PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOG6F 15/00, 15/16 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/22540

20 April 2000 (20.04.00)

(21) International Application Number: PCT/US99/24143

(22) International Filing Date: 14 October 1999 (14.10.99)

(30) Priority Data:

09/173,481 14 October 1998 (14.10.98) us

(71)(72) Applicant and Inventor: SMALL, Hunter [US/US]; 6455
Squire Canyon, San Luis Obispo, CA 93401 (US).

(74) Agents: WININGER, Aaron et al.; Carr and Ferrell LLP, 2225
E Bayshore Road, Palo Alto, CA 94303 (US).

EX

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CZ, DE, DK, DM, EE, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG,
MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE,
SG, SI, SK, SL, TJ, T™, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD,
SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG,
KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW,
ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Titlee APPARATUS AND METHOD FOR EFFICIENTLY UPDATING FILES IN COMPUTER NETWORKS

50

s S

Client Computer 1
52

faiad

Network Channe!

l Client Computer N

(57) Abstract

.
L_,{ Server Computer M l

Server computer (54) storing a baseline file (88) having baseline data is coupled (56) to client computer (52) storing a local file (70)
having modified data. First tier baseline keys (92) are generated for and associated with first tier subsets of the baseline data. First tier
client keys (72) are generated for and associated with first tier subsets of the modified data. When the associated keys match (136), a first
tier subset of baseline data is transferred to server (54) destination file (90). When the associated (72, 92) keys do not match, a second
tier baseline key (92) is generated for and associated with a second tier baseline subset of first tier baseline data. At least one second tier
client key (72) is generated for and associated with a second tier client subset of first tier modified data (138). Either second tier subset is
transferred to the destination file (90) based on the associated second tier keys (72, 92).

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN

CzZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KpP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
Sb
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
TJ
™
TR
TT
UA
uG
Us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

WO 00/22540 PCT/US99/24143

APPARATUS AND METHOD FOR EFFICIENTLY UPDATING FILES IN
COMPUTER NETWORKS

Brief Description of the Invention

This invention relates generally to transferring computer files in computer
networks. More particularly, this invention relates to a technique for updating a file

stored in a first computer so that it replicates a corresponding modified file on a second

computer.

kgr f the Invention

In client-server computer systems, information that is stored in a file on a
remotely located server computer is often copied to a file on a local client computer. A
user then updates the copied file on the local client computer. Thereafter, the two
copies of the file do not match; and the user subsequently copies the updated file back
to a destination file on the server computer.

Typically a network connects the client computer to the remote computer.
Tran§ferring files over the network between client and server computers consumes
network resources and takes time. When copying the updated file on the client
computer back to the destination file on the server computer, network traffic is
increased. Typically, only portions of files are updated or changed. Therefore, sending
unchanged contents of the file increases the amount of time and consumes network
resources.

It would be highly desirable to develop a technique that transfers a portion of

the updated file on the client computer to the destination file on the server computer to

10

15

20

25

30

WO 00/22540 PCT/US99/24143

increase the speed of the file transfer and reduce consumption of valuable network

resources.

Summary of the Invention

The method of the invention includes the step of transferring a modified portion
of a modified file from a client computer to a destination file on a server computer.

The server computer also has a baseline file which is an earlier version of the modified
file. A difference engine identifies portions of the modified file that differ from
corresponding portions of the baseline file. The difference engine causes the modified
portions of the modified file to be transferred to the destination file on the server
computer, while unmodified portions of the modified file are transferred from the
baseline file to the destination file.

In particular, a method of transferring a file is executed by a client computer
under control of a first program portion and is also executed by a server computer
under control of a second program portion. The server computer stores a baseline file
having baseline data. The client computer stores a local file that is a modified baseline
file having modified data. The client computer is coupled to the server computer. First
tier baseline reference keys are generated and associated for first tier subsets of the
baseline data stored in the baseline file. A predetermined key defining method is used
to generate the first tier baseline reference keys from at least a portion of the associated
first tier subset of the baseline data. First tier client reference keys are generated and
associated for first tier subsets of the modified data stored in the local file using the
key defining method. The first tier client reference keys are generated from at least a
portion of the associated first tier subset of the modified data. One of the first tier
subsets of baseline data is transferred to the destination file stored on the server
computer when the associated first tier baseline and client reference keys match. At
least one second tier baseline reference key is generated and associated for at least one
second tier baseline subset of one of the first tier subsets of the baseline data. At least
one second tier client reference key is generaied and associated for at least one second
tier client subset of one of the first tier subsets of the modified data, when the
associated first tier baseline reference key and the associated first tier client reference

key do not match. At least one second tier baseline subset or the at least one second

10

15

20

25

30

WO 00/22540 PCT/US99/24143

tier client subset is transferred to the destination file, based on the associated second
tier baseline reference key and the associated second tier client reference key.

The invention more efficiently transfers data across the network By copying
unmodified portions of the baseline file on the server to the destination file. In this
way, performance is improved. The invention thereby more effectively utilizes the
network. Another advantage is that the invention can be utilized with multiple clients

and a single server, or multiple clients and multiple servers.

ription of rawi

For a better understanding of the invention, reference should be made to the
following detailed description taken in conjunction with the accompanying drawings, in
which:

FIGURE 1 illustrates a single computer constructed in accordance with an
embodiment of the invention.

FIGURE 2 illustrates a client/server computer network constructed in
accordance with an embodiment of the invention.

FIGURE 3 illustrates an exemplary baseline file organized into segments and
metasegments.

FIGURE 4 illustrates a general operation of one embodiment of the method of
the present invention.

FIGURE 5 illustrates a metasegment array in accordance with an embodiment
of the invention.

FIGURE 6 illustrates a segment array in accordance with an embodiment of the
invention,

~ FIGURES 7A and 7B illustrate a detailed operation of the method of the

present invention shown in Figure 4.

FIGURE 8 illustrates the operation of one embodiment of a compare procedure
that determines an adjustment factor.

FIGURE 9 illustrates the method of determining the adjustment factor using
exemplary character sequences in a baseline segment buffer (base_buf) and a client

segment buffer (client_buf).

Like reference numerals refer to corresponding parts throughout the drawings.

10

15

20

25

30

WO 00/22540 PCT/US99/24143

Detailed Description of the Inventi

Figure 1 illustrates a computer 20 constructed in accordance with an
embodiment of the invention. The computer 20 includes a Central Procéssing Unit
(CPU) 22 that communicates with a set of input/output devices 24 over a system bus
26. The input/output devices 24 include a keyboard 28, a mouse 30, a video monitor
32, a network interface card 34, a disk drive 36, a printer 38, etc. The CPU 22 is also
connected to a memory (primary and/or secondary) 42 via the bus 26. The interactions
between the CPU 22, the input/output devices 24, the system bus 26, and the memories
42 are known in the art. The present invention is directed toward the operation of
these components in connection with transferring a file between a client computer and a
server computer.

Figure 2 illustrates a client/server computer network 50 constructed in
accordance with an embodiment of the invention. The computer network 50 includes a
client computer 52 that communicates with a server computer 54 over a network
channel 56. The client computer 52 includes a CPU 60, memory 61, network interface
circuit 62 and disk drive 63 which communicate over a system bus 64. The client
computer 52 also includes an operating system 66, a first portion of the difference
engine 68 called active storage port - client (asp_client), a modified file 70 and a client -
reference key array 72 stored in the memory 61.

The server computer 54 includes a memory 75, network interface circuit 76 and
a CPU 78 that communicate over a system bus 80. The memory 75 stores the
operating system 84, a second portion of the difference engine 86 called active storage
port - server (asp_server), a baseline file 88, a destination file 90, a baseline reference
key array 92, a client reference key array 94 and buffers 95 including a baseline
segmént buffer (baseline buffer) and a client segment buffer (client buffer). The server
computer 54 also has a disk drive 96 connected to the system bus 80. In an alternate
embodiment, a hierarchical storage system 98 is connected to the system bus 80. The
hierarchical storage system 98 includes a disk 102 and a tape drive 104.

The computer network 50 may include a large number of client computers 52
and server computers 54. In one embodiment, multiple (N) clients (Client Computer
N) 106 are connected to the Server Computer 54 via the network channel 56. In

another alternate embodiment, multiple (N) clients 106 are connected to multiple (M)

10

15

20

25

30

WO 00/22540 PCT/US99/24143

servers (Server Computer M) 108 via the network channel 56. Preferably the network
channel is the internet using TCP/IP protocol.

Possible architectures in which the present invention may be usedhave now
been described. Attention presently turns to a discussion of the processing executed by
the method of transferring files of the invention.

In the present invention, the server computer 54 stores a file, called the baseline
file 88. At the client computer 52, a user makes a local copy of the baseline file 88,
modifies the baseline file and stores the modified file 70 in memory 61. The client
computer 52 executes a first program portion (asp_client) 68 and the server computer
executes a second program portion (asp_server) 86 of the difference engine. The first
and second program portions control the client and server computers, respectively, to
transfer the modified file on the client computer to the destination file on the server
computer.

The present invention provides a noteworthy technique of generating the
destination file 90 on the server computer 54, that matches a more recent copy of the
modified file 70 on the client computer, without transferring the entire contents of the
modified file 70 to the server computer 54 via the network channel 56. The present
invention identifies subsets of the data in the modified file 70 having bytes that were
changed, added or deleted, and transfers those identified subsets of data to the server
computer 54 to reduce the amount of data transmitted over the network channel 56. In
a network environment, the invention significantly reduces the amount of network
traffic. Because the invention uses the client/server architecture, performance gains are
realized through concurrent processing. The present invention is especially useful
during a backup operation of the files on the client computer 52 to the server computer
54. However, the invention is not meant to be limited only to backup operations
between client and server computers and can be used in other file transfer operations.

In Figure 3, the contents or bytes of an exemplary baseline file 88 are organized
into segments 112. A segment 112 is a fixed size portion of a file. In Figure 3, the
segments 112 have six bytes. A file can have any number (N) of segments 112. The
number of segments 112 is determined by dividing the total number of bytes stored in
the file (total file size) by the number of bytes in each segment (segment size). In an

alternate embodiment, the segment size is variable such that the segments of the

10

15

20

25

30

WO 00/22540 PCT/US99/24143

baseline file have different numbers of bytes. The invention has been implemented with
a segment 112 that has 4K (4,096) bytes.

A metasegment 114 is a group or set of (N) contiguous segments-112. The
number of segments 112 in a metasegment 114 is configurable. In Figure 3, the
metasegments 114 have two segments. The invention has been implemented with a
metasegment that has 32 segments, therefore the metasegment has 128K (131,072)
bytes.

Figure 4 provides an overview of the method of the present invention. In step
132, first tier baseline reference keys are generated and associated for first tier subsets
of the baseline data such as metasegments stored in the baseline file. A predetermined
key defining method generates the first tier baseline reference keys from at least a
portion of the baseline data of the associated first tier subset. In particular, the key
defining method generates a cyclic redundancy code (CRC) value for the associated
baseline data. Similarly, in step 134, first tier client reference keys are generated and
associated for first tier subsets of the modified data stored in the local file using the key
defining method. The first tier client reference keys are generated from at least a
portion of the associated first tier subset of the modified data. In step 136, one of the
first tier subsets of baseline data is transferred to a destination file stored on the server
computer when the associated first tier baseline and client reference keys match. In
step 138, when the associated first tier baseline and client reference keys do not match
in the server, at least one second tier baseline reference key is generated for and
associated with at least one second tier baseline subset, such as a segment of one of the
first tier subsets of the baseline data. In addition, in the client, at least one second tier
client reference key is generated for and associated with at least one second tier client
subset of one of the first tier subsets of the modified data. In steps 140 and 142, at
least one second tier baseline subset or the at least one second tier client subset is
transferred to the destination file, based on the associated second tier baseline and
client reference keys.

In particular, in step 140, at least one second tier baseline subset is transferred
to the destination file when the associated second tier baseline and client reference keys

match. In step 142, at least one second tier client subset is transferred to the

10

15

20

25

30

WO 00/22540 PCT/US99/24143

destination file when the associated second tier baseline and client reference keys do
not match.

In a preferred embodiment, the metasegments are mutually exclusive such that
data of the file is part of only one metasegment.

Referring to Figure 5, a metasegment array 152 stores and associates the
generated first tier subset of metasegment information. The metasegment array 152
stores the metasegment number 154, a file offset 156, the length of the metasegment in
bytes 158 and the reference key value 160, such as the CRC value, for groups of
metasegments making up the file. In an alternate embodiment, the metasegment array
is generated for all metasegments making up the file at one time. A baseline
metasegment array is generated for the baseline data in the baseline file. A client
metasegment array is generated for the modified data in the modified file. The file
offset 156 is a positional address of the first byte of the associated metasegment in the
file with respect to the first byte of the file.

In an alternate embodiment, the reference key value 160 uses a predetermined
key defining method such as digital signature encryption, and in particular MD4-128
bit. MD2, MD4 and MD5 are message-digest algorithms developed by Rivest, and are
used in digital signature applications where a large message is compressed in a secure
manner before being signed with a private key. All three algorithms generate a 128 bit
message digest from a message of arbitrary length. While the structures of these
algorithms are somewhat similar, the design of MD?2 is quite different from that of
MD4 and MDS. MD2 was optimized for 8-bit machines, whereas MD4 and MD5 were
aimed at 32-bit machines.

Figure 6 illustrates the method uses a segment array 162 to store and associate
the generated second tier subsets of segment information. The segment array 162
stores the segment number 164, a file offset 166, the length of the segment in bytes 168
and the reference key value 170 for groups of segments making up a metasegment of
interest. In an alternate embodiment, the segment array 162 is generated for all
segments of the metasegment of interest. The file offset 166 is a positional address of
the first byte of the associated segment in the file with respect to the first byte of the
file. The reference key value is the CRC value generated using the same

predetermined key defining method that was applied to the metasegments. In an

10

15

20

25

30

WO 00/22540 PCT/US99/24143

alternate embodiment, a different key defining method is used to generate the reference
key values for the segments. A first key defining method generates the reference key
values for the metasegments and a second key defining method generates the reference
key values for the segments.

Referring to Figure 7A, a detailed flowchart of the operation of the difference
engine is shown. In step 172, the server computer calculates a CRC value for subsets
of data, such as the metasegments (MS), stored in the baseline file. The server
computer also calculates the CRC value for at least a portion of the metasegment of the
baseline file. Alternately, the server computer calculates the CRC values for all
metasegments of the baseline file. The server computer stores the baseline
metasegment number, a file offset, the length of the metasegment in bytes and the CRC
value in the baseline metasegment array on the server. In step 174, the server computer
creates a new empty destination file on the server computer.

In step 176, the server computer requests that the client computer determine a
CRC value for subsets of the data (metasegments) in the local or modified file. The
client computer generates, populates and stores the client metasegment array with the
metasegment number, file offset, metasegment length and CRC value for at least a
portion of the metasegments making up the modified file. The client metasegment
array is stored on the client computer. The client computer transfers the client
metasegment array to the server computer.

In step 178, the server computer initializes a metasegment counter to zero to
point to the first metasegment in the baseline and client metasegment arrays. The
server computer also initializes a segment mismatch counter to zero. The segment
mismatch counter is subsequently used to terminate the execution of the method of the
present invention if the number of segment mismatches exceeds a predetermined bail-
out threshold.

In step 180, the server computer compares the CRC values for the current
metasegment pointed to by the metasegment counter in the baseline metasegment array
and client metasegment array.

Step 182 determines if the CRC values match. If so, in step 184, the server
computer copies or transfers the data associated with the matching metasegment from

the original, baseline file on the server to the destination file, also on the server. Step

10

15

20

25

30

WO 00/22540 PCT/US99/24143

186 increments the metasegment counter. Step 188 determines if there are any more
metasegments to process. If so, the process proceeds to step 180. If not, the process

B

ends at step 190.
However, if in step 182, the CRC values do not match, in step 192, the server

computer generates a CRC value for at least one subset of data, such as a segment, of
the metasegment of the baseline file having the mismatched CRC values. In particular,
the server computer generates a baseline segment array storing the segment number,
file offset, segment length and CRC value, as shown in Figure 6, for at least a portion
of the segments. In an alternate embodiment, the server computer generates a baseline
segment array with CRC values for all segments of the metasegment of the baseline file
having the mismatched CRC values.

In step 194, the server computer requests that the client computer generate
CRC values for at least one segment of the metasegment of the modified file having the
mismatched CRC value. In particular, the client computer generates a client segment
array storing the segment number, file offset, segment length and CRC value, as shown
in Figure 6, for at least a portion of the segments. In an alternate embodiment, the
server computer generates CRC values for all segments of the metasegment of the
modified file having mismatched CRC values.

In step 196, the client computer sends or transfers the generated client segment
array to the server computer. The server computer then begins a segment-by-segment
comparison to identify matching and mismatching segments using the CRC values from
the baseline and client segment arrays. In step 198, the server computer sets a segment
counter equal to zero to point to the first segment in the baseline and client segment
arrays. In step 200, the server computer compares the CRC values for the segment
pointed to by the segment counter of the baseline and client segment arrays. Step 202
determines if the CRC values match. If so, in step 204, the server computer transfers
or copies the data from the associated segment of the baseline file on the server into the
destination file on the server. Step 206 increments the segment counter. Step 208
determines if there are more segments to compare. If not, step 208 proceeds to step

186 to process the next metasegment. If so, step 208 proceeds to step 200 to compare

the CRC values for the next segment.

10

15

20

25

30

WO 00/22540 PCT/US99/24143

However, if in step 202, the compared CRC values for the segment do not
match, in step 210, the segment mismatch counter (SMC) is incremented. Step 212
compares the segment mismatch counter to a predetermined bail-out threshold. If the
segment mismatch counter equals the predetermined bail-out threshold, in step 214, the
server copies or transfers the remaining data from the modified file on the client
computer to the destination file on the server computer. In step 216, the process ends.

If the predetermined bail-out threshold is not reached, in step 218, the server
computer reads the data for the mismatched segment from the baseline file and stores
the segment data in a baseline buffer 95 (Figure 2) in the memory of the server

computer. In step 220, the server computer requests that the client computer send the

- data for the mismatched client segment from the modified file to the server computer.

In step 222, the server computer transfers or copies the client segment that was sent
from the modified file into the destination file on the server. The server computer also
stores the client segment in a client segment buffer 95 (Figure 2) in the memory of the
server computer. In step 224, the server computer compares the data of the
mismatched baseline and client segments stored in the baseline and client segment
buffers, respectively, to determine an adjustment factor between the mismatched
segments using a comparison procedure. The adjustment factor represents the number -
of bytes inserted and deleted in the client segment with respect to the baseline segment.
The adjustment factor is used to attempt to realign the subsequent segments and
metasegments of the baseline and modified files.

In step 226, the server computer increments the segment counter. In step 228,
the server computer adds the adjustment factor to the file offset of the baseline segment
array to generate an adjusted baseline segment array, beginning at the segment pointed
to by the segment counter, to adjust the starting position of the baseline data in the
segments.

In step 230, the server computer redetermines or regenerates the CRC values
for the adjusted segments in the adjusted baseline segment array, beginning at the
segment pointed to by the segment counter. In one embodiment, the server computer
completely recalculates the CRC value for the subsequent segments using all data

associated with each new segment. In an alternate embodiment, the server computer

10

10

15

20

WO 00/22540 PCT/US99/24143

performs a partial recalculation of the CRC value by subtracting the data that was
deleted from the segment and adding the new data.

In step 232, the server computer compares the redetermined CRE value in the
adjusted baseline segment array for the segment pointed to by the segment counter to
the corresponding client segment pointed to by the segment counter. In step 234, if
the CRC values do not match, the process restores the unadjusted baseline segment
array with the original file offset and CRC values (Step 236) and proceeds to step 200.
However, if the CRC values match, in step 238, the server computer applies the
adjustment factor to the file offset of the subsequent uncompared metasegments in the
baseline metasegment array and redetermines the associated CRC values for the

adjusted metasegments. The process then proceeds to step 200.

xample of 3 File Transfer Using the Difference Engin

In this example, assume that the baseline file on the server has 1,011 bytes, and
the modified file on the client has 1,018 bytes. The modified file differs from the
baseline file as follows:

1 byte was changed at file offset 273,

4 bytes were inserted at file offset 511,

S bytes were inserted at file offset 802, and

2 bytes were deleted at file offset 807.
The segment size or length is ten bytes, and the metasegment size is ten segments.
Therefore the metasegment size or length is 100 bytes.

Table 1 below shows an exemplary baseline metasegment array that is
generated in step 172 of Figure 7A. In Table 1, the baseline file has eleven

metasegments, and follows the format described above with respect to Figure 5.

11

WO 00/22540 PCT/US99/24143

Table 1
A baseline metasegment array
Metasegment No. | File Offset (bytes) | Metasegment - CRC Value
Length (bytes)
0 0 100 0x0123
5 11 100 100 0xFOOA
2 200 100 0xE321
3 300 100 0x6543
4 400 100 0xA001
5 500 100 0x0D12
10 |6 600 100 0x341A
7 700 100 OxE898
8 800 100 0x03AF
9 900 100 0xD400
10 1000 11 0x2C9%4
15 Table 2 depicts the client metasegment array for the modified file that is

generated in step 176 of Figure 7A, and transferred to the server computer. In the
CRC value column, the asterisk (*) indicates that this CRC value differs from the CRC

value calculated in the baseline file shown in Table 1.

12

10

15

20

25

WO 00/22540 PCT/US99/24143

Table 2
A client metasegment array >
Metasegment No. | File Offset (bytes) | Metasegment CRC Value
Length (bytes)
0 0 100 0x0123
1 100 100 0xFOOA
2 200 100 O0xE253*
3 300 100 0x6543
4 400 100 0xA001
5 500 100 0x8A00*
6 600 100 0x912A*
7 700 100 0x1234*
8 800 100 OxEOOF*
9 900 100 0x854E*
10 1000 11 0x160B*

The method proceeds to step 178 where the metasegment counter is set to zero,
and the segment mismatch counter is set to zero. In step 180, the server computer
compares the CRC values of the baseline and client metasegment arrays for the
metasegment pointed to by the metasegment counter. Step 182 determines if the CRC
values match. In this example, the CRC values will match until metasegment two is
reached. For those CRC values that match, the server computer transfers the data in
the associated metasegment from the baseline file into the destination file (step 184).
The server computer increments the metasegment counter (step 186), determines that
the last metasegment has not been reached (step 188) and loops back to step 180 for
the next metasegment comparison.

In this example, when the metasegment counter is equal to two, step 182 will
determine that the CRC values in the baseline metasegment array and the client
metasegment array for metasegment two do not match. Then, in step 192, the server

computer generates a baseline segment array for the segments making up the

13

WO 00/22540 PCT/US99/24143

mismatching baseline metasegment. Table 3 shows an exemplary baseline segment

array.

Table 3
Exemplary baseline segment array
5 | Segment No. | File Offset (bytes) | Segment Length (bytes) CRC Value
0 200 10 0x1234
1 210 10 0xF302
2 220 10 0x4521
3 230 10 0x87AE
10 |4 240 10 0x4500
5 250 10 0x33EA
6 260 10 0x9000
7 270 10 0x145C
8 280 10 0x3210
15 9 290 10 OxEF12

In step 194, the server computer requests that the client computer generate a
client segment array for the mismatching client metasegment. Table 4 below shows an

exemplary client segment array.

14

10

15

20

25

30

WO 00/22540 PCT/US99/24143

Table 4

Exemplary client segment array
Segment No. | File Offset (bytes) | Segment Length (bytes) | CRC Value
0 200 10 0x1234
1 210 10 0xF302
2 220 10 0x4521
3 230 10 0x87AE
4 240 10 0x4500
5 250 10 0x33EA
6 260 10 0x9000
7 270 10 Ox30AF*
8 280 10 0x3210
9 290 10 OxEF12

Since one byte of segment seven was changed in the modified file on the client
computer, only segment seven of the client segment array of Table 4 has a CRC value
that is different from the CRC value for segment seven in the baseline segment array of
Table 3. In step 196, the client computer sends the client segment array to the server
computer. The server computer sets a segment counter equal to zero (step 198). Since
the CRC values for segments zero through six match, the server computer executes
steps 200, 202, 204, 206 and 208 to transfer the data in the matching segments from
the baseline file into the destination file. When the segment counter reaches segment
seven, step 202 determines that the CRC values do not match and proceeds to step
210. -

The server computer increments the segment mismatch counter (step 210) and
determines if the segment mismatch counter equals a bail-out threshold value (step
212). Inthis example, the segment mismatch counter is not exceeded and the server
computer reads the data for the mismatched baseline segment from the baseline file and
stores it in a baseline segment buffer (base_buf) (Step 218). The server computer also
requests that the client computer send the data from the mismatched segment from the

modified file, stores the client segment in a client segment buffer (client_buf) (Step

15

10

15

20

25

WO 00/22540 PCT/US99/24143

220) and transfers the client segment data to the destination file (step 222). In step
224, the server executes a compare procedure to compare the mismatched baseline and
client segments in the baseline and client segment buffers, respectively, te.determine an
adjustment factor. The adjustment factor is an integer that represents a number of
bytes in which the data in the baseline file has shifted or moved or been repositioned
with respect to the data in the modified file. The adjustment factor represents a
potential shift of the data. The technique for determining the adjustment factor will be
discussed in further detail below with respect to Figures 8 and 9.

In this example, in step 224, the compare procedure returns a value of zero for
the adjustment factor because the byte in segment seven changed, without insertions or
deletions, and therefore data was not positionally shifted between the baseline and
modified files. The server computer adds the adjustment factor to the file offset of the
baseline segment array (228) if the adjustment factor is valid. Since the adjustment
factor is equal to zero, the file offset values and CRC values in the baseline segment
array do not change (Steps 228, 230). Since the remaining segments have matching
CRC values (Step 234), step 238 applies the adjustment factor and proceeds to step
200. When all segments have been compared, the metasegment counter is incremented
(step 186) and the next metasegment is processed.

In this example, subsequent metasegment comparisons (steps 180, 182) have
matching CRC values until metasegment five is reached because four bytes were
inserted in metasegment five. In particular, step 224 returns an adjustment factor of a
negative four. Tables 5 and 6, below, show the baseline segment array and the adjusted
baseline segment array, respectively, for metasegment five. The file offset of Table 6

differs from the file offset of Table 5, but the CRC values for the metasegments of

Tables 5 and 6 are the same.

16

10

15

20

25

WO 00/22540 PCT/US99/24143

Table 5

Baseline segment array for metasegment five

Segment No. | File Offset (bytes) | Segment Length (bytes) CRC Value
0 500 10 0x1234
1 510 10 0xF302
2 520 10 0x4521
3 530 10 0x87AE
4 540 10 0x4500
5 550 10 O0x33EA
6 560 10 0x9000
7 570 10 0x30AF
8 580 10 0x3210
9 590 10 0xEF12
Table 6

Adjusted baseline segment array for metasegment five
Segment No. | File Offset (bytes) | Segment Length (bytes) CRC Value
0 500 10 0x1234
1 510 10 0xF302
2 516 10 0x4521
3 526 : 10 | 0x87AE
4 536 10 0x4500
5 546 10 0x33EA
6 556 10 - 0x9000
7 566 10 0x30AF
8 576 10 0x3210
9 586 10 0xEF12

17

10

15

20

25

30

WO 00/22540 PCT/US99/24143

Figure 8 illustrates the operation of one embodiment of the compare procedure
that determines the adjustment factor in step 224 of Figure 7B. The adjustment factor
is used to resynchronize the data in the segments and metasegments. The data of the
baseline and client segments is stored in respective baseline and client buffers. In step
252, the data pointers, called base pointer and client pointer, are initialized to point to
the start of the baseline and client buffers, respectively. A matching byte count is
initialized to zero. A run length parameter is initialized to a run length configuration
value read from a configuration file. The user can configure the run length
configuration value. The run length is used to determine if sequences of characters
match. An inserted byte count and a deleted byte count are also initialized to zero.
The inserted byte count stores a value representing a number of bytes inserted into the
client buffer. The deleted byte count stores a value representing a number of bytes
deleted from the client buffer.

Step 254 determines if there are more data bytes to compare in the baseline
buffer. If so, then step 256 compares one byte of data in the baseline and client buffers
at the location pointed to by the base and client pointers, respectively. If the bytes
match in step 258, the matching byte count is incremented (step 260) and the base and
client pointers are incremented (step 262). Step 262 then proceeds to step 254.

In step 258, if the bytes do not match, the compare procedure determines if
bytes were inserted. Step 264 saves the value of the client pointer in a temporary
variable (temp). Step 266 increments the client pointer. Step 268 determines if there is
more data in the client buffer to compare. If so, step 270 compares data bytes in the
baseline and client buffers pointed to by the base and client pointers, respectively. In
step 272, if the bytes do not match, the procedure proceeds to step 266.

~ However, in step 272, if the bytes match, step 274 compares a run or sequence
of consecutive data bytes in the baseline and client buffers beginning at the location
pointed to by the base and client pointers, respectively. The value of the run length
determines the number of bytes in the sequence of consecutive data. In step 276, if the
run of consecutive data bytes do not match, the procedure loops back to step 266.
However, if in step 276, the run of consecutive data bytes does match, bytes were
inserted and the inserted byte count is set equal to the value of the client pointer minus

the value of the base pointer plus the value of the inserted byte count (IBC) (step 278).

18

10

15

20

25

30

WO 00/22540 PCT/US99/24143

The compare procedure then branches to step 254 to find more uncompared data bytes
in the baseline buffer.

However, if in step 268, there is no more data in the client buffet, the compare
procedure determines if data bytes were deleted or changed in the client buffer. In step
282, the value of the client pointer is restored from the temporary variable (temp).

Step 286 determines if there are more uncompared data bytes in the baseline buffer. If
so, step 288 tests for deleted data by comparing the data bytes in the baseline and client
buffers that are pointed to by the base and client pointers, respectively. In step 290, if
the bytes match, the compare procedure has identified that bytes were deleted. In step
292, the deleted byte count is set equal to the value of the client pointer minus the
value of the base pointer plus one plus the value of the deleted byte count (DBC), then

proceeds to step 254.
In step 290, if the bytes do not match, step 296 performs a one byte look-ahead

function and tests to see if the next data byte changed. The data byte in the baseline
buffer pointed to by the value of the base pointer plus one is compared to the data byte
in the client buffer pointed to by the value of the client pointer plus one. In step 298, if
the bytes do not match, the compare procedure increments the base pointer (step 299)
and proceeds to step 286 to continue the search for deleted bytes. However, if the
bytes match, the compare procedure determines that the byte was changed, and
increments the base pointer (step 300), and the proceeds to step 254.

In step 254, if there are no uncompared data bytes in the baseline buffer, the
validity of setting a valid adjustment factor is determined. Step 302 compares the value
stored in the matching byte count with a predetermined threshold. The predetermined
threshold is equal to a validity percentage multiplied by the total number of bytes in a
segment. In one implementation, the validity percentage is equal to thirty-three percent
or one-third. The validity percentage is also configurable by the user. If the value
stored in the matching byte count is less than the predetermined threshold, a “false”
condition with no valid adjustment factor is returned (step 304). If the value stored in
the matching byte count is greater than or equal to the predetermined threshold, in step
306, the adjustment factor is set equal to the value of the inserted byte count minus the
value of the deleted byte count. Step 308 returns a “true” condition with the value the

adjustment factor.

19

10

15

20

25

30

WO 00/22540 PCT/US99/24143

Referring to Figure 9, the operation of the compare procedure to determine the
number of inserted and deleted bytes will now be explained. Figure 9 illustrates
exemplary character sequences in the baseline buffer and the client buffer> The top
sequence of cells represents the baseline buffer and the bottom sequence of cells
represents the client buffer. Each cell stores a byte. The numbers either above or
below the cells in the baseline buffer represents the location of the cell. For example, a
buffer pointer with a value of zero points to the first byte, an “a”. The run length is
equal to two.

Referring also to Figure 8, steps 252, 254 and 256 are executed. At this point,
the base and client pointers have a value of zero. In step 258, the byte of the baseline
buffer at location zero, which equals “a,” does not match the byte of the client buffer
at location zero, which equals “q.” Since “a” does not equal “q,” the compare
procedure saves the value of the client pointer (step 264), increments the client pointer
(step 266), determines that there is more data in the client buffer is not reached (step
268), and compares the byte pointed to in the baseline buffer by base pointer to the
byte in the client buffer pointed to by the client pointer (step 270). In step 272, since
the “a” of the baseline buffer does not equal the “w” of the client buffer, the compare
procedure proceeds to step 266 and increments the client pointer. The process repeats
until the client pointer has a value equal to five, when in step 272, the baseline buffer
byte, an “a,” matches the client buffer byte, an “a”. In step 274, since the run length is
equal to two, the string “ax” from the baseline buffer is compared to the string “ax” in
the client buffer. Since the strings match (step 276), step 278 sets the value of the
inserted byte count to be equal to the value of the inserted byte count, zero, plus the
value of the client pointer, five, minus the value of the baseline pointer, zero, resulting
in the inserted byte count having a value of five.

Next, in step 254, there is more data in the baseline buffer. Step 256 compares
the byte of data in the baseline buffer, “a”, with the byte of data in the client buffer, “a”.
Step 258 determines that the bytes match. Step 260 increments the matching byte
count to equal one. The base and client pointers are incremented such that the base
pointer has a value of one and the client pointer has a value of six.

The compare procedure then proceeds to execute steps 254 and 256. Step 258

again determines that the baseline buffer and client buffer both have and “x” at the

20

10

15

20

25

30

WO 00/22540 PCT/US99/24143

pointer locations. Step 260 increments the matching byte count to have a value of two.
Step 262 increments the base and client points, such that the base pointer has a value of
two and the client pointer has a value of seven. >

Steps 254 and 256 are executed, step 258 determines that the “z” at position
two in the baseline buffer does not match the “d” at position seven in the client buffer
and proceeds to step 264. Steps 266 through 272 are repeatedly executed and no
match is found.

At step 268, the client pointer has been incremented beyond the length of the
client buffer and the compare procedure proceeds to step 282 to determine if bytes
were deleted. In step 282, the value of the client pointer is restored from the temporary
variable, and the client pointer has a value of seven. Note that the base pointer, which
points into the baseline buffer, has a value of two. In step 286, there is more data in the
baseline buffer. Steps 288 and 290 determine that the “z” at position two in the
baseline buffer does not match the “d” at position seven of the client buffer. In step
296, a one by look-ahead is performed to determine if a byte was deleted or changed.
The “z” at position three in the baseline buffer is compared to the “e” at position eight
of the client buffer. In step 298, since the “z” and “e” do not match, the compare
procedure determined that a byte was deleted. The base pointer is incremented to three
(step 299) and the compare procedure proceeds to step 286. In step 288, the “z” at
position three of the baseline buffer is compared to the “d” at position seven of the
client buffer. Since the “z” and “d” do not match, in step 296, the “d” at position four
in the baseline buffer is compared to the “d” at position seven in the client buffer. In
step 298, the bytes are determined to match, and step 300 increments the base pointer
which now has a value of four. Step 286 determines that there is more data in the
baseline buffer. In step 288, the “d” at position four in the baseline buffer is compared
to the “d” at position seven in the client buffer. Step 290 determines that the bytes
match. Step 292 updates the deleted byte count. The deleted byte count is equal to the
value of the deleted byte count, zero, plus the value of the base pointer, four, minus the
value of the client pointer, seven, plus one, resulting in the deleted byte count having a

value of two. The compare procedure then returns to step 254 to search for more

inserted sequences and the process repeats.

21

10

15

WO 00/22540 PCT/US99/24143

In an alternate embodiment, the deleted byte count is determined using counters
instead of pointers. Those skilled in the art will recognize that a temporary variable can
store a count of miscompared bytes which is used to update the deleted bjte count.

The foregoing description, for purposes of explanation, used specific
nomenclature to provide a thorough understanding of the invention. However, it will
be apparent to one skilled in the art that the specific details are not requifed in order to
practice the invention. In other instances, well known circuits and devices are shown in
block diagram form in order to avoid unnecessary distraction from the underlying
invention. Thus, the foregoing descriptions of specific embodiments of the present
invention are presented for purposes of illustration and description. They are not
intended to be exhaustive or to limit the invention to the precise forms disclosed,
obviously many modifications and variations are possible in view of the above
teachings. The embodiments were chosen and described in order to best explain the
principles of the invention and its practical applications, to thereby enable others skilled
in the art to best utilize the invention and various embodiments with various
modifications as are suited to the particular use contemplated. It is intended that the

scope of the invention be defined by the following Claims and their equivalents.

22

10

15

20

25

WO 00/22540 PCT/US99/24143

CLAIMS:
What is claimed is:

>
L. A method of transferring a file, executed by a client computer under control of
a first program portion and also executed by a server computer uﬁder control of a
second program portion, said server computer storing a baseline file having baseline
data, said client computer storing a local file that is a modified baseline file having
modified data, said client computer being coupled to said server computer, said
method comprising the steps of:

(a) generating and associating first tier baseline reference keys for first tier
subsets of said baseline data stored in said baseline file using a predetermined key
defining method to generate said first tier baseline reference keys from at least a portion
of said associated first tier subset of said baseline data;

(b) generating and associating first tier client reference keys for first tier subsets
of said modified data stored in said local file using said key defining method to
generate said first tier of client reference keys from at least a portion of said associated
first tier subset of said modified data;

(c) transferring one of said first tier subsets of baseline data to a destination file
stored on said server computer when said associated first tier baseline reference key
and said associated first tier client reference key match;

(d) generating and associating at least one second tier baseline reference key for
at least one second tier baseline subset of one of said first tier subsets of said baseline
data, and also generating and associating at least one second tier client reference key
for at least one second tier client subset of one of said first tier subsets of said modified
data, when said associated first tier baseline reference key and said associated first tier
client reference key do not match; and

(e) transferring said at least one second tier baseline subset or said at least one
second tier client subset to said destination file, based on said associated second tier

baseline reference key and said associated second tier client reference key.

23

10

15

WO 00/22540 PCT/US99/24143

2. The method of claim 1 wherein said step (e) of transferring includes the steps
of:

transferring said at least one second tier baseline subset to said d¥stination file,
when said associated second tier baseline reference key and said associated second tier
client reference key match; and

transferring said at least one second tier client subset to said destination file,
when said associated second tier baseline reference key and said associated second tier

client reference key do not match.

3. The method of claim 2 further comprising the steps of:

(f) determining an offset by comparing said at least one second tier baseline
subset and said at least one second tier client subset associated with said non matching
second tier baseline and client reference keys;

(g) regenerating said at least one second tier baseline reference key for a portion
of said at least one second tier baseline subsets by applying said offset to redefine the
portions of baseline data associated with the second tier baseline reference key;

(h) comparing said at least one second tier baseline reference key to said at least
one second tier client reference key;

(1) regenerating said first tier baseline reference keys for a portion of said first
tier subsets of said baseline data by applying said offset to redefine the portions of the
baseline data associated with the first tier baseline reference keys, when said at least
one second tier baseline reference key matches said at least one second tier client
reference key; and

(1) repeating said steps (c), (d) and (e).

4. The method of claim 1 wherein said first tier subsets of said baseline data are
mutually exclusive and said first tier subsets of said modified data are mutually

exclusive.

S. The method of claim 1 wherein said first tier subsets are metasegments, and said

second tier baseline subsets and said second tier client subsets are segments.

24

10

WO 00/22540 PCT/US99/24143

6. The method of claim 1 wherein said step (d) of generating and associated at
least one second tier baseline reference key uses said key defining method to generate
said at least one second tier baseline reference key from at least a portiorrof said

associated second tier baseline subsets.

7. The method of claim 1 wherein said predetermined key defining method

generates a cyclic redundancy code.

8. The method of claim 1 wherein said predetermined key defining method is

digital signature encryption.

9. The method of claim 8 wherein said digital signature encryption is MDA4.

10. The method of claim 1 further comprising the steps of:
(f) transferring only a portion of said modified data from said local file to said
destination file, if a predetermined number of said second tier baseline reference keys

and second tier client reference keys do not match.
11. The method of claim 1 wherein said server is a mass storage subsystem.

12. A method executed by a client computer under control of a program and also
executed by a server computer under control of another program, said server computer
storing a baseline file, said client computer storing a local file that is a modified baseline
file, said client computer being coupled to said server computer, said method
comprising the steps of:
in said server computer,
generating and associating a baseline set of baseline reference keys for a
plurality of metasegments of said baseline file using a key defining method that
generates said baseline reference keys from at least a portion of said baseline data;
in said client computer,
generating and associating a client set of client reference keys for a

plurality of metasegments of said local file using said key defining method,;

25

15

20

25

30

35

40

WO 00/22540 PCT/US99/24143

transferring said client set of client reference keys to said server
computer;

in said server computer, >

comparing at least one transferred client reference key with at least one
baseline reference key;
when said transferred reference key matches said baseline reference key,
said server computer copies said metasegment associated with said matched baseline
reference key to a destination file on said server computer;
when said transferred reference key does not match said baseline
reference key,
said server computer generates a baseline segment set of baseline
segment reference keys, a baseline segment reference key being generated for and
associated with each segment of said associated metasegment of said non-matching
baseline reference key;
said server computer requests said client computer to generate a
client segment set of client segment reference keys for said metasegment associated
with said non-matching transferred reference key;
in said client computer,
said client computer generates said client segment set of client segment
reference keys, one’s of said client segment reference key being generated for and
associated with one’s of said segments;
transferring said client segment set of client segment reference keys to
said server computer;
in said server computer,
comparing at least one transferred client segment reference key with at
least one baseline segment reference key;
when said at least one transferred client segment reference key matches
said at least one baseline segment reference key, transferring said segment associated
with said matched at least one baseline segment reference key from said baseline file to
said destination file;
when said at least one transferred client segment reference key does not

match said at least one baseline segment reference key, transferring said segment

26

45

50

55

60

10

WO 00/22540 PCT/US99/24143

associated with said non-matching at least one client segment reference key from said
local file on said client to said destination file on said server computer;

determining an offset by comparing said transferred segnient associated
with said non-matching at least one client reference key to said segment associated with
said non-matching baseline segment reference key;,

re-generating said baseline segment reference keys for said uncompared
baseline segment reference keys by applying said offset to redefine said segments
associated with said uncompared baseline segment reference keys;

comparing at least one of said regenerated baseline segment reference
keys to at least one uncompared client segment reference key;

when said at least one compared regenerated baseline segment reference
key matches said uncompared base segment reference key, re-generating said baseline
reference keys for uncompared baseline metasegments by applying said offset to
redefine said metasegments associated with said uncompared baseline segment
reference keys; and

repeating from said step of comparing at least one transferred client

reference key with at least one baseline reference key, in said server computer.

13. A computer readable memory to direct a computer to function in a specified
manner, comprising:

a first module to generate and associate first tier baseline reference keys for first
tier subsets of said baseline data stored in said baseline file using a predetermined key
defining method to generate said first tier baseline reference keys from at least a portion
of said associated first tier subset of said baseline data;

~ a second module to generate and associate first tier client reference keys for
first tier subsets of said modified data stored in said local file using said key defining
method to generate said first tier of baseline reference keys from at least a portion of
said associated first tier subset of said modified data;

a third module to transfer one of said first tier subsets of baseline data to a
destination file stored on said server computer when said associated first tier baseline

reference key and said associated first tier client reference key match;

27

15

20

10

WO 00/22540 PCT/US99/24143

a fourth module to generate and associate at least one second tier baseline
reference key for at least one second tier baseline subset of one of said first tier subsets
of said baseline data, and also to generate and associate at least one secorid tier client
reference key for at least one second tier client subset of one of said first tier subsets of
said modified data, when said associated first tier baseline reference key and said
associated first tier client reference key do not match; and

a fifth module to transfer said at least one second tier baseline subset or said at
least one second tier client subset to said destination file, based on said associated

second tier baseline reference key and said associated second tier client reference key.

14. The computer readable memory of claim 13 wherein said fifth module includes
modules to:

transfer said at least one second tier baseline subset to said destination file,
when said associated second tier baseline reference key and said associated second tier
client reference key match; and

transfer said at least one second tier client subset to said destination file, when

said associated second tier baseline reference key and said associated second tier client

reference key do not match.

15. The computer readable memory of claim 13 further comprising:

a sixth module to determine an offset by comparing said at least one second tier
baseline subset and said at least one second tier client subset associated with said non
matching second tier baseline and client reference keys;

a seventh module to regenerate said at least one second tier baseline reference
key fora portion of said at least one second tier baseline subsets by applying said offset
to redefine the portions of baseline data associated with the second tier baseline
reference key;

an eighth module to compare at least one of said at least one second tier
baseline reference key to at least one of said at least one second tier client reference
key;

a ninth module to regenerate said first tier baseline reference keys for a portion

of said first tier subsets of said baseline data by applying said offset to redefine the

28

15

WO 00/22540 PCT/US99/24143

portions of the baseline data associated with the first tier baseline reference keys, when

said at least one second tier baseline reference key matches said at least one second tier

client reference key; and *

a tenth module to cause said third, fourth and fifth modules to repeatedly

execute.

16. The computer readable memory of claim 13 wherein said first tier subsets of

said baseline data are mutually exclusive and said first tier subsets of said modified data

are mutually exclusive.

17. The computer readable memory of claim 13 wherein said first tier subsets are

metasegments, and said second tier baseline subsets and said second tier client subsets

are segments.

18. The computer readable memory of claim 13 wherein said fourth module uses
said key defining method to generate said at least one second tier baseline segment

reference key from at least a portion of said associated second tier baseline subsets.

19. The computer readable memory of claim 13 wherein said predetermined key

defining method generates a cyclic redundancy code.

20. The computer readable memory of claim 13 wherein said predetermined key

defining method is digital signature encryption.

29

PCT/US99/24143

WO 00/22540

| K |
&
||| -
|
psed _
aAlQ aoeua| Jojuow “
Jajulg ¥siqg MIOM}ON 03pIA 9SNOo pJeoghay | 1
\ [}
8¢ 9¢ 7 4> - FA> % 0] - 8z 7 L_
oN\
snq
Aows Ndo
J

cy

44

ve

0c

PCT/US99/24143

2/8

WO 00/22540

N J8indwo?) JjeAleg

¢ O

gol’ .
a , - N Jeindwo) sl
ade .
boL 90} .
% 3sig
~ 3sid 3sid
86 /S :
96 €9 %
\:n_o 0g” L OIN oo L OIN @\ Ndo
8. s WNﬂstw v [suueyd 3IOMlaN 29 v 09 \
b6~ Aeuse Asy adualajal jus||o
by Aeuie Aoy soualejel suljaseq _J Aeise Ae) sousissed juaj|
o Sli} UOREURSOp MM g 511} payipoul
wm\ AdNAIS ~ [m__% mc:mwmn \ M*‘%quw.\umsv Uu‘\\$u1
Owk W 0425 ~0607) 31m:Sea 2amasagyi w®\ wajsAg bunesadp
y wsysAg BuneladQ 9 J
v8 Y, 19
Sé- Aowsy
Aows
W /
J s
v } Jeindwio) jusl)

| 48)ndwo) 1eA18g

WO 00/22540 PCT/US99/24143
’ 3/8

1~ S
Metasegment O @
- P

Seg 0 d

o f

q

W

e

nr= |

Seg1

1

2

12N <
Metasegment | 4
W=

Seg0 o

i

u

_

-

flt—~ - M

Seg1 |n

b

v

c

(Y\tl(a?esme»ﬁ\" 2. X
z

ra

FIG. 3

WO 00/22540 PCT/US99/24143
’ 4/8

Generate and associate first tier baseline reference keys jor ~ 132

subsets of baseline data stored in a baseline file on a server
computer using a predetermined key defining method

Generate and associate first tier client reference keys for s 134

subsets of modified data stored in a local file on a client
computer using the predetermined key defining method

Transfer one of the subsets of baseline data to a destination |~ 136

file on the server computer when the first tier baseline and
client reference keys match.
l 138

\When the associated first tier baseline reference key and the |/~
associated first tier client reference key do not match,

in the server, generatg fflg; ?,scs«%ﬁtf a second tier
baseline reference key for a subset of one of the first tier
subsets of baseline data,

in the client, generate and assogiate a second tier
client reference key for a,subset of one of the first tier
subsets of modified data.

‘L 140

Transfer one of thestbsets of baseline data to the -
destination file on the server computer when the second tier
baseline and client reference keys match.

2

; N] T - "
TramsSer o h Mo geeondd ’?.a_ cl,mifsubsr"/:) 192,
”‘D /)V Z/wrr/ ,\,,1/; (2% (/(. & /')v B LpEA fc-n\,o--jlv.‘ w/«rn <

/.lccmo/ ./'/}1.4 bna:&M a/yw/ C/itr?//f%um k‘?a 0/0 /u#-
/}77&’:‘/»,

Fla.

WO 00/22540 PCT/US99/24143
’ 5/8
\S2Z
\
k2
164 156 168 160
- /- /- /-
Metasegment | File Metasegment Reference
Number Offset Length Key Value
FIG. 5
\ ‘:2\
164 166 168 170
/- - - /-
Segment File Segment Reference
Number Offset Length Key Value

FIG. 6

WO 00/22540 6/8 PCT/US99/24143

Server calculates a CRC value for subsets of data, called /1 72
metasegments (MS), stored in a baseline file, and stores the
baseline MS number, file offset, MS length and CRC vaiue in a
baseline MS array.

v__ i 174
[Server creates a new empty destination file.]/
L 2

Server requests Client to determine a CRC value for subsets of | ~176
the data (MS) in a local file. Client stores a client MS number, file
offset, MS length and the CRC value for the MS in a client MS
array, and transfers the clier;t MS array to the server.

Beginning at MS counter = MS 0 in the Server f1 8

Seg Mismatch Counter =0

g

Server compares,CRC value . for the baseline MS to the CRC ~
value ‘for the client MS based the MS counter.

180

182
184 Yes I ‘No 192
Server transfers the data in the Server generates CRC value for at least one
associated MS from the baseline | [subset of data, called a segment, of the
file into the destination file. mismatched MS, and stores the Segment
number, file offset, segment iength and CRC
/1 86 value in a baseline segment array.

lIncrement MS counter |

194 Server requests Client to generate CRC value for

Nat least one segment of the mismatched MS.
Client stores the Segment No., file offset,
segment length and CRC value;Q client segment
array on the server.

196~ l
Client sends the client segment array to the Server.
198 v
In the Server, Segment Counter = Segment 0 |
f200

Server compares CRC values for the baseline segment to the CRC
values for the client segment based on the segment counter

202
Match>NO xA)
Vou 204

Server transfer the data in the associated segment
208 from the baseline file into the destination file.

Any more
segment?

v
increment segment counter |~ 200
FIG. 7A

WO 00/22540 8 PCT/US99/24143

. 214

ransfer remaining
data from modified
file to destination file

216
Server reads data for mismatched baseline segment 18 ‘
from the baseline file. /2 @
v

Server requests that Client send data for mismatched /220

client segment from the modified file.
- Y — F222

Server transfers the client segment from the modified

file into the destination file.

Server compares the mismatched baseline and client /224
segments to determine an adjustment factor(number
of bytes inserted and deleted between the segments).

v

Increment Segment Counter]2

Server adds the adjustment factor to the file offset of the V228
baseline segment array, beginning at the segment pointed
to by the segment counter, to adjust the starting position of
the baseline data in the segments.

y

Server redetermlnes the CRC value for the adjusted f230
segments in the" segment array, beginning at the
segment pointed to by the segment counter.

[Server compares redetermined CRC value for the current baseline | 232
egment to the CRC value for the current client segment based on the
egment counter

236

234 No

atch ﬁfﬁ"bﬁ UV\AJTJ""{ baselinc

| Sesmend a’lray

Yes

Server applies ajustment factor to file offsetto |,238
uncompared MS in the baseline MS table and
redetermine the associated CRC values.

FIG. 7B

WO 00/22540 PCT/US99/24143
8/8

157
Compars_len s ca~lry. Pa’awn [

K2 as
| teceine boase -t Aapdl P s !/

| —26°

‘o,hﬂLf*""\:e'&—(\-" 4\

262

» Co m Pans
2 . ‘gyfh‘,\'(RPN I W 2 S

vase. \GJQG)‘* &' crrpace drea
e ba&E’ui’f Crmpare.

“wW<es
/7'5 ! 232
;ltm{,"'gkr, Seovve - AR ya
base ba.\-_’r\p\

AAT, Gor ‘::Jv‘mfl’- f\ = hage _,‘h I
LT

izt ptrs dtw'f()‘kr + comfau-k—\ I/

S'M-y»‘}/ > aofie Xs
b“sc p.*, -b‘lt'Pa’ -+ (u»\fﬁf:-lra

a9
- 6 {2 3 45 & 7 % 9 o 1% {3 T U3 6 K 1T 2> 2\ v 23
base_;\a_b; QXEEAcg-alZsVS‘JgMNOprS{_
=
client-of gwcr‘f'q)(o\QFQl 3vls|] 7 g mw]o]|r]g
pl1..3‘15"')1"?!6“‘1IBIV'Slecvtthtz‘t;-‘_J

il

16,

INTERNATIONAL SEARCH REPORT

Intemational application No.

PCT/US99/24143
A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) : GO6F 15/00, 15/16
US CL : 707/ 201; 709/205

According to Intemational Patent Classification (IPC) or to both national classification and 1PC 3

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. : 707/ 10, 201, 203, 204, 511, 513, 531,
709/204, 205, 217, 218, 219

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Microsoft Press Computer Dictionary

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

EAST (US Patent), WEST (Derwent WPI), IEEE Electronic Library

search terms: original, base file, modified or updated file, compar?, match?, keys

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate. of the relevant passages Relevant to claim No.
A gJS 4,641,274 A (SWANK) 03 February 1987, abstract, col. 3, col. | 1-20

A US 4,807,182 A (QUEEN) 21 February 1989, col. 7 1-20

A US 5,574,906 A (MORRIS) 12 November 1996, abstract 1-20

A US 5,630,116 A (TAKAYA et al.) 13 May 1997, abstract 1-20

A US 5,634,052 A (MORRIS) 27 May 1997, abstract, cols. 12-14 1-20

A US RE 35,861 A (QUEEN) 28 July 1998, col. 7, lines 35-57 1-20

Further documents are listed in the continuation of Box C.

L]

See patent family annex.

Special categories of cited documents:

A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier document published on or after the international filing date

"L* document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

‘o document referring to an oral disclosure, use, exhibition or other
means

P document published prior to the international filing date but later than

the priority date claimed

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the intemational search

11 JANUARY 2000

Date of mailing of the international search report

07 FEB 2000

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washingtcn, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

n Wl

AHMAD MATAR 3,

Telephone No. (703) 305-4731

Form PCT/ISA/210 (second sheet)(July 1992)x

INTERNATIONAL SEARCH REPORT Intemnational application No.

PCT/US99/24143

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages . Relevant to claim No.
A US 5,729,735 A (MEYERING) 17 March 1998, abstract 1-20
A US 5,729,743 A (SQUIBB) 17 March 1998, abstract 1-20
A US 5,813,017 A (MORRIS) 22 Seotember 1998, abstract 1-20
AP US 5,893,119 A (SQUIBB) 06 April 1999, abstract 1-20
AP US 5,898,836 A (FREIVALD et al.) 27 April 1999, abstract 1-20
A US 5,446,888 A (PYNE) 29 August 1995, abstract 1-20
A US 5,479,654 A (SQUIBB) 26 December 1995, abstract 1-20
A US 5,559,991 A (KANFI) 24 September 1996, abstract 1-20
A US 5,721,907 A (PYNE) 24 February 1998, abstract, cols. 6-7 1-20
A US 5,745,906 A (SQUIBB) 28 April 1998, abstract 1-20

Form PCT/ISA/210 (continuation of second sheet)July 1992)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

