(54) 发明名称
一种烯啶虫胺的制备方法

(57) 摘要
本发明公开了一种烯啶虫胺的制备方法，其
是通过下述反应步骤制得：本发明首先合成
两个中间体，先合成 2-氯-5-氯甲基吡啶和乙胺
反应，制得乙胺化中间体；次由 1,1-二氯乙烯
和盐酸及硝酸反应生成的醋酸反应生成，生成 1,1-三
氯-2-硝基乙烷，再与液碱进行消除反应，消除
一分子氯化氢，生成 1,1-二氯-2-硝基乙烯中间
体；第三由乙胺中间体与 1,1-二氯-2-硝基乙烯
中间体及一甲胺反应生成最终产品烯啶虫胺，
本发明采用 2-氯-5-氯甲基吡啶为主要原料，
且国内已有规模化生产，容易采购，制备方法简
单可靠，不需要特殊设备，也无需高温、高压的
条件，收率也较高。
1. 一种烯啶虫胺的制备方法，其特征在于，包括以下步骤：
 A. 乙胺化
 将定量的甲苯溶剂投入搪瓷反应釜中，降到 10℃以下，投入已熔融好的 2-氯-5-氯甲基吡啶，于 0-10℃滴加乙胺，控制好温度，滴毕，于 20-25℃下保温 5-6 小时，当 2-氯-5-氯甲基吡啶反应完全，转入中和釜，加液碱中和，分层，下层水层用甲苯回收萃取两次，水层萃取的油层与釜中油层合并，水洗一次，分去下层水层，油层进行负压回收溶剂，回收溶剂后期补加少量水，蒸出残留溶剂，即得乙胺化中间体；
 B. 硝基化
 将定量的盐酸和硝酸投入搪瓷反应釜中，降到 10℃以下，滴加 1,1-二氯乙烯，控制温度在 20-25℃，保温 4 小时，分层水洗得中间体硝基乙烯，将硝基乙烯投入搪瓷釜中，控制温度在 0-5℃，滴加 15% 液碱，滴毕保温 1 小时，静置 2 小时分层，得硝基乙烯中间体；
 C. 合成
 将适量水投入搪瓷反应釜中，投入二氯乙烯溶剂，搅拌下加入碳酸钾，抽入硝基乙烯中间体，于 4-6℃滴加乙胺化中间体，滴毕于此温度保温 4 小时左右，再于此温度下滴加一甲胺，保温 4 小时，升温至 30℃保温 1 小时，反应结束，分层、抽滤、萃取、脱溶、结晶，离心得到产品。

2. 根据权利要求 1 所述的一种烯啶虫胺的制备方法，其特征在于：制备方法包括以下步骤：
 A. 乙胺化
 (1) 将搪瓷反应釜中投入 500kg 甲苯，开启搅拌，冷冻降温，降温至 10℃以下，再投入已熔融好的含量 92% 的 250kg 的 2-氯-5-氯甲基吡啶；
 (2) 在釜温 0-10℃开始滴加含量 70% 的 30kg 的乙胺，滴毕在 20-25℃保温 5-6 小时，直至 2-氯-5-氯甲基吡啶含量 ≤ 0.5%，反应结束；
 (3) 反应结束后将物料转入中和釜，加入含量 30% 的液碱 260kg 进行中和，搅拌 30 分钟，静置 30 分钟分层；
 (4) 分下层水层至分层贮罐，上层甲苯转料至脱溶釜；
 (5) 将水层抽出中和釜，用甲苯 180kg 进行萃取，萃取二次；
 (6) 合并甲苯层转至脱溶釜，并向釜内加 150kg 水，水洗甲苯层一次，静置分层，分去下层水层；
 (7) 热水升温，负压 -0.095MPa 脱甲苯，温度控制在 100℃以内，当甲苯流量减小时，适当降温后，再向釜内抽出 50kg 水，共沸脱出残留的甲苯；
 (8) 蒸馏结束后，开启冷却水降温至 40℃以下，放出脱溶釜内料装桶，得乙胺化中间体；
 B. 硝基化
 (1) 将含量 30% 的盐酸 800 kg 投入搪瓷反应釜中开启搅拌，冷冻降温，降温至 10℃以下，开启尾气吸收装置；
 (2) 向搪瓷反应釜中慢慢加入含量 65% 的 650kg 硝酸，配置成混酸；
 (3) 向搪瓷反应釜中滴加 500kg 的 1,1-二氯乙烯，控制温度在 20-25℃，滴加结束，20-25℃保温 4 小时；
（4）、静置20分钟分层，下层转移至水洗分层釜，上层废酸直接排放到废酸池；
（5）、水洗分层釜加水200kg，搅拌20分钟，静置20分钟分层，得1,1,1-三氯-2-硝基乙烷中间体；
（6）、将1,1,1-三氯-2-硝基乙烷中间体736kg抽入反应釜中，在0～5℃滴加含量15%的液碱1028kg，进行消除反应，滴毕于0～5℃保温1小时，静置2小时分层，得1,1-二氯-2-硝基乙烯中间体；
C、合成
（1）、将700kg的水加入搪瓷反应釜中，开启搅拌，投入98%碳酸钾180kg，配成20%左右水溶液，抽入800kg的二氯乙烷，冷冻降温至0℃以下；
（2）、向搪瓷反应釜中加入1,1-二氯-2-硝基乙烯中间体160kg，温度不可超过3℃；
（3）、在4～6℃滴加147kg乙胺化中间体，滴加完毕，于4～6℃保温4小时；
（4）、再在4～6℃滴加350kg一甲胺，滴加完毕于5～7℃保温4小时，升温至20～25℃转釜至分层釜，升至30℃保温1小时；
（5）、保温完毕，静置30分钟后分层抽滤至脱溶釜；
（6）、再用二氯乙烷萃取2次，每次125kg，后分层抽滤至脱溶釜脱溶；
（7）、脱溶釜脱溶采用升温至65～70℃，用循环热水升温；
（8）、脱溶完毕，加入300kg乙酸乙酯，转料至结晶釜结晶，离心，烘干即得。
说明书

一种烯啶虫胺的制备方法

技术领域
[0001] 本发明属有机合成领域,尤其涉及一种烯啶虫胺的制备方法。

背景技术
[0002] 烯啶虫胺是一种重要的烟碱类杀虫剂中的新品种,具有高效、广谱、低毒、耐抗性等特点,在世界范围内得到了广泛的应用。是重要的粮食作物、经济作物等多种害虫的优良防治用药。对于国内现有的杀虫剂难以清除的一些害虫,特别是蚜虫、叶蝉、蓟马、半翅目害虫、水稻飞虱等,显示出卓越的活性,且防治费用低廉。其低毒和对标靶害虫的特有效应也在中药方面得到了广泛应用。目前在世界范围内（包括中国在内）得到了广泛的应用,前景十分广阔。其合成路线为 1、乙胺化在常温常压下操作,2-氯-5-氯甲基吡啶与乙胺反应生成 N-(6-氯-3-吡啶甲基)-N-乙胺中间体,反应条件温和,易控制,反应结束后要回收过量的一乙胺。2、硝基化该反应需要用冷冻盐水降温,1,1-二氯乙烯与盐酸、硝酸反应生成 1,1,1-三氯-2-硝基乙烯,结束后需要加碱水中和,消除一分子氯化氢,生成 1,1-二氯-2-硝基乙烯中间体。3、合成乙胺化反应生成的中间体 N-(6-氯-3-吡啶甲基)-N-乙胺与硝化反应生成的1,1-二氯-2-硝基乙烯中间体反应,最后再和一甲胺反应生成最终产品烯啶虫胺产品,该步合成需要冷冻盐水降温至室温反应,滴加一甲胺速度不易过快,回收溶剂温度不宜过高。

[0003] 烯啶虫胺是一类重要的烟碱类杀虫剂中的新品种,具有高效、广谱、低毒、耐抗性等特点,在世界范围内得到了广泛的应用。是重要的粮食作物、经济作物等多种害虫的优良防治用药,且防治费用低廉。其低毒和对标靶害虫的特有效应也在中药方面得到了广泛应用。

发明内容
[0004] 本发明的目的是提供一种烯啶虫胺的制备方法。
[0005] 为了实现上述目的本发明采用如下技术方案：
[0006] 一种烯啶虫胺的制备方法,其特征在于,包括以下步骤：
[0007] A. 乙胺化
[0008] 将定量的甲苯溶剂投入搪瓷反应釜中,降到 10℃以下,投入已熔融好的 2-氯-5-氯甲基吡啶,于 0-10℃滴加乙胺,控制好温度,滴毕,于 20-25℃下保温 5-6 小时,当 2-氯-5-氯甲基吡啶反应完全,转入中和釜,加液碱中和,分层,下层水层用甲苯回收萃取两次,水层萃取的油层与釜中油层合并,水洗一次,分去下层水层,油层进行负压回收溶剂,回收溶剂后补加少量水,蒸出残留溶剂,即得乙胺化中间体；
[0009] B. 硝基化
[0010] 将定量的盐酸和硝酸投入搪瓷反应釜中,降到 10℃以下,滴加 1,1-二氯乙烯,控制温度在 20-25℃,保温 4 小时,分层水洗得中间体硝基乙烯,将硝基乙烯投入搪瓷釜中,控制温度在 0-5℃,滴加 15%液碱,滴毕保温 1 小时,静置 2 小时分层,得硝基乙烯中间体。
间体；

【0011】C、合成

【0012】将适量水投入氨气反应釜中，投入二氯二烷溶剂，搅拌下加入碳酸钾，抽出硝基乙烯中间体，于 4-6℃滴加乙酸化中间体，滴毕于此温度保温 4 小时左右，再于此温度下滴加一甲胺，保温 4 小时，升温至 30℃保温 1 小时，反应结束，分层、抽滤、萃取、脱溶、结晶、离心得到产品。

【0013】所述的一种烯烃中间体的制备方法，其特征在于：制备方法包括以下步骤：

【0014】A、乙酸化

【0015】（1）、向浆用反应釜中加入 500kg 甲苯，开启搅拌，冷冻降温，降温至 10℃以下，再投入已熔好的含量 92%的 250kg 的 2-氨-5-氯甲基吡啶；

【0016】（2）、在釜温 0～10℃开始滴加含量 70%的 300kg 的乙胺，滴毕，在 20～25℃保温 5-6 小时，直至 2-氯-5-氯甲基吡啶含量 ≤ 0.5%，反应结束；

【0017】（3）、反应结束后将物料转入中和釜，加入含量 30%的液碱 260kg 进行中和，搅拌 30 分钟，静置 30 分钟分层；

【0018】（4）、分下层水层至分层贮罐，上层甲苯转料至脱溶釜；

【0019】（5）、将水层抽入中和釜，用甲苯 180kg 进行萃取，萃取二次；

【0020】（6）、合并甲苯层转至脱溶釜，并向釜内加 150kg 水，水洗甲苯层一次，静置分层，分去下层水层；

【0021】（7）、热水升温，负压 -0.095MPa 脱甲苯，温度控制在 100℃以内，当甲苯流量减小时，适当降温，再向釜内抽入 50kg 水，共沸脱出残留的甲苯；

【0022】（8）、蒸馏结束后，开启冷却水降温至 40℃以下，放出脱溶釜内料装桶，得乙酸化中间体；

【0023】B、硝化

【0024】（1）、将含量 30%的盐酸 800kg 投入浆用反应釜中开启搅拌，冷冻降温，降温至 10℃以下，开启尾气吸收装置；

【0025】（2）、向浆用反应釜中慢慢加入含量 65%的 650kg 硝酸，配置成混酸；

【0026】（3）、向浆用反应釜中滴加 500kg 的 1,1-二氯乙烯，控制温度在 20~25℃，滴加结束，20~25℃保温 4 小时；

【0027】（4）、静置 20 分钟分层，下层转移至水洗分层釜，上层废酸直接排放到废酸池；

【0028】（5）、水洗分层釜加水 200kg，搅拌 20 分钟，静置 20 分钟分层，得 1,1,1-三氯-2-硝基乙烯中间体；

【0029】（6）、将 1,1,1-三氯-2-硝基乙烯中间体 736kg 投入反应釜中，在 0-5℃滴加含量 15%的液碱 1028kg，进行消除反应，滴毕于 0-5℃保温 1 小时，静置 2 小时分层，得 1,1-二氯-2-硝基乙烯中间体；

【0030】C、合成

【0031】（1）、将 700kg 的水加入浆用反应釜中，开启搅拌，投入 98%碳酸钾 180kg，配成 20%左右水溶液；抽出 800kg 的二氯乙烯，冷冻降温至 0℃以下；

【0032】（2）、向浆用反应釜中加入 1,1-二氯-2-硝基乙烯中间体 160kg，温度不可超过 3℃；
说明书写

[0033] (3)、在4℃～6℃滴加147kg乙胺化中间体，滴加完毕，于4℃～6℃保温4小时；
[0034] (4)、再在4℃～6℃滴加350kg一甲胺，滴加完毕于5℃～7℃保温4小时，升温至
20℃～25℃转釜至分层釜，升温至30℃保温1小时；
[0035] (5)、保温完毕，静置30分钟后分层抽滤至脱溶釜；
[0036] (6)、再用二氯乙烷萃取2次，每次125kg，后分层抽滤至脱溶釜脱溶；
[0037] (7)、脱溶釜脱溶采用升温至65-70℃，用循环热水升温；
[0038] (8)、脱溶完毕，加入300kg乙酸乙酯，转料至结晶釜结晶、离心，烘干即得。
[0039] 该产品的合成先要合成两个中间体，两个中间体反应再与一甲胺反应生成烯啶虫
胺最终产品。
[0040] 1乙胺化:
[0041] \[\begin{align*}
2\text{-氯-5-氯甲基毗啶} & \quad \text{乙胺} \\
\text{N-(6-氯-3-吡啶基甲基)-N-乙胺} &
\end{align*} \]
[0042] 2硝基化:
[0043] \(\text{Cl}_3\text{C} = \text{CH}_2\text{HC}l + \text{HNO}_3 \rightarrow \text{Cl}_3\text{C} = \text{CH}_2\text{NO}_3 \)
[0044] 1,1-二氯乙烯盐酸硝酸 1,1-三氯 -2- 硝基乙烯
[0045] \(\text{Cl}_3\text{CCH}_2\text{NO}_3 + \text{NaOH} \rightarrow \text{Cl}_3\text{CCHNO}_3 \)
[0046] 1,1,1-三氯 -2- 硝基乙烯液碱 1,1- 二氯 -2- 硝基乙烯
[0047] 3合成:
[0048] \[\begin{align*}
\text{N-(6-氯-3-吡啶基甲基)-N-乙胺} & \\
\text{一甲胺} & \quad \text{烯啶虫胺}
\end{align*} \]
[0049] 本发明的有益效果：
[0050] 本发明以2-氯-5-氯甲基毗啶计，乙胺化中间体收率达到95%，以1,1- 二氯乙烯
计，1,1,1-三氯 -2- 硝基乙烯的收率68%及1,1- 二氯 -2- 硝基乙烯收率55%，以乙胺
化中间体计，烯啶虫胺收率为63%总收率为52.25%。该项技术操作条件宽、反应条件温
和，易控制，收率较高、单位成本低，是成功的生产技术。
具体实施方式
[0051] 实施例 1、
[0052] 1.乙胺化
[0053] （1）、向搪瓷反应釜中投入 500kg 甲苯，开启搅拌，冷冻降温，降温至 10℃以下，再投入已熔融好的含量 92% 的250kg 的 2-氯-5-氯甲基吡啶；
[0054] （2）、在釜温 0～10℃开始滴加含量 70%的 300kg 的乙胺，滴加完毕，在 20～25℃保温 5～6 小时，直至 2-氯-5-氯甲基吡啶含量≤0.5%，反应结束；
[0055] （3）、反应结束后将物料转入中和釜，加入含量 30%的液碱 260kg 进行中和，搅拌 30 分钟，静置 30 分钟分层；
[0056] （4）、分下层水层至分层贮罐，上层甲苯转料至脱溶釜；
[0057] （5）、将水层转入中和釜，用甲苯 180kg 进行萃取，萃取二次；
[0058] （6）、合并甲苯层转至脱溶釜，并向釜内加 150kg 水，水洗甲苯层一次，静置分层，分去下层水层；
[0059] （7）、热水升温，负压 -0.095MPa 脱甲苯，温度控制在 100℃以内。当甲苯流量减少小时，适当降温后，再向釜内加入 50kg 水，共沸脱出残留的甲苯；
[0060] （8）、开启冷却水降温至 40℃以下，放出脱溶釜内料桶，含含量 92% 重量 250.1kg 乙胺化中间体，回收率 95%。
[0061] 2.硝化
[0062] （1）、将含量 30%的盐酸 800 kg 投入搪瓷反应釜中开启搅拌，冷冻降温，降温至 10℃以下，开启尾气吸收装置；
[0063] （2）、向搪瓷反应釜中慢慢加入含量 65% 的 650kg 硝酸，配置成混酸；
[0064] （3）、向搪瓷反应釜中滴加 500kg 的 1,1-二氯乙烯，控制温度在 20～25℃，注意釜内温度变化，滴加结束，20～25℃保温 4 小时；
[0065] （4）、静置 20 分钟分层，下层转移至水洗分层釜，上层废酸直接排放到废酸池；
[0066] （5）、水洗分层釜加水 200kg，搅拌 20 分钟，静置 20 分钟分层，得含量 85% 的 1,1,1-三氯-2-硝基乙烯中间体 736kg，回收率 68%；
[0067] （6）、将 1,1,1-三氯-2-硝基乙烯中间体 736kg 投入反应釜中，在 0～5℃滴加含量 15% 的液碱 1028kg，进行消除反应，滴毕后在 0～5℃保温 1 小时，静置 2 小时分层，得含量 80% 的 1,1-二氯-2-硝基乙烯中间体 498kg，回收率 80%。
[0068] 3.合成
[0069] （1）、将 700 kg 的水投入搪瓷反应釜中，开启搅拌，投入 98% 碳酸钾 180 kg，配成 20% 左右水溶液；投入 800 kg 的二氯乙烷，冷冻降温至 0℃以下；
[0070] （2）、向搪瓷反应釜中加入 1,1-二氯-2-硝基乙烯中间体 160kg，温度不可超过 3℃；
[0071] （3）、在 4～6℃滴加 147kg 乙胺化中间体，滴加完毕，于 4～6℃保温 4 小时；
[0072] （4）、在 4～6℃滴加 350kg 一甲胺，控制滴加流量，防止温度上升过快，滴加完毕后于 5～7℃保温 4 小时，升温至 20～25℃转釜至分层釜，升温至 30℃保温 1 小时；
[0073] （5）、保温完毕，静置 30 分钟后分层抽滤至脱溶釜；
[0074] （6）、用二氯乙烷萃取 2 次，每次 125kg，分层抽滤至脱溶釜脱溶；
脱溶釜采用升温至 65-70℃，用循环热水升温；

脱溶完毕，加入 300kg 乙酸乙酯，转料至结晶釜结晶、离心，烘干得含量 95% 的烯啶虫胺产品 140kg。

试验结果表明，以 2- 氯 -5- 氯甲基吡啶计，乙胺化收率达到 95%；以 1,1- 二氯乙烯计，1,1,1- 三氯 -2- 硝基乙烯的收率 68%，1,1- 二氯 -2- 硝基乙烯收率为 55%；以乙胺化中间体计，烯啶虫胺收率 63%，三步总收率为 52.25%。该项技术操作条件宽、反应条件温和，易控制，收率较高、单位成本低，是成功的生产技术。

实施例 2、

一种烯啶虫胺的制备方法，包括以下步骤：

A、乙胺化

将定量的甲苯溶剂投入搪瓷反应釜中，降到 10℃以下，投入已熔融好的 2- 氯 -5- 氯甲基吡啶，于 5℃滴加乙胺，控制好温度，滴毕，于 25℃下保温 5 小时，当 2- 氯 -5- 氯甲基吡啶反应完全，转入中和釜，加液碱中和，分层，下层水层用甲苯回收萃取两次，水层萃取的油层与釜中油层合并；水洗一次，分去下层水层，油层进行负压回收溶剂，回收溶剂后期补加少量水，蒸出残留溶剂，即得乙胺化中间体；

B、硝基化

将定量的盐酸和硝酸投入搪瓷反应釜中，降到 10℃以下，滴加 1,1- 二氯乙烯，控制温度在 20-25℃，保温 4 小时，分层水洗得中间体硝基乙烯，将硝基乙烯投入搪瓷釜中，控制温度在 0-5℃，滴加 15% 液碱，滴毕保温 1 小时，静置 2 小时分层，得硝基乙烯中间体；

C、合成

将适量水投入搪瓷反应釜中，投入二氯乙烯溶剂，搅拌下加入碳酸钾，抽入硝基乙烯中间体，于 4-6℃滴加乙胺化中间体，滴毕于此温度保温 4 小时左右，再于此温度下滴加一甲胺，保温 4 小时，升温至 30℃保温 1 小时，反应结束后，分层、抽滤、萃取、脱溶、结晶，离心得到产品。

试验结果表明，以 2- 氯 -5- 氯甲基吡啶计，乙胺化收率达到 97%。

实施例 3、

所述的一种烯啶虫胺的制备方法，制备方法包括以下步骤：

A、乙胺化

向搪瓷反应釜中投入 500kg 甲苯，开启搅拌，冷冻降温，降温至 10℃以下，再投入已熔融好的含量 92% 的 250kg 的 2- 氯 -5- 氯甲基吡啶；

在釜温 10℃开始滴加含量 70% 的 300kg 的乙胺，滴毕，在 20-25℃保温 5-6 小时，直至 2- 氯 -5- 氯甲基吡啶含量 ≤ 0.5%，反应结束；

反应结束后将物料转入中和釜，加入含量 30% 的液碱 260kg 进行中和，搅拌 30 分钟，静置 30 分钟分层；

分下层水层至分层贮罐，上层甲苯转料至脱溶釜；

将水层抽入中和釜，用甲苯 180kg 进行萃取，萃取二次；

合并甲苯层转至脱溶釜，并向釜内加 150kg 水，水洗甲苯层一次，静置分层，分去下层水层；
[0096] （7）热水升温，负压 -0.095MPa 脱甲苯，温度控制在 100℃以内，当甲苯流量减小时，适当降温后，再向釜内抽出 50kg 水，脱除残留的甲苯；
[0097] （8）蒸馏结束后，开启冷却水降温至 40℃以下，放出脱溶釜内料装桶，得乙胺化中间体；
[0098] B. 硝化
[0099] （1）将含量 30% 的盐酸 800 kg 投入搪瓷反应釜中开启搅拌，冷冻降温，降温至 10℃以下，开启尾气吸收装置；
[0100] （2）向搪瓷反应釜中慢慢加入含量 65% 的 650kg 硝酸，配置成硝酸；
[0101] （3）向搪瓷反应釜中滴加 500kg 的 1,1-二氯乙烯，控制温度在 25℃，滴加结束，25℃保温 4 小时；
[0102] （4）静置 20 分钟分层，下层转移至水洗二层釜，上层废酸直接排放到废酸池；
[0103] （5）水洗二层釜加水 200kg，搅拌 20 分钟，静置 20 分钟分层，得 1,1,1-三氯 -2- 硝基乙烷中间体；
[0104] （6）将 1,1,1-三氯 -2- 硝基乙烷中间体 736kg 滴入反应釜中，在 5℃滴加含量 15% 的液碱 1028kg，进行消除反应，滴毕于 0-5℃保温 1 小时，静置 2 小时分层，得 1,1-二氯 2- 硝基乙烯中间体；
[0105] C. 合成
[0106] （1）将 700 kg 的水加入搪瓷反应釜中，开启搅拌，投入 98% 碳酸钾 180 kg，配成 20% 左右水溶液，投入 800kg 的二氯乙烷，冷冻降温至 0℃以下；
[0107] （2）向搪瓷反应釜中加入 1,1-二氯 2- 硝基乙烯中间体 160kg，温度不可超过 3℃；
[0108] （3）在 6℃滴加 147kg 乙胺化中间体，滴加完毕，于 6℃保温 4 小时；
[0109] （4）在 4℃滴加 350kg 一甲胺，滴加完毕于 7℃保温 4 小时，升温至 20℃转釜至分层釜，升温至 30℃保温 1 小时；
[0110] （5）保温完毕，静置 30 分钟后分层抽滤至脱溶釜；
[0111] （6）用二氯乙烷萃取 2 次，每次 125kg，后分层抽滤至脱溶釜脱溶；
[0112] （7）脱溶釜脱溶采用升温至 70℃，用水循环热水升温；
[0113] （8）脱溶完毕，加入 300kg 乙酸乙酯，转料至结晶釜结晶、离心，烘干含量 95% 的烯啶虫胺产品 140kg。