Title: ADSORPTIVE SEPARATION OF GAS STREAMS

Abstract: A method and system for adsorptive separation of a feed gas mixture provides for increased system efficiency and/or product recovery. The requirement for purge gas streams consuming desired product gas or other external purge gas to regenerate adsorption beds is reduced through an inventive method for adsorbent selection and adsorption bed and process design.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:
— with international search report
ADSORPTIVE SEPARATION OF GAS STREAMS

FIELD

The present disclosure relates to adsorptive separation, and more particularly to an improved method and apparatus for adsorptive separation of gas streams.

BACKGROUND

Adsorptive processes are an established means of separation used to separate gas phase components in multicomponent gas streams found in many industrial applications. Many industrial gas streams contain contaminant components which may be advantageously separated from the gas stream prior to some downstream use. Adsorptive separation processes have been adapted for use in many such industrial applications.

Thermal and pressure swing adsorption processes (TSA and PSA) as known in the prior art have both been successfully adapted to remove contaminant components from commercially important gas streams, making use of specialized adsorbent materials to adsorb contaminants from the input, or feed gas stream, leaving the desired product gas stream substantially free of the contaminants. Such adsorbent materials may then be cyclically regenerated to subsequently desorb the contaminant component which may be exhausted or otherwise disposed, prior to re-use of the adsorbent material.

In conventional adsorptive separation systems, the regeneration of the adsorbent material(s) requires the application of a purge stream that is substantially free of the contaminant component in contact with the adsorbent, in order to effectively desorb the contaminant component from the adsorbent material. In the
case of TSA, the purge stream is heated to a temperature sufficient to desorb the contaminant from the adsorbent. In the case of PSA, purified product gas is typically used to purge the contaminant from the adsorbent. Such purge gas must typically be selected from gases external to the available feed gas stream, such as in the case of a TSA system, an exemplary heated inert (substantially free of contaminant component(s) and other gas components which may inhibit desorption and purge of the adsorbed contaminant from the adsorbent material) purge gas, or purified product gas in the case of a PSA system. The use of such contaminant free purge gas stream s typically influence the efficiency of the adsorptive process, by reducing product recovery in the case of PSA, and/or increasing the cost such in the provision of a suitable heated contaminant-free purge gas stream in the case of TSA. In all cases, the overall achievable efficiency of the adsorptive separation system is limited by the quantity and cost (in terms of external gas and heat energy or lost product gas) of purge gas required to desorb the contaminant from the adsorbent material during regeneration.

SUMMARY OF THE INVENTION

In a first embodiment, the present invention relates to a method for substantially separating a contaminant gas component from a feed gas stream comprising at least the contaminant gas component, a diluent gas component and a desired product gas component. The inventive method comprises the steps of:

(a) providing a first adsorbent material in a first adsorption zone wherein the first adsorbent material is selective for the contaminant component relative to the diluent component, and a second adsorbent material in a second adsorption zone
wherein the second adsorbent material is selective for the diluent component relative
to the desired product component;

(b) passing the feed gas stream through the first adsorption zone in contact
with the first adsorbent material such that the contaminant component is substantially
adsorbed on the first adsorbent material, and subsequently through the second
adsorption zone in contact with the second adsorbent material such that at least a
portion of the diluent component is adsorbed on the second adsorbent material;

(c) withdrawing from the second adsorption zone a product gas stream
enriched in the desired product component relative to the feed gas stream;

(d) regenerating the first adsorption zone by passing an exhaust gas stream
comprising at least a portion of the adsorbed diluent component from the second
adsorption zone through the first adsorption zone, such that at least a portion of the
contaminant component adsorbed on the first adsorbent material is purged from the
first adsorption zone by the diluent component.

In an exemplary embodiment of the above inventive method, the contaminant
component may comprise carbon monoxide, the diluent component may comprise
carbon dioxide, and the desired product component may comprise hydrogen. In such
an embodiment, the feed gas stream may be a reformate stream from a steam catalytic
reformer. In another embodiment, the aforementioned diluent component may
additionally comprise nitrogen. In such an embodiment, the feed gas stream may be a
reformate stream from a catalytic partial oxidation reformer.

In a further embodiment of the inventive method, the contaminant component
may comprise carbon dioxide, the diluent component may comprise nitrogen, and the
desired product component may comprise methane. In such an embodiment, the feed
gas stream may be an impure natural gas, landfill gas, or biogas stream.
In any of the above embodiments, the feed gas stream may additionally comprise a second contaminant component, which may be substantially adsorbed on a third adsorbent material contained in a third adsorption zone, wherein the third adsorbent material is selective for the second contaminant component relative to the diluent component. In such an embodiment, the third adsorption zone may be regenerated by passing the exhaust gas stream comprising at least a portion of the adsorbed diluent component from the second adsorption zone through the third adsorption zone, such that at least a portion of the second contaminant component adsorbed on the third adsorbent material is purged from the third adsorption zone by the diluent component.

In a second embodiment, the invention includes an adsorptive separation system for substantially separating a contaminant gas component from a feed gas stream comprising at least the contaminant gas component, a diluent gas component and a desired product gas component. The inventive system comprises:

(a) an adsorption bed comprising a first adsorption zone containing a first adsorbent material selective for the contaminant component relative to the diluent component, and a second adsorption zone containing a second adsorbent material selective for the diluent component relative to the desired product component;

(b) a feed gas inlet valve for admitting the feed gas stream into the adsorption bed such that the feed gas stream passes through the first adsorption zone in contact with the first adsorbent material such that the contaminant component is substantially adsorbed on the first adsorbent material, and subsequently through the second adsorption zone in contact with the second adsorbent material such that at least a portion of the diluent component is adsorbed on the second adsorbent material;
(c) a product gas outlet valve for withdrawing a product gas stream enriched in the desired product component relative to the feed gas stream from the adsorption bed; and

(d) an exhaust gas outlet valve for withdrawing an exhaust gas stream from the adsorption bed during regeneration of the adsorption bed, said exhaust gas stream comprising at least a portion of the adsorbed diluent component from the second adsorption zone and at least a portion of the adsorbed contaminant component from the first adsorption zone which has been purged from the first adsorbent material by the passage of the portion of the diluent component in contact with the first adsorbent material.

In an exemplary embodiment of the above system according to the present invention, the contaminant component may comprise carbon monoxide, the diluent component may comprise carbon dioxide, and the desired product component may comprise hydrogen. In such an embodiment, the feed gas stream may be a reformate stream from a steam catalytic reformer. In another embodiment, the aforementioned diluent component may additionally comprise nitrogen. In such an embodiment, the feed gas stream may be a reformate stream from a catalytic partial oxidation reformer.

In a further embodiment of the inventive system, the contaminant component may comprise carbon dioxide, the diluent component may comprise nitrogen, and the desired product component may comprise methane. In such an embodiment, the feed gas stream may be an impure natural gas, landfill gas, or biogas stream.

In any of the above system embodiments, the feed gas stream may additionally comprise a second contaminant gas component, and the adsorption bed may additionally comprise a third adsorption zone containing a third adsorbent material selective for the second contaminant component relative to the diluent component. In
such embodiments, the feed gas stream may pass through the third adsorption zone in contact with the third adsorbent material prior to passing through the second adsorption zone such that the second contaminant component is substantially adsorbed on the third adsorbent material, and the exhaust gas stream may additionally comprise at least a portion of the adsorbed second contaminant component from the third adsorption zone which has been purged from the third adsorbent material by the passage of the portion of the diluent component in contact with the third adsorbent material.

For purposes of reference in the foregoing and following description and the appended claims, a contaminant component of a feed gas stream may be defined to comprise any one or more gaseous species present in a feed gas stream to be separated by the methods and systems of the present invention, that must be substantially separated from the desired product component in order to produce a product gas stream enriched in the desired product component that is suitable for use in a chosen downstream product or process. A diluent component of a feed gas stream may be defined to comprise any one or more gaseous species present in a feed gas stream to be separated by methods and systems of the present invention, that is desirably reduced in concentration relative to the concentration of the desired product component in the product gas stream compared to the feed stream in order to provide a product gas stream suitably enriched in the desired product component. The relative selectivity of an adsorbent material for a first gas component over a second gas component as defined and used in this disclosure may be understood to mean one of: a relative equilibrium selectivity, a relative kinetic selectivity, or a combination of both relative equilibrium and relative kinetic selectivities. A relative equilibrium selectivity of an adsorbent material for a first gas component over a second gas
component may be understood to mean that the adsorbent material has a greater equilibrium adsorptive capacity for the first gas component relative to the second gas component at the adsorptive conditions (total and partial pressure, temperature, feed stream composition, adsorption step duration, etc.) present during the adsorption phase of the separation cycle of concern in a particular application of the present invention. A relative kinetic selectivity of an adsorbent material for a first gas component over a second gas component may be understood to mean that the adsorbent material has a greater rate of adsorptive diffusivity with respect to the first gas component relative to its rate of adsorptive diffusivity with respect to the second gas component at the adsorptive conditions (total and partial pressure, temperature, feed stream composition, adsorption step duration, etc.) present during the adsorption phase of the separation cycle of concern in a particular application of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic diagram showing the structure of an adsorption bed and associated portions of an adsorptive separation system according to the present invention.

DETAILED DESCRIPTION OF SEVERAL EMBODIMENTS

The present invention encompasses a method and system for substantially separating a contaminant gas component from a feed gas stream comprising at least the contaminant gas component, a diluent gas component and a desired gas component, by means of adsorptive separation. The method and associated system utilize at least a first and second adsorbent materials, contained in at least first and
second adsorption zones respectively, which may be typically enclosed inside at least one adsorption bed. The first and second adsorbent materials may be compositionally distinct from each other, and may be selected based on their adsorption characteristics relative to the contaminant, diluent and desired product gas components of the feed gas stream for a desired adsorptive separation application. The first adsorbent material is chosen such that it is adsorptively selective for the contaminant component, relative to the diluent component, so that when the feed gas is passed through the first adsorption zone in contact with the first adsorbent material, the contaminant component in substantially adsorbed on the first adsorbent material, and thereby substantially removed from the feed gas stream. The second adsorbent material is chosen such that it is adsorptively selective for the diluent component relative to the desired product component, so that when the feed gas stream is passed through the second adsorption zone in contact with the second adsorbent material, subsequent to passing through the first zone, at least a portion of the diluent component of the feed gas stream is adsorbed on the second adsorbent material.

In the adsorptive separation processes contemplated by the present inventive method and system, the at least one adsorption bed and contained adsorbent materials must be regenerated following adsorption of the at least one contaminant component, in order to desorb the adsorbed gas components from the adsorbent materials, to enable further cyclic adsorptive separation steps. In the case of the present invention applied to a PSA process, adsorption may take place inside the adsorption bed at an elevated pressure and regeneration may be accomplished by the reduction of pressure in the bed and by the passage of a purge gas stream through the bed (and therefore the adsorption zones and adsorbent materials therein) to desorb the at least one adsorbed contaminant component. In the case of the present invention applied to a TSA
process, adsorption may take place inside the adsorption bed at a lower temperature (either of the feed gas stream or of the adsorption bed itself) and regeneration may be accomplished at a higher temperature (either by heating of the purge gas stream or the adsorption bed itself such as by resistively heating an adsorbent support material) by the passage of a purge gas stream through the bed (and the adsorption zone and adsorbent materials therein) to desorb the at least one adsorbed contaminant component. In an application of the invention to a displacement purge adsorption process, adsorption and regeneration may take place at similar pressures and temperatures, and desorption of the at least one contaminant component may be accomplished primarily by the passage of a purge gas stream through the adsorption bed. Such a purge gas stream may typically be substantially free of the contaminant to be removed from the feed gas mixture, and may contain a component that is relatively weakly adsorbed or not adsorbed on the selected adsorbent materials used in the adsorption process, in order to provide a purging action to desorb at least a portion of the contaminant component from the adsorption bed.

It is an object of the present inventive method and systems to improve the efficiency of adsorptive separation processes by reducing the requirement for providing external substantially contaminant-free purge gas volumes for regenerative desorption of the contaminant component from the first adsorbent material.

According to the present inventive method and systems, during regeneration of the adsorbent materials, an exhaust gas is passed through the adsorption beds (and thereby through the adsorption zones and in contact with the adsorbent materials) in a direction opposite to the flow of the feed gas stream during an initial adsorption step. The exhaust gas comprises at least a portion of the diluent component that was previously adsorbed on the second adsorbent material which passes through the first
adsorption zone in contact with the first adsorbent material. The portion of the diluent component in the exhaust gas serves to desorb and purge at least a portion of the contaminant component adsorbed on the first adsorbent material. In the case of PSA process application, the passage of the desorbed diluent-containing exhaust gas through the first adsorption zone is known as a countercurrent blowdown step. The function of the desorbed diluent component gas to purge at least a portion of the adsorbed contaminant component from the adsorption bed in the method and systems of the present invention reduces the requirement (may reduce the volume, heating and/or product gas component content of the purge gas stream required) for external substantially contaminant-free purge gas volumes during regeneration of the adsorbent materials in the adsorption beds, thereby increasing overall system efficiency with respect to the energy consumption or product recovery of the system. In the case of application of the present inventive method and systems to PSA processes, the recovery of the desired product component may also be increased due to reduced consumption of product component gas in the regeneration of the adsorbent materials in the adsorption beds.

With reference to Figure 1, an exemplary adsorption bed 1 according to the present invention is schematically depicted. The exemplary bed comprises first and second adsorption zones 3, 5 which contain first and second adsorbent materials 2, 4, respectively. Feed inlet valve 6 is provided to admit a feed gas mixture comprising contaminant, diluent and product gas components to the end of the adsorption bed 1 proximal to the first adsorption zone 3. Product gas outlet valve 10 is provided to withdraw a product gas enriched in the desired product gas component from the end of the adsorption bed 1 distant from the first adsorption zone, 3. Exhaust gas outlet valve 8 is provided to withdraw an exhaust gas stream comprising at least a portion of
the adsorbed diluent component (which was adsorbed on the second adsorbent material, 4) from the second adsorption zone, 5 and at least a portion of the adsorbed contaminant component from the first adsorption zone, 3 which has been purged from the first adsorbent material, 2 by the passage of the portion of the diluent component in contact with the first adsorbent material, 2. In Figure 1, feed gas inlet valve 6, and exhaust gas outlet valve, 8 are shown communicating with the end of the adsorption bed 1 proximal to the first adsorption zone 3 through a common gas port 12, however, the valves may optionally communicate individually with the adsorption bed for admission of feed gas, and withdrawal of exhaust gas.

In another embodiment according to the present invention, the inventive adsorption bed configuration may be applied to a rotary adsorption system, whereby multiple similar adsorption beds may be relatively rotatable with respect to one or more rotary valves common to the multiple adsorption beds, wherein the rotary valves comprise the feed gas inlet, product gas outlet, and exhaust gas outlet valves referred to in the previous exemplary embodiment, such as is disclosed in detail in the multiple bed rotary adsorption system arrangements described in the Applicant’s U.S. Patents Number 6,451,095 and RE38,493, the contents of which are herein incorporated by reference in their entirety.

In any of the above embodiments of the present inventive methods and systems, adsorbent materials, including the first and second adsorbent materials may be provided as shaped, formed or extruded adsorbent particles or monoliths. Such particulate or monolity adsorbent materials may comprise any active adsorbent compounds suitable to adsorb specific contaminant and/or diluent gas components present in any feed gas stream of interest. Such adsorbent compounds may comprise without limitation, crystalline molecular sieves (comprising zeolites, titanosilicates,
and mixed tetrahedral and octahedral coordination microporous molecular sieves),
activated carbons including carbon molecular sieves, silica gels, aluminas, and
combinations thereof. Alternatively, adsorbent materials, including the first and
second adsorbent materials may be provided as structured adsorbent layers, such as
formed thin adsorbent sheets. Such adsorbent sheets may comprise adsorbent
materials with or without additional support and/or binder materials. Adsorbent
sheets may be arranged to provide flow channels, thereby producing a high surface
area, parallel passage adsorbent structure with having substantially lower flow
channel pressure drop relative to some conventional particulate adsorbent materials
arranged in packed beds. Such adsorbent structures may incorporate any suitable
adsorbent compounds, which may comprise without limitation, crystalline molecular
sieves (comprising zeolites, titanosilicates, and mixed tetrahedral and octahedral
coordination microporous molecular sieves), activated carbons including carbon
molecular sieves, silica gels, aluminas, microporous polymeric adsorbents and
combinations thereof. Suitable support materials for incorporation in some adsorbent
sheets as described above may include without limitation, metal mesh or foil, woven
or non-woven scrim or fabrics comprising glass, mineral, carbon or cellulosic fibers,
or in the case of activated carbon adsorbent materials, activated carbon fabric or cloth
may be used as a self-supporting adsorbent sheet material. Additional embodiments
according to the present invention may incorporate first and second adsorbents
formed as adsorbent sheets and structures incorporating formed adsorbent sheets as
disclosed in the Applicant’s previously filed U.S. Patent Application Number
10/041,536, the contents of which are herein incorporated by reference in their
entirety.
In a further embodiment according to the present invention, an initial gas stream comprising at least one contaminant component and at least one desired product component but no diluent component may be substantially separated into a product gas enriched in the desired product component and an exhaust gas comprising the at least one contaminant component by deliberately adding a suitable diluent gas component to the initial gas stream, to produce a feed gas stream suitable for separation according to the present methods and systems. In such a way, the desirably enhanced separation performance (including enhanced recovery of desired product in the case of PSA processes) of the inventive methods and systems may be applied to initial gas streams not originally including a diluent component. Further, in applications where the desired product gas stream comprises both a principal desired product component, and some quantity of the diluent gas component, the present invention provides a solution to adsorptively remove substantially all of the deleterious contaminant component from the product gas stream, and control the quantity of the diluent component in the product gas stream relative to the desired product gas component by way of controlling the degree of adsorption of the diluent component in the second adsorption zone.

In an exemplary embodiment of the present invention, the feed gas mixture may comprise natural gas, wherein the contaminant component may comprise carbon dioxide, the diluent component may comprise nitrogen, and the desired product component may comprise methane. In such an embodiment, a first adsorbent material in the first adsorbent zone may comprise activated alumina, and a second adsorbent material may comprise a mixed coordination titanosilicate molecular sieve material such as ETS-4 such that the methods and systems of the present invention are effective to produce a product gas enriched in methane, and substantially free of
carbon dioxide, wherein the passage of nitrogen gas previously adsorbed on the
titanosilicate material through the activated alumina material during desorption is
effective to purge at least a portion the adsorbed carbon dioxide from the alumina.
This purging effect of the adsorbed diluent nitrogen reduces the required use of
enriched methane product to purge the adsorption bed, thereby enhancing recovery of
methane in the product gas stream.

In another exemplary embodiment of the present invention, the feed gas
mixture may comprise a reformate from a steam catalytic reformer wherein the
contaminant component may comprise carbon monoxide, the diluent component may
comprise carbon dioxide, and the desired product component may comprise hydrogen.
In such an embodiment, a first adsorbent material in the first adsorbent zone may
comprise a carbon monoxide selective adsorbent such as known metal or metal halide
or oxide enhanced (such as by exchange or impregnation) adsorbent materials, and a
second adsorbent material may comprise activated carbon such that the methods and
systems of the present invention are effective to produce a product gas enriched in
hydrogen, and substantially free of carbon monoxide, wherein the passage of carbon
dioxide gas previously adsorbed on the activated carbon material through the carbon
monoxide selective adsorbent material during desorption is effective to purge at least
a portion the adsorbed carbon monoxide from the first adsorbent material. This
purging effect of the adsorbed diluent carbon dioxide reduces the required use of
enriched hydrogen product to purge the adsorption bed, thereby enhancing recovery
of hydrogen in the product gas stream. In a related embodiment to the above, the feed
gas stream and diluent component may additionally comprise nitrogen gas. In such
case, the adsorption bed may comprise an additional adsorption zone containing an
additional adsorbent material such as an ion-exchanged zeolite.
In any of the above embodiments, the feed gas stream and the diluent component may comprise at least one additional diluent gas species, and the adsorption bed may comprise at least one additional adsorption zone containing at least one additional adsorbent material. Additionally, the feed gas stream and the contaminant component may comprise at least one additional contaminant gas species, and the adsorption bed may comprise at least one additional adsorption zone and one or more additional adsorbent material. Further, adsorbent materials described in any of the exemplary embodiments of the present invention disclosed above may comprise equilibrium adsorptively selective materials, kinetic adsorptively selective materials and combinations thereof.

The present invention has been described above in reference to several exemplary embodiments. It is understood that further modifications may be made by a person skilled in the art without departing from the spirit and scope of the invention which are to be determined by the following claims.
What is claimed is:

1. A method for substantially separating a contaminant gas component from a feed gas stream comprising at least the contaminant gas component, a diluent gas component and a desired product gas component, the method comprising:

 providing a first adsorbent material in a first adsorption zone wherein the first adsorbent material is selective for the contaminant component relative to the diluent component, and a second adsorbent material in a second adsorption zone wherein the second adsorbent material is selective for the diluent component relative to the desired product component;

 passing the feed gas stream through the first adsorption zone in contact with the first adsorbent material such that the contaminant component is substantially adsorbed on the first adsorbent material, and subsequently through the second adsorption zone in contact with the second adsorbent material such that at least a portion of the diluent component is adsorbed on the second adsorbent material;

 withdrawing from the second adsorption zone a product gas stream enriched in the desired product component relative to the feed gas stream;

 regenerating the first adsorption zone by passing an exhaust gas stream comprising at least a portion of the adsorbed diluent component from the second adsorption zone through the first adsorption zone, such that at least a portion of the contaminant component adsorbed on the first adsorbent material is purged from the first adsorption zone by the diluent component.

2. The method according to claim 1 wherein regenerating the bed additionally comprises passing a product purge gas stream comprising the product gas component
through the first adsorbent zone such that at least a portion of the contaminant
cOMPONENT adsorbed on the first adsorbent material is purged from the first adsorbent
zone by the product purge gas stream.

3. The method according to claim 2 wherein the product purge gas stream is
additionally passed through the second adsorbent zone such that at least a portion of
the diluent component adsorbed on the second adsorbent material is purged from the
second adsorbent zone by the product purge gas stream.

4. The method according to claim 1 wherein the contaminant component
comprises carbon monoxide, the diluent component comprises carbon dioxide, and
the desired product component comprises hydrogen.

5. The method according to claim 4 wherein the diluent component additionally
comprises nitrogen.

6. The method according to claim 1 wherein the contaminant component
comprises carbon dioxide, the diluent component comprises nitrogen, and the desired
product component comprises methane.

7. The method according to claim 1 wherein the feed gas stream additionally
comprises a second contaminant gas component, and a third adsorbent material
selective for the second contaminant component relative to the diluent component is
provided in a third adsorption zone, and the feed gas stream is passed through the
third adsorption zone in contact with the third adsorbent material prior to passing
through the second adsorption zone such that the second contaminant component is
substantially adsorbed on the third adsorbent material, and the exhaust gas stream is subsequently passed through the third adsorption zone to regenerate the third zone, such that at least a portion of the second contaminant component adsorbed on the third adsorbent material is purged from the third adsorption zone by the diluent component.

8. The method according to claim 4 wherein the feed gas stream is a reformate stream from a steam catalytic reformer.

9. The method according to claim 5 wherein the feed gas stream is a reformate stream from a catalytic partial oxidation reformer.

10. The method according to claim 6 wherein the feed gas stream is an impure natural gas, landfill gas or biogas stream.

11. An adsorptive separation system for substantially separating a contaminant gas component from a feed gas stream comprising at least the contaminant gas component, a diluent gas component and a desired product gas component, the system comprising:

an adsorption bed comprising a first adsorption zone containing a first adsorbent material selective for the contaminant component relative to the diluent component, and a second adsorption zone containing a second adsorbent material selective for the diluent component relative to the desired product component;

a feed gas inlet valve for admitting the feed gas stream into the adsorption bed such that the feed gas stream passes through the first adsorption zone in contact with
the first adsorbent material such that the contaminant component is substantially adsorbed on the first adsorbent material, and subsequently through the second adsorption zone in contact with the second adsorbent material such that at least a portion of the diluent component is adsorbed on the second adsorbent material;

a product gas outlet valve for withdrawing a product gas stream enriched in the desired product component relative to the feed gas stream from the adsorption bed; and

an exhaust gas outlet valve for withdrawing an exhaust gas stream from the adsorption bed during regeneration of the adsorption bed, said exhaust gas stream comprising at least a portion of the adsorbed diluent component from the second adsorption zone and at least a portion of the adsorbed contaminant component from the first adsorption zone which has been purged from the first adsorbent material by the passage of the portion of the diluent component in contact with the first adsorbent material.

12. The system according to claim 11 wherein the contaminant component comprises carbon monoxide, the diluent component comprises carbon dioxide, and the desired product component comprises hydrogen.

13. The system according to claim 12 wherein the diluent component additionally comprises nitrogen.

14. The system according to claim 11 wherein the contaminant component comprises carbon dioxide, the diluent component comprises nitrogen, and the desired product component comprises methane.
15. The system according to claim 11 wherein the feed gas stream additionally comprises a second contaminant gas component, and the adsorption bed additionally comprises a third adsorption zone containing a third adsorbent material selective for the second contaminant component relative to the diluent component, and the feed gas stream passes through the third adsorption zone in contact with the third adsorbent material prior to passing through the second adsorption zone such that the second contaminant component is substantially adsorbed on the third adsorbent material, and the exhaust gas stream additionally comprises at least a portion of the adsorbed second contaminant component from the third adsorption zone which has been purged from the third adsorbent material by the passage of the portion of the diluent component in contact with the third adsorbent material.

16. The system according to claim 12 wherein the feed gas stream is a reformate stream from a steam catalytic reformer.

17. The system according to claim 13 wherein the feed gas stream is a reformate stream from a catalytic partial oxidation reformer.

18. The system according to claim 14 wherein the feed gas stream is an impure natural gas, landfill gas or biogas stream.
INTERNATIONAL SEARCH REPORT

A. **CLASSIFICATION OF SUBJECT MATTER**
 IPC(7): B01D 53/04, B01D 53/54, B01D 53/62

According to International Patent Classification (IPC) or to both national classification and IPC

B. **FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

IPC7: B01D 53/04, B01D 53/54, B01D 53/62

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

DELPHION, CANADIAN PATENT DATABASE

C. **DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP1230966 A1, Acharya et al., 14 August 2002 (14-08-2002) see whole document</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>EP0579289 B1, Krishnamurthy et al., 4 April 2001 (04-04-2001) see whole document</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>EP0545559 B1, Ramachandran et al., 2 July 1997 (02-07-1997) see whole document</td>
<td>1-18</td>
</tr>
</tbody>
</table>

[x] Further documents are listed in the continuation of Box C.
[] See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search: 06 October 2005 (06-10-2005)
Date of mailing of the international search report: 12 October 2005 (12-10-2005)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office
Place du Portage I, C114 - 1st Floor, Box PCT
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 001 (819) 953-2476

Authorized officer
David Chamberlain (819) 934-3594

Form PCT/ISA/210 (second sheet) (April 2005)
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CA2055851, Jain, 14 June 1992 (14-06-1992) see whole document</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>CA2287039, Baksh et al., 22 April 2000 (22-04-2000) see whole document</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>CA2325214, Baksh et al., 3 May 2001 (03-05-2001) see whole document</td>
<td>1-18</td>
</tr>
<tr>
<td>Patent Document Cited in Search Report</td>
<td>Publication Date</td>
<td>Patent Family Member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP1230966</td>
<td>14-08-2002</td>
<td>AU1354102 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6503297 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA1336041 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE3651822D D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE3651822T T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE3656113D D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE3656113T T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE3656462D D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE3656462T T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP0317235 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP0579290 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB8726804D D0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP1246103 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5112590 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5234472 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA8808334 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU2625562 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69220652D D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69220652T T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK545559T T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES2103899T T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ244623 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5229069 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA9207688 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WC00948067 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU652267 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU6451294 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU8832191 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2055520 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69128701D D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69128701T T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE914210 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR27542 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA9109195 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69124494D D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69124494T T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP4298216 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5181942 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA9109226 A</td>
</tr>
<tr>
<td>CA2287039</td>
<td>22-04-2000</td>
<td>BR9904754 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1252322 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID23451 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2000153124 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6475265 B1</td>
</tr>
<tr>
<td>Application No.</td>
<td>Priority Date</td>
<td>Priority Number</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>CA2325214</td>
<td>03-06-2001</td>
<td>BR0005217 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1299701 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP22011107309 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6503299 B2</td>
</tr>
</tbody>
</table>