Développement économique Canada

I*I Innovation, Sciences et

Office de la Propriété Intellectuelle du Canada

Innovation, Science and CA 3139745 A1 2022/05/25
Economic Development Canada
Canadian Intellectual Property Office (21) 3 139 745

t2 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13 A1

(22) Date de dépébt/Filing Date: 2021/11/23

(51) CLInt./Int.Cl. HO4L 9/06 (2006.01),

(41) Mise a la disp. pub./Open to Public Insp.: 2022/05/25 HO4N 19/436 (2014.01)
(30) Priorité/Priority: 2020/11/25 (US63/118,562)

(71) Demandeur/Applicant:
COMCAST CABLE COMMUNICATIONS, LLC, US

(72) Inventeurs/Inventors:
GILADI, ALEXANDER, US;
MORROW, ANDREW, US

(74) Agent: GOWLING WLG (CANADA) LLP

(54) Titre : CHIFFRAGE PAR ENCHAINEMENT DE BLOCS A FAIBLE DENSITE EN PARALLELE DANS

L'ECHANTILLON

(54) Title: SAMPLE-PARALLEL SPARSE CIPHER-BLOCK CHAINING (CBCS) ENCRYPTON

Content
Provider -t
102

Y

Encoder
104

User
. Device
110

Y

oy

Origin
Server
106

N

110a 110b 110c 110d 110e 110f

A

4

100

Content

Delivery

Network
108

 §

(57) Abrégé/Abstract:

A content provider in a content distribution system may be configured to reduce latency in a content distribution system by storing
multiple frames from a sequence of frames in different buffers and encrypting, in parallel, the frames stored in the different buffers.
For example, the content provider may encrypt each buffer via a different instruction pipeline of a processor.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

ABSTRACT

A content provider in a content distribution system may be configured to reduce
latency in a content distribution system by storing multiple frames from a sequence of frames
in different buffers and encrypting, in parallel, the frames stored in the different buffers. For
example, the content provider may encrypt cach buffer via a different instruction pipeline of a

Processor.

Date Recgue/Date Received 2021-11-23

SAMPLE-PARALLEL SPARSE CIPHER-BLOCK CHAINING (CBCS)
ENCRYPTION

BACKGROUND

[0001] Adaptive bitrate streaming is a method of streaming content to one or more
computing devices over a network. A content distribution system utilizing adaptive bitrate
streaming may be configured to segment a content asset, such as a movie or television show,
into a number of smaller content segments, each segment containing a short interval (e.g.,
two seconds) of playback time of the content asset. The segments may be made available by
the content provider at a variety of different bit rates. When a computing device requests
playback of the content asset from the content provider, the device may select, from the
variety of different bit rates, the next segment to download and playback based on current
network conditions. For example, the device may select the segment with the highest bit rate
that can be downloaded in time for playback without causing stalls or re-buffering events in
the playback. As network conditions improve or deteriorate, the device may request a
subsequent segment of the content asset having a higher or lower bit rate reflective of the
network conditions.

[0002] In order to provide secure streaming, a content distribution system may
encrypt streaming content using the Advanced Encryption Standard Cipher-Block Chaining
(AES -CBC) mode of operation. Because encryption of each subsequent block in AES-CBC
encryption depends on the result of encrypting the preceding block, AES-CBC encryption

often increases latency in a content distribution system. Thus, improvements are needed.

SUMMARY

[0003] Systems and methods are described herein for reducing latency in a content
distribution system. A content provider associated with a content distribution system may
receive a content asset, such as a movie asset, a television asset, a live broadcast asset, an
audio asset or a Video on Demand (VOD) asset. The content asset may be stored or received
by the content provider as a single content asset including one or more content segments
(e.g., each of the one or more segments including a sequence of frames). Prior to sending a
requested segment of the content asset to a requesting playback device, the content provider
may need to encrypt the content in that segment.

[0004] The content provider may be configured to store multiple frames of a

sequence of frames in different buffers and encrypt, in parallel, the frames stored in the

Page 1
Date Recgue/Date Received 2021-11-23

different buffers. For example, the content distributor may encrypt (e.g., by utilizing an AES-
CBC encryption function) each buffer via a different instruction pipeline of a processor, e.g.,
where processing a buffer in a pipeline is offset from processing another buffer in another
pipeline by one or more instruction cycles of the processor. In order to further reduce latency,
the content distributor may store and encrypt a frame from another sequence of frames in a
buffer after encrypting a frame from the first sequence of frames, e.g., in parallel with
encrypting frames from the first sequence of frames in other buffers. In order to reduce
latency associated with accessing portions of segments from RAM, the content distributor
may fetch blocks that need to be encrypted and construct buffers for a next invocation of
encryption via a scatter-gather operation (e.g., eliminating accessing skipped portions of
segment from RAM).

[0005] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This Summary is
not intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used to limit the scope of the claimed subject matter. Furthermore, the
claimed subject matter is not limited to limitations that solve any or all disadvantages noted

in any part of this disclosure

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The following drawings show generally, by way of example, but not by way
of limitation, various examples discussed in the present disclosure. In the drawings:

[0007] FIG. 1 shows an example system;

[0008] FIG. 2 shows an example method;

[0009] FIG. 3 shows an example method;

[0010] FIG. 4 shows an example method;

[0011] FIG. 5 shows an example method; and

[0012] Figure 6 shows an example computing device.
DETAILED DESCRIPTION

[0013] Methods and systems are described herein for reducing latency in a content

distribution system. At least a portion of each frame of a plurality of frames of a content

Page 2
Date Recgue/Date Received 2021-11-23

asset may be encrypted in parallel with encryption of the other frames of the content asset.
The frames of the content asset may be part of a content segment of the content asset.

[0014] In a content distribution system that utilizes adaptive bit rate streaming, a
content asset may be segmented into a number of smaller content segments, each segment
containing a short interval (e.g., two seconds) of playback time of the content asset. Each
segment of the content asset may include a number of video frames, e.g., where each video or
audio frame is stored as an ISO-BMFF sample with one or more subsamples (corresponding
to H.264/H.265/H.266 NAL units). Given that AES-CBC encryption requires using a pattern
of 16-byte blocks where encryption of each subsequent block depends on the result of
encrypting the preceding block, in many cases an AES instruction takes more than a single
CPU cycle. Accordingly, over the course of encrypting each video frame of each segment, a
period of latency may be introduced between a time of receipt of a request for a content
segment (e.g., from a user device) and a time the content segment is made available for
playback by one or more user devices.

[0015] FIG. 1 shows an example content delivery system 100. A content provider
102, such as a service provider (e.g., Internet content distributor, cable television content
distributor, etc.), may receive a content asset. The content asset may include one or more

content segments and each content segment may include a sequence of separate frames.

[0016] The content provider 102 may encrypt each frame (e.g., a portion of each
frame) of a plurality of frames of a segment of the content asset, in parallel, where each frame
of the content asset is encrypted separately from the other frames of the content asset.
Latency may be reduced by encrypting multiple frames of the content asset in parallel, in
contrast to encrypting each frame of a segment linearly. The content provider 102 may
transmit encrypted content segments (e.g., including the encrypted frames) of the content
asset using, for example, an Internet Protocol (IP) network, such that the encrypted content

segments are available for playback by a user device.

[0017] The system 100 may comprise an encoder 104. An input of the encoder 104
may receive a content asset from one or more sources. The content asset may be received in
any one of a variety of formats, such as, for example, H.262, H.264, H.265, MPEG-4 Part 2,
or MPEG-2, and may be transmitted using one or more standards such as SCTE-35 or other
specifications. Although reference may be made to example standards (e.g., MPEG) and

formats, one of skill in the art will recognize that the systems and methods described herein

Page 3
Date Recgue/Date Received 2021-11-23

are applicable to any format or standard that support audio and/or video. The combined
MPEG-1, MPEG-2, and MPEG-4 or other MPEG standards are hereinafter referred to as
MPEG.

[0018] A content asset, such as a program, may comprise a group of one or more
PIDs that are related to each other. For instance, a multi program transport stream used in
digital television might contain three programs, to represent three television channels. In
some examples, each channel may comprise one video stream, one or two audio streams, and
any necessary metadata. A receiver wishing to tune to a particular "channel”" merely has to
decode the payload of the PIDs associated with its program. The receiver may discard the

contents of all other PIDs.

[0019] In some embodiments, the encoder 104 may receive, from the content
provider 102, an uncompressed content asset having a maximum playback resolution. For
example, the content asset may be received at the encoder 104 at a High Definition (HD),
Ultra High Definition (UHD), 4K Ultra High Definition (4K) or High Dynamic Range
(HDR) playback resolution. The encoder 104 may be configured to encode each frame of the
received content asset individually and separately from the plurality of other frames of the
content asset. The encoder 104 may encode a given frame of the content asset using Joint
Photographic Expert Group (JPEG) compression techniques, such as JPEG 2000
compression. However, it is understood that any other type of compression technique may be
used. Each frame of the received content asset may be encoded to a plurality of pixel
resolutions (e.g., 1280x720, 1024x578, 640x360, 512x288, etc.) and sent individually and

separately to the origin server 106.

[0020] The origin server 106 may be configured to receive and fulfill a request from
any of the user devices 110, via the content delivery network 108, to deliver one or more
segments of the content asset to the device 110 for playback. The request from the device 110
to deliver one or more segments of the content asset may comprise an identification of the
user (e.g., an account identifier, a username and/or a password), the device 110, the requested
content asset, and/or a playback time point or temporal location. In certain aspects, the
request to deliver one or more segments of the content asset may reflect a user skipping to a
particular portion of a content asset of which the initial segments of the content asset have

already been delivered and played on the device 110.

Page 4
Date Recgue/Date Received 2021-11-23

[0021] The origin server 106 may be configured to generate a manifest file
associated with the content asset. Generally, the manifest may contain information describing
various aspects of the associated content asset that may be useful for the device 110 to
playback the content asset and/or for the content provider 102 to store and retrieve the
program. For example, a manifest file may identify each of the plurality of segments of the
content asset, the number of segments included in the content asset, and/or the proper
ordering of the segments necessary to effectuate playback of the content asset. A manifest file
may comprise a network location (e.g., a hyper-text transfer protocol (HTTP) uniform
resource locater (URL) link or other universal resource identifier (URI)) for each segment
that may be downloaded, accessed, or retrieved. It will be appreciated that the network
locations included within a manifest file may point to more than one different location or

source.

[0022] The manifest file may be provided to any of the devices 110 in response to a
request to receive a program. The device 110 may use the manifest file to determine the
segments required to play the program or a portion of the program and may subsequently
download the required segments using the network locations specified in the manifest file.
Upon receiving a request to deliver a content asset to the device 110, the origin server 106
may provide one or more manifest files to the device 110 via the content delivery network
108 that describe the program and segments thereof, including network locations from which
each segment of the content asset may be downloaded. Using the manifest file, the device

110 may iteratively download and begin playback of the content asset.

[0023] The content delivery network 108 may be configured to act as an
intermediary server located between the user device 110 and the content provider 102. More
particularly, the content delivery network 108 may be configured to serve cached objects to
the user device 110 and to manage some or all aspects of the cached objects of the user
device 110. Such architecture may reduce the cost, resource, and bandwidth usage and may
improve the security of user device 110. For example, instead of validating the cached objects
by committing various resources and using bandwidth to connect to a plurality of network-
based resources, user device 110 needs only to request the validation from the content
delivery network 108. In turn, the content delivery network 108 may connect to the plurality
of network-based resources, such as the origin server 106, to refresh the cached objects, and

return the refreshed objects to user device 110.

Page 5
Date Recgue/Date Received 2021-11-23

[0024] A user device 110 may comprise, for example, at least one of a laptop 110a,
a television 110b, a smartphone 110c, a tablet 110d, a desktop 110e, a VR headset 110/, or any
other device capable of presenting content to a user. The user device 110 may interact with
the content provider 102 via a user interface associated with the user device 110. Upon this
interaction, the content asset or a portion thereof may be delivered to the user device 110 for
playback via the content delivery network. It is understood that the term user device 110 as
used herein may comprise any combination of a hardware element, such as any of the devices
110a-110/, a set-top cable box, a streaming-video player, or a quadrature amplitude
modulation (QAM) client, or a software element, such as a web browser or other software

adapted to playback video.

[0025] FIG. 2 shows an example method 200. According to some embodiments,
method 200 may use adaptive bitrate streaming (e.g., utilizing AES-CBC encryption). Such
multi-message encryption is possible within the TCP stack, when multiple encrypted flows
are simultaneously processed. Application-level encryption, such as the Common Encryption
standard (CENC, ISO/IEC 23001-7), cannot necessarily be done in a just-in-time
environment where only a single segment is processed in response to an HTTP request.

[0026] MPEG DASH is an adaptive bitrate streaming technique that enables
streaming of content assets over the Internet delivered, for example, from conventional HTTP
web servers. Similar to other adaptive bitrate streaming techniques, MPEG DASH works by
breaking a content asset into a sequence of small HTTP-based content segments, each
segment containing a short interval (e.g., two seconds) of playback time of the content asset.
Each segment may be made available at a variety of different bit rates. While the content
asset is being played back by a user device utilizing MPEG DASH, the user device may
automatically select the next segment to download and playback based on current network
conditions. For example, the user device may select the segment with the highest bit rate that
can be downloaded in time for playback without causing stalls or re-buffering of the content

asset.

[0027] As shown at step 202, a content asset may be received and, as shown at step
204, the content asset received by the content provider 102 may be transcoded. Transcoding
the content asset may comprise encrypting the content asset and/or converting the content
asset from one video format to another video format, such as one amenable to the means by

which the content provider’s users view the content. For example, transcoding the content

Page 6
Date Recgue/Date Received 2021-11-23

asset may comprise converting the content asset from a Flash Video (FLY) format to an

MPEG-4 video stream.

[0028] Moreover, as shown at step 204, transcoding the content asset may include
compressing the content asset using digital audio/video compression, such as MPEG, or any
other type of compression. As further shown at step 204, the content asset may be encoded
into multiple pixel profiles. The content asset may be encoded to four additional pixel
profiles and, along with the pixel profile of the content asset received by the content provider
102, may be output as a plurality of User Data Protocol (UDP) multicast streams, one stream

per output pixel resolution.

[0029] At step 206, the content asset may be packaged into a plurality of segments.
A packager associated with a transcoder may be configured to receive the plurality of streams
output from the transcoder, where each stream may consist of one pixel resolution. The
packager may be configured to receive each stream and to assemble each media payload into
time-aligned segments of video and audio. Further, the packager may be configured to read
the time-alignment indicators in the arriving transmission and to save each resulting media
package as a segment, for example, on a RAM disk. At step 208, the segments may be
packaged to an alternative format. For example, DASH segments may need to be packaged

into an alternative format as many user devices do not support playback of DASH segments.

[0030] According to some embodiments, packaging the segments (e.g., into HLS)
may include encrypting the content asset, e.g., utilizing AES-CBC encryption. For example,
AES-CBC encryption may be used for secure streaming, e.g., where a viewer may access an
encrypted video via a web browser and a secure HTTPS connection. Due in part to
processing time associated with encryption (e.g., AES-CBC encryption), packaging segments

may introduce delivery latency in the content distribution system.

[0031] According to some embodiments, at step 208 an open source web server may
be used to package the segments into HLS. HLS is an HTTP-based media streaming
communications protocol that, similar to MPEG DASH, works by breaking the overall stream
into a sequence of small HTTP-based file downloads, each download comprising a segment
of an overall potentially unbounded transport stream. As the stream is played, the user device

may decrypt any encrypted content and select from a number of different alternate streams

Page 7
Date Recgue/Date Received 2021-11-23

containing the same material encoded at a variety of data rates, allowing the streaming

session to adapt to the available data rate.

[0032] At step 210, each segment may be transported across the content delivery
network. The content delivery network may act as an intermediary server located between the
user device and the content delivery system. More particularly, the content delivery network
may serve the stored segments to the user device and may manage some or all aspects of

serving the stored segments to the user device.

[0033] At step 212, the content asset may be buffered. Buffering the content asset
may comprise preloading the content asset into a reserved area of memory of the user device
(i.e., the buffer). Generally, a certain amount of data associated with the content asset must be
stored in the buffer before playback of the content segment can begin. Having an advance
supply of the content asset prevents playback disruption if there are momentary delays in
transmission while the content asset is being played back. For example, playback of a first
content asset segment may not begin until the second content asset is received at the buffer

and buffering the content segment may result in latency at the content distribution system.

[0034] Thus, using conventional adaptive bitrate streaming and encryption methods
such as MPEG DASH and/or HLS, latency may result between a time of receipt of a request
for a content segment (e.g., from a user device) and a time the content segment is made
available for playback by one or more user devices. This may be particularly troublesome, for
example, in live broadcast such as the broadcasting of a football game, resulting in a
significant delay in bringing the live content to the viewer. However, by encrypting each
frame of the content asset in parallel, where each frame of the content is encrypted separately

from the remaining frames of the content asset, this latency may be reduced.

[0035] FIG. 3 shows an example implementation 300 of AES-CBC encryption. A
growing majority of adaptive streaming content is encrypted using the AES-CBC block
cipher mode of operation. For example, AES-CBC is used in Apple HTTP Live Streaming
(HLS) in MPEG-2 Transport Stream (TS) and is used in ISO Base Media File Format
(BMFF) segments in both HLS and Dynamic Adaptive Streaming over HTTP (DASH). For
example, AES-CBC may be used in adaptive streaming for full-segment AES-CBC
encryption or a Common Encryption sparse CBC (“CBCS”) mode. In the CBCS mode, only
16 bytes are encrypted out of every 160 bytes; the encrypted bytes start immediately after the

Page 8
Date Recgue/Date Received 2021-11-23

end of a slice header in a slice Network Abstraction Layer (NAL) unit (e.g., in NAL-based
video codecs such as ITU-T H.264, ITU-T H.265, and ITU-T H.266).

[0036] Each video frame may be stored as an ISO-BMFF sample and each 1SO-
BMFF sample may have one or more subsamples (corresponding to H.264/H.265/H.266
NAL units). The CBCS mode may require that the protected range of each subsample be
partially encrypted with AES-CBC using a pattern of 16-byte blocks. For example, as
illustrated in FIG. 3, if the pattern is 1:9 crypt:skip (required by IETF RFC 8216), then the
first 16 byte block B0 of the subsample is encrypted into block EB0O and the next nine times
16 byte blocks (e.g., 144 bytes) are left unencrypted. The next 16 bytes (e.g., at byte offset
160, B10) are encrypted as if they were the continuation of the first 16-byte encrypted block
EBO, then the next 144 bytes are left unencrypted, and so on until the protected range ends.

[0037] Accordingly, AES-CBC encryption cannot be efficiently parallelized as
encryption of each subsequent block depends on the result of encrypting the preceding block.
In many cases the AES instruction takes more than a single CPU cycle. For example, an AES
encryption in x86 processors may take as long as 7 cycles. On the other hand, some CPU
architectures can have multiple units capable of executing AES encryption in parallel.
Additional delays may also be incurred due to loading a 16-byte block from a byte-aligned
(not word-aligned) memory address, as only byte alignment can be guaranteed.

[0038] FIG. 4 shows an example method 400. At step 402, a segment of a content
asset may be received. For example, the segment of the content asset may be an ISO-BMFF
segment. The segment of the content asset may be received as a single content asset
comprising a plurality of content segments, or may be received as a sequence of frames that
together form a content segment. The content asset may be received, for example, by the
content provider 102 shown in FIG. 1. The content asset may be any type of video asset, for
example, a video clip, a movie asset, a television asset, a live broadcast asset such as a
sporting event, an audio asset such as music streaming, or a Video on Demand (VOD) asset.
However, it is understood that the content asset may be any type of content asset having any
length or duration. The received segment of the content asset may include a sequence of
frames. For example, if the content asset is a two-hour movie having a playback frame rate of

30 frames per second, the content asset may be received as 216,000 individual frames.

[0039] At step 404, each frame of a first plurality of frames of the sequence may be
stored in a different buffer of a plurality of buffers. At step 406, at least a portion of each of
the first plurality of frames stored in the plurality of different buffers may be encrypted

Page 9
Date Recgue/Date Received 2021-11-23

separately and in parallel. For example, the encoder 104 shown in FIG. 1 may encrypt at least
a portion of each of the first plurality of frames by providing an initialization vector to an
encryption function and processing each buffer via a different instruction pipeline of a
processor. Moreover, each buffer may contain a 16-byte block and the encryption function
(e.g., an AES-CBC encryption function) may include a pattern of encrypted bytes. According
to some embodiments, the processing of at least one buffer in one instruction pipeline may be
offset from the processing of another buffer in another pipeline by one or more instruction

cycles of the processor.

[0040] According to some embodiments, at step 408 and upon completion of
encryption of the at least the portion of the frame stored on one of the buffers, a next frame of
a second plurality of frames of the sequence may be stored in that one buffer. At step 410, at
least a portion of the next frame stored in the one buffer may be encrypted, where the at least
the portion of the next frame continues to be encrypted in parallel with encryption of the at

least the portion of the frames stored in the other buffers.

[0041] In some embodiments, each user device configured to receive content from
the content provider may be associated with a public key and a private key pair. While the
public key may be known to the content provider and may be used to encrypt the frame, the
private key used to decrypt the received frame may be known only to the user device. Thus,
encoding a given frame of the content asset may comprise encrypting the given frame at the
content provider using the public key associated with the user device. The frame may be
encrypted in parallel with the encryption of one or more other frames, individually and
separately from the remaining frames of the content asset. The frame may then be transmitted
as part of a requested content segment (e.g., a 2 second segment) over a secure channel. Upon
receipt of the content segment by the user device, the encrypted frame may be decrypted
using only the private key associated with the user device. Thus, any user device that does not
know the private key associated with that user device may not be able to decrypt the frame of
the received content segment. While the embodiment above is described in the context of a
public key and private key pair, it is understood that any type of encryption techniques may

be used.

[0042] A content asset may comprise a number of different types of frames. For
example, a content asset may comprise one or more of an I-frame, a P-frame of a B-frame.

An I-frame (i.e., an intra-coded picture) may be a complete image such as a JPG or BMP

Page 10
Date Recgue/Date Received 2021-11-23

image file. In contrast to [-Frames, P and B frames may hold only part of the image
information (the part that changes between frames), so they may need less space in the output
file than an I-frame. A P-frame (i.e., a predicted picture) may hold only the changes in the
image from the previous frame. For example, in a scene where a car moves across a
stationary background, only the car's movements need to be encoded. The encoder does not
need to store the unchanging background pixels in the P-frame, thus saving space. P-frames
are also known as delta-frames. AB-frame (i.e., a bidirectional predicted picture) saves even
more space by using differences between the current frame and both the preceding and

following frames to specify its content.

[0043] FIG. 5 shows an example implementation 500 of multi-sample encryption.
According to some embodiments, a multi-sample (e.g., rather than multi-message) approach
to implementing AES encryption in CENC CBCS mode is provided. As shown in FIG. 5,
the approach may be based on the structure of the CENC encryption standard, where each

sample (e.g., segment of content asset) is independently encrypted.

[0044] For example, an AES-CBC encryption function may accept N greater than 1
buffers, each buffer of the N buffers (e.g., where N is greater than 1) representing M 16-byte
blocks (e.g., where M is greater than 1), as well as an initialization vector for each of these N
buffers. According to some embodiments, each of the N buffers may represent a single
sample (e.g. picture or audio frame) in an ISO-BMFF segment. Each buffer may contain 16-
byte blocks which need to be encrypted, with optional areas needed to be in the clear. The

pattern of clear/encrypted bytes may be provided to an encryption function.

[0045] According to some embodiments, inefficiencies may result if samples (e.g.,
segments of a content asset) have different sizes and are processed in a serial fashion. For
example, it may happen that an I frame has a size of 200 kilobytes (Kb), a P frame has a size
of 50 Kb, and a non-reference B frame has a size of 20 Kb. If, for example, a sequence to be
encrypted is IBBBP, and a number of buffers N equals 5, the first 20Kb may be encrypted at
full capacity, the next 30 Kb may be encrypted at 40% capacity, and the remaining 150 Kb
may be encrypted at 20% capacity (i.e., the serial implementation). Given that a typical media
segment may contain multiple samples (e.g. 120 frames in a 2-sec 60fps segment), a more

efficient scheduling can be achieved

Page 11
Date Recgue/Date Received 2021-11-23

[0046] According to some embodiments, the buffers fed to the encryption function
may have a limited number M of 16-byte blocks. For example, M may be at most the size of
the largest frame or may be as small as, e.g., M equals 16 blocks. According to some
embodiments, each buffer may initially correspond to a single frame. When one of the single
frames is completed, the next frame may be used in the same buffer the next time the
encryption function is called. Accordingly, the last encrypted block of each buffer may be
retained and used as the initialization vector for the next round of encryption. Inefficiencies a
a serial implementation are therefore reduced because at most M-1 cycles are not utilized for

each frame, and each pipeline may run at full capacity.

[0047] According to some embodiments, blocks that will need to be encrypted (e.g.,
at a future time) may be fetched while the time encryption function is running and buffers for
a next invocation may be constructed in a scatter-gather operation. For example, segments
may not fit level-1 (1) or level-2 (L.2) cache memory and loading a 16-byte block may entail
non-aligned access to a level-3 (L3) cache memory or RAM (e.g., incurring additional
latency). Latency may be reduced because the value of parameter M will depend on the
latency of AES instruction(s) rather than depending on latency associated with unaligned

memory access.

[0048] According to some embodiments, parameter M may also depend on the size
of L1 cache. For example, all N*2 input and N*2 output buffers may fit into a part of the L1
cache in order to ensure minimal latency due to loading a 16-byte block into a CPU register.
According to some embodiments, a gather operation (e.g., an operation that reads elements
from memory and packs them in single instruction, multiple data register) may copy a
number of contiguous blocks (e.g., B0, B10, B20 from FIG. 5) and record their location.
After executing an AES encryption function, a scatter operation (e.g., an operation that
unpacks packed data and then writes to individual memory locations) may write the now-

encrypted blocks (e.g., EBO, EB10, EB20) back into their original location in memory.

[0049] According to some embodiments, a linear packager may output content at
multiple resolutions at the same time. For example, in case of low-latency mode where each
CMAF chunk contains a single sample, there may be no multi-frame parallelism to be used
the described multi-buffer approach may be used with samples with identical or close

decoding times.

Page 12
Date Recgue/Date Received 2021-11-23

[0050] Figure 6 depicts a computing device 600 that may be used to implement any
of the computing systems, servers, modules, components, devices, storage subsystems, or
other apparatus depicted or described in relation to Figure 1. The computing device shown in
Figure 6 may comprise a server, computer, workstation, desktop computer, laptop, tablet,
network appliance, PDA, e-reader, digital cellular phone, or other computing node or device,
and may be utilized to execute any aspects of the methods described herein, such as the
methods described and illustrated in relation to Figures 2, 3, 4, or 5.

[0051] The computing device 600 may include a baseboard, or “motherboard,”
which is a printed circuit board to which a multitude of components or devices may be
connected by way of a system bus or other electrical communication paths. One or more
central processing units (CPUs) 604 may operate in conjunction with a chipset 606. The
CPU(s) 604 may be standard programmable processors that perform arithmetic and logical
operations necessary for the operation of the computing device 600.

[0052] The CPU(s) 604 may perform the necessary operations by transitioning from
one discrete physical state to the next through the manipulation of switching elements that
differentiate between and change these states. Switching elements may generally include
electronic circuits that maintain one of two binary states, such as flip-flops, and electronic
circuits that provide an output state based on the logical combination of the states of one or
more other switching elements, such as logic gates. These basic switching elements may be
combined to create more complex logic circuits including registers, adders-subtractors,
arithmetic logic units, floating-point units, and the like.

[0053] The CPU(s) 604 may be augmented with or replaced by other processing
units, such as GPU(s) 605. The GPU(s) 605 may comprise processing units specialized for
but not necessarily limited to highly parallel computations, such as graphics and other
visualization-related processing.

[0054] A chipset 606 may provide an interface between the CPU(s) 604 and the
remainder of the components and devices on the baseboard. The chipset 606 may provide an
interface to a random access memory (RAM) 1408 used as the main memory in the
computing device 600. The chipset 606 may further provide an interface to a computer-
readable storage medium, such as a read-only memory (ROM) 620 or non-volatile RAM
(NVRAM) (not shown), for storing basic routines that may help to start up the computing
device 600 and to transfer information between the various components and devices. ROM
620 or NVRAM may also store other software components necessary for the operation of the

computing device 600.

Page 13
Date Recgue/Date Received 2021-11-23

[0055] The computing device 600 may operate in a networked environment using
logical connections to remote computing nodes and computer systems through local area
network (LAN) 616. The chipset 606 may include functionality for providing network
connectivity through a network interface controller (NIC) 622, such as a gigabit Ethernet
adapter. A NIC 622 may be capable of connecting the computing device 600 to other
computing nodes over a network 616. It should be appreciated that multiple NICs 622 may be
present in the computing device 600, connecting the computing device to other types of
networks and remote computer systems.

[0056] The computing device 600 may be connected to a mass storage device 628
that provides non-volatile storage for the computer. The mass storage device 628 may store
system programs, application programs, other program modules, and data, which have been
described in greater detail herein. The mass storage device 628 may be connected to the
computing device 600 through a storage controller 624 connected to the chipset 606. The
mass storage device 628 may consist of one or more physical storage units. A storage
controller 624 may interface with the physical storage units through a serial attached SCSI
(SAS) interface, a serial advanced technology attachment (SATA) interface, a fiber channel
(FC) interface, or other type of interface for physically connecting and transferring data
between computers and physical storage units.

[0057] The computing device 600 may store data on a mass storage device 628 by
transforming the physical state of the physical storage units to reflect the information being
stored. The specific transformation of a physical state may depend on various factors and on
different implementations of this description. Examples of such factors may include, but are
not limited to, the technology used to implement the physical storage units and whether the
mass storage device 628 is characterized as primary or secondary storage and the like.

[0058] For example, the computing device 600 may store information to the mass
storage device 628 by issuing instructions through a storage controller 624 to alter the
magnetic characteristics of a particular location within a magnetic disk drive unit, the
reflective or refractive characteristics of a particular location in an optical storage unit, or the
electrical characteristics of a particular capacitor, transistor, or other discrete component in a
solid-state storage unit. Other transformations of physical media are possible without
departing from the scope and spirit of the present description, with the foregoing examples
provided only to facilitate this description. The computing device 1400 may further read
information from the mass storage device 628 by detecting the physical states or

characteristics of one or more particular locations within the physical storage units.

Page 14
Date Recgue/Date Received 2021-11-23

[0059] In addition to the mass storage device 628 described herein, the computing
device 600 may have access to other computer-readable storage media to store and retrieve
information, such as program modules, data structures, or other data. It should be appreciated
by those skilled in the art that computer-readable storage media may be any available media
that provides for the storage of non-transitory data and that may be accessed by the
computing device 600.

[0060] By way of example and not limitation, computer-readable storage media
may include volatile and non-volatile, transitory computer-readable storage media and non-
transitory computer-readable storage media, and removable and non-removable media
implemented in any method or technology. Computer-readable storage media includes, but is
not limited to, RAM, ROM, erasable programmable ROM (“EPROM?”), electrically erasable
programmable ROM (“EEPROM”), flash memory or other solid-state memory technology,
compact disc ROM (“CD-ROM™), digital versatile disk (“DVD?), high definition DVD
(“HD-DVD”), BLU-RAY, or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage, other magnetic storage devices, or any other medium that may be used
to store the desired information in a non-transitory fashion.

[0061] A mass storage device, such as the mass storage device 628 depicted in
Figure 6, may store an operating system utilized to control the operation of the computing
device 600. The operating system may comprise a version of the LINUX operating system.
The operating system may comprise a version of the WINDOWS SERVER operating system
from the MICROSOFT Corporation. The operating system may comprise a version of the
UNIX operating system. Various mobile phone operating systems, such as IOS and
ANDROID, may also be utilized. It should be appreciated that other operating systems may
also be utilized. The mass storage device 628 may store other system or application programs
and data utilized by the computing device 600.

[0062] The mass storage device 628 or other computer-readable storage media may
also be encoded with computer-executable instructions, which, when loaded into the
computing device 600, transforms the computing device from a general-purpose computing
system into a special-purpose computer capable of implementing the methods or apparatus
described herein. These computer-executable instructions transform the computing device
600 by specifying how the CPU(s) 604 transition between states, as described herein. The
computing device 600 may have access to computer-readable storage media storing
computer-executable instructions, which, when executed by the computing device 600, may

perform the methods described in relation to Figures 2, 3, 4, or 5.

Page 15
Date Recgue/Date Received 2021-11-23

[0063] A computing device, such as the computing device 600 depicted in Figure 6,
may also include an input/output controller 632 for receiving and processing input from a
number of input devices, such as a keyboard, a mouse, a touchpad, a touch screen, an
electronic stylus, or other type of input device. Similarly, an input/output controller 632 may
provide output to a display, such as a computer monitor, a flat-panel display, a digital
projector, a printer, a plotter, or other type of output device. It will be appreciated that the
computing device 1400 may not include all of the components shown in Figure 6, may
include other components that are not explicitly shown in Figure 6, or may utilize an
architecture completely different than that shown in Figure 6.

[0064] As described herein, a computing device may be a physical computing
device, such as the computing device 600 of Figure 6. A computing node may also include a
virtual machine host process and one or more virtual machine instances. Computer-
executable instructions may be executed by the physical hardware of a computing device
indirectly through interpretation and/or execution of instructions stored and executed in the
context of a virtual machine.

[0065] It is to be understood that the methods and systems described herein are not
limited to specific methods, specific components, or to particular implementations. It is also
to be understood that the terminology used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting.

[0066] As used in the specification and the appended claims, the singular forms “a,”
“an,” and “the” include plural referents unless the context clearly dictates otherwise. Ranges
may be expressed herein as from “about” one particular value, and/or to “about” another
particular value. When such a range is expressed, another embodiment includes from the one
particular value and/or to the other particular value. Similarly, when values are expressed as
approximations, by use of the antecedent “about,” it will be understood that the particular
value forms another embodiment. It will be further understood that the endpoints of each of
the ranges are significant both in relation to the other endpoint, and independently of the
other endpoint.

[0067] “Optional” or “optionally” means that the subsequently described event or
circumstance may or may not occur, and that the description includes instances where said
event or circumstance occurs and instances where it does not.

[0068] Throughout the description and claims of this specification, the word
“comprise” and variations of the word, such as “comprising” and “comprises,” means

“including but not limited to,” and is not intended to exclude, for example, other components,

Page 16
Date Recgue/Date Received 2021-11-23

integers or steps. “Exemplary” means “an example of” and is not intended to convey an
indication of a preferred or ideal embodiment. “Such as” is not used in a restrictive sense, but
for explanatory purposes.

[0069] Components are described that may be used to perform the described
methods and systems. When combinations, subsets, interactions, groups, etc., of these
components are described, it is understood that while specific references to each of the
various individual and collective combinations and permutations of these may not be
explicitly described, each is specifically contemplated and described herein, for all methods
and systems. This applies to all aspects of this application including, but not limited to,
operations in described methods. Thus, if there are a variety of additional operations that may
be performed it is understood that each of these additional operations may be performed with
any specific embodiment or combination of embodiments of the described methods.

[0070] As will be appreciated by one skilled in the art, the methods and systems
may take the form of an entirely hardware embodiment, an entirely software embodiment, or
an embodiment combining software and hardware. Furthermore, the methods and systems
may take the form of a computer program product on a computer-readable storage medium
having computer-readable program instructions (e.g., computer software) embodied in the
storage medium. More particularly, the present methods and systems may take the form of
web-implemented computer software. Any suitable computer-readable storage medium may
be utilized including hard disks, CD-ROMs, optical storage devices, or magnetic storage
devices.

[0071] Embodiments of the methods and systems are described below with
reference to block diagrams and flowchart illustrations of methods, systems, apparatuses and
computer program products. It will be understood that each block of the block diagrams and
flowchart illustrations, and combinations of blocks in the block diagrams and flowchart
illustrations, respectively, may be implemented by computer program instructions. These
computer program instructions may be loaded on a general-purpose computer, special-
purpose computer, or other programmable data processing apparatus to produce a machine,
such that the instructions which execute on the computer or other programmable data
processing apparatus create a means for implementing the functions specified in the flowchart
block or blocks.

[0072] These computer program instructions may also be stored in a computer-
readable memory that may direct a computer or other programmable data processing

apparatus to function in a particular manner, such that the instructions stored in the computer-

Page 17
Date Recgue/Date Received 2021-11-23

readable memory produce an article of manufacture including computer-readable instructions
for implementing the function specified in the flowchart block or blocks. The computer
program instructions may also be loaded onto a computer or other programmable data
processing apparatus to cause a series of operational steps to be performed on the computer
or other programmable apparatus to produce a computer-implemented process such that the
instructions that execute on the computer or other programmable apparatus provide steps for
implementing the functions specified in the flowchart block or blocks.

[0073] The various features and processes described herein may be used
independently of one another, or may be combined in various ways. All possible
combinations and sub-combinations are intended to fall within the scope of this disclosure. In
addition, certain methods or process blocks may be omitted in some implementations. The
methods and processes described herein are also not limited to any particular sequence, and
the blocks or states relating thereto may be performed in other sequences that are appropriate.
For example, described blocks or states may be performed in an order other than that
specifically described, or multiple blocks or states may be combined in a single block or
state. The example blocks or states may be performed in serial, in parallel, or in some other
manner. Blocks or states may be added to or removed from the described example
embodiments. The example systems and components described herein may be configured
differently than described. For example, elements may be added to, removed from, or
rearranged compared to the described example embodiments.

[0074] 1t will also be appreciated that various items are illustrated as being stored in
memory or on storage while being used, and that these items or portions thereof may be
transferred between memory and other storage devices for purposes of memory management
and data integrity. Alternatively, in other embodiments, some or all of the software modules
and/or systems may execute in memory on another device and communicate with the
illustrated computing systems via inter-computer communication. Furthermore, in some
embodiments, some or all of the systems and/or modules may be implemented or provided in
other ways, such as at least partially in firmware and/or hardware, including, but not limited
to, one or more application-specific integrated circuits (“ASICs”), standard integrated
circuits, controllers (e.g., by executing appropriate instructions, and including
microcontrollers and/or embedded controllers), field-programmable gate arrays (“FPGAs”),
complex programmable logic devices (“CPLDs”), etc. Some or all of the modules, systems,
and data structures may also be stored (e.g., as software instructions or structured data) on a

computer-readable medium, such as a hard disk, a memory, a network, or a portable media

Page 18
Date Recgue/Date Received 2021-11-23

article to be read by an appropriate device or via an appropriate connection. The systems,
modules, and data structures may also be transmitted as generated data signals (e.g., as part of
a carrier wave or other analog or digital propagated signal) on a variety of computer-readable
transmission media, including wireless-based and wired/cable-based media, and may take a
variety of forms (e.g., as part of a single or multiplexed analog signal, or as multiple discrete
digital packets or frames). Such computer program products may also take other forms in
other embodiments. Accordingly, the present invention may be practiced with other computer
system configurations.

[0075] While the methods and systems have been described in connection with
preferred embodiments and specific examples, it is not intended that the scope be limited to
the particular embodiments set forth, as the embodiments herein are intended in all respects
to be illustrative rather than restrictive.

[0076] Unless otherwise expressly stated, it is in no way intended that any method
set forth herein be construed as requiring that its operations be performed in a specific order.
Accordingly, where a method claim does not actually recite an order to be followed by its
operations or it is not otherwise specifically stated in the claims or descriptions that the
operations are to be limited to a specific order, it is no way intended that an order be inferred,
in any respect. This holds for any possible non-express basis for interpretation, including;:
matters of logic with respect to arrangement of steps or operational flow; plain meaning
derived from grammatical organization or punctuation; and the number or type of
embodiments described in the specification.

[0077] It will be apparent to those skilled in the art that various modifications and
variations may be made without departing from the scope or spirit of the present disclosure.
Other embodiments will be apparent to those skilled in the art from consideration of the
specification and practices described herein. It is intended that the specification and example
figures be considered as exemplary only, with a true scope and spirit being indicated by the

following claims.

Page 19
Date Recgue/Date Received 2021-11-23

‘What is claimed:

1. A method comprising:

receiving a segment of a content asset, wherein the segment comprises a sequence of
frames;

storing each of a first plurality of frames of the sequence in a different one of a
plurality of buffers;

encrypting, in parallel, at least a portion of each of the first plurality of frames stored

in the plurality of different buffers.

2. The method of claim 1, wherein encrypting, in parallel, the at least the portion of
cach frame stored in the plurality of different buffers comprises processing cach buffer via a

different instruction pipeline of a processor.

3. The method of claim 2, wherein the processing of at least one buffer in one
mstruction pipeline is offset from the processing of another buffer in another pipeline by one

or more instruction cycles of the processor.

4. The method of any one of claims 1-3, further comprising:

upon completion of encrypting the at least the portion of the frame stored in one of
the buffers, storing in that one buffer a next frame of a second plurality of frames of the
sequence; and

encrypting at least a portion of the next frame stored in the one buffer, wherein the
encrypting of the at least the portion of the next frame continues in parallel with the

encrypting of the at least the portions of the frames stored in the other buffers.

5. The method of any one of claims 1-4, wherein encrypting, in parallel, the at least
the portion of each frame stored in the plurality of different buffers comprises providing an

nitialization vector to an encryption function.

6. The method of claim 5, wherein cach buffer contains a 16-byte block and the

encryption function includes a pattern of encrypted bytes.

Page 20
Date Recgue/Date Received 2021-11-23

7. The method of claim 5, wherein the encryption function is an Advanced

Encryption Standard Cipher Block Chaining (AES-CBC) encryption function.

8. The method of any one of claims 1-7, wherein the segment of the content asset is
an International Organization for Standardization base media file format (ISO-BMFF)

segment.

9. The method of any one of claims 1-8, wherein the sequence of frames comprises a
plurality of bytes stored at an original location, encrypting, in parallel, the at least the portion
of each frame stored in the plurality of different buffers comprises copying the plurality of
bytes from the original location to a non-sparse buffer, and the non-sparse buffer is aligned

with a central processing unit (CPU) cache.

10. A device comprising:
one or more processors; and
memory storing instructions that, when executed by the one or more processors, cause

the device to perform the method of any one of claims 1-9.

11. A computer-readable medium storing instructions that, when executed, cause the

method of any one of claims 1-9 to be performed.

12. A system comprising:
a first device configured to perform the method of any one of claims 1-9; and

a second computing device configured to send the segment of the content asset.

13. A method comprising:

receiving, at a central processing unit (CPU), a segment of a content asset, wherein
the segment comprises a sequence of frames;

storing, by the CPU, each of a plurality of frames of the sequence in a different one of
a plurality of buffers, wherein a first frame of the plurality of frames is stored in a first buffer
of the plurality of buffers and a second frame of the plurality of frames is stored in a second
buffer of the plurality of buffers;

providing, by a first instruction pipeline of the CPU at a first clock cycle of the CPU,

the first buffer to an encryption function; and

Page 21
Date Recgue/Date Received 2021-11-23

providing, by a second instruction pipeline of the CPU at a second clock cycle of the
CPU, the second buffer to the encryption function, wherein encryption of the first frame is

performed simultaneously to encryption of the second frame.

14. The method of claim 13, wherein a third frame of the plurality of frames is stored
in a third buffer of the plurality of buffers, further comprising providing, by a third
instruction pipeline of the CPU at a third clock cycle of the CPU, the third buffer to the
encryption function, wherein encryption of the third frame is performed simultaneously to

encryption of the first frame.

15. The method of claim 14, wherein a fourth frame of the plurality of frames is
stored in a fourth buffer of the plurality of buffers, further comprising providing, by a fourth
instruction pipeline of the CPU at a fourth clock cycle of the CPU, the fourth buffer to the
encryption function, wherein encryption of the fourth frame is performed simultaneously to

encryption of the first frame.

16. The method of any one of claims 13-15, wherein a third frame of the plurality of
frames is stored in the second buffer of the plurality of buffers, further comprising providing,
by the second instruction pipeline of the CPU at a third clock cycle of the CPU, the second
buffer to the encryption function, wherein encryption of the third frame is performed

simultaneously to encryption of the first frame.

17. The method of any one of claims 13-16, further comprising:

providing, by the first instruction pipeline of the CPU at the first clock cycle of the
CPU, a first initialization vector to the encryption function; and

providing, by the second instruction pipeline of the CPU at the second clock cycle of

the CPU, a second initialization vector to the encryption function.

18. The method of any one of claims 13-17, wherein each buffer contains a 16-byte

block and the encryption function includes a pattern of encrypted bytes.

19. The method of any one of claims 13-18, wherein the encryption function is an

Advanced Encryption Standard Cipher Block Chaining (AES-CBC) encryption function.

Page 22
Date Recgue/Date Received 2021-11-23

20. The method of any one of claims 13-19, wherein the segment of the content asset
is an International Organization for Standardization base media file format (ISO-BMFF)

segment.

21. The method of any one of claims 13-20, wherein at least one of the first buffer
and the second buffer is a non-sparse buffer and the non-sparse buffer is aligned with a CPU

cache.

22. A device comprising:
one or more processors; and
memory storing instructions that, when executed by the one or more processors, cause

the device to perform the method of any one of claims 13-21.

23. A computer-readable medium storing instructions that, when executed, cause the

method of any one of claims 13-21 to be performed.

24. A system comprising:
a first computing device configured to perform the method of any one of claims 13-
21; and

a second computing device configured to send the segment of the content asset.

25. A method comprising:

receiving a segment of a content asset, wherein the segment comprises a sequence of
frames;

storing each of a plurality of frames of the sequence in a different one of a plurality
of buffers;

encrypting, in parallel by a plurality of instruction pipelines of a processor, at least a

portion of each of the plurality of frames stored in the plurality of different buffers.

26. The method of claim 25, wherein the at least the portion of each of the plurality
of frames stored in the plurality of different buffers is encrypted during an instruction cycle

of the processor.

Page 23
Date Recgue/Date Received 2021-11-23

27. A device comprising:
one or more processors; and
memory storing instructions that, when executed by the one or more processors, cause

the device to perform the method of any one of claims 25-26.

28. A computer-readable medium storing instructions that, when executed, cause the

method of any one of claims 25-26 to be performed.

29. A system comprising:
a first device configured to perform the method of any one of claims 25-26; and

a second computing device configured to send the segment of the content asset.

Page 24
Date Recgue/Date Received 2021-11-23

011

OTT
321AaQg
19sn

T 'Ol

80T
J4o0MmisN
ISETNIETq
Jualuo)

90T
SEYNELS

udlo

701
Japoouj

00T

[40)8

> Japinoid

JUalU0)

Date Recgue/Date Received 2021-11-23

Receive content asset

l

Transcode content asset to
multiple pixel profiles

Y

Package segments

l

Package content asset into
HLS

!

Transport content asset
across network

|

Buffer content asset

Date Recgue/Date Received 2021-11-23

FIG. 2

€ Ol

02g3 yoo|q pai1dAiougl 61q-'11g syo0|q paidAiousun 01g3 yoo|q pai1dAiougl

et rrerrrrry P rrrrrrrrrrr ey et PP PP PP rr il
A A

sty (o — ol sty —hor— el

e o144 e
L/~ L/~
A A
LI PTT PP TPy COOITITTITTITITTITIITY) LA i1 1P v Pl PPl iyill
0zg yo0|q paidAiousun 61q--11g syo0|q paidAiousun 0lg yoo|q paidAiousun
Aoy
6g°-1g sy20|q paidAnuaun og3 >o0|q pardAioug

083 sy f—ho— ol

HEEEEEEEEEEEEEN
JO1D3A uoleZIjRIIu|

HNEEEEEEEEEEEEEE NN EEEEEEEEEn
6g--Tg sydo|q pa1dAsouaun og yo0|q pardAouaun 00¢€

Date Recgue/Date Received 2021-11-23

¥ "Old

oty

SJ944NQ JOY10 dY3 Ul pa401s Saweds 9y}
Jo suojuod ayi 1ses| 1e ay3 jo uondAious
yum [9||esed ul pardAious ag 03 sanuijuod

dwedy IXau 3y} jo uoiliod ay3 ises)
1€ DY} UI9J3YM ‘1944NQ SUO 3Y3 Ul PaI0IS
duwiel} IXxau 9y} jo uoipod e 1sed| e ydAiou]

A

80y —|

2uanbas ayy jo
saweu} jo Ajjean|d puo2as e JO swedj Ixau
B 139}4Ng SUO 1By} U] 3403S ‘SI34NQ dY3 Jo
9UO U] pPa403s dwed} 3yl Jo uolliod By 1se|
1e 9y3 jo uondAioua jo uone|dwod uodn

—_—e— e— ———— ——— —————

- — —

S194JNnq 1ua434Ip jo Ajjesan|d ayi
ul paJo3ls saweuy jo Ajjean|d 1s41) 9y3 jo yoea
Jo uoiuod e jseaj je ‘|9|eded ul ‘AdAidu]

sJ194nq jo Ayjean|d
e JO QUO 1UdJD}4Ip € ul duanbas ay3
JO saweuy jo Ayjean|d 31s41} e JO yoea 2403s

(soweuy
JO 9ouanbas e Suipn|oul Jusw3as ay}
*3'9) 1955e JUdUO0D e JO JUBWSDS B DAIDIDY

Ve ov

Date Recgue/Date Received 2021-11-23

S 'Old

(°*g)ogd

=53V

€ a1noid

=

7 34n101d

{°g)ogD-s3v

S
>

T 84nidlg

=

0 31MBdId

Date Recgue/Date Received 2021-11-23

9 'Old

T
879

30IA3d
IOVHOLS SSYIN

¥29
029 809 509 ¥09
YITI0YLINOD
1OVYOLS NOH INVY (S)Ndo | | (s)ndd
A A A A A
h 4 \ 4 A 4 \ 4 v
909 13SdIHD
A A
\ 4 v
79 779
YIT104LNOD YITIOYLNOD
1Nd1NO/1NdNI JOV4Y43ILNI
NYOMLIN
A
\ 4
919

AHOMLAN

009

Date Recgue/Date Received 2021-11-23

Content User
. Encoder N
Provider -t » 104 > Device
102 110
A |
A4 l i
Origin @
Server Q
106 O
110a 110b 110c 110d 110e 110f

A

A

/— Content

Delivery

100 Network
108

A

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - CLAIMS
	Page 23 - CLAIMS
	Page 24 - CLAIMS
	Page 25 - CLAIMS
	Page 26 - CLAIMS
	Page 27 - DRAWINGS
	Page 28 - DRAWINGS
	Page 29 - DRAWINGS
	Page 30 - DRAWINGS
	Page 31 - DRAWINGS
	Page 32 - DRAWINGS
	Page 33 - REPRESENTATIVE_DRAWING

