and dibenzamido diphenyldisulfide.

[0113] Examples of the metal salt of an organic sulfur compound include sodium, potassium, lithium, magnesium, barium, cesium and zinc salts of the above-mentioned thiophenols and thioacrylic acids, with the zinc salt of pentachlorothiophenol being most preferred.

[0114] Examples of the non-metal salt of an organic sulfur compound include ammonium salts of the above-mentioned thiophenols and thioacrylic acids wherein the ammonium cation has the general formula [NR⁺][R⁺][R⁺][R⁺] where R¹, R², R³ and R⁴ are selected from the group consisting of hydrogen, a C₁₋C₅ aliphatic, cycloaliphatic or aromatic moiety, and any and all combinations thereof, with the most preferred being the N⁺H₂⁺ salt of pentachlorothiophenol.

[0115] Additional peptizers include aromatic or conjugated peptizers comprising one or more heteroatoms, such as nitro-
gen, oxygen and/or sulfur. More typically, such peptizers are heteroaroyl or heterocyclic compounds having at least one heteroatom, and potentially plural heteroatoms, where the plural heteroatoms may be the same or different. Such peptizers include peptizers such as an indole peptizer, a quinoline peptizer, an isoquinoline peptizer, a pyridine peptizer, purine peptizer, a pyrimidine peptizer, a diazine peptizer, a pyrazine peptizer, a triazine peptizer, a carbazole peptizer, or combinations of such peptizers.

[0116] Suitable peptizers also may include one or more additional functional groups, such as halogens, particularly chlorine; a sulfur-containing moiety exemplified by thiols, where the functional group is sulfhydryl (—SH), thioethers, where the functional group is —SR, disulfides, (R,S—SR₂), etc.; and combinations of functional groups. Such peptizers are more fully disclosed in copending U.S. Application No. 60/752,475 filed on Dec. 20, 2005 in the name of Hyun Kim et al., the entire contents of which are herein incorporated by reference. A most preferred example is 2,3,5,6-tetrachloro-4-pyridinethiol (TCPT).

[0117] The peptizer, if employed in the golf balls of the present invention, is present in an amount up to about 10, from about 0.01 to about 10, preferably from about 0.10 to about 7, more preferably of from about 0.15 to about 5 parts by weight per 100 parts by weight of the synthetic rubber component.

[0118] The core compositions can also comprise one or more accelerators of one or more classes. Accelerators are added to an unsaturated polymer to increase the vulcanization rate and/or decrease the vulcanization temperature. Accelerators can be of any known class for rubber processing including mercapto-, sulfenamide-, thiuram, dithiocarbamate, diiocarbamyl-sulfenamide, xanthate, guanidine, amine, thiourea, and dithiophosphate accelerator. Specific commercial accelerators include 2-mercaptobenzothiazole and its metal or non-metal salts, such as Vulcarkin Mercapto C, Mercapto MGC, Mercapto ZM-5, and ZMBT marketed by Bayer AG of Leverkusen, Germany, Nocceler M, Nocceler MZ, and Nocceler M-60 marketed by Ouchiinoko Chemical Industrial Company, Ltd. of Tokyo, Japan, and MBT and ZMBT marketed by Akrochem Corporation of Akron, Ohio. A more complete list of commercially available accelerators is given in The Vanderbilt Rubber Handbook: 13th Edition (1990, R.T. Vanderbilt Co.), pp. 296-330, in Encyclopedia of Polymer Science and Technology, Vol. 12 (1970, John Wiley & Sons), pp. 258-259, and in Rubber Technology Handbook (1980, Hanser/Gardner Publications), pp. 234-236. Preferred accelerators include 2-mercaptobenzothiazole (MBT) and its salts. The synthetic rubber composition can further incorporate from about 0.1 part to about 10 parts by weight of the accelerator per 100 parts by weight of the rubber. More preferably, the ball composition can further incorporate from about 0.2 part to about 5 parts, and most preferably from about 0.5 part to about 1.5 parts, by weight of the accelerator per 100 parts by weight of the rubber.

Fillers

[0119] The various polymeric compositions used to prepare the golf balls of the present invention also can incorporate one or more fillers. Such fillers are typically in a finely divided form, for example, in a size generally less than about 20 mesh, preferably less than about 100 mesh U.S. standard size, except for fibers and flock, which are generally elongated. Filler particle size will depend upon desired effect, cost, ease of addition, and dusting considerations. The appropriate amounts of filler required will vary depending on the application but typically can be readily determined without undue experimentation.

[0120] The filler preferably is selected from the group consisting of precipitated hydrated silica, limestone, clay, talc, asbestos, barytes, glass fibers, aramid fibers, mica, calcium metasilicate, barium sulfate, zinc sulfide, lithopone, silicates, silicon carbide, diatomaceous earth, carbonates such as calcium or magnesium or barium carbonate, sulfates such as calcium or magnesium or barium sulfate, metals, including tungsten, steel, copper, cobalt or iron, metal alloys, tungsten carbide, metal oxides, metal stearates, and other particulate carbonaceous materials, and any and all combinations thereof. Preferred examples of fillers include metal oxides, such as zinc oxide and magnesium oxide. In another preferred aspect the filler comprises a continuous or non-continuous fiber. In another preferred aspect the filler comprises one or more so-called nanofillers, as described in U.S. Pat. No. 6,794,447 and copending U.S. patent application Ser. No. 10/670,090 filed on Sep. 24, 2003 and copending U.S. patent application Ser. No. 10/926,509 filed on Aug. 25, 2004, the entire contents of each of which are incorporated herein by reference.

[0121] Inorganic nanofiller material generally is made of clay, such as hydrotalcite, phyllosilicate, saponite, hectorite, beidellite, stevensite, vermiculite, halloysite, mica, montmorillonite, micacladure, or octosilicate. To facilitate incorporation of the nanofiller material into a polymer material, either in preparing nanocomposite materials or in preparing polymer-based golf ball compositions, the clay particles generally are coated or treated by a suitable compatibilizing agent. The compatibilizing agent allows for superior linkage between the inorganic and organic material, and it also accounts for the hydrophilic nature of the inorganic nanofiller material and the possibly hydrophobic nature of the polymer. Compatibilizing agents may exhibit a variety of different structures depending upon the nature of both the inorganic nanofiller material and the target matrix polymer. Non-limiting examples include hydroxy-, thiol-, amino-, epoxy-, carboxylic acid-, ester-, amide-, and siloxy-group containing compounds, oligomers or polymers. The nanofiller materials can be incorporated into the polymer either by dispersion into the particular monomer or oligomer prior to polymerization, or by melt compounding of the particles into the matrix polymer. Examples of commercial nanofillers are various Cloisite grades including 10A, 15A, 20A, 25A, 30B, and NA+ of Southern Clay Products (Gonzales, Tex.) and the Nanomer grades including 1.24TL and C.30EVA of Nanocor, Inc. (Arlington Heights, Ill.).

[0122] Nanofillers when added into a matrix polymer, such as the polyvalkenamer rubber, can be mixed in three ways. In one type of mixing there is dispersion of the aggregate structures within the matrix polymer, but on mixing no interaction of the matrix polymer with the aggregate platelet structure occurs, and thus the stacked platelet structure is essentially maintained. As used herein, this type of mixing is defined as "undispersed".

[0123] However, if the nanofiller material is selected correctly, the matrix polymer chains can penetrate into the aggregates and separate the platelets, and thus when viewed by transmission electron microscopy or X-ray diffraction, the aggregates of platelets are expanded. At this point the nanofiller is said to be substantially evenly dispersed within and
reacted into the structure of the matrix polymer. This level of expansion can occur to differing degrees. If small amounts of the matrix polymer are layered between the individual platelets then, as used herein, this type of mixing is known as “intercalation”.

[0124] In some circumstances, further penetration of the matrix polymer chains into the aggregate structure separates the platelets, and leads to a complete disruption of the platelet’s stacked structure in the aggregate. Thus, when viewed by transmission electron microscopy (TEM), the individual platelets are thoroughly mixed throughout the matrix polymer. As used herein, this type of mixing is known as “exfoliated”. An exfoliated nanofiller has the platelets fully dispersed throughout the polymer matrix; the platelets may be dispersed unevenly but preferably are dispersed evenly.

[0125] While not wishing to be limited to any theory, one possible understanding of the differing degrees of dispersion of such nanofillers within the matrix polymer structure is the effect of the compatibilizer surface coating on the interaction between the nanofiller platelet structure and the matrix polymer. By careful selection of the nanofiller it is possible to vary the penetration of the matrix polymer into the platelet structure of the nanofiller on mixing. Thus, the degree of interaction and intrusion of the matrix polymer into the nanofiller controls the separation and dispersion of the individual platelets of the nanofiller within the polymer matrix. This interaction of the polymer matrix and the platelet structure of the nanofiller is defined herein as the nanofiller “reacting into the structure of the polymer” and the subsequent dispersion of the platelets within the polymer matrix is defined herein as the nanofiller “being substantially evenly dispersed” within the structure of the polymer matrix.

[0126] If no compatibilizer is present on the surface of a filler such as a clay, or if the coating of the clay is applied after its addition to the polymer matrix, then the penetration of the matrix polymer into the nanofiller is much less efficient, very little separation and no dispersion of the individual clay platelets occurs within the matrix polymer.

[0127] Physical properties of the polymer will change with the addition of nanofiller. The physical properties of the polymer are expected to improve even more as the nanofiller is dispersed into the polymer matrix to form a nanocomposite.

[0128] Materials incorporating nanofiller materials can provide these property improvements at much lower densities than those incorporating conventional fillers. For example, a nylon-6 nanocomposite material manufactured by RTP Corporation of Wichita, Kans., uses a 3% to 5% clay loading and has a tensile strength of 11,800 psi and a specific gravity of 1.14, while a conventional 30% mineral-filled material has a tensile strength of 8,000 psi and a specific gravity of 1.36. Using nanocomposite materials with lower inorganic materials loadings than conventional fillers provides the same properties, and this allows products comprising nanocomposite fillers to be lighter than those with conventional fillers, while maintaining those same properties.

[0129] Nanocomposite materials are materials incorporating up to about 20%, or from about 0.1% to about 20%, preferably from about 0.1% to about 15%, and most preferably from about 0.1% to about 10% of nanofiller reacted into and substantially dispersed through intercalation or exfoliation into the structure of an organic material, such as a polymer, to provide strength, temperature resistance, and other property improvements to the resulting composite. Descriptions of particular nanocomposite materials and their manufacture can be found in U.S. Pat. Nos. 5,962,553 to Ellsworth, 5,385,776 to Maxfield et al., and 4,894,411 to Okada et al. Examples of nanocomposite materials currently marketed include M1030D, manufactured by Unitika Limited, of Osaka, Japan, and 1015C2, manufactured by UBE America of New York, N.Y.

[0130] When nanocomposites are blended with other polymer systems, the nanocomposite may be considered a type of nanofiller concentrate. However, a nanofiller concentrate may be more generally a polymer into which nanofiller is mixed; a nanofiller concentrate does not require that the nanofiller has reacted and/or dispersed evenly into the carrier polymer.

[0131] The nanofiller material is added in an amount up to about 20 wt %, from about 0.1% to about 20%, preferably from about 0.1% to about 15%, and most preferably from about 0.1% to about 10% by weight (based on the weight of the polymer matrix material) of nanofiller reacted into and substantially dispersed through intercalation or exfoliation into the structure of the polymer matrix.

[0132] If desired, the various polymer compositions used to prepare the golf balls of the present invention can additionally contain other conventional additives such as plasticizers, pigments, antioxidants, U.V. absorbers, optical brighteners, or any other additives generally employed in plastics formulation or the preparation of golf balls.

[0133] In an especially preferred aspect, a nanofiller additive component in the golf ball of the present invention is surface modified with a compatibilizing agent comprising the earlier described compounds having the general formula:

\[(R_N)_{m-n}R^\prime - \{O_2)_{m-0}R^\prime\}_{m-n}\]

A most preferred aspect would be a filler comprising a nanofiller clay material surface modified with an amino acid including 12-aminododecanoic acid. Such fillers are available from Nananocor Co. under the tradename Nanomer I.24 TL.

[0134] The filler can be blended in variable effective amounts, such as amounts of greater than 0 to at least about 80 parts, and more typically from about 10 parts to about 80 parts, by weight per 100 parts by weight of the base resin.

[0135] The various polymer compositions used to prepare the golf balls of the present invention may also be further modified by addition of a monomeric aliphatic and/or aromatic amide as described in copending U.S. application Ser. No. 11/592,109 filed on Nov. 1, 2006 in the name of Hyeon Kim et al., the entire contents of which are hereby incorporated by reference.

[0136] Golf balls within the scope of the present invention also can include, in suitable amounts, one or more additional ingredients generally employed in golf ball compositions. Agents provided to achieve specific functions, such as additives and stabilizers, can be present. Exampley suitable ingredients include colorants, antioxidants, colorants, dispersants, mold releasing agents, processing aids, fillers, and any and all combinations thereof. Although not required, UV stabilizers, or photo stabilizers such as substituted hydroxyphenyl benzotriazoles may be utilized in the present invention to enhance the UV stability of the final compositions. An
example of a commercially available UV stabilizer is the stabilizer sold by Ciba Geigy Corporation under the trade-name TINUvin.

[0137] The various formulations for the intermediate layer and/or cover layer may be produced using a twin-screw extruder or may be blended manually or mechanically prior to the addition to the injection molding feed hopper. Finished golf balls may be prepared by initially positioning the solid, pre-formed core in an injection-molding cavity, followed by uniform injection of the intermediate layer and/or cover layer composition sequentially over the core. The cover formulations can be injection molded around the cores to produce golf balls of the required diameter.

[0138] Alternatively, the cover layers may also be formed around the core by first forming half shells by injection molding followed by compression molding the half shells about the core to form the final ball.

[0139] Covers may also be formed around the cores using compression molding. Cover materials for compression molding may also be extruded or blended resins or castable resins such as polyurethane.

[0140] Typically the golf ball core is made by mixing together the unsaturated polymer, cross-linking agents, and other additives with or without melting them. Dry blending equipment, such as a tumbler mixer, V blender, ribbon blender, or two-roll mill, can be used to mix the compositions. The golf ball compositions can also be mixed using a mill, internal mixer such as a Banbury or Farrel continuous mixer, extruder or combinations of these, with or without application of thermal energy to produce melting. The various core components can be mixed together with the cross-linking agents, or each additive can be added in an appropriate sequence to the milled unsaturated polymer. In another method of manufacture the cross-linking agents and other components can be added to the unsaturated polymer as part of a concentrate using dry blending, roll milling, or melt mixing. If radiation is a cross-linking agent, then the mixture comprising the unsaturated polymer and other additives can be irradiated following mixing, during forming into a part such as the core of a ball, or after forming.

[0141] The resulting mixture can be subjected to, for example, a compression or injection molding process, to obtain solid spheres for the core. The polymer mixture is subjected to a molding cycle in which heat and pressure are applied while the mixture is confined within a mold. The cavity shape depends on the portion of the golf ball being formed. The compression and heat liberates free radicals by decomposing one or more peroxides, which initiate cross-linking. The temperature and duration of the molding cycle are selected based upon the type of peroxide and peptizer selected. The molding cycle may have a single step of molding the mixture at a single temperature for fixed time duration.

[0142] For example, a preferred mode of preparation for the cores used in the present invention is to first mix the core ingredients on a two-roll mill, to form slugs of approximately 30-40 g, and then compression-mold in a single step at a temperature between 150 to 180°C, for a time duration between 5 and 12 minutes.

[0143] The various core components may also be combined to form a golf ball by an injection molding process, which is also well known to one of ordinary skill in the art. The curing time depends on the various materials selected, and those of ordinary skill in the art will be readily able to adjust the curing time upward or downward based on the particular materials used and the discussion herein.

[0144] The golf ball of the present invention may comprise from 0 to 5, preferably from 0 to 3, more preferably 1 to 3, most preferably 1 to 2 intermediate layer(s).

[0145] In one preferred aspect, at least one of the intermediate layers comprises the novel blend compositions described herein.

[0146] In one preferred aspect, the golf ball is a two-piece ball with the MCBC used in the cover layer.

[0147] In another aspect the golf ball is a three-piece ball with the MCBC used in the outer cover layer and the intermediate or mantle layer comprises a thermoplastic elastomer including a unimodal ionomer, a bimodal ionomer, a modified unimodal ionomer, a modified bimodal ionomer, a poly- alkenamer, a polyamide, a thermoplastic or thermoset polyurethane, or any and all combinations thereof.

[0148] In another aspect the golf ball is a four-piece ball with the MCBC used in the outer cover layer and the intermediate or mantle layer comprises a thermoplastic elastomer including a unimodal ionomer, a bimodal ionomer, a modified unimodal ionomer, a modified bimodal ionomer, a poly- alkenamer, a polyamide, a thermoplastic or thermoset polyurethane, or any and all combinations thereof.

[0149] In another aspect the golf ball is a five-piece ball with the MCBC used in the outer cover layer and the intermediate or mantle layer comprises a thermoplastic elastomer including a unimodal ionomer, a bimodal ionomer, a modified unimodal ionomer, a modified bimodal ionomer, a poly- alkenamer, a polyamide, a thermoplastic or thermoset polyurethane, or any and all combinations thereof.

[0150] The MCBC incorporates between about 1 and about 99, preferably between about 10 and about 90, more preferably between about 20 and about 80, and most preferably between about 30 and about 70 wt % of Component A (based on the combined weight of Component A and Component B).

[0151] The MCBC incorporates between about 1 and about 99, preferably between about 10 and about 90, more preferably between about 20 and about 80, and most preferably between about 30 and about 70 wt % of Component B (based on the combined weight of Component A and Component B).

[0152] The MCBC incorporates Component C in an amount of less than about 15, preferably from about 0.5 to about 10, more preferably from about 3 to about 8, even more preferably from about 2 to about 5 and most preferably from about 1 to about 3 phr (based on the combined weight of Component A and Component B).

[0153] The MCBC used in the golf balls of the present invention has a material Shore D hardness of from about 25 to about 70, preferably from about 30 to about 65, more preferably from about 35 to about 60.

[0154] The MCBC used in the golf balls of the present invention has a flexural modulus from about 500 to about 100,000, preferably from about 1,000 to about 80,000, more preferably from about 1,500 to about 60,000 psi.

[0155] The MCBC used in the golf balls of the present invention has a tensile strength of from about 1,000 to about 10,000, preferably from about 1,500 to about 7,500, more preferably from about 2,000 to about 6,000 psi.

[0156] The MCBC used in the golf balls of the present invention has a tensile elongation of from about 100 to about 1,000, preferably from about 150 to about 900, more preferably from about 200 to about 800%.
The melt index of the MCBC used in the golf balls of the present invention is preferably greater than 5, more preferably greater than 10, more preferably greater than 15, and even more preferably greater than 20 g/10 min measured at 230° C. under 2.16 kg load. The core of the balls may have a diameter of from about 0.5 to about 1.62, preferably from about 0.7 to about 1.60, more preferably from about 1 to about 1.58, yet more preferably from about 1.20 to about 1.54, and most preferably from about 1.40 to about 1.50 in.

The core of the balls also may have a PGA compression of less than about 140, preferably less than about 120, more preferably less than about 100, yet more preferably less than about 90, and most preferably less than about 80.

The various core layers (including the center) may each exhibit a different hardness. The difference between the center hardness and that of the next adjacent layer, as well as the difference in hardness between the various core layers, may be greater than 2, preferably greater than 5, most preferably greater than 10 units of Shore D.

In one preferred aspect, the hardness of the center and each sequential layer decreases progressively outwards from the center to outer core layer.

In another preferred aspect, the hardness of the center and each sequential layer decreases progressively inwards from the outer core layer to the center.

The one or more intermediate layers of the golf ball may have a thickness of about 0.01 to about 0.50 or about 0.01 to about 0.20, preferably from about 0.02 to about 0.30 or from about 0.02 to about 0.15, more preferably from about 0.03 to about 0.20 or from about 0.03 to about 0.10, and most preferably from about 0.03 to about 0.10 or about 0.03 to about 0.06 in.

The one or more intermediate layers of the golf ball also may have a hardness as measured on the ball of greater than about 25, preferably greater than about 30, more preferably greater than about 40, and most preferably greater than about 50, Shore D units.

The cover layer of the balls may have a thickness of about 0.01 to 0.10, preferably from about 0.02 to about 0.08, more preferably from about 0.03 to about 0.06 in.

The cover layer of the balls may have a Shore D hardness as measured on the ball from about 35 to about 70, preferably from about 45 to about 70 or about 50 to about 70, more preferably from about 47 to about 68 or about 45 to about 70, and most preferably from about 50 to about 65.

The COR of the golf balls may be greater than about 0.760, preferably greater than about 0.780, more preferably greater than 0.790, most preferably greater than 0.795, and especially greater than 0.800 at 125 ft/sec inbound velocity.

The shear cut resistance of the golf balls of the present invention is less than about 4, preferably less than about 3, even more preferably less than about 2.

EXAMPLES

Examples are given below by way of illustration and not by way of limitation.

The following materials were used to prepare the Examples and Comparative Example:

Septon 52002 is an SEPS block copolymer commercially available from the Kuraray Group.

Surlyn 9150 is a zinc neutralized ionomer having an acid content of 19% and commercially available from DuPont.

12-aminododecanoic acid was purchased from Aldrich.

The various test properties were measured using the test methods as defined below.

Core or ball diameter was determined by using standard linear calipers or size gauge.

Compression was measured by applying a spring-loaded force to the golf ball center, golf ball core, or the golf ball to be examined, with a manial instrument (an “Atti gauge”) manufactured by the Atti Engineering Company of Union City, N.J. This machine, equipped with a Federal Dial Gauge, Model D81-C, employs a calibrated spring under a known load. The sphere to be tested is forced a distance of 0.2 inch (5 mm) against this spring. If the spring, in turn, compresses 0.2 inch, the compression is rated at 100; if the spring compresses 0.1 inch, the compression value is rated at 0. Thus more compressible, softer materials will have lower Atti gauge values than harder, less compressible materials. Compression measured with this instrument is also referred to as PGA compression. The approximate relationship that exists between Atti or PGA compression and Riehle compression can be expressed as:

\[\text{Atti or PGA compression} = (100 - \text{Riehle Compression})\]

Thus, a Riehle compression of 100 would be the same as an Atti compression of 60.

COR was measured using a golf ball or golf ball subassembly, air cannon, and a stationary steel plate. The steel plate provides an impact surface weighing about 100 pounds or about 45 kilograms. A pair of ballistic light screens, which measure ball velocity, are spaced apart and located between the air cannon and the steel plate. The ball is fired from the air cannon toward the steel plate over a range of test velocities from 50 ft/s to 180 ft/sec (for the tests used herein the velocity was 125 ft/sec). As the ball travels toward the steel plate, it activates each light screen so that the time at each light screen is measured. This provides an incoming time period proportional to the ball’s incoming velocity. The ball impacts the steel plate and rebounds though the light screens, which again measure the time period required to transit between the light screens. This provides an outgoing transit time period proportional to the ball’s outgoing velocity. The coefficient of restitution can be calculated by the ratio of the outgoing transit time period to the incoming transit time period, \(\text{COR} = \frac{T_{out}}{T_{in}}\).

“A Mooney” viscosity is a unit used to measure the plasticity of raw or unvulcanized rubber. The plasticity in a Mooney unit is equal to the torque, measured on an arbitrary scale, on a disk in a vessel that contains rubber at a temperature of 100° C. and rotates at two revolutions per minute. The measurement of Mooney viscosity is defined according to ASTM D-1646.

Shore D hardness was measured in accordance with ASTM Test D2240.

Melt flow index (12) was measured in accordance with ASTM D-1238. Condition 230° C./2.16 kg.

Tensile strength and **tensile elongation** was measured in accordance with ASTM standard D-638, and **flexural modulus**, using ASTM standard D-790.

Shear cut resistance was determined by examining the balls after they were impacted by a pitching wedge at controlled speed, classifying each numerically from 1 (excellent) to 5 (poor), and averaging the results for a given ball type. Three samples of each Example were used for this
testing. Each ball was hit twice, to collect two impact data points per ball. Then, each ball was assigned two numerical scores—one for each impact—from 1 (no visible damage) to 5 (substantial material displaced). These scores were then averaged for each Example to produce the shear resistance numbers below. These numbers could then be directly compared with the corresponding number for a commercially available ball, the Taylor Made TP Black having a similar construction including the same core and mantle composition and cover thickness but with a cast urethane cover, which under the same test conditions, had a rating of 1.62.

[0183] The following Examples are of three piece golf balls each prepared by initially compression molding a 1.52 in diameter core prepared from a mixture of cis 1,2-polybutadiene compounded with sufficient peroxide and zinc diacrylate (crosslinker and co-crosslinker respectively), to yield with a core with a compression of approximately 70 PGA. Around this core was then injection molded an intermediate layer or mantle made from a 50/50 wt % blend of two ionomer resins, Surlyn 8150 and Surlyn 9150 (commercially available from DuPont) and having a material hardness of approx 62 Shore D. The resulting mantle cores had a diameter of 1.62 inch with the mantle having a Shore D hardness as measured on the ball of 67D. A cover comprising the MCBC was then injected molded around this mantle core. The various test data are summarized in Table 1.

<table>
<thead>
<tr>
<th>Component*</th>
<th>Ex 1</th>
<th>Ex 2</th>
<th>Ex 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septon S2002 wt %</td>
<td>50</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Surlyn 9150 wt %</td>
<td>50</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>12-aminododecanic acid (pph)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MFI (g/10 min) >30</td>
<td>>30</td>
<td>>30</td>
<td></td>
</tr>
<tr>
<td>Tensile Strength (psi)</td>
<td>2160</td>
<td>2481</td>
<td>1635</td>
</tr>
<tr>
<td>Tensile Elongation (%)</td>
<td>566</td>
<td>647</td>
<td>779</td>
</tr>
<tr>
<td>X (A)</td>
<td>33.1</td>
<td>34.9</td>
<td>30.1</td>
</tr>
<tr>
<td>Shore D (material)</td>
<td>43.5</td>
<td>37.7</td>
<td>34.3</td>
</tr>
<tr>
<td>Shore D (on the ball)</td>
<td>59.2</td>
<td>57.9</td>
<td>57.2</td>
</tr>
<tr>
<td>Cover Thickness (in)</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Shear cut Resistance</td>
<td>2.95</td>
<td>2.53</td>
<td>1.52</td>
</tr>
</tbody>
</table>

*based on the combined weight of the block copolymer and ionomer combination

[0184] Comparison of the data in Table 1 show that all the compositions show a high degree of compression as shown by the high melt index values while maintaining excellent tensile strength and hardness properties while also exhibiting good shear cut resistance similar in performance to those of a premium golf ball having a cast urethane cover (typically having values of approximately 1.6).

We claim:
1. A two piece golf ball having:
1) a core comprising a center, and
2) an outer cover layer;
wherein the outer cover layer comprises a blend composition of:
(A) from about 1 to about 99 wt % (based on the combined weight of Components A and B) of a diblock copolymer having no polar functionality;
(B) from about 1 to about 99 wt % (based on the combined weight of Components A and B) of one or more ionomers; and

(C) from about 0.5 to about 10 pph (based on the combined weight of Components A and B) of a compound having the general formula:

\[
(R_nN)_{m-1}R^1-\left(\text{X(O)}_{n-1}\text{OR}_{m-1}\right)_{m-1}R^2
\]

where \(R \) is hydrogen, or a \(\text{C}_{1-20} \) aliphatic, cycloaliphatic or aromatic group; \(R' \) is a bridging group comprising one or more \(\text{C}_{2-20} \) straight chain or branched aliphatic or aliphatic groups, or \(\text{C}_{2-20} \) substituted straight chain or branched aliphatic or aliphatic groups, or \(\text{C}_{2-20} \) aromatic groups, or an oligomer of up to 12 repeating units including, but not limited to, polypeptides derived from an amino acid sequence of up to 12 amino acids; and \(X \) is C or S or P with the proviso that when \(X = C \), \(n = 1 \) and \(y = 1 \) and when \(X = S \), \(n = 2 \) and \(y = 1 \), and when \(X = P \), \(n = 0 \) or 1 and \(y = 2 \) or 4; and \(m = 1-3 \), and

wherein said blend composition has a melt index greater than about 5 g/10 min, a flexural modulus of from about 500 to about 100,000 psi, a material Shore D hardness of from about 25 to about 70; and

wherein said golf ball has a cover layer Shore D hardness as measured on the ball of from about 35 to about 70 and a shear cut resistance of less than about 4.

2. A two piece golf ball having:
1) a core comprising a center, and
2) an outer cover layer;
wherein the outer cover layer comprises a blend composition of:
(A) from about 10 to about 90 wt % (based on the combined weight of Components A and B) of a diblock copolymer having no polar functionality or a triblock copolymer having no polar functionality;
(B) from about 10 to about 90 wt % (based on the combined weight of Components A and B) of one or more ionomers; and

(C) from about 3 to about 8 pph (based on the combined weight of Components A and B) of a compound of a compound having the general formula:

\[
(R_nN)_{m-1}R^1-\left(\text{X(O)}_{n-1}\text{OR}_{m-1}\right)_{m-1}R^2
\]

where \(R \) is hydrogen, or a \(\text{C}_{1-20} \) aliphatic, cycloaliphatic or aromatic group; \(R' \) is a bridging group comprising one or more \(\text{C}_{2-20} \) straight chain or branched aliphatic or aliphatic groups, or \(\text{C}_{2-20} \) substituted straight chain or branched aliphatic or aliphatic groups, or \(\text{C}_{2-20} \) aromatic groups, or an oligomer of up to 12 repeating units including, but not limited to, polypeptides derived from an amino acid sequence of up to 12 amino acids; and \(X \) is C and, \(n = 1 \) and \(y = 1 \); and

wherein said blend composition has a melt index greater than about 10 g/10 min, a flexural modulus of from about 1,000 to about 80,000 psi, a material Shore D hardness of from about 30 to about 65; and

wherein said golf ball outer cover layer has Shore D hardness as measured on the ball of from about 45 to about 70 and a shear cut resistance of less than about 3.

3. The golf ball of claim 2 wherein the outer cover layer comprises a blend composition of:
(A) from about 20 to about 80 wt % (based on the combined weight of Components A and B) of a block copolymer having no polar functionality, said block copolymer having (a) a first polymer block incorporating an aromatic vinyl compound, and (b) a second polymer block having an olefinic or conjugated diene compound,
(B) from about 20 to about 80 wt % (based on the combined weight of Components A and B) of one or more ionomers selected from the group consisting of a unimodal ionomer, a bimodal ionomer, a modified unimodal ionomer, a modified bimodal ionomer, and any and all combinations thereof; and

(C) from about 2 to about 5 pph (based on the combined weight of Components A and B) of a compound selected from the group consisting of selected from the group consisting of 4,4'-methylenebis-(cylohexylamine)carbamate, 11-aminoundecanoic acid, 12-aminoalkanoic acid, epsilon-caprolactam; omega-caprolactam, and any and all combinations thereof; and wherein said blend composition has a melt index of greater than about 15 g/10 min, a flexural modulus of from about 1,500 to about 60,000 psi, a material Shore D hardness of from about 35 to about 60; and wherein said golf ball outer cover layer has a Shore D hardness as measured on the ball of from about 50 to about 70 and a shear cut resistance of less than about 2.

4. The golf ball of claim 3 wherein the outer cover layer comprises a blend composition of:

(A) a block copolymer having no polar functionality, and selected from the group consisting of styrene-butadiene-styrene (SBS), styrene-ethylene-butylene-styrene (SEBS) and styrene-ethylene/propylene-styrene (SEPS) and any and all combinations thereof;

(B) one or more ionomers, wherein at least one ionomer has an acid contents of from about 16 to about 35 wt % and a flex modulus of from about 50,000 to about 125,000 psi; and

(C) selected from the group consisting of 11-aminoundecanoic acid, 12-aminoalkanoic acid, and any and all combinations thereof.

5. The golf ball of claim 4 wherein the outer cover layer further comprises an impact modifier, selected from the group consisting of a copolymer or terpolymer having a glycidyl group, a copolymer or terpolymer having a hydroxyl group, a copolymer or terpolymer having a maleic anhydride or acid group or a copolymer or terpolymer having a carboxylic acid group, and any and all combinations thereof.

6. A golf ball comprising:

1) a core comprising a center,

2) an outer cover layer; and

3) one or more intermediate layers,

wherein at least one of the outer cover layer or intermediate layer comprises a blend composition of:

(A) from about 1 to about 99 wt % (based on the combined weight of Components A and B) of a block copolymer having no polar functionality;

(B) from about 1 to about 99 wt % (based on the combined weight of Components A and B) of one or more ionomers; and

(C) from about 0.5 to about 10 pph (based on the combined weight of Components A and B) from a compound having the general formula:

\[(\text{R}_n\text{N})_m-\text{R}^+\text{X(OH)}_{n}\text{OR})_{m}\]

where \(\text{R}\) is hydrogen, or a \(\text{C}_{1}\text{-C}_{20}\) aliphatic, cycloaliphatic or aromatic group; \(\text{R}^+\) is a bridging group comprising one or more \(\text{C}_{1}\text{-C}_{20}\) straight chain or branched aliphatic or cyclic groups, or \(\text{C}_{1}\text{-C}_{20}\), substituted straight chain or branched aliphatic or cyclic groups, or \(\text{C}_{1}\text{-C}_{20}\), aromatic groups, or an oligomer of up to 12 repeating units including, but not limited to, polypeptides derived from an amino acid sequence of up to 12 amino acids; and \(\text{X}\) is C or S or P with the proviso that when \(\text{X}==\text{C}, n=1\) and \(y=1\) and when \(\text{X}==\text{S}, n=2\) and \(y=1\), and when \(\text{X}==\text{P}, n=0\) or 1 and \(y=2\) or 4; and \(n=1-3\), and

wherein said blend composition has a melt index of greater than about 5 g/10 min, a flexural modulus of from about 500 to about 100,000 psi, a material Shore D hardness of from about 25 to about 70; and

wherein said golf ball has a cover layer Shore D hardness as measured on the ball of from about 35 to about 70 and a shear cut resistance of less than about 4.

7. A golf ball comprising:

1) a core comprising a center,

2) an outer cover layer; and

3) one or more intermediate layers,

wherein at least one of the outer cover layer or intermediate layer comprises a blend composition of:

(A) from about 10 to about 90 wt % (based on the combined weight of Components A and B) of a diblock copolymer having no polar functionality or a triblock copolymer having no polar functionality;

(B) from about 10 to about 90 wt % (based on the combined weight of Components A and B) of one or more ionomers; and

(C) from about 3 to about 8 pph (based on the combined weight of Components A and B) of a compound of a compound having the general formula:

\[(\text{R}_n\text{N})_m-\text{R}^+\text{X(OH)}_{n}\text{OR})_{m}\]

where \(\text{R}\) is hydrogen, or a \(\text{C}_{1}\text{-C}_{20}\) aliphatic, cycloaliphatic or aromatic group; \(\text{R}^+\) is a bridging group comprising one or more \(\text{C}_{1}\text{-C}_{20}\) straight chain or branched aliphatic or cyclic groups, or \(\text{C}_{1}\text{-C}_{20}\), substituted straight chain or branched aliphatic or cyclic groups, or \(\text{C}_{1}\text{-C}_{20}\), aromatic groups, or an oligomer of up to 12 repeating units including, but not limited to, polypeptides derived from an amino acid sequence of up to 12 amino acids; and \(\text{X}\) is C and, \(n=1\) and \(y=1\); and wherein said blend composition has a melt index of greater than about 10 g/10 min, a flexural modulus of from about 1,000 to about 80,000 psi, a material Shore D hardness of from about 30 to about 65; and wherein said golf ball outer cover layer has Shore D hardness as measured on the ball of from about 45 to about 70 and a shear cut resistance of less than about 3.

8. The golf ball of claim 7 wherein at least one of the outer cover layer or intermediate layer comprises a blend composition of:

(A) from about 20 to about 80 wt % (based on the combined weight of Components A and B) of a block copolymer having no polar functionality, said block copolymer having (a) a first polymer block incorporating an aromatic vinyl compound, and (b) a second polymer block having an olefinic or conjugated diene compound;

(B) from about 20 to about 80 wt % (based on the combined weight of Components A and B) of one or more ionomers selected from the group consisting of a unimodal ionomer, a bimodal ionomer, a modified unimodal ionomer, a modified bimodal ionomer, and any and all combinations thereof; and

(C) from about 2 to about 5 pph (based on the combined weight of Components A and B) of a compound selected
from the group consisting of selected from the group consisting of 4,4'-methylene-bis-(cyclohexylamine)carbamate, 11-aminoundecanoicacid, 12-aminododecanoic acid, epsilon-caprolactam; omega-caprolactum, and any and all combinations thereof; and wherein said blend composition has a melt index of greater than about 15 g/10 min, a flexural modulus of from about 1,500 to about 60,000 psi, a material Shore D hardness of from about 35 to about 60; and wherein said golf ball outer cover layer has a Shore D hardness as measured on the ball of from about 50 to about 70 and a shear cut resistance of less than about 2.

9. The golf ball of claim 8 wherein at least one of the outer cover layer or intermediate layer comprises a blend composition of:

(A) a block copolymer having no polar functionality, and selected from the group consisting of styrene-butadiene-styrene (SBS), styrene-ethylene-butylene-styrene, (SEBS) and styrene-ethylene/propylene-styrene (SAPS) and any and all combinations thereof;

(B) one or more ionomers, wherein at least one ionomer has an acid contents of from about 16 to about 35 wt % and a flex modulus of from about 50,000 to about 125,000 psi; and

(C) selected from the group consisting of 11-aminoundecanoicacid, 12-aminododecanoic acid, and any and all combinations thereof

10. The golf ball of claim 9 wherein at least one of the outer cover layer or intermediate layer further comprises an impact modifier, selected from the group consisting of a copolymer or terpolymer having a glycidyl group, a copolymer or terpolymer having a hydroxyl group, a copolymer or terpolymer having a maleic anhydride group or a copolymer or terpolymer having a carboxylic group, and any and all combinations thereof.

11. A golf ball comprising:

1) a core comprising a center,

2) an outer cover layer; and

3) one or more intermediate layers,

wherein the outer cover layer comprises a blend composition of:

(A) from about 1 to about 99 wt % (based on the combined weight of Components A and B) of a block copolymer having no polar functionality;

(B) from about 1 to about 99 wt % (based on the combined weight of Components A and B) of one or more ionomers; and

(C) from about 0.5 to about 10 pph (based on the combined weight of Components A and B) from a compound having the general formula:

\[(R_1NR_2)_m - R' - (X(O)_{(m+n)})_y\]

where R is hydrogen, or a C_1-C_20 aliphatic, cycloaliphatic or aromatic group; R' is a bridging group comprising one or more C_1-C_20 straight chain or branched aliphatic or alicyclic groups, or C_1-C_20 substituted straight chain or branched aliphatic or alicyclic groups, or C_1-C_20 aromatic group, or an oligomer of up to 12 repeating units including, but not limited to, polypeptides derived from an amino acid sequence of up to 12 amino acids; and X is C and, n=1 and y=1; and wherein said blend composition has a melt index of greater than about 10 g/10 min, a flexural modulus of from about 1,000 to about 80,000 psi, a material Shore D hardness of from about 30 to about 65; and wherein said polyalkenamer rubber is selected from the group consisting of polybutenamer rubber, polypropene-rubber, polyhexenamer rubber, polyhexenamer rubber, polyoctenamer rubber, polypropene-rubber, polydodecanomer rubber, polytridecanomer rubber, and any and all combinations thereof; and wherein said golf ball outer cover layer has a Shore D hardness as measured on the ball of from about 45 to about 70 and a shear cut resistance of less than about 3.

12. A golf ball comprising:

1) a core comprising a center,

2) an outer cover layer; and

3) one or more intermediate layers,

wherein the outer cover layer comprises a blend composition of:

(A) from about 10 to about 90 wt % (based on the combined weight of Components A and B) of a diblock copolymer having no polar functionality or a triblock copolymer having no polar functionality;

(B) from about 10 to about 90 wt % (based on the combined weight of Components A and B) of one or more ionomers; and

(C) from about 3 to about 8 pph (based on the combined weight of Components A and B) of a compound of a compound having the general formula:

\[(R_1NR_2)_m - R' - (X(O)_{(m+n)})_y\]

where R is hydrogen, or a C_1-C_20 aliphatic, cycloaliphatic or aromatic group; R' is a bridging group comprising one or more C_1-C_20 straight chain or branched aliphatic or alicyclic groups, or C_1-C_20 substituted straight chain or branched aliphatic or alicyclic groups, or C_1-C_20 aromatic groups, or an oligomer of up to 12 repeating units including, but not limited to, polypeptides derived from an amino acid sequence of up to 12 amino acids; and X is C and, n=1 and y=1; and wherein said blend composition has a melt index of greater than about 10 g/10 min, a flexural modulus of from about 1,000 to about 80,000 psi, a material Shore D hardness of from about 30 to about 65; and wherein said polyalkenamer rubber is selected from the group consisting of polybutenamer rubber, polypropene-rubber, polyhexenamer rubber, polyhexenamer rubber, polyoctenamer rubber, polypropene-rubber, polydodecanomer rubber, polytridecanomer rubber, and any and all combinations thereof; and wherein said golf ball outer cover layer has a Shore D hardness as measured on the ball of from about 45 to about 70 and a shear cut resistance of less than about 3.
(C) from about 2 to about 5 pph (based on the combined weight of Components A and B) of a compound selected from the group consisting of 4,4'-methylene-bis-(cyclohexylamine)carbamate, 11-aminoundecanoic acid, 12-aminododecanoic acid, epsilon-caprolactam; omega-caprolactum, and any and all combinations thereof; and wherein said blend composition has a melt index of greater than about 15 g/10 min, a flexural modulus of from about 1,500 to about 60,000 psi, a material Shore D hardness of from about 35 to about 60; and wherein said polyurethane rubber comprises a polyoctene rubber; and wherein said golf ball outer cover layer has a Shore D hardness as measured on the ball of from about 50 to about 70 and a shear cut resistance of less than about 2.

14. The golf ball of claim 13 wherein the outer cover layer comprises a blend composition of:

(A) a block copolymer having no polar functionality, and selected from the group consisting of styrene-butadiene-styrene (SBS), styrene-ethylene-butylene-styrene, (SEBS) and styrene-ethylene/propylene-styrene (SIPS) and any and all combinations thereof;

(B) one or more ionomers, wherein at least one ionomer has an acid contents of from about 16 to about 35 wt % and a flex modulus of from about 50,000 to about 125,000 psi; and

(C) selected from the group consisting of 11-aminoundecanoic acid, 12-aminododecanoic acid, and any and all combinations thereof.

15. The golf ball of claim 14 wherein the outer cover layer further comprises an impact modifier, selected from the group consisting of a copolymer or terpolymer having a glycidyl group, a copolymer or terpolymer having a hydroxyl group, a copolymer or terpolymer having a maleic anhydride group or a copolymer or terpolymer having a carboxylic group, and any and all combinations thereof.

16. The golf ball of claim 2 wherein the diblock copolymer (A) does not include any pendant or terminal hydroxyl or acid groups.

17. The golf ball of claim 7 wherein the diblock copolymer (A) does not include any pendant or terminal hydroxyl or acid groups.

18. The golf ball of claim 12 wherein the diblock copolymer (A) does not include any pendant or terminal hydroxyl or acid groups.

19. The golf ball of claim 8 wherein the block copolymer (A) does not include any pendant or terminal hydroxyl or acid groups.

20. The golf ball of claim 7, wherein components (A), (B) and (C) are mixed together prior to the addition of any other components.

21. The golf ball of claim 7, wherein component (C) is not a surface modifier for a nanofiller.

* * * * *