(54) 发明名称
两色金鸡菊提取黄酮类化合物的工艺

(57) 摘要
本发明公开了一种从两色金鸡菊提取黄酮类化合物的工艺，该工艺包括如下步骤：将两色金鸡菊粉碎，加入质量浓度为 15～95% 的乙醇水溶液，料液比为 1：(10～25)，浸泡 1～12 小时后，在 40～90℃下回流提取 1～3 小时，回流提取 1～3 次，过滤，合并滤液，经减压浓缩、冷冷冻干燥得到黄酮类化合物。该工艺操作简单，成本低，黄酮类化合物的提取率可达 30%。
1. 两色金鸡菊提取黄酮类化合物的工艺，其特征在于，包括如下步骤：将两色金鸡菊粉碎，加入质量浓度为 15 ～ 95% 的乙醇水溶液，料液比为 1：(10 ～ 25)，浸泡 1 ～ 12 小时后，在 40 ～ 90℃下回流提取 1 ～ 3 小时，回流提取 1 ～ 3 次，过滤，合并滤液，经减压浓缩、干燥得到黄酮类化合物。

2. 根据权利要求 1 所述两色金鸡菊提取黄酮类化合物的工艺，其特征在于：所述乙醇水溶液的质量浓度为 50 ～ 60%。

3. 根据权利要求 1 所述两色金鸡菊提取黄酮类化合物的工艺，其特征在于：所述料液比为 1：(12 ～ 18)。

4. 根据权利要求 3 所述两色金鸡菊提取黄酮类化合物的工艺，其特征在于：所述料液比为 1：18。

5. 根据权利要求 1 所述两色金鸡菊提取黄酮类化合物的工艺，其特征在于：浸泡 2 ～ 3 小时。

6. 根据权利要求 1 所述两色金鸡菊提取黄酮类化合物的工艺，其特征在于：回流提取温度为 45 ～ 55℃。

7. 根据权利要求 1 所述两色金鸡菊提取黄酮类化合物的工艺，其特征在于：回流提取 2 次。

8. 根据权利要求 1 所述两色金鸡菊提取黄酮类化合物的工艺，其特征在于：所述干燥为冷冻干燥。
两色金鸡菊提取黄酮类化合物的工艺

技术领域
[0001] 本发明属于植物提取领域，具体涉及从两色金鸡菊中提取黄酮类化合物的工艺。

背景技术
[0002] 金鸡菊同科同属的有几个常用品种，我国栽培品种主要有：两色金鸡菊（Coreopsis tinctoria Nutt.），又名蛇目菊、金钱菊；大花金鸡菊（C. Grandiflora Hogg）；剑叶金鸡菊（C. Lanceolata L.），又名大金鸡菊。
[0003] 有关文献报道表明：金鸡菊中检出糖类、有机酸、黄酮、内酯、甾体、三萜类及挥发油等活性成分，而皂苷、鞣酸、香豆素、强心苷和生物碱未检出。并且金鸡菊的花蕊成褐色，试验表明该色素属水溶性色素，溶液呈酸性，不含生物碱，推测可能含有丰富的花色素。
[0004] 金鸡菊花色泽鲜艳，可用于提取黄色素，而且金鸡菊花色素主要成分为黄酮类化合物。朱笃等试验结果表明金鸡菊含有丰富的类黄酮化合物。国内外学者研究表明，金鸡菊中的色素成分是细丝状和大金鸡菊。大花金鸡菊内含细丝状和查尔酮苷分别属单体及查尔酮类黄酮类，经鉴定，黄素类化合物 1%。
[0005] 从大金鸡菊的花序中提取的黄酮类色素溶于水和乙醇，耐光性和耐热性均较好，该色素在 pH≤7 时呈黄色，色泽较稳定，经分离鉴定该色素主要紫色成分为大花金鸡菊黄素（Leptosin）、大金鸡菊黄素（Leptosidin）、大金鸡菊查尔酮（Lameeletin）和大金鸡菊查尔酮苷（Lanceolin）等黄酮类化合物。
[0006] 两色金鸡菊，属菊科金鸡菊属的干燥头头花序，舌状花黄色或金黄色，花期 6 ~ 9 月。

发明内容
[0007] 本发明的目的在于提供一种从两色金鸡菊中提取黄酮类化合物的工艺。
[0008] 两色金鸡菊提取黄酮类化合物的工艺，包括如下步骤：

将两色金鸡菊粉碎，加入质量浓度为 15 ~ 95% 的乙醇水溶液，料液比为 1 : (10 ~ 25)，浸泡 1 ~ 12 小时后，在 40 ~ 90℃下回流提取 1 ~ 3 小时，回流提取 1 ~ 3 次，过滤，合并滤液，经减压浓缩，干燥得到黄酮类化合物。
[0009] 进一步，所述乙醇水溶液的质量浓度为 50 ~ 60%。
[0010] 进一步，所述料液比为 1 : (12 ~ 18)。
[0011] 进一步，所述料液比为 1 : 18。
[0012] 进一步，浸泡 2 ~ 3 小时。
[0013] 进一步，回流提取温度为 45 ~ 55℃。
[0014] 进一步，回流提取 2 次。
[0015] 进一步，所述干燥为冷冻干燥。
[0016] 有益效果：本发明操作简单，成本低，黄酮类化合物的提取率可达 30%。
具体实施方式

[0017] 以下对本发明做进一步说明。

[0018] 本发明对影响提取效果的因素分别进行了考察，以芦丁为对照品，采用紫外-可见分光光度法（UV）和高效液相色谱法（HPLC）对提取液中总黄酮进行检测。

[0019] 无特别说明时，下文所用各百分含量的乙醇均系质量浓度为 95% 的乙醇加水配制而成。

[0020] 1.1 溶剂浓度的影响

本发明所用的溶剂为乙醇，用质量浓度为 95% 的乙醇与水混合得到质量浓度为 15%、35%、55%、75%、85% 的乙醇。

[0021] 称取两色金鸡菊花 100g，粉碎过 60 目筛，加入 15 倍量的乙醇，80℃回流提取 1 小时，提取一次，过滤，检测滤液中的总黄酮量。考察不同浓度的乙醇对实验的影响。

[0022] UV 分析结果：

<table>
<thead>
<tr>
<th>乙醇浓度（%）</th>
<th>滤液浓度（mg/mL）</th>
<th>提取率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8.98</td>
<td>13.47</td>
</tr>
<tr>
<td>35</td>
<td>10.31</td>
<td>15.47</td>
</tr>
<tr>
<td>55</td>
<td>11.14</td>
<td>16.71</td>
</tr>
<tr>
<td>75</td>
<td>7.69</td>
<td>11.54</td>
</tr>
<tr>
<td>85</td>
<td>9.45</td>
<td>14.18</td>
</tr>
<tr>
<td>95</td>
<td>14.56</td>
<td>21.84</td>
</tr>
</tbody>
</table>

提取率 = 滤液中总黄酮量 / 两色金鸡菊花样品量 ×100%。

[0023] 95% 乙醇时提取液吸光度值大于 55% 乙醇时提取液吸光度值，考虑可能是由于含有不同种类的黄酮化合物所致。为了确定最佳乙醇浓度，采用 HPLC 法测定滤液中的总黄酮量，结果如下：

<table>
<thead>
<tr>
<th>乙醇浓度（%）</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>125301896</td>
</tr>
<tr>
<td>35</td>
<td>133250547</td>
</tr>
<tr>
<td>55</td>
<td>196074692</td>
</tr>
<tr>
<td>75</td>
<td>219037544</td>
</tr>
<tr>
<td>85</td>
<td>202345306</td>
</tr>
<tr>
<td>95</td>
<td>208409657</td>
</tr>
</tbody>
</table>

结合 UV 分析结果和 HPLC 分析结果，溶剂优选用 55% 乙醇。

[0024] 1.2 溶剂用量的影响

称取两色金鸡菊花 100g，粉碎过 60 目筛，加入质量浓度为 55% 的乙醇，80℃回流提取 1 小时，提取一次，过滤，检测滤液中的总黄酮量。考察不同料液比对提取的影响。料液比 = 两色金鸡菊花质量 / 乙醇质量。

[0025] UV 法分析结果
HPLC 法分析结果

<table>
<thead>
<tr>
<th>料液比</th>
<th>浓度 (mg/mL)</th>
<th>提取率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 10</td>
<td>17.25</td>
<td>17.34</td>
</tr>
<tr>
<td>1: 15</td>
<td>19.16</td>
<td>28.73</td>
</tr>
<tr>
<td>1: 20</td>
<td>10.92</td>
<td>21.81</td>
</tr>
<tr>
<td>1: 25</td>
<td>5.96</td>
<td>14.87</td>
</tr>
</tbody>
</table>

UV 法与 HPLC 法分析结果基本一致，料液比为 1:15 时总黄酮提取率最高。

【0026】1.3 回流提取温度的影响

称取两色金鸡菊花 100g，粉碎过 60 目筛，加入 15 倍量的质量浓度为 55% 的乙醇，加热回流提取 1 小时，提取一次，过滤，检测滤液中的总黄酮量。考察不同回流提取温度的影响。

【0027】UV 法分析结果

<table>
<thead>
<tr>
<th>温度（℃）</th>
<th>浓度 (mg/mL)</th>
<th>提取率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>14.62</td>
<td>21.93</td>
</tr>
<tr>
<td>50</td>
<td>18.68</td>
<td>28.02</td>
</tr>
<tr>
<td>60</td>
<td>10.97</td>
<td>16.45</td>
</tr>
<tr>
<td>80</td>
<td>10.62</td>
<td>15.93</td>
</tr>
<tr>
<td>85</td>
<td>11.58</td>
<td>17.37</td>
</tr>
<tr>
<td>90</td>
<td>13.31</td>
<td>19.97</td>
</tr>
</tbody>
</table>

HPLC 法分析结果

<table>
<thead>
<tr>
<th>温度（℃）</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>259030216</td>
</tr>
<tr>
<td>50</td>
<td>367127604</td>
</tr>
<tr>
<td>80</td>
<td>74030982</td>
</tr>
<tr>
<td>85</td>
<td>58659897</td>
</tr>
<tr>
<td>90</td>
<td>108292778</td>
</tr>
</tbody>
</table>

结果表明，回流提取温度升至 90℃时，提取液开始沸腾，由 UV 和 HPLC 分析结果可自出，较低的提取温度有利于提高总黄酮提取率，优选的提取温度为 40 ～ 60℃。

【0028】1.4 提取次数的影响

称取两色金鸡菊花 100g，粉碎过 60 目筛，加入 15 倍量的质量浓度为 55% 的乙醇，55℃
回流提取 1 小时，过滤，检测滤液中的总黄酮量，滤渣用 15 倍量的质量浓度为 55% 的乙醇继续回流提取。考察每次提取所得总黄酮占总提取量的比例。

<table>
<thead>
<tr>
<th>提取次数</th>
<th>浓度（mg/mL）</th>
<th>比例（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.2</td>
<td>85.23</td>
</tr>
<tr>
<td>2</td>
<td>2.25</td>
<td>13.51</td>
</tr>
<tr>
<td>3</td>
<td>0.21</td>
<td>1.26</td>
</tr>
</tbody>
</table>

HPLC 法分析结果

<table>
<thead>
<tr>
<th>提取次数</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>108995188</td>
</tr>
<tr>
<td>2</td>
<td>13870228</td>
</tr>
<tr>
<td>3</td>
<td>823205</td>
</tr>
</tbody>
</table>

实验结果表明，提取 2 次，所得总黄酮占总提取量的 98% 以上，因此提取 2 次即可。

1.5 时间的影响

1.5.1 考察浸泡对提取的影响

称取两色金鸡菊花 100g，粉碎过 60 目筛，加入 15 倍量的质量浓度为 55% 的乙醇，按设定的浸提方式操作，检测滤液中的总黄酮量，回流提取温度为 55℃，提取一次。浸提方式：1、浸泡 2h；2、浸泡 1h 后回流提取 1h；3、回流提取 2h；4、回流提取 1h。

<table>
<thead>
<tr>
<th>浸提方式</th>
<th>浓度（mg/mL）</th>
<th>提取率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.86</td>
<td>17.79</td>
</tr>
<tr>
<td>2</td>
<td>12.02</td>
<td>18.03</td>
</tr>
<tr>
<td>3</td>
<td>13.09</td>
<td>19.64</td>
</tr>
<tr>
<td>4</td>
<td>9.29</td>
<td>13.94</td>
</tr>
</tbody>
</table>

实验结果表明：采用相同的回流提取时间，增加浸泡能提高总黄酮提取率；采用相同时间，浸泡后回流提取比只进行浸泡效果要好，考虑生产成本及能耗，采用浸泡 + 回流提取方式比较有利。

1.5.2 浸泡时间的影响

称取两色金鸡菊花 100g，粉碎过 60 目筛，加入 15 倍量的质量浓度为 55% 的乙醇，浸泡后，50℃回流提取 1 小时，提取一次，过滤，检测滤液中的总黄酮量。考察不同浸泡时间总黄酮的提取率。

UV 法分析结果
<table>
<thead>
<tr>
<th>浸泡时间（h）</th>
<th>浓度（mg/mL）</th>
<th>提取率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>11.86</td>
<td>17.79</td>
</tr>
<tr>
<td>3</td>
<td>12.73</td>
<td>19.10</td>
</tr>
<tr>
<td>6</td>
<td>11.76</td>
<td>17.64</td>
</tr>
<tr>
<td>12</td>
<td>11.19</td>
<td>16.79</td>
</tr>
</tbody>
</table>

HPLC 法分析结果

<table>
<thead>
<tr>
<th>浸泡时间（h）</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>109384788</td>
</tr>
<tr>
<td>6</td>
<td>107629943</td>
</tr>
<tr>
<td>12</td>
<td>107477115</td>
</tr>
</tbody>
</table>

实验结果表明，浸泡 3h 后，延长浸泡时间提取率反而减少，因此，浸泡时间优选 2～3h。

[0034] 1.5.3 回流提取时间的考察

称取两色金鸡菊花 100g，粉碎过 60 目筛，加入 15 倍量的质量浓度为 55% 的乙醇，浸泡 1h 后，50℃回流提取，提取一次，过滤，检测滤液中的总黄酮量。考察不同回流提取时间总黄酮的提取率。

[0035] UV 法分析结果

<table>
<thead>
<tr>
<th>回流提取时间（h）</th>
<th>浓度（mg/mL）</th>
<th>提取率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.19</td>
<td>19.79</td>
</tr>
<tr>
<td>2</td>
<td>13.66</td>
<td>20.49</td>
</tr>
<tr>
<td>3</td>
<td>15.53</td>
<td>23.30</td>
</tr>
</tbody>
</table>

HPLC 法分析结果

<table>
<thead>
<tr>
<th>回流提取时间（h）</th>
<th>峰面积</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>87052925</td>
</tr>
<tr>
<td>2</td>
<td>101254538</td>
</tr>
<tr>
<td>3</td>
<td>101884573</td>
</tr>
</tbody>
</table>

实验结果表明，为获得高的提取率，回流提取时间优选 2～3h。

[0036] 1.6 正交试验

利用上述单因素实验结果，进行 4 因素 3 水平的正交试验，实验设计表如下

<table>
<thead>
<tr>
<th>水平</th>
<th>因素</th>
<th>乙醇浓度（%）</th>
<th>料液比</th>
<th>温度（℃）</th>
<th>时间（h）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>50</td>
<td>1:12</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>55</td>
<td>1:15</td>
<td>50</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>60</td>
<td>1:18</td>
<td>55</td>
<td>3</td>
</tr>
</tbody>
</table>

浸泡和回流提取采用相同的时间。
[0037] 正交试验结果

<table>
<thead>
<tr>
<th>处理号</th>
<th>浓度 (%)</th>
<th>料液比</th>
<th>温度 (℃)</th>
<th>时间 (h)</th>
<th>提取率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>13.39</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>16.77</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>19.45</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>15.01</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>17.27</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>23.12</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>17.63</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>13.41</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>18.56</td>
</tr>
<tr>
<td>K2</td>
<td>18.467</td>
<td>15.817</td>
<td>16.780</td>
<td>19.173</td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>16.533</td>
<td>20.377</td>
<td>18.117</td>
<td>15.957</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>1.934</td>
<td>5.034</td>
<td>1.477</td>
<td>3.216</td>
<td></td>
</tr>
</tbody>
</table>

由以上正交试验结果，确定两色金鸡菊花中黄酮类化合物最佳提取工艺条件为料液比为 1 : 18，溶剂采用质量浓度为 55% 的乙醇，浸渍 3h 后，55℃回流提取 2.5h，回流提取 2 次。

[0038] 1.7 验证试验

称取两色金鸡菊花 100g，粉碎过 60 目筛，加入 18 倍量的质量浓度为 55% 的乙醇，浸渍 3h 后，55℃回流提取 2.5h，过滤，滤饼用 18 倍量的质量浓度为 55% 的乙醇于 55℃回流提取 2.5h，过滤，弃渣，合并滤液，在旋转蒸发仪中减压浓缩（45±2℃）、冷冻干燥（-51～-53℃）得到提取物，即黄酮类化合物。检测滤液浓缩前的总黄酮量、滤液浓缩至 500ml 时的总黄酮量。

<table>
<thead>
<tr>
<th>编号</th>
<th>提取次数</th>
<th>提取率 (%)</th>
<th>浓缩后的提取率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>第 1 次</td>
<td>28.63</td>
<td>18.31</td>
</tr>
<tr>
<td></td>
<td>第 2 次</td>
<td>3.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>合计</td>
<td>31.7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>第 1 次</td>
<td>30.77</td>
<td>16.02</td>
</tr>
<tr>
<td></td>
<td>第 2 次</td>
<td>2.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>合计</td>
<td>32.84</td>
<td></td>
</tr>
</tbody>
</table>

[0039] 结果表明，滤液经减压浓缩后，黄酮类化合物的含量明显降低，考虑可能是因为长时间的减压浓缩过程中黄酮类化合物结构发生变化所致。因此，浓缩时注意温度控制及浓缩时间不宜太长，干燥方式优选冷冻干燥，冷冻干燥的温度一般为 -5～-55℃，优选 -51～-53℃。