

(12) Rettet oversættelse af europæisk patentskrift

Patent- og Varemærkestyrelsen

(51) Int.Cl.: C 12 N 15/113 (2010.01) C 12 N 9/22 (2006.01) C 12 N 15/11 (2006.01)

C 12 N 15/63 (2006.01)

(45) Oversættelsen bekendtgjort den: 2024-10-07

(80) Dato for Den Europæiske Patentmyndigheds bekendtgørelse om meddelelse af patentet: 2023-06-21

(86) Europæisk ansøgning nr.: 16704978.2

(86) Europæisk indleveringsdag: 2016-01-27

(87) Den europæiske ansøgnings publiceringsdag: 2017-12-06

(86) International ansøgning nr.: US2016015145

(87) Internationalt publikationsnr.: WO2016123230

(30) Prioritet: 2015-01-28 US 201562108931 P 2015-11-05 US 201562251548 P

(84) Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(73) Patenthaver: Caribou Biosciences, Inc., 2929 7th Street , Suite 105, Berkeley, CA 94710, USA

(72) Opfinder: MAY, Andrew P., 564 29th Avenue, San Francisco, California 94121, USA DONOHOUE, Paul D., , San Francisco, California 94103, USA

(74) Fuldmægtig i Danmark: CHAS. HUDE A/S, Langebrogade 3B, 1411 København K, Danmark

(54) Benævnelse: HYBRIDE CRISPR-DNA/RNA-POLYNUCLEOTIDER OG FREMGANGSMÅDER TIL DERES ANVENDELSE

(56) Fremdragne publikationer:

WO-A1-2014/093712

WO-A1-2015/026885

WO-A2-2014/144761

BERND ZETSCHE ET AL: "Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System", CELL, vol. 163, no. 3, 25 September 2015 (2015-09-25), pages 759-771, XP055267511, US ISSN: 0092-8674, DOI: 10.1016/j.cell.2015.09.038

SERGEY SHMAKOV ET AL: "Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems", MOLECULAR CELL., vol. 60, no. 3, 22 October 2015 (2015-10-22), pages 385-397, XP055267512, US ISSN: 1097-2765, DOI: 10.1016/j.molcel.2015.10.008

KIM HANSEOP ET AL: "Enhancement of target specificity of CRISPR-Cas12a by using a chimeric DNA-RNA guide", NUCLEIC ACIDS RESEARCH, vol. 48, no. 15, 4 September 2020 (2020-09-04), pages 8601-8616, XP055824405, GB ISSN: 0305-1048, DOI: 10.1093/nar/gkaa605

Donohoue Paul ET AL: "Conformational Control of Cas Endonucleases by CRISPR Hybrid RNA- DNA Guides Mitigates Off-Target Activity in T Cell Editing", Caribou Biosciences 25th Annual Meeting of the American Society of Gene & Cell Therapy, 19 May 2022 (2022-05-19), pages 1-1, XP055954925, Washington Retrieved from the Internet: URL:https://investor.cariboubio.com/static -files/79275c64-9775-48be-aafb-32c23a18bef b

DK/EP 3250691 T5

[retrieved on 2022-10-12]

MITCHELL R. O'CONNELL ET AL: "Programmable RNA recognition and cleavage by CRISPR/Cas9", NATURE, vol. 516, no. 7530, 28 September 2014 (2014-09-28), pages 263-266, XP055168138, ISSN: 0028-0836, DOI: 10.1038/nature13769

Description

5

10

15

20

25

30

35

BACKGROUND

[0001] Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) systems are prokaryotic immune system first discovered by Ishino in *E. coli.* Ishino et al. 1987 (Journal of Bacteriology 169 (12): 5429-5433(1987)). This immune system provides immunity against viruses and plasmids by targeting the nucleic acids of the viruses and plasmids in a sequence-specific manner.

[0002] There are two main stages involved in this immune system, the first is acquisition and the second is interference. The first stage involves cutting the genome of invading viruses and plasmids and integrating segments of this into the CRISPR locus of the organism. The segments that are integrated into the genome are known as protospacers and help in protecting the organism from subsequent attack by the same virus or plasmid. The second stage involves attacking an invading virus or plasmid. This stage relies upon the protospacers being transcribed to RNA, this RNA, following some processing, then hybridizing with a complementary sequence in the DNA of an invading virus or plasmid while also associating with a protein, or protein complex that effectively cleaves the DNA.

[0003] There are several different CRISPR/Cas systems and the nomenclature and classification of these has changed as the systems are further characterized. In Type II systems there are two strands of RNA, a CRISPR RNA (crRNA) and a trans activating CRISPR RNA (tracrRNA) that are part of the CRISPR/Cas system. The tracrRNA hybridizes to a complementary region of pre-crRNA causing maturation of the pre-crRNA to crRNA. The duplex formed by the tracrRNA and crRNA is recognized by, and associates with a protein, Cas9, which is directed to a target nucleic acid by a sequence of the crRNA that is complementary to, and hybridizes with, a sequence in the target nucleic acid. It has been demonstrated that these minimal components of the RNA- based immune system could be reprogrammed to target DNA in a site-specific manner by using a single protein and two RNA guide sequences or a single RNA molecule. The CRISPR/Cas system is superior to other methods of genome editing involving endonucleases, meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases (TALENs), which may require de novo protein engineering for every new target locus.

[0004] WO2014/144761 and WO2015/026885 disclose Cas9 single-guide polynucleotides comprising DNA monomers in the targeting or activating region. Zetsche et al. described the discovery of the Cpf1 nuclease, a single RNA-guided class 2 CRISPR-Cas endonuclease (Cell, 163(3): 759-771 (2015)).

[0005] Being a RNA-guided system, CRISPR/Cas systems can be prone to issues with RNA-DNA hybrid structures, such as RNase A degradation of the RNA strand and higher possibility of RNA-DNA mismatches. Furthermore, synthesis of DNA oligonucleotides is more economical and robust than synthesis of RNA oligonucleotides. DNA-guided CRISPR systems may also recruit additional machinery to a specific target, compared to naturally occurring RNA-guided CRISPR systems. A need exists for an improved system that overcomes the problems associated with RNA based CRISPR/Cas systems, provides access to the decreased cost and increased robustness of DNA synthesis, and improves the specificity of the CRISPR/Cas system.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

35

40

45

[0006] The invention is defined by the appended claims.

[0007] In some embodiments, the disclosure provides a single polynucleotide for use with a Class 2 CRISPR system comprising: a targeting region comprising deoxyribonucleic acid (DNA); and an activating region adjacent to said targeting region that comprises DNA, wherein said activating region comprises a stem loop structure, and is capable of interacting with Cpf1. In some embodiments the targeting region comprises a mixture of DNA and RNA; and the activating region comprises a mixture of DNA and RNA.

[0008] In some embodiments, the disclosure provides a Class 2 CRISPR system comprising: a single polynucleotide as described above and Cpf1. In some embodiments, the Class 2 CRISPR system further comprises a donor polynucleotide.

[0009] In some embodiments, the disclosure provides an *in vitro* method of modifying a target nucleic acid molecule, the method comprising: contacting a target nucleic acid molecule having a target sequence with: a single polynucleotide comprising a targeting region comprising deoxyribonucleic acid (DNA) and configured to hybridize with a target sequence in a nucleic acid; an activating region adjacent to said targeting region comprising DNA and comprising a stem loop structure; and Cpfl, wherein the Cpf1 binds with the activating region of the single polynucleotide, wherein said target nucleic acid molecule is cleaved, wherein said target nucleic acid molecule comprises DNA.

[0010] In some embodiments the target nucleic acid is DNA. In some embodiments, the activating region is downstream of the targeting region. In some embodiments, the activating region is upstream of the targeting region. In some embodiments the activating region comprises a mixture of DNA and RNA. In some embodiments, the targeting region comprises a mixture of DNA and RNA. In some embodiments, the method further includes providing a donor polynucleotide.

[0011] In some embodiments, the disclosure provides an *in vitro* method of introducing a donor polynucleotide into the genome of a cell or organism using a Class 2 CRISPR system comprising: contacting a target nucleic acid molecule having a target sequence with: a single polynucleotide comprising a targeting region comprising deoxyribonucleic acid (DNA) and configured to hybridize with a target sequence in a nucleic acid; an activating region adjacent to said targeting region comprising DNA and comprising a stem loop structure; and Cpfl, wherein the Cpf1 binds with the activating region of the single polynucleotide and wherein said target nucleic acid molecule comprises DNA and is cleaved at, or near the target sequence and providing a donor polynucleotide that is introduced into the genome of the cell or organism at the cleavage site.

[0012] In some embodiments the target nucleic acid is DNA, in some embodiments the target nucleic acid is a mixture of RNA and DNA. In some embodiments, the activating region is downstream of the targeting region. In some embodiments, the activating region

is upstream of the targeting region. In some embodiments the activating region comprises a mixture of DNA and RNA. In some embodiments, the targeting region comprises a mixture of DNA and RNA. In some embodiments the donor polynucleotide is introduced into the nucleic acid by homologous recombination. In some embodiments the donor polynucleotide is introduced into the nucleic acid by non-homologous end joining.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013]

5

10

15

20

25

30

35

40

45

FIGURE 1A shows a crD(R)NA and a tracrRNA of a Type II CRISPR system (not part of the invention).

FIGURE 1B shows two polynucleotides (a crD(R)NA and a tracrRNA or a tracrD(R)NA) of the present disclosure hybridized to each other (also referred to as a "dual guide" system; not part of the invention).

FIGURE 2 shows a single polynucleotide of the present disclosure comprising a targeting region linked to an activating region (also referred to as a "single guide" system or a "single guide D(R)NA" or "sg D(R)NA"; not part of the invention). **FIGURE 3** shows cleavage of a target DNA sequence with a Type II CRISPR/Cas

system using nucleic acid targeting polynucleotides of the present disclosure (not part of the invention).

FIGURES 4A and B show results of *in vitro* biochemical assays to determine the amount of cleavage of various target sequences by a TYPE II CRISPR/Cas system using nucleic acid targeting polynucleotides of the present disclosure (not part of the invention).

FIGURE 5 shows results of *in vivo* assays to determine the amount of cleavage of a target sequence by a TYPE II CRISPR/Cas system using nucleic acid targeting polynucleotides of the present disclosure (not part of the invention).

FIGURE 6 shows results of *in vitro* biochemical assays to determine the amount of off-target cleavage of a target sequence by a TYPE II CRISPR/Cas system using nucleic acid targeting polynucleotides of the present disclosure (not part of the invention).

FIGURE 7 shows results of an *in vivo* assay to determine the amount of cleavage of a target sequence by a TYPE II CRISPR/Cas system using nucleic acid targeting polynucleotides of the present disclosure (not part of the invention).

FIGURE 8 shows the results of nicking activity of a crD(R)NA or sgD(R)NA with a Cas9-D10A protein against a plasmid target *in vitro* (not part of the invention).

FIGURE 9 shows a typical structure of a crRNA from a Type V CRISPR system. FIGURES 10A-C show possible structures of a single guide D(R)NA of the present disclosure for use with a Type V CRISPR system.

FIGURES 11A-E show possible structures of a single guide D(R)NA of the present disclosure for use with a Type V CRISPR system.

FIGURES 12A-I show possible components of dual guides of the present disclosure comprising crRNA and/or crD(R)NA for use with a Type V CRISPR system (not part of the invention).

FIGURES 13A-H show possible configurations of dual guides of the present disclosure comprising crRNA and/or crD(R)NA for use with a Type V CRISPR system (not part of the invention).

FIGURES 14A-B show sequencing results of an *in planta* assay to determine the amount of cleavage of a target sequence by a Type II CRISPR/Cas system using nucleic acid targeting polynucleotides of the present disclosure (not part of the invention).

5 **DETAILED DESCRIPTION**

10

15

20

25

30

35

40

45

[0014] CRISPR/Cas systems have recently been reclassified into two classes, comprising five types and sixteen subtypes. Makarova et al. (Nature Reviews Microbiology 13:1-15 (2015)). This classification is based upon identifying all cas genes in a CRISPR/Cas locus and then determining the signature genes in each CRISPR/Cas locus, ultimately determining that the CRISPR/Cas systems can be placed in either Class 1 or Class 2 based upon the genes encoding the effector module, *i.e.*, the proteins involved in the interference stage.

[0015] Class 1 systems have a multi-subunit crRNA-effector complex, whereas Class 2 systems have a single protein, such as Cas 9, Cpfl, C2c1, C2c2, C2c3, or a crRNA-effector complex. Class 1 systems comprise Type I, Type III and Type IV systems. Class 2 systems comprise Type II and Type V systems.

[0016] Type I systems all have a Cas3 protein that has helicase activity and cleavage activity. Type I systems are further divided into seven sub-types (I-A to I-F and I-U). Each type I subtype has a defined combination of signature genes and distinct features of operon organization. For example, sub-types I-A and I-B appear to have the *cas* genes organized in two or more operons, whereas sub-types I-C through I-F appear to have the *cas* genes encoded by a single operon. Type I systems have a multiprotein crRNA-effector complex that is involved in the processing and interference stages of the CRISPR/Cas immune system. This multiprotein complex is known as CRISPR-associated complex for antiviral defense (Cascade). Sub-type I-A comprises *csa5* which encodes a small subunit protein and a *cas8* gene that is split into two, encoding degraded large and small subunits and also has a split *cas3* gene. An example of an organism with a subtype I-A CRISPR/Cas system is *Archaeoglobusfulgidus*.

[0017] Sub-type I-B has a *casl-cas2-cas3-cas4-cas5-cas6-cas7-cas8* gene arrangement and lacks a *csa5* gene. An example of an organism with sub-type I-B is *Clostridium kluyveri*. Subtype I-C does not have a *cas6* gene. An example of an organism with sub-type I-D has a Cas10d instead of a Cas8. An example of an organism with sub-type I-D is *Cyanothece* sp. Sub-type I-E does not have a *cas4*. An example of an organism with sub-type I-E is *Escherichia coli*. Sub-type I-F does not have a *cas4* and has a *cas2* fused to a *cas3*. An example of an organism with sub-type I-F is *Yersinia pseudotuberculosis*. An example of an organism with sub-type I-U is *Geobacter sulfurreducens*.

[0018] All type III systems possess a *cas10* gene, which encodes a multidomain protein containing a Palm domain (a variant of the RNA recognition motif (RRM)) that is homologous to the core domain of numerous nucleic acid polymerases and cyclases and that is the largest subunit of type III crRNA-effector complexes. All type III loci also encode the small subunit protein, one Cas5 protein and typically several Cas7 proteins. Type III

can be further divided into four sub-types, III-A through III-D. Sub-type III-A has a *csm2* gene encoding a small subunit and also has *cas1*, *cas2* and *cas6* genes. An example of an organism with sub-type III-A is *Staphylococcus epidermidis*. Sub-type III-B has a *cmr5* gene encoding a small subunit and also typically lacks *cas1*,

5

10

15

cas2 and cas6 genes. An example of an organism with sub-type III-B is *Pyrococcus furiosus*. Sub-type III-C has a Cas10 protein with an inactive cyclase-like domain and lacks a cas1 and cas2 gene. An example of an organism with sub-type III-C is *Methanothermobacter thermautotrophicus*. Sub-type III-D has a Cas10 protein that lacks the HD domain, it lacks a cas1 and cas2 gene and has a cas5-like gene known as csx10. An example of an organism with sub-type III-D is *Roseiflexus* sp.

[0019] Type IV systems encode a minimal multi subunit crRNA-effector complex comprising a partially degraded large subunit, Csf1, Cas5, Cas7, and in some cases, a putative small subunit. Type IV systems lack *cas1* and *cas2* genes. Type IV systems do not have sub-types, but there are two distinct variants. One Type IV variant has a DinG family helicase, whereas a second type IV variant lacks a DinG family helicase, but has a gene encoding a small α-helical protein. An example of an organism with a Type IV system is *Acidithiobacillusferrooxidans*.

- [0020] Type II systems have cas1, cas2 and cas9 genes. cas9 encodes a multidomain protein that combines the functions of the crRNA-effector complex with target DNA cleavage. Type II systems also encode a tracrRNA. Type II systems are further divided into three sub-types, subtypes II-A, II-B and II-C. Sub-type II-A contains an additional gene, csn2. An example of an organism with a sub-type II-A system is Streptococcus thermophilus. Sub-type II-B lacks csn2, but has cas4. An example of an organism with a sub-type II-B system is Legionella pneumophila. Sub-type II-C is the most common Type II system found in bacteria and has only three proteins, Cas1, Cas2 and Cas9. An example of an organism with a sub-type II-C system is Neisseria lactamica.
- [0021] Type V systems have a cpf1 gene and cas1 and cas2 genes. The cpf1 gene 30 encodes a protein, Cpfl, that has a RuvC-like nuclease domain that is homologous to the respective domain of Cas9, but lacks the HNH nuclease domain that is present in Cas9 proteins. Type V systems have been identified in several bacteria, including Parcubacteria bacterium GWC2011_GWC2_44_17 (PbCpf1), Lachnospiraceae bacterium MC2017 (Lb3Cpf1), Butyrivibrio proteoclasticus (BpCpf1), Peregrinibacteria 35 bacterium GW2011 GWA 33 10 (PeCpf1), Acidaminococcus sp. BV3L6 (AsCpf1), Porphyromonas macacae (PmCpf1), Lachnospiraceae bacterium ND2006 (LbCpf1), Porphyromonas crevioricanis (PeCpf1), Prevotella disiens (PdCpf1), Moraxella bovoculi 237(MbCpf1), Smithella sp. SC_K08D17 (SsCpf1), Leptospira inadai (LiCpf1), Lachnospiraceae bacterium MA2020 (Lb2Cpf1), Franciscella 40 novicida U112 (FnCpf1), Candidatus methanoplasma termitum (CMtCpf1), and Eubacterium eligens (EeCpf1).
- [0022] In Class 1 systems, the expression and interference stages involve multi subunit CRISPR RNA (crRNA)-effector complexes. In Class 2 systems, the expression and interference stages involve a single large protein, e.g., Cas9, Cpfl, C2C1, C2C2, or C2C3.

[0023] In Class 1 systems, pre-crRNA is bound to the multi subunit crRNA-effector

complex and processed into a mature crRNA. In Type I and III systems this involves an RNA endonuclease, e.g., Cas6. In Class 2 Type II systems, pre-crRNA is bound to Cas9 and processed into a mature crRNA in a step that involves RNase III and a tracrRNA. However, in at least one Type II CRISPR-Cas system, that of *Neisseria meningitidis*, crRNAs with mature 5' ends are directly transcribed from internal promoters, and crRNA processing does not occur.

5

10

15

20

25

30

35

[0024] In Class 1 systems the crRNA is associated with the crRNA-effector complex and achieves interference by combining nuclease activity with RNA-binding domains and base pair formation between the crRNA and a target nucleic acid.

[0025] In Type I systems, the crRNA and target binding of the crRNA-effector complex involves Cas7, Cas5, and Cas8 fused to a small subunit protein. The target nucleic acid cleavage of Type I systems involves the HD nuclease domain, which is either fused to the superfamily 2 helicase Cas3' or is encoded by a separate gene, cas3".

[0026] In Type III systems, the crRNA and target binding of the crRNA-effector complex involves Cas7, Cas5, Cas10 and a small subunit protein. The target nucleic acid cleavage of Type III systems involves the combined action of the Cas7 and Cas10 proteins, with a distinct HD nuclease domain fused to Cas10, which is thought to cleave single-stranded DNA during interference.

[0027] In Class 2 systems the crRNA is associated with a single protein and achieves interference by combining nuclease activity with RNA-binding domains and base pair formation between the crRNA and a target nucleic acid.

[0028] In Type II systems, the crRNA and target binding involves Cas9 as does the target nucleic acid cleavage. In Type II systems, the RuvC-like nuclease (RNase H fold) domain and the HNH (McrA-like) nuclease domain of Cas9 each cleave one of the strands of the target nucleic acid. The Cas9 cleavage activity of Type II systems also requires hybridization of crRNA to tracrRNA to form a duplex that facilitates the crRNA and target binding by the Cas9.

[0029] In Type V systems, the crRNA and target binding involves Cpf1 as does the target nucleic acid cleavage. In Type V systems, the RuvC-like nuclease domain of Cpf1 cleaves both strands of the target nucleic acid in a staggered configuration, producing 5' overhangs, which is in contrast to the blunt ends generated by Cas9 cleavage. These 5' overhangs may facilitate insertion of DNA through non-homologous end-joining methods.

[0030] The Cpf1 cleavage activity of Type V systems also does not require hybridization of crRNA to tracrRNA to form a duplex, rather the crRNA of Type V systems use a single crRNA that has a stem loop structure forming an internal duplex. Cpf1 binds the crRNA in a sequence and structure specific manner, that recognizes the stem loop and sequences adjacent to the stem loop, most notably, the nucleotide 5' of the spacer sequences that hybridizes to the target nucleic acid. This stem loop structure is typically in the range of 15 to 19 nucleotides in length. Substitutions that disrupt this stem loop duplex abolish cleavage activity, whereas other substitutions that do not disrupt the stem loop duplex do not abolish cleavage activity. In Type V systems, the crRNA forms a stem loop structure at

the 5' end and the sequence at the 3' end is complementary to a sequence in a target nucleic acid.

5

10

15

20

25

30

35

40

[0031] Other proteins associated with Type V crRNA and target binding and cleavage include Class 2 candidate 1 (C2c1) and Class 2 candidate 3 (C2c3). C2c1 and C2c3 proteins are similar in length to Cas9 and Cpf1 proteins, ranging from approximately 1,100 amino acids to approximately 1,500 amino acids. C2c1 and C2c3 proteins also contain RuvC-like nuclease domains and have an architecture similar to Cpf1. C2c1 proteins are similar to Cas9 proteins in requiring a crRNA and a tracrRNA for target binding and cleavage, but have an optimal cleavage temperature of 50°C. C2c1 proteins target an ATrich PAM, which similar to Cpfl, is 5' of the target sequence, *see, e.g.,* Shmakov et al. (Molecular Cell; 60(3): 385-397 (2015)).

[0032] Class 2 candidate 2 (C2c2) does not share sequence similarity to other CRISPR effector proteins, and therefore may be in a putative Type VI system. C2c2 proteins have two HEPN domains and are predicted to have RNase activity, and therefore may target and cleave mRNA. C2c2 proteins appear similar to Cpf1 proteins in requiring crRNA for target binding and cleavage, while not requiring tracrRNA. Also like Cpfl, the crRNA for C2c2 proteins forms a stable hairpin, or stem loop structure, that may aid in association with the C2c2 protein.

[0033] As used herein, "site-directed polypeptide" refers to a single protein, or protein complex, used in a CRISPR system with the polynucleotides disclosed herein. A site-directed polypeptide can comprise one or more nuclease domains. A site-directed polypeptide of the disclosure can comprise a HNH or HNH-like nuclease domain, a RuvC or RuvC-like nuclease domain, and/or HEPN-superfamily-like nucleases. HNH or HNH-like domains can comprise two antiparallel β-strands and an a-helix. HNH or HNH-like domains can comprise a metal binding site (*e.g.*, divalent cation binding site). HNH or HNH-like domains can cleave one strand of a target nucleic acid (*e.g.*, complementary strand of the crRNA targeted strand). Proteins that comprise an HNH or HNH-like domain can include endonucleases, colicins, restriction endonucleases, transposases, and DNA packaging factors.

[0034] The site-directed polypeptide for use in the invention is a Cpf1 protein. In some embodiments, a site-directed polypeptide with reduced nuclease activity can be a nickase, *i.e.*, it can be modified to cleave one strand of a target nucleic acid duplex. In some embodiments, a site-directed polypeptide can be modified to have no nuclease activity, *i.e.*, it does not cleave any strand of a target nucleic acid duplex, or any single strand of a target nucleic acid. Examples of site-directed polypeptides with reduced, or no nuclease activity can include a Cpf1 with a modification to the RuvC nuclease domain. Non-limiting examples of such modifications can include D917A, E1006A and D1225A to the RuvC nuclease domain of the *F. novicida* Cpfl, and their corresponding amino acid residues in other Cpf1 proteins.

[0035] In some embodiments, a site-directed polypeptide may be modified. Such modifications may include the incorporation or fusion of a domain from another polypeptide to a site-directed polypeptide, or replacement of a domain of a site-directed polypeptide with a domain of another polypeptide. For example, a modified site-directed polypeptide

can contain a first domain from a Cpf1 protein and a second domain from a protein other than Cpf1. The modification to include such domains in the modified site-directed polypeptides may confer additional activity on the modified site-directed polypeptides. Such activities can include nuclease activity, methyltransferase activity, demethylase activity, DNA repair activity, DNA damage activity, deamination activity, dismutase activity, alkylation activity, depurination activity, oxidation activity, pyrimidine dimer forming activity, integrase activity, transposase activity, recombinase activity, polymerase activity, ligase activity, helicase activity, photolyase activity, glycosylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity, deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity or demyristoylation activity) that modifies a polypeptide associated with target nucleic acid (e.g., a histone).

5

10

35

40

45

15 [0036] In some embodiments, a site-directed polypeptide can introduce double-stranded breaks or single-stranded breaks in nucleic acid sequences, (e.g., genomic DNA). In certain embodiments, a nucleic acid sequence may be a target nucleic acid. Certain sitedirected polypeptides of the present disclosure can introduce blunt-end cleavage sites while certain embodiments produce cleavage sites having sticky ends, i.e., 5' or 3' 20 overhangs. Cpfl, for example, may introduce a staggered DNA double-stranded break with about a 4 or 5 nucleotide (nt) 5' overhang. A double-stranded break can stimulate a cell's endogenous DNA-repair pathways (e.g., homologous recombination and non-homologous end joining (NHEJ) or alternative non-homologous end-joining (A-NHEJ)). NHEJ can repair a cleaved target nucleic acid without the need for a homologous template. This can result in deletions of the target nucleic acid. Homologous recombination (HR) can occur with a 25 homologous template. The homologous template can comprise sequences that are homologous to sequences flanking the target nucleic acid cleavage site. After a target nucleic acid is cleaved by a site-directed polypeptide the site of cleavage can be destroyed (e.g., the site may not be accessible for another round of cleavage with a nucleic acidtargeting polynucleotide and site-directed polypeptide). 30

[0037] In some cases, homologous recombination can insert an exogenous polynucleotide sequence into the target nucleic acid cleavage site. An exogenous polynucleotide sequence can be called a donor polynucleotide or a donor sequence. In some embodiments, a donor polynucleotide, a portion of a donor polynucleotide, a copy of a donor polynucleotide, or a portion of a copy of a donor polynucleotide can be inserted into a target nucleic acid cleavage site. A donor polynucleotide can be an exogenous polynucleotide sequence. A donor polynucleotide can be single-stranded DNA. A donor polynucleotide can be double-stranded DNA. A donor polynucleotide can be RNA. A donor polynucleotide can be a duplex of RNA and DNA. A donor polynucleotide can be a sequence that does not naturally occur at a target nucleic acid cleavage site. In some embodiments, modifications of a target nucleic acid due to NHEJ and/or HR can lead to, for example, mutations, deletions, alterations, integrations, gene correction, gene replacement, gene tagging, transgene insertion, nucleotide deletion, gene disruption, and/or gene mutation. The process of integrating non-native nucleic acid(s) into genomic DNA can be referred to as "genome engineering."

[0038] A CRISPR system of the present disclosure may be referred to as a "DNA-guided CRISPR system."

[0039] As used herein, the term "crD(R)NA" refers to a polynucleotide comprising a targeting region and an activating region, wherein the targeting region comprises DNA, or DNA and RNA, and wherein the activating region comprises RNA, or DNA, or a mixture of DNA and RNA. A targeting region may be upstream of an activating region. An activating region may be upstream of a targeting region. A tracrRNA may comprise a sequence that is complementary to a sequence in the activating region of a crD(R)NA.

[0040] As used herein, the term "tracrD(R)NA" refers to a polynucleotide having a sequence that is complementary to a sequence in the activating region of a crD(R)NA and wherein the polynucleotide comprises DNA or a mixture of DNA and RNA.

[0041] As used herein, the term "targeting region" refers to a region of a polynucleotide comprising DNA, or a mixture of DNA and RNA that is complementary to a sequence in a target nucleic acid. In certain embodiments, a targeting region may also comprise other nucleic acids, or nucleic acid analogues, or combinations thereof. In certain embodiments, a targeting region may be comprised solely of DNA because this configuration may be less likely to decompose inside of a host cell. In some embodiments this configuration may increase the specificity of target sequence recognition and/or reduce the occurrence of off-target binding/hybridization.

[0042] As used herein, the term "activating region" refers to a portion of a polynucleotide comprising DNA, or a mixture of DNA and RNA that interacts, or is capable of associating, or binding with a site-directed polypeptide. In certain embodiments, an activating region may also comprise other nucleic acids, or nucleic acid analogues, or combinations thereof. In certain embodiments, an activating region is adjacent to a targeting region. In certain embodiments, the activating region is downstream from the targeting region. In certain embodiments, the activating region is upstream from the targeting region.

[0043] As used herein, the term "sgD(R)NA," or "single guide D(R)NA" refers to a polynucleotide comprising a targeting region and an activating region, wherein the targeting region comprises DNA, or a mixture of DNA and RNA that is complementary to a sequence in a target nucleic acid, wherein the activating region comprises DNA, or a mixture of DNA and RNA, and wherein the activating region has sequences that are self complementary, which hybridize to form a duplex, which may contain secondary structures.

[0044] As used herein, the term "downstream" refers to a point that is distal from a point of reference in a 3' direction of a nucleotide sequence. As used herein, the term "upstream" refers to a point that is distal from a point of reference in a 5' direction of a nucleotide sequence.

[0045] A polynucleotide of the present disclosure, *e.g.*, single guide D(R)NA, may also comprise a mixture of DNA and other nucleic acids, *e.g.*, peptide nucleic acid (PNA), or other nucleic acid analogues.

40

45

35

15

20

[0046] FIGURE 1A shows polynucleotides for use in a Type II CRISPR system (not part of the invention). In this embodiment, **101** can be a crD(R)NA and **102** can be a tracrD(R)NA or a tracrRNA.

5

10

15

20

129.

45

[0047] FIGURE 1B shows the polynucleotides of FIGURE 1A (not part of the invention) hybridized to each other along regions of complementarity. The hybridization may generate secondary structures such as a bulge 105, a targeting region 103, a nexus 107, and hairpins 108 and 109. FIGURE 1B also shows an embodiment comprising an upper duplex region 106 and a lower duplex region 104. An upper duplex region may comprise an upper stem. A lower duplex region may comprise a lower stem. The polynucleotides that hybridize to form region 104 may comprise a mixture of DNA and RNA on the same polynucleotide strand, e.g., 102, in a region downstream of a targeting region 103. Region 104 as shown in FIGURE 1B, may comprise a mixture of DNA and RNA on the same polynucleotide strand, e.g., 102. A nucleotide sequence immediately downstream of a targeting region may comprise various proportions of DNA and RNA. In certain embodiments, this apportionment may be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% RNA and ranges there between. As described herein, a nucleotide sequence downstream (e.g., a region between a targeting region 103 and a bulge 105 as shown in FIGURE 1B) of a targeting region 103, may comprise a mixture of DNA and RNA as shown in SEQ ID NOs. 19-26.

[0048] FIGURE 2 shows an example of a single guide D(R)NA for use with a Type II CRISPR system (not part of the invention). Referring to FIGURE 2, the sgD(R)NA 25 comprises a targeting region 201, a lower duplex region 202, an upper duplex region 203, a fusion region 204, a secondary structure (e.g., a bulge) 205, a nexus 206, and hairpins 207 and 208. An upper duplex region may comprise an upper stem. A lower duplex region may comprise a lower stem. Some sgD(R)NAs may comprise an activating region comprising an upper duplex region and a lower duplex region. Region 202 may 30 comprise a mixture of DNA and RNA, which is immediately downstream of a targeting region 201. A nucleotide sequence immediately downstream of a targeting region may comprise various proportions of DNA and RNA. This apportionment may be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% RNA and ranges there between. As described herein, a nucleotide 35 region downstream (e.g., a region between a targeting region 201 and a bulge 205 as shown in FIGURE 2) of a targeting region 201 may comprise a mixture of DNA and RNA as shown in SEQ ID NOs. 127-132. Region 203 may comprise a mixture of DNA and RNA, which is downstream of a targeting region 201. A nucleotide sequence downstream of a targeting region may comprise various proportions of DNA and RNA. In certain 40 embodiments, this apportionment may be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% RNA and ranges there between. As described herein, a nucleotide region downstream of a targeting

[0049] Naturally occurring Type V CRISPR systems, unlike Type II CRISPR systems, do not require a tracrRNA for crRNA maturation and cleavage of a target nucleic

region 201 may comprise a mixture of DNA and RNA as shown in SEQ ID NOs. 44-47 and

acid. **FIGURE 9** shows a typical structure of a crRNA from a Type V CRISPR system, wherein the DNA target-binding sequence is downstream of a stem loop structure that interacts with the Cpf1 protein. Alterations of the nucleotides in the loop region do not affect Cpf1 cleavage activity.

5

10

15

20

25

30

[0050] FIGURES 10A-C show possible structures of a single guide D(R)NA of the present disclosure for use with a Type V CRISPR system. In these configurations, the solid black regions represent RNA, whereas the checkered regions represent DNA. **FIGURE 10A** shows a single guide D(R)NA wherein the targeting region comprises RNA, the 3' stem comprises DNA, and the loop and 5' stem comprises RNA. **FIGURE 10B** shows a single guide D(R)NA wherein the targeting region comprises RNA, the 5' stem comprises DNA, and the loop and 3' stem comprise RNA. **FIGURE 10C** shows a single guide D(R)NA wherein the targeting region and loop comprise RNA, and the 5' and 3' stems comprise DNA. The 3' stem and 5' stem in FIGURES 10A-C collectively, or individually, may be referred to herein as the "activating region" of a polynucleotide for use with a Type V system.

[0051] FIGURES 11A-E show possible structures of a single guide D(R)NA of the present disclosure for use with a Type V CRISPR system. In these configurations, the solid black regions represent DNA, whereas the checkered regions represent RNA. **FIGURE 11A** shows a single guide D(R)NA wherein the targeting region comprises DNA, the 3' stem comprises DNA, and the loop and 5' stem comprises DNA. **FIGURE 11B** shows a single guide D(R)NA wherein the targeting region comprises DNA, the 5' stem comprises DNA, and the loop and 3' stem comprise RNA. **FIGURE 11C** shows a single guide D(R)NA wherein the targeting region, the 5' stem and 3' stem comprise DNA and the loop comprises RNA. **FIGURE 11D** shows a single guide D(R)NA wherein the targeting region comprises DNA and the 5' stem, the 3' stem, and the loop comprises DNA. **FIGURE 11E** shows a single guide D(R)NA wherein the targeting region comprises a mixture of DNA and RNA and the 5' stem, the 3' stem, and the loop comprise DNA. The 3' stem and 5' stem in FIGURES 11A-E collectively, or individually, may be referred to herein as the "activating region" of a polynucleotide for use with a Type V system.

[0052] FIGURES 12A-I show possible configurations of the crRNA and crD(R)NA of the

pre
35 ele
inte
12/
targ
in F
40 tha

45

present disclosure for use with a Type V CRISPR system wherein the 3' element and 5' element are on separate polynucleotides and associate through hydrogen base pair interactions to form a duplex or stem structure (not part of the invention). **FIGURE**12A shows a dual guide system for use in a Type V CRISPR system, wherein the targeting region is linked to a 3' element. A second polynucleotide is also shown in **FIGURE 12A** as a 5' element. The 5' element is configured to hybridize to the 3' element that is linked to the targeting region to form a duplex, or stem. In **FIGURE 12A** the targeting region, 3' element, and 5' element comprise RNA. **FIGURE 12B** shows a 5' element that comprises RNA. **FIGURE 12C** shows a 5' element that comprises DNA. **FIGURE 12E** shows a targeting region that comprises RNA and a 3' element that comprises DNA and a 3' element that comprises DNA and a 3' element that comprises DNA and a 3' element that comprises RNA. **FIGURE 12G** shows a targeting region that comprises DNA and a 3' element that comprises RNA. **FIGURE 12G** shows a targeting region that comprises DNA and a 3' element that comprises DNA. **FIGURE 12H** shows a targeting region that comprises RNA and DNA and a 3' element that comprises DNA. **FIGURE 12H** shows a targeting region that comprises RNA. **FIGURE 12H** shows a targeting region that comprises RNA. **FIGURE 12H** shows a targeting region that comprises RNA and DNA and a 3' element that comprises DNA. **FIGURE 12H** shows a targeting region that comprises RNA.

shows a targeting region that comprises an alternative mixture of RNA and DNA and a 3' element that comprises DNA. The 3' element in FIGURES 12A-I may be referred to herein as the "activating region" of a polynucleotide for use with a Type V system.

- 5 [0053] FIGURES 13A-H show possible configurations of the crRNA and crD(R)NA of the present disclosure for use with a Type V CRISPR system wherein the 3' element and 5' element are on separate polynucleotides and associate through hydrogen base pair interaction interactions to form a duplex or stem structure (not part of the invention). In some of the polynucleotides shown in FIGURES 10A-13H, the regions of DNA may also comprise RNA. The regions of RNA may also comprise DNA. The regions of DNA may 10 also comprise RNA and the regions of RNA may also comprise DNA. The 3' element in FIGURES 13A-H may be referred to herein as the "activating region" of a polynucleotide for use with a Type V system. The proportions of DNA and RNA in the various regions of the polynucleotides shown in **FIGURES 10A-13H** may vary. This apportionment may be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 15 85%, 90%, 95%, or 100% RNA and ranges there between. Examples of polynucleotides that can be used with a Type V CRISPR system are provided in SEQ ID NOs: 168-203.
- [0054] An activating region of a nucleic acid-targeting polynucleotide can interact with a region of a site-directed polypeptide. An activating region can interact with a plurality of regions of a site-directed polypeptide. An activating region can interact with a plurality of regions of a site-directed polypeptide wherein at least one of the regions interacts with a PAM of a target nucleic acid.
- [0055] Nucleotides adjacent to an unpaired nucleotide can be a nucleotide that forms a wobble base pairing interaction. Wobble base pairing interactions can include guanine-uracil, hypoxanthine-uracil, hypoxanthine-adenine, and hypoxanthine-cytosine. Wobble base pairing interactions may lead to reduced target and/or cleavage specificity. At least 1, 2, 3, 4, or 5 or more nucleotides adjacent to an unpaired nucleotide can form a wobble pairing. At most 1, 2, 3, 4, or 5 or more nucleotides adjacent to an unpaired nucleotide can form a wobble pairing. In certain embodiments, a targeting region may comprise a deoxyribonucleotide thymine ("dT") as a substitute to a ribonucleotide uracil. Using dT in place of U reduces wobble pairing and reduces off-target base-pairing, thus leading to increased target specify in certain embodiments.

35

40

45

[0056] A target nucleic acid can be comprised of DNA, RNA, or combinations thereof and can be a double-stranded nucleic acid or a single-stranded nucleic acid. A targeting region sequence can hybridize to a target nucleic acid that is located 5' or 3' of a protospacer adjacent motif (PAM), depending upon the particular site-directed polypeptide to be used. A PAM can vary depending upon the site-directed polypeptide to be used. A site-directed polypeptide may be modified such that a PAM may be different compared to a PAM for an unmodified site-directed polypeptide. Other site-directed polypeptides may recognize other PAMs and one of skill in the art is able to determine the PAM for any particular site-directed polypeptide. For example, Cpf1 from Francisella novicida was identified as having a 5' - TTN -3' PAM (Zetsche et al. (Cell; 163(3):759-71(2015))), but this was unable to support site specific cleavage of a target nucleic acid *in vivo*. Given the similarity in the guide sequence between Francisella novicida and other Cpf1 proteins, such as the Cpf1 from Acidaminocccus sp BV3L6, which utilize a 5' - TTTN - 3' PAM, it is more likely that

the *Francisella novicida* Cpf1 protein recognizes and cleaves a site on a target nucleic acid proximal to a 5' - TTTN - 3' PAM with greater specificity and activity than a site on a target nucleic acid proximal to the truncated 5' - TTN - 3' PAM misidentified by Zetsche *et al.* The polynucleotides and CRISPR systems described in the present application may be used with a Cpf1 protein (*e.g.*, from *Francisella novicida*) directed to a site on a target nucleic acid proximal to a 5' - TTTN - 3' PAM.

5

10

25

30

35

40

45

[0057] A target nucleic acid sequence can be 20 nucleotides. A target nucleic acid can be less than 20 nucleotides. A target nucleic acid can be at least 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more nucleotides. A target nucleotide can comprise ranges of nucleotides between about 5-30, and ranges between. The selection of a specific PAMs is within the knowledge of those of skill in the art based on the particular site-directed polypeptide to be used in a given instance.

15 [0058] The polynucleotides of the present disclosure comprising DNA and RNA on the same strand cannot be made *in vivo* using expression vectors, but can be chemically synthesized *in vitro*. Chemical synthesis of polynucleotides is well understood by one of ordinary skill in the art. Chemical synthesis of polynucleotides of the present disclosure can be conducted in solution or on a solid support. Synthesis in solution is preferred for large quantities and for higher purity polynucleotides, as the intermediates are purified following each step. For smaller quantities, where sequence purity is not as critical, solid phase synthesis is the preferred method. Polynucleotides of the present disclosure can also be obtained from commercial sources that provide automated chemical synthesis of polynucleotides.

[0059] Chemical synthesis of DNA may be easier, quicker and cheaper than the chemical synthesis of RNA. The generation and testing of polynucleotides comprising DNA can be more rapid and cost effective compared with RNA-comprising sequences. Sequences containing DNA may provide the advantage of increased specificity of targeting target nucleic acids such as DNA. Polynucleotides comprising DNA in specific regions as discussed herein may further present the advantage of reducing off-target binding because of the reduction in propensity for wobble base pairing associated with deoxyribonucleic acid bases compared to ribonucleic acid bases (*e.g.*, thymidine bases in DNA compared to uracil bases in RNA).

[0060] In some embodiments, the polynucleotides of the present disclosure may also comprise modifications that, for example, increase stability of the polynucleotide. Such modifications may include phosphorothioates, chiral phosphorothioates, phosphorates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates such as 3'-alkylene phosphonates, 5'-alkylene phosphonates, chiral phosphonates, phosphoramidates including 3'-amino phosphoramidate and amino alkylphosphoramidates, phosphorodiamidates, thionopho sphoramidates, thiono alkylpho sphonates, thionoalkylpho sphotriesters, selenophosphates, and boranophosphates having normal 3'-5' linkages, 2 -5' linked analogs, and those having inverted polarity wherein one or more internucleotide linkages is a 3' to 3', a 5' to 5' or a 2' to 2' linkage. Suitable nucleic acid-targeting polynucleotides having inverted polarity can comprise a single 3' to 3' linkage at the 3'-most internucleotide linkage (i.e. a single inverted nucleoside residue in which the nucleobase is missing or has a hydroxyl group in

place thereof). Various salts (e.g., potassium chloride or sodium chloride), mixed salts, and free acid forms can also be included.

[0061] In some embodiments, the polynucleotides of the present disclosure may also contain other nucleic acids, or nucleic acid analogues. An example of a nucleic acid analogue is peptide nucleic acid (PNA).

5

10

15

20

25

30

35

40

45

[0062] Delivery of polynucleotides of the present disclosure to cells, *in vitro*, or *in vivo*, may be achieved by a number of methods known to one of skill in the art. These methods include lipofection, electroporation, nucleofection, microinjection, biolistics, liposomes, immunoliposomes, polycation or lipid:nucleic acid conjugates. Lipofection is well known and described in *e.g.*, U.S. Pat. Nos. 5,049,386, 4,946,787; and 4,897,355; and lipofection reagents are sold commercially. Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides are described in International Publication Nos. WO 91/17424 and WO 91/16024.

[0063] Lipid:nucleic acid complexes, including targeted liposomes such as immunolipid complexes, and the preparation of such complexes is well known to one of skill in the art (see, e.g., Crystal, Science 270:404-410 (1995); Blaese et al., Cancer Gene Ther. 2:291-297 (1995): Behr et al., Bioconjugate Chem. 5:382-389 (1994); Remy et al., Bioconjugate Chem. 5:647-654 (1994); Gao et al., Gene Therapy 2:710-722 (1995); Ahmad et al., Cancer Res. 52:4817-4820 (1992); U.S. Pat. Nos. 4,186,183; 4,217,344; 4,235,871; 4,261,975; 4,485,054; 4,501,728; 4,774,085; 4,837,028; and 4,946,787).

[0064] Electroporation can be used to deliver the polynucleotides of the present disclosure. Electroporation may also be used to deliver complexes of the site-directed polypeptide and polynucleotides of the present disclosure. In these methods, the polynucleotides, or the complexes of site-directed polypeptides and polynucleotides are mixed in an electroporation buffer with the target cells to form a suspension. This suspension is then subjected to an electrical pulse at an optimized voltage, which creates temporary pores in the phospholipid bilayer of the cell membrane, permitting charged molecules like DNA and proteins to be driven through the pores and into the cell. Reagents and equipment to perform electroporation are sold commercially.

[0065] Biolistic, or microprojectile delivery, can be used to deliver the polynucleotides of the present disclosure. In these methods, microprojectiles, such as gold or tungsten, are coated with the polynucleotide by precipitation with calcium chloride, spermidine or polyethylene glycol. The microprojectile particles are accelerated at high speed into a cell using a device such as the BIOLISTIC® PDS-1000/He Particle Delivery System (Bio-Rad; Hercules, California).

[0066] In some embodiments, the present disclosure provides for *in vitro* methods of modifying a target gene in cell. The cell can be from any organism (e.g., a bacterial cell, an archaeal cell, a cell of a single-cell eukaryotic organism, a plant cell, an algal cell, a fungal cell (e.g., a yeast cell), a cell from an invertebrate animal, a cell from a vertebrate animal, or a cell from a mammal, including a cell from a human.

[0067] In some embodiments, the present disclosure provides for methods of modifying a target gene in a plant. As used herein, the term "plant" refers to whole plants, plant organs, plant tissues, seeds, plant cells, seeds and progeny of the same. Plant cells include, without limitation, cells from seeds, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen and microspores. Plant parts include differentiated and undifferentiated tissues including, but not limited to roots, stems, shoots, leaves, pollens, seeds, tumor tissue and various forms of cells and culture (e.g., single cells, protoplasts, embryos, and callus tissue).

10 **Example 1**

5

15

20

25

30

35

Production of Guide RNA Components

[0068] Guide RNAs (*e.g.*, sgRNAs and tracrRNAs) were produced by *in vitro* transcription (*e.g.*, T7 Quick High Yield RNA Synthesis Kit, New England Biolabs, Ipswich, MA) from double-stranded DNA template incorporating a T7 promoter at the 5' end of the DNA sequences.

[0069] The double-stranded DNA template for the RNA components was assembled by PCR using 3' overlapping primers containing the corresponding DNA sequences to RNA components. The oligonucleotides used in the assembly are presented in Table 1.

Table 1

Overlapping Primers for Generation of Guide RNA Templates			
Type of Guide RNA	Target for DNA-binding Sequence	SEQ ID NO	
sgRNA-AAVS	AAVS-1 (adeno-associated virus integration site 1 - human genome)	SEQ ID NO: 63, 64, 65, 66, 67	
tracrRNA	n/a	SEQ ID NO: 63, 71, 72, 73, 74	

[0070] Oligonucleotide sequences (*e.g.*, primer sequences shown in SEQ ID NOs 63-122) were provided to commercial manufacturers for synthesis (Integrated DNA Technologies, Coralville, IA; or Eurofins, Luxembourg).

[0071] The DNA primers were present at a concentration of 2nM each. Two outer DNA primers corresponding to the T7 promoter (forward primer: SEQ ID NO. 63, Table 1), and the 3'end of the RNA sequence (reverse primers: SEQ ID NO 67 and 74, Table 1) were used at 640nM to drive the amplification reaction. PCR reactions were performed using Q5 Hot Start High-Fidelity 2X Master Mix (New England Biolabs, Ipswich, MA) following the manufacturer's instructions. PCR assembly reactions were carried out using the following thermal cycling conditions: 98°C for 2 minutes, 35 cycles of 15 seconds at 98°C, 15 seconds at 72°C, and a final extension at 72°C for 2 min. DNA quality was evaluated by agarose gel electrophoresis (1.5%, SYBR® Safe, Life Technologies, Grand Island, NY).

[0072] Between 0.25-0.5µg of the DNA template for the guide RNA components were transcribed using T7 High Yield RNA synthesis Kit (New England Biolabs, Ipswich, MA) for ~16 hours at 37°C. Transcription reactions were treated with DNase I (New England Biolabs, Ipswich, MA) and purified using GeneJet RNA cleanup and concentration kit (Life Technologies, Grand Island, NY). RNA yield was quantified using the Nanodrop™ 2000 system (Thermo Scientific, Wilmington, DE). The quality of the transcribed RNA was checked by agarose gel electrophoresis (2%, SYBR® Safe, Life Technologies, Grand Island, NY). The guide RNA components sequences are shown in Table 2.

10

5

Table 2

	Guide RNA Sequences	
Name	Sequence (RNA bases are bracketed)	SEQ ID NO.
AAVS1 sgRNA	5' - [G][G][G][G][C][C][A][C][U][A] [G][G][G][A][C][A][G][G][A][U] [G][U][C][U][C][A][G][A][G][C] [U][A][U][G][C][U][G][U][C][C] [U][G][G][A][A][A][A][C][A][G][G] [A][C][A][G][C][A][U][A][G][C] [A][A][G][U][U][G][A][G][U][C] [C][G][U][U][A][U][C][A][G][U][C] [U][U][G][A][A][A][A][A][G][U] [G][G][C][A][C][C][G][A][G][U] [C][G][G][U][G][C][U][U][U][U][U] - 3'	SEQ ID NO: 1
tracrRNA	5' - [G][C][A][G][G][A][C][A][G][C] [A][U][A][G][C][A][A][G][U][U] [G][A][G][A][U][A][A][G][G][C] [U][A][G][U][C][C][G][U][U][A] [U][C][A][A][C][U][U][G][A][A] [A][A][A][G][U][G][G][C][A][C] [C][G][A][G][U][G][G][U][G] [C][U][U] - 3'	SEQ ID NO: 2

The method described above for production of guide RNA components can be applied to the production of other RNA components as described herein.

Example 2

5

10

15

20

<u>Production of Double-stranded DNA Target Regions for Use in Cas9 Cleavage Assays</u>

[0073] Target double stranded DNA for use in an *in vitro* Cas cleavage assays were produced using PCR amplification of the target region from genomic DNA.

[0074] Double-stranded DNA target regions (e.g., AAVS-1) for biochemical assays were amplified by PCR from phenol-chloroform prepared human cell line K562 (ATCC, Manassas, VA) genomic DNA (gDNA). PCR reactions were carried out with Q5 Hot Start High-Fidelity 2X Master Mix (New England Biolabs, Ipswich, MA) following the manufacturer's instructions. 20ng/µL gDNA in a final volume of 25µl were used to amplify the selected target region under the following conditions: 98°C for 2 minutes, 35 cycles of 20s at 98°C, 20s at 60°C, 20s at 72°C, and a final extension at 72°C for 2 min. PCR products were purified using Spin Smart[™] PCR purification tubes (Denville Scientific, South Plainfield, NJ) and quantified using Nanodrop[™] 2000 UV-Vis spectrophotometer (Thermo Scientific, Wilmington, DE).

[0075] The forward and reverse primers used for amplification of selected targeted sequences from gDNA were as follows. The primers, amplicon size, and sizes of fragments generated from Cas9 mediated cleavage are shown in Table 3.

Table 3

Double-stranded DNA Targets				
Double-stranded Target	Amplicon Size	Cleavage Fragment Sizes	SEQ ID NO:	
AAVS-1 target 1	495bp	316bp/179bp	SEQ ID NO: 75, 76	
EMX1 target 1	282bp	153bp/129bp	SEQ ID NO: 77, 78	
VEGFA target 1	276bp	112bp/164bp	SEQ ID NO: 79, 80	
CD34 target 1	282bp	111bp/171bp	SEQ ID NO: 81, 82	
CD34 target 2	268bp	108bp/160bp	SEQ ID NO: 83, 84	
STAT5a target 1	288bp	152bp/136bp	SEQ ID NO: 85, 86	
STAT5a target 2	242bp	103bp/139bp	SEQ ID NO: 87, 88	
JAK1 target 1	310bp	179bp/131bp	SEQ ID NO: 89, 90	
JAK1 target 2	310bp	178bp/132bp	SEQ ID NO: 91, 92	

[0076] Other suitable double-stranded DNA target regions are obtained using essentially the same method. For non-human target regions, genomic DNA from the selected organism (e.g., plant, bacteria, yeast, algae) is used instead of DNA derived from human cells. Furthermore, polynucleotide sources other than genomic DNA can be used (e.g., vectors and gel isolated DNA fragments).

Example 3

Cas9 Cleavage Assays

10

5

[0077] This example illustrates the use of a crD(R)NA of the present disclosure in *in vitro* Cas9 cleavage assays to evaluate and compare the percent cleavage of selected crD(R)NA/tracrRNA/Cas9 protein complexes relative to selected double-stranded DNA target sequences.

15

[0078] The cleavage activity was determined for a collection of crD(R)NAs variants (SEQ ID NOs: 38-62) against a double-stranded DNA target (AAVS-1; Example 2, Table 3).

[0079] Each sgRNA, crDNA or crD(R)NA was mixed with tracrRNA (if appropriate) in equimolar amounts in an annealing buffer (1.25mM HEPES, 0.625mM MgCl₂, 9.375mM KCl at pH7.5), incubated for 2 minutes at 95°C, removed from thermocycler and allowed to equilibrate to room temperature.

- [0080] The sgRNA, crDNA/tracrRNA, and crD(R)NA/tracrRNA were added to a Cas9 reaction mix. The Cas9 reaction mix comprised Cas9 protein diluted to a final concentration of 200μM in reaction buffer (20mM HEPES, 100mM KCl, 5mM MgCl₂, 1mM DTT, and 5% glycerol at pH 7.4). In the reaction mix, the final concentration of each crD(R)NA/tracrRNA was 500nM in each reaction mix. Each reaction mix was incubated at 37°C for 10 minutes. The cleavage reaction was initiated by the addition of target DNA to a final concentration of 15nM. Samples were mixed and centrifuged briefly before being incubated for 15 minutes at 37°C. Cleavage reactions were terminated by the addition of Proteinase K (Denville Scientific, South Plainfield, NJ) at a final concentration of 0.2μg/μL and 0.44 mg/μl RNase A Solution (SigmaAldrich, St. Louis, MO).
- [0081] Samples were incubated for 25 minutes at 37°C and 25 minutes at 55°C. 12 μL of the total reaction were evaluated for cleavage activity by agarose gel electrophoresis (2%, SYBR® Gold, Life Technologies, Grand Island, NY). For the AAVS-1 double-stranded DNA target, the appearance of DNA bands at ~316bp and ~179bp indicated that cleavage of the target DNA had occurred. Cleavage percentages were calculated using area under the curve values as calculated by FIJI (ImageJ; an open source Java image processing program) for each cleavage fragment and the target DNA, and dividing the sum of the cleavage fragments by the sum of both the cleavage fragments and the target DNA.
- [0082] FIGURE 3 presents the results of the Cas9 cleavage assay using the AAVS-1 target double-stranded DNA of sgRNA, crDNA/tracrRNA, and the crD(R)NA/tracrRNA. At

the top of each panel is a lane number corresponding to the guide RNA component used, SEQ ID NOs corresponding to each component are shown in Table 4.

Tabel 4

	<u>l abel 4</u> <u>AAVS-1 crD(R)NA</u>			
Lane	SEQ ID NO:			
1	DNA Marker			
2	No guide control			
3	SEQ ID NO: 37			
4	SEQ ID NO: 38			
5	SEQ ID NO: 39			
6	SEQ ID NO: 40			
7	SEQ ID NO: 41			
8	SEQ ID NO: 42			
9	DNA Marker			
10	DNA Marker			
11	No guide control			
12	SEQ ID NO: 1			
13	SEQ ID NO: 43			
14	SEQ ID NO: 44			
15	SEQ ID NO: 45			
16	SEQ ID NO: 46			
17	SEQ ID NO: 47			
18	SEQ ID NO: 48			
19	SEQ ID NO: 49			
20	DNA Marker			
21	DNA Marker			
22	No guide control			
23	SEQ ID NO: 1			
24	SEQ ID NO: 50			
25	SEQ ID NO: 51			
26	SEQ ID NO: 52			
27	SEQ ID NO: 53			
28	SEQ ID NO: 54			
29	SEQ ID NO: 55			
30	SEQ ID NO: 56			
31	SEQ ID NO: 57			
32	SEQ ID NO: 58			

<u>AAVS-1 crD(R)NA</u>			
Lane	SEQ ID NO:		
33	SEQ ID NO: 59		
34	SEQ ID NO: 60		
35	SEQ ID NO: 61		
36	SEQ ID NO: 62		
37	DNA Marker		

[0083] Cleavage percentages are shown at the bottom of each lane. For crDNA or crD(R)NAs where no cleavage activity was observed (e.g., FIGURE 3, 3; FIGURE 3, 5; FIGURE 3, 35; FIGURE 3, 34; FIGURE 3, 35) cleavage activity is expressed as n/d (indicating that cleavage activity was not detected).

[0084] The data presented in **FIGURE 3** demonstrate that the crD(R)NAs of the present disclosure facilitate Cas9 mediated site-specific cleavage of a target double-stranded DNA.

Example 4

5

10

crD(R)NA Activity against Multiple Targets

[0085] This example demonstrates the *in vitro* biochemical activity of crD(R)NAs comprising different spaces programmed to target specific sequences.

[0086] The sequences of the crDNA, crRNA and crD(R)NA (shown in Table 5) were provided to a commercial manufacturer for synthesis.

20 <u>Table 5</u>

crDNA, crRNA, and crD(R)NA sequences			
Target	Guide RNA type	Sequences (RNA bases are bracketed)	SEQ ID NO
EMX1 target 1	crDNA	5' - GAGTCCGAGC AGAAGAAGAA GTCTCAGAGC TATGCTGTCC TG - 3'	SEQ ID NO: 3
VEGFA target 1	crDNA	5' - GGGTGGGGGG AGTTTGCTCC GTCTCAGAGC TATGCTGTCC TG - 3'	SEQ ID NO: 4
CD34 target 1	crDNA		SEQ ID NO: 5

	<u>crDNA,</u>	crRNA, and crD(R)NA sequences	
Target	Guide RNA type	Sequences (RNA bases are bracketed)	SEQ ID NO
		5' - GTTTGTGTTT CCATAAACTG	
		GTCTCAGAGC TATGCTGTCC TG - 3'	
CD34 target	crDNA	5' - TCTGTGATAA CCTCAGTTTA	SEQ ID NO: 6
		GTCTCAGAGC TATGCTGTCC TG - 3'	
STAT5a	crDNA		SEQ ID
target 1		5' - GGCCACTGTA GTCCTCCAGG	NO: 7
		GTCTCAGAGC TATGCTGTCC TG - 3'	
STAT5a	crDNA	5' - GTCCCCCAGC CGGTCAGCCA	SEQ ID
target 2			NO: 8
		GTCTCAGAGC TATGCTGTCC TG - 3'	
JAK1 target	crDNA	5' - GGCAGCCAGC ATGATGAGAC	SEQ ID NO: 9
1		GTCTCAGAGC TATGCTGTCC TG - 3'	110. 9
JAK1 target	crDNA	EL CACCACCTOC AACAACACTC	SEQ ID
2		5' - GAGGAGCTCC AAGAAGACTG	NO: 10
		GTCTCAGAGC TATGCTGTCC TG - 3'	
EMX1 target	crRNA	5' - [G][A][G][U][C][C][G][A][G][C]	SEQ ID
1			NO: 11
		[U][A][U][G][C][U][G][U][C][C] [U][G] - 3'	
VEGFA	crRNA	5' - [G][G][G][U][G][G][G][G][G]	SEQ ID NO: 12
target 1			INO. 12
		[U][A][U][G][C][U][G][U][C][C] [U][G] - 3'	
CD34 target	crRNA		SEQ ID
1	<u></u>		NO: 13

***********************	<u>crDNA,</u>	crRNA, and crD(R)NA sequences	
Target	Guide RNA type	Sequences (RNA bases are bracketed)	SEQ ID NO
		5' - [G][U][U][U][G][U][G][U][U][U]	
		[C][C][A][U][A][A][A][C][U][G]	
		[G][U][C][U][C][A][G][A][G][C]	
		[U][A][U][G][C][U][G][U][C][C] [U][G] - 3'	
CD34 target	crRNA		SEQ ID
2		5' - [U][C][U][G][U][G][A][U][A][A]	NO: 14
		[C][C][U][C][A][G][U][U][U][A]	
		[G][U][C][U][C][A][G][A][G][C]	
		[U][A][U][G][C][U][G][U][C][C] [U][G] - 3'	
STAT5a	crRNA	5) FOR GROUP CONTRACTOR OF THE	SEQ ID
target 1		5' - [G][G][C][C][A][C][U][G][U][A]	NO: 15
		[G][U][C][U][C][C][A][G][G]	
		[G][U][C][U][C][A][G][A][G][C]	
		[U][A][U][G][C][U][G][U][C][C] [U][G] - 3'	
STAT5a	crRNA		SEQ ID
target 2		5' - [G][U][C][C][C][C][C][A][G][C]	NO: 16
		[C][G][G][U][C][A][G][C][C][A]	
		[G][U][C][U][C][A][G][A][G][C]	
		[U][A][U][G][C][U][G][U][C][C] [U][G] - 3'	
JAK1 target	crRNA	5' - [G][G][C][A][G][C][A][G][C]	SEQ ID
1		[A][U][G][A][U][G][A][G][A][C]	NO: 17
		[U][A][U][G][C][U][G][U][C][C] [U][G] - 3'	
JAK1 target	crRNA	EL TOTATIONOU A HOMOGRAPIONO	SEQ ID
2		5' - [G][A][G][G][A][G][C][U][C][C]	NO: 18
		[A][A][G][A][G][A][C][U][G]	
		[G][U][C][U][C][A][G][A][G][C]	
		[U][A][U][G][C][U][G][U][C][C] [U][G] - 3'	
EMX1 target	crD(R)NA		SEQ ID
1	<u> </u>		NO: 19

Target	Guide RNA type	Sequences (RNA bases are bracketed)	SEQ ID NO
		5' - GAGTCCGAGC AGAA[G][A][A][G][A][A] [G][U][C][U][C][A]GAGC TATGCTGTCC TG - 3'	
VEGFA target 1	crD(R)NA	5' - GGGTGGGGGG AGTT[U][G][C][U][C][C] [G][U][C][U][C][A]GAGC TATGCTGTCC TG - 3'	SEQ ID NO: 20
CD34 target	crD(R)NA	5' - GTTTGTGTTT CCAT[A][A][A][A][C][U][G] [G][U][C][U][C][A]GAGC TATGCTGTCC TG - 3'	SEQ ID NO: 21
CD34 target 2	crD(R)NA	5' - TCTGTGATAA CCTC[A][G][U][U][U][A] [G][U][C][U][C][A]GAGC TATGCTGTCC TG - 3'	SEQ ID NO: 22
STAT5a target 1	crD(R)NA	5' - GGCCACTGTA GTCC[U][C][C][A][G][G] [G][U][C][U][C][A]GAGC TATGCTGTCC TG - 3'	SEQ ID NO: 23
STAT5a target 2	crD(R)NA	5' - GTCCCCCAGC CGGT[C][A][G][C][C][A] [G][U][C][U][C][A]GAGC TATGCTGTCC TG - 3'	SEQ ID NO: 24
JAK1 target 1	crD(R)NA	5' - GGCAGCCAGC ATGA[U][G][A][G][A][C] [G][U][C][U][C][A]GAGC TATGCTGTCC TG - 3'	SEQ ID NO: 25

crDNA, crRNA, and crD(R)NA sequences				
Target	Guide RNA type	Sequences (RNA bases are bracketed) SEQ ID NO		
JAK1 target 2	crD(R)NA	5' - GAGGAGCTCC AAGA[A][G][A][C][U][G] [G][U][C][U][C][A]GAGC TATGCTGTCC TG - 3'	SEQ ID NO: 26	
tracrRNA was constructed as described in Example 1.				

[0087] Double stranded DNA targets were generated as described in Example 2 using the oligonucleotides shown in Table 3 corresponding to the appropriate target sequence.

[0088] crDNA/tracrRNA, crRNA/tracrRNA, and crD(R)NA/tracrRNA were hybridized and biochemical cleavage is carried out as described in Example 3.

5

35

[0089] FIGURE 4A and FIGURE 4B show the results for the biochemical cleavage of various spacers. FIGURE 4A shows biochemical cleavage percentages. Activity for EMX 10 target 1 is shown in group 1: where 'A' is a Cas9 only control, 'B' is the crDNA/tracrRNA/Cas9. 'C' is the crRNA/tracrRNA/Cas9. and `D' is the crD(R)NA/tracrRNA/Cas9. Activity for VEGFA target 1 is shown in group 2: where 'A' is a Cas9 only control, 'B' is the crDNA/tracrRNA/Cas9, 'C' is the crRNA/tracrRNA/Cas9, and 'D' is the crD(R)NA/tracrRNA/Cas9. Activity for CD34 target 1 is shown in group 3: where 15 'A' is a Cas9 only control, 'B' is the crDNA/tracrRNA/Cas9, 'C' is the crRNA/tracrRNA/Cas9, and 'D' is the crD(R)NA/tracrRNA/Cas9. Activity for CD34 target 2 is shown in group 4: where 'A' is a Cas9 only control, 'B' is the crDNA/tracrRNA/Cas9, 'C' is the crRNA/tracrRNA/Cas9, and 'D' is the crD(R)NA/tracrRNA/Cas9. Activity for STAT5a target 1 is shown in group 5: where 'A' is a Cas9 only control, 'B' is the 20 crDNA/tracrRNA/Cas9, 'C' is the crRNA/tracrRNA/Cas9, and 'D' is the crD(R)NA/tracrRNA/Cas9. Activity for STAT5a target 2 is shown in group 6: where 'A' is a Cas9 only control, 'B' is the crDNA/tracrRNA/Cas9, 'C' is the crRNA/tracrRNA/Cas9, and 'D' is the crD(R)NA/tracrRNA/Cas9. Activity for JAK1 target 1 is shown in group 7; where 'A' is a Cas9 only control, 'B' is the crDNA/tracrRNA/Cas9, 'C' is the 25 crRNA/tracrRNA/Cas9, and `D' is the crD(R)NA/tracrRNA/Cas9. Activity for JAK1 target 2 is shown in group 8; where 'A' is a Cas9 only control, 'B' is the crDNA/tracrRNA/Cas9, 'C' is the crRNA/tracrRNA/Cas9, and `D' is the crD(R)NA/tracrRNA/Cas9. For all Cas9 only samples (FIGURE 4A, `A') and crDNA/tracrRNA/cas9 samples (FIGURE 4B, `B'), no 30 cleavage activity was detected (FIGURE 4A, 'n/d').

[0090] In **FIGURE 4B**, the percent cleavage is shown on the y-axis of the graph and the target is shown on the x-axis. Activity for EMX target 1 is shown in the bars of group 1. Activity for VEGFA target 1 is shown in the bars of group 2. Activity for CD34 target 1 is shown in the bars of group 3. Activity for CD34 target 2 is shown in the bars of group 4.

Activity for STAT5a target 1 is shown in the bars of group 5. Activity for STAT5a target 2 is shown in the bars of group 6. Activity for JAK1 target 1 is shown in the bars of group 7. Activity for JAK1 target 2 is shown in the bars of group 8. 'C' and 'D' refer to the same reactions as in **FIGURE 4A**.

5

15

20

25

[0091] FIGURE 4 demonstrates that the Cas9 mediated biochemical cleavage of a double stranded DNA target using the crD(R)NA of the present disclosure is transferable across different target sequences.

Example 5

10 T7E1 Assay for Detection of Target Modifications in Eukaryotic Cells

[0092] This example illustrates the use of T7E1 assays to evaluate the percent cleavage *in vivo* of crD(R)NA relative to selected double-stranded DNA target sequences.

A. Cell Transfections Using Cas Polynucleotide Components

[0093] sgRNA and crD(R)NA/tracrRNAs comprising an AAVS-1 targeting sequence were transfected into HEK293 cells constitutively expressing SpyCas9-GFP fusion (HEK293-Cas9-GFP), using the Nucleofector® 96-well Shuttle System (Lonza, Allendale, NJ) and the following protocol. Equal molar amounts of guide RNA components were prepared in an annealing buffer (1.25mM HEPES, 0.625mM MgCl₂, 9.375mM KCl at pH 7.5), were incubated for 2 minutes at 95 °C, were removed from thermocycler, allowed to equilibrate to room temperature, and dispensed in a 10µL final volume in triplicate in a 96-well plate. Culture medium was aspirated from HEK293-Cas9-GFP cells, and the cells were washed once with calcium and magnesium-free PBS then were trypsinized by the addition of TrypLE (Life Technologies, Grand Island, NY) followed by incubation at 37°C for 3-5 minutes. Trypsinized cells were gently pipetted up and down to form a single cell suspension and added to DMEM complete culture medium composed of DMEM culture medium (Life Technologies, Grand Island, NY) containing 10% FBS (Fisher Scientific, Pittsburgh, PA) and supplemented with penicillin and streptomycin (Life Technologies, Grand Island, NY).

30 [0094] The cells were then pelleted by centrifugation for 3 minutes at 200 × g, the culture medium aspirated and cells were resuspended in PBS. The cells were counted using the Countess® II Automated Cell Counter (Life Technologies, Grand Island, NY). 2.2 × 10⁷ cells were transferred to a 50ml tube and pelleted. The PBS was aspirated and the cells were resuspended in Nucleofector™ SF (Lonza, Allendale, NJ) solution to a density of 1 × 10⁷ cells/mL. 20µL of the cell suspension were then added to individual wells 35 containing 10uL of Cas polynucleotide components and the entire volume was transferred to the wells of a 96-well Nucleocuvette[™] Plate (Lonza, Allendale, NJ). The plate was loaded onto the Nucleofector™ 96-well Shuttle™ (Lonza, Allendale, NJ) and cells were nucleofected using the 96-CM-130 Nucleofector[™] program (Lonza, Allendale, NJ). Postnucleofection, 70 µL DMEM complete culture medium was added to each well and 50µL of 40 the cell suspension were transferred to a collagen coated 96-well cell culture plate containing 150µL pre-warmed DMEM complete culture medium. The plate was then transferred to a tissue culture incubator and maintained at 37°C in 5% CO₂ for 48 hours.

B. Target Double-Stranded DNA Generation for T7E1 Assay

[0095] gDNA was isolated from HEK-293-SpyCas9 cells 48 hours after Cas polynucleotide component transfection using 50µL QuickExtract DNA Extraction solution (Epicentre, Madison, WI) per well followed by incubation at 37°C for 10 minutes, 65°C for 6 minutes and 95°C for 3 minutes to stop the reaction. gDNA was then diluted with 150µL water and samples were stored at -80°C.

[0096] DNA for T7E1 was generated by PCR amplification of a target double-stranded DNA sequence (e.g., AAVS-1) from isolated gDNA. PCR reactions were set up using 8μL gDNA as template with KAPA HiFi Hot Start polymerase and containing 0.5U of polymerase, 1x reaction buffer, 0.4mM dNTPs and 300nM forward and reverse primers directed to the target double-stranded DNA (e.g., AAVS-1, SEQ ID NOs: 75, 76 (Table 3)) in a total volume of 25uL. Target DNA was amplified using the following conditions: 95°C for 5 minutes, 4 cycles of 20 s at 98°C, 20 s at 70°C, minus 2°C/cycle, 30 s at 72°C, followed by 30 cycles of 15 s at 98°C, 20 s at 62°C, 20 s at 72°C, and a final extension at 72°C for 1 minute.

C. T7E1 Assay

5

10

15

20

25

30

35

40

[0097] PCR amplified target double-stranded DNA for T7E1 assays was denatured at 95°C for 10 minutes and then allowed to re-anneal by cooling to 25°C at -0.5°C/s in a thermal cycler. The re-annealed DNA was incubated with 0.5mL T7 Endonuclease I in 1x NEBuffer 2 buffer (New England Biolabs, Ipswich, MA) in a total volume of 15mL for 25 minutes at 37°C. T7E1 reactions were analyzed using the Fragment Analyzer™ system (Advanced Analytical Technologies, Inc., Ames, IA) and the DNF-910 double-stranded DNA Reagent Kit (Advanced Analytical Technologies, Inc., Ames, IA). The Fragment Analyzer™ system provides the concentration of each cleavage fragment and of the target double-stranded DNA that remains after cleavage.

[0098] Cleavage percentages of the target double-stranded DNA were calculated from the concentration of each cleavage fragment and the target double-stranded DNA, which remains after cleavage has taken place, using the following formula:

$$\% cleavage = \left(1 - \sqrt{1 - \frac{(frag1 + frag2)}{(frag1 + frag2 + parent)}}\right)$$
EQUATION 1

[0099] In Equation 1, "frag1" and "frag2" concentrations correspond to the concentration of Cas cleavage fragments of the double-stranded DNA target and "parent" corresponds to the target double-stranded DNA that remains after cleavage has taken place.

[0100] FIGURE 5 shows the results of a T7E1 assay of gDNA prepped from cells transfected with crD(R)NAs at various concentrations. The average percent indels frequency detected was shown above each bar graph (calculated using Equation 1). The

percent are the average of three samples, except for **FIGURE 5**, bar 4, in which activity was only detected in two samples and **FIGURE 5**, bar 5, in which activity was only detected in one sample. The concentration of either crD(R)NA/tracrRNA or sgRNA nucleofected into cells are shown in Table 6.

5

Table 6

	Transfected Guide RNA Component Concentrations		
#	SEQ ID NO.	pmol	
1	SEQ ID NO: 43	500	
2	SEQ ID NO: 43	750	
3	SEQ ID NO: 43	1000	
4	SEQ ID NO: 43	2000	
5	SEQ ID NO: 43	3000	
6	SEQ ID NO: 1	500	

[0101] The T7E1 assay for detection of target modifications in eukaryotic cells provides data to demonstrate that the crD(R)NA/tracrRNA/Cas9 systems as described herein facilitate Cas-mediated site-specific *in vivo* cleavage of target double-stranded DNA.

[0102] Following the guidance describe herein, the T7E1 assay described in this example can be practiced by one of ordinary skill in the art to measure activity from cells modified with other CRISPR-Cas systems, including, but not limited to Cas9, Cas9-like, Cas1, Csn2, Cas4, Cpf1, C2c1, C2c2, C2c3, proteins encoded by Cas9 orthologs, Cas9-like synthetic proteins, Cas9 fusions, and variants and modifications thereof, combined with their cognate polynucleotide components modified as described herein to comprise a crD(R)NA.

20 **Example 6**

On/Off-Target crD(R)NA Cleavage Activity

[0103] This example illustrates the use of crD(R)NAs to evaluate the cleavage activity of a target at the intended target site ("on-target") and predicted nearest neighbor ("off-target") sites. Target sequences of on/off-target sites are shown in Table 7:

25

15

Table 7

		100101		
On/Off-Target Site Sequences				
Target	Site	Target Sequence	SEQ ID NO:	
EMX-1	ON	5' - GAGTCCGAGC AGAAGAAGAA - 3'	SEQ ID NO: 27	
EMX-1	OFF1		SEQ ID NO: 28	

On/Off-Target Site Sequences			
Target	Site	Target Sequence	SEQ ID NO:
		5' - GAGTTAGAGC	
		AGAAGAAGAA - 3'	
EMX-1	OFF2	CL A COTTA CTA CC	SEQ ID NO: 29
		5' - AGGTACTAGC	
		AGAAGAAGAA - 3'	
EMX-1	OFF3	51 AGGMGMGAGG	SEQ ID NO: 30
		5' - ACGTCTGAGC	
		AGAAGAAGAA - 3'	
EMX-1	OFF4	T	SEQ ID NO: 31
		5' - AGGTGCTAGC	
		AGAAGAAGAA - 3'	
VEGFA-1	ON		SEQ ID NO: 32
		5' - GGGTGGGGGG	
		AGTTTGCTCC - 3'	
VEGFA-1	OFF1		SEQ ID NO: 33
		5' - GGATGGAGGG	
		AGTTTGCTCC - 3'	
VEGFA-1	OFF2		SEQ ID NO: 34
		5' - GGGGAGGGGA	
		AGTTTGCTCC - 3'	
VEGFA-1	OFF3		SEQ ID NO: 35
		5' - GGGAGGGTGG	
		AGTTTGCTCC - 3'	
VEGFA-1	OFF4		SEQ ID NO: 36
		5' - CGGGGGAGGG	
		AGTTTGCTCC - 3'	

[0104] crRNA and crD(R)NA sequences were provided to a commercial manufacturer for synthesis. tracrRNA were constructed as described in Example 1.

[0105] Double stranded DNA targets were generated as described in Example 2 using the oligonucleotides shown in Table 8 corresponding to the appropriate target sequence.

5 <u>Table 8</u>

On/Off-Target DNA			
Target	Site	Target Sequence	
EMX-1	on	SEQ ID NOs.107, 108	
EMX-1	OFF1	SEQ ID NOs. 111, 112	
EMX-1	OFF2	SEQ ID NOs.113, 114	
EMX-1	OFF3	SEQ ID NOs.115, 116	
EMX-1	OFF4	SEQ ID NOs.117, 118	
VEGFA-1	on	SEQ ID NOs.119, 120	
VEGFA-1	OFF1	SEQ ID NOs.121, 122	
VEGFA-1	OFF2	SEQ ID NOs.123, 124	
VEGFA-1	OFF3	SEQ ID NOs.125, 126	
VEGFA-1	OFF4	SEQ ID NOs.107, 108	

[0106] crRNA/tracrRNA and crD(R)NA/tracrRNA were hybridized and biochemical cleavage was carried out as described in Example 3.

[0107] FIGURE 6 shows the comparison of biochemical activity of a crRNA/tracrRNA and crD(R)NA/tracrRNA at intended on-target sites and four computationally predicted off-target sites. Percent cleavage is shown on the y-axis and samples are shown on the x-axis. Table 9 lists the samples:

15

10

Table 9

		<u> 1 abie 9</u>		
	crRNA and tracrRNA On/Off-target Activity			
ID	Target Site Guide RNA Component			
1 A	EMX-1 ON	crRNA		
1B	EMX-1 ON	crD(R)NA		
2A	EMX-1 OFF-1	crRNA		
2B	EMX-1 OFF-1	crD(R)NA		
3A	EMX-1 OFF-2	crRNA		
3B	EMX-1 OFF-2	crD(R)NA		
4A	EMX-1 OFF-3	crRNA		
4B	EMX-1 OFF-3	crD(R)NA		
5A	EMX-1 OFF-4	crRNA		
5B	EMX-1 OFF-4	crD(R)NA		
6A	VEGFA-1 ON	crRNA		

crRNA and tracrRNA On/Off-target Activity			
ID	Target Site	Guide RNA Component	
6B	VEGFA-1 ON	crD(R)NA	
7 A	VEGFA-1 OFF-1	crRNA	
7B	VEGFA-1 OFF-1	crD(R)NA	
8A	VEGFA-1 OFF-2	crRNA	
8B	VEGFA-1 OFF-2	crD(R)NA	
9 A	VEGFA-1 OFF-3	crRNA	
9 B	VEGFA-1 OFF-3	crD(R)NA	
10 A	VEGFA-1 OFF-4	crRNA	
10 B	VEGFA-1 OFF-4	crD(R)NA	

[0108] The data presented in **FIGURE 7** show crD(R)NAs maintain high on-target activity when compared to crRNA. crD(R)NAs do not support off-target activity whereas the crRNAs have undesirable off-target activity.

Example 7

Deep Sequencing Analysis for Detection of Target Modifications in Eukaryotic Cells

[0109] This example illustrates the use of deep sequencing analysis to evaluate and compare the percent cleavage *in vivo* of selected sgD(R)NA/Cas9 protein complexes relative to selected double-stranded DNA target sequences.

A. Synthesis of sgD(R)NA

[0110] Six sgD(R)NA sequences targeting the human AAVS-1 locus and comprising different DNA/RNA compositions and phosphorothioate protected bonds were provided to a commercial manufacturer for synthesis. These sequences are shown in Table 10.

Table 10

sgD(R)NA Sequences			
Name	Sequence (RNA bases are bracketed, phosphorothioate bonds are shown with an *)	SEQ ID NO:	
sgD(R)NA - 01	5' - GGGGCCACTA GGGA[C][A][G][G][A][U] [G][U][U][U][U][A][G][A][G][C] [U][A][G][A][A][A][A][A][G][C] [A][A][G][U][U][A][A][A][U] [A][A][G][G][C][U][A][G][U][C] [C][G][U][U][A][U][C][A][A][C] [U][U][G][A][A][A][A][G][U] [G][G][A][A][A][A][A][G][U] [G][G][C][A][C][C][G][A][G][U] [G][G][G][U][G][C][U] - 3'	SEQ ID NO: 127	

15

10

5

sgD(R)NA Sequences		
Name	Sequence (RNA bases are bracketed, phosphorothioate bonds are shown with an *)	SEQ ID NO:
sgD(R)NA - 02	5' - G*G*GGCCACTA GGGA[C][A][G][G][A][U] [G][U][U][U][U][A][G][A][G][C] [U][A][G][A][A][A][A][A][G][C] [A][A][G][U][U][A][A][A][A][U] [A][A][G][G][C][U][A][G][U][C] [C][G][U][U][A][U][C][A][A][C] [U][U][G][A][A][A][A][A][D] [G][G][C][A][C][C][G][A][G][U] [G][G][G][U][G][C][U] - 3'	SEQ ID NO: 128
sgD(R)NA - 03	5' - GGGGCCACTA GGGA[C A] G G A] U] [G U U U U A] G] A]GC TGCT[G][A][A][A]AGC AUAGC[A][A][G][U][U] [A][A][A][A][U][A][A][G][G][C] [U][A][G][U][C][G][U][U][A] [U][C][A][A][C][U][U][G][A] [A][A][A][C][U][U][G][A] [A][A][A][C][U][G][G][C] C][G][A][G][U][C][G][G][U] - 3'	SEQ ID NO: 129
sgD(R)NA - 04	5' - G*G*GGCCACTA GGGA[C][A][G][G][A][U] [G][U][U][U][U][A][G][A]GC TATGCT[G][A][A][A]AGC ATAGC[A][A][G][U][U] [A][A][A][A][U][A][G][G][C] [U][A][G][U][C][C][G][U][U][A] [U][C][A][A][C][U][U][A] [A][A][A][C][U][U][G][A][A] [A][A][A][C][U][G][G][C][A][C] C][G][A][G][U][C][G][G][U]] - 3'	SEQ ID NO: 130
sgD(R)NA - 05	5' - GGGGCCACTA GGGA[C][A][G][G][A][U] [G][U][U][U][U][A][G][A]GC TATGCT[G][A][A][A]AGC ATAGC[A][A][G][U][U] [A][A][A][A][U][A][G][G][C] [U][A][G][U][C][C][G][U][U][A] [U][C][A][A][C][U][U][G][A][A] [A][A][A][G][U][G][G]CAC CG[A][G][U]CGGTG [C][U] - 3'	SEQ ID NO: 131
sgD(R)NA -		SEQ ID

sgD(R)NA Sequences			
Name	Sequence (RNA bases are bracketed, phosphorothioate bonds are shown with an *)	SEQ ID NO:	
06	5' - G*G*GGCCACTA GGGA[C][A][G][G][A][U] [G][U][U][U][A][G][A][GC TATGCT[G][A][A][A]AGC ATAGC[A][A][G][U][U] [A][A][A][A][A][A][G][G][C] [U][A][G][U][C][G][U][U][A] [U][C][A][A][C][U][U][A][A] [U][C][A][A][G][U][U][G][A][A] [A][A][A][G][U][G][CAC CG[A][G][U]CGGTG [C][U] - 3'	NO: 132	

B. Formation of RNP Complexes of sgD(R)NA/Cas9 protein

5

10

15

20

25

30

[0111] Cas9 protein was expressed from a bacterial expression vector in *E. coli* (BL21 (DE3)) and purified using affinity ion exchange and size exclusion chromatography according to methods described in Jinek et al. (Science; 337(6096):816-21(2012)). The coding sequence for *Streptococcus pyogenes* Cas9 included two nuclear localization sequences (NLS) at the C-terminus. Ribonucleoprotein (RNP) complexes were assembled, in triplicate, at two concentrations, 20pmol Cas9:60pmols sgD(R)NA and 200pmols Cas9:600pmols sgD(R)NA. The sgD(R)NA components were mixed in equimolar amounts in an annealing buffer (1.25mM HEPES, 0.625mM MgCl₂, 9.375mM KCl at pH7.5) to the desired concentration (60pmols or 600pmols) in a final volume of 5μL, incubated for 2 minutes at 95°C, removed from the thermocycler and allowed to equilibrate to room temperature. Cas9 protein was diluted to an appropriate concentration in binding buffer (20mM HEPES, 100mM KCl, 5mM MgCl₂, 1mM DTT, and 5% glycerol at pH 7.4) to a final volume of 5μL and mixed with the 5μL of heat-denatured crD(R)NAs followed by incubation at 37°C for 30 minutes.

C. Cell Transfections Using sgD(R)NA/Cas9 Protein RNPs

[0112] RNP complexes were transfected into K562 cells (ATCC, Manassas, VA), using the Nucleofector® 96-well Shuttle System (Lonza, Allendale, NJ) and the following protocol. RNP complexes were dispensed in a 10µL final volume into individual wells of a 96-well plate. K562 cells suspended in media were transferred from a culture flask to a 50mL conical tube. Cells were pelleted by centrifugation for 3 minutes at 200 × g, the culture medium aspirated, and the cells were washed once with calcium and magnesium-free PBS. K562 cells were then pelleted by centrifugation for 3 minutes at 200 × g, the PBS aspirated and cell pellet were resuspended in 10mL of calcium and magnesium-free PBS.

[0113] The cells were counted using the Countess® II Automated Cell Counter (Life Technologies, Grand Island, NY). 2.2 × 10⁷ cells were transferred to a 50ml tube and pelleted. The PBS was aspirated and the cells were resuspended in Nucleofector™ SF (Lonza, Allendale, NJ) solution to a density of 1 × 10⁷ cells/mL. 20µL of the cell suspension were added to individual wells containing 10µL of RNP complexes and the

entire volume was transferred to the wells of a 96-well Nucleocuvette[™] Plate (Lonza, Allendale, NJ). The plate was loaded onto the Nucleofector[™] 96-well Shuttle[™] (Lonza, Allendale, NJ) and cells were nucleofected using the 96-FF-120 Nucleofector[™] program (Lonza, Allendale, NJ). Post-nucleofection, 70µL Iscove's Modified Dulbecco's Media (IMDM; Life Technologies, Grand Island, NY), supplemented with 10% FBS (Fisher Scientific, Pittsburgh, PA), penicillin and streptomycin (Life Technologies, Grand Island, NY) was added to each well and 50µL of the cell suspension were transferred to a 96-well cell culture plate containing 150µL pre-warmed IMDM complete culture medium. The plate was then transferred to a tissue culture incubator and maintained at 37°C in 5% CO₂ for 48 hours.

D. Target Double-stranded DNA Generation for Deep Sequencing

[0114] gDNA was isolated from K562 cells 48 hours after RNP transfection using 50µL QuickExtract DNA Extraction solution (Epicentre, Madison, WI) per well followed by incubation at 37°C for 10 minutes, 65°C for 6 minutes and 95°C for 3 minutes to stop the reaction. The isolated gDNAs were diluted with 50µL water and samples stored at -80°C.

[0115] Using the isolated gDNA, a first PCR was performed using Q5 Hot Start High-Fidelity 2X Master Mix (New England Biolabs, Ipswich, MA) at 1x concentration, primers at 0.5µM each (SEQ ID NOs: 93, 94), 3.75µL of gDNA in a final volume of 10uL and amplified 98°C for 1 minute, 35 cycles of 10s at 98°C, 20s at 60°C, 30s at 72°C, and a final extension at 72°C for 2 min. PCR reaction were diluted 1:100 in water.

[0116] A "barcoding" PCR was set up using unique primers for each sample to facilitate multiplex sequencing. The samples and corresponding primer pairs are shown in Table 11.

25

5

10

15

20

Table 11			
	Barcoding Primers		
ID	Sample	SEQ ID NO:	
BARCODING PRIMER set-1	sgD(R)NA-01 60pmol rep1	SEQ ID NO: 95, 101	
BARCODING PRIMER set-2	sgD(R)NA-02 60pmol rep1	SEQ ID NO: 95, 102	
BARCODING PRIMER set-3	sgD(R)NA-03 60pmol rep1	SEQ ID NO: 95, 103	
BARCODING PRIMER set-4	sgD(R)NA-04 60pmol rep1	SEQ ID NO: 95, 104	
BARCODING PRIMER set-5	sgD(R)NA-05 60pmol rep1	SEQ ID NO: 95, 105	
BARCODING PRIMER set-6	sgD(R)NA-06 60pmol rep2	SEQ ID NO: 95, 106	
BARCODING PRIMER set-7	sgD(R)NA-01 60pmol rep2	SEQ ID NO: 96, 101	
BARCODING PRIMER set-8	sgD(R)NA-02 60pmol rep2	SEQ ID NO: 96, 102	
BARCODING PRIMER set-9	sgD(R)NA-03 60pmol rep2	SEQ ID NO: 96, 103	
BARCODING PRIMER set- 10	sgD(R)NA-04 60pmol rep2	SEQ ID NO: 96, 104	
BARCODING PRIMER set- 11	sgD(R)NA-05 60pmol rep2	SEQ ID NO: 96, 105	
BARCODING PRIMER set- 12	sgD(R)NA-06 60pmol rep2	SEQ ID NO: 96, 106	

,	Barcoding Primers	
ID	Sample	SEQ ID NO:
BARCODING PRIMER set- 13	sgD(R)NA-01 60pmol rep3	SEQ ID NO: 97, 101
BARCODING PRIMER set- 14	sgD(R)NA-02 60pmol rep3	SEQ ID NO: 97, 102
BARCODING PRIMER set- 15	sgD(R)NA-03 60pmol rep3	SEQ ID NO: 97, 103
BARCODING PRIMER set- 16	sgD(R)NA-04 60pmol rep3	SEQ ID NO: 97, 104
BARCODING PRIMER set- 17	sgD(R)NA-05 60pmol rep3	SEQ ID NO: 97, 105
BARCODING PRIMER set- 18	sgD(R)NA-06 60pmol rep3	SEQ ID NO: 97, 106
BARCODING PRIMER set- 19	sgD(R)NA-01 600pmol rep1	SEQ ID NO: 98, 101
BARCODING PRIMER set- 20	sgD(R)NA-02 600pmol rep1	SEQ ID NO: 98, 102
BARCODING PRIMER set- 21	sgD(R)NA-03 600pmol rep1	SEQ ID NO: 98, 103
BARCODING PRIMER set- 22	sgD(R)NA-04 600pmol rep1	SEQ ID NO: 98, 104
BARCODING PRIMER set- 23	sgD(R)NA-05 600pmol rep1	SEQ ID NO: 98, 105
BARCODING PRIMER set- 24	sgD(R)NA-06 600pmol rep2	SEQ ID NO: 98, 106
BARCODING PRIMER set- 25	sgD(R)NA-01 600pmol rep2	SEQ ID NO: 99, 101
BARCODING PRIMER set- 26	sgD(R)NA-02 600pmol rep2	SEQ ID NO: 99, 102
BARCODING PRIMER set- 27	sgD(R)NA-03 600pmol rep2	SEQ ID NO: 99, 103
BARCODING PRIMER set- 28	sgD(R)NA-04 600pmol rep2	SEQ ID NO: 99, 104
BARCODING PRIMER set- 29	sgD(R)NA-05 600pmol rep2	SEQ ID NO: 99, 105
BARCODING PRIMER set- 30	sgD(R)NA-06 600pmol rep2	SEQ ID NO: 99, 106
BARCODING PRIMER set- 31	sgD(R)NA-01 600pmol rep3	SEQ ID NO: 100, 101
BARCODING PRIMER set- 32	sgD(R)NA-02 600pmol rep3	SEQ ID NO: 100, 102

Barcoding Primers				
ID	Sample	SEQ ID NO:		
BARCODING PRIMER set- 33	sgD(R)NA-03 600pmol rep3	SEQ ID NO: 100, 103		
BARCODING PRIMER set- 34	sgD(R)NA-04 600pmol rep3	SEQ ID NO: 100, 104		
BARCODING PRIMER set- 35	sgD(R)NA-05 600pmol rep3	SEQ ID NO: 100, 105		
BARCODING PRIMER set- 36	sgD(R)NA-06 600pmol rep3	SEQ ID NO: 100, 106		

[0117] The barcoding PCR was performed using Q5 Hot Start High-Fidelity 2X Master Mix (New England Biolabs, Ipswich, MA) at 1x concentration, primers at 0.5µM each, 1µL of 1:100 diluted first PCR, in a final volume of 10µL and amplified 98°C for 1 minutes, 12 cycles of 10s at 98°C, 20s at 60°C, 30s at 72°C, and a final extension at 72°C for 2 min.

E. SPRIselect Clean-up

5

10

15

20

25

30

[0118] PCR reactions were pooled into a single microfuge tube for SPRIselect (Beckman Coulter, Pasadena, CA) bead-based clean-up of amplicons for sequencing.

[0119] To the pooled amplicons, 0.9x volumes of SPRIselect beads were added, and mixed and incubated at room temperature (RT) for 10 minutes. The microfuge tube was placed on a magnetic tube stand (Beckman Coulter, Pasadena, CA) until solution had cleared. Supernatant was removed and discarded, and the residual beads were washed with 1 volume of 85% ethanol, and incubated at RT for 30 seconds. After incubation, ethanol was aspirated and beads are air dried at RT for 10 min. The microfuge tube was then removed from the magnetic stand and 0.25x volumes of Qiagen EB buffer (Qiagen, Venlo, Limburg) was added to the beads, mixed vigorously, and incubated for 2 minutes at room temperature. The microfuge tube was returned to the magnet, incubated until solution had cleared, and supernatant containing the purified amplicons was dispensed into a clean microfuge tube. The purified amplicon library was quantified using the Nanodrop™ 2000 system (Thermo Scientific, Wilmington, DE) and library-quality analyzed using the Fragment Analyzer™ system (Advanced Analytical Technologies, Inc., Ames, IA) and the DNF-910 double-stranded DNA Reagent Kit (Advanced Analytical Technologies, Inc. Ames, IA).

F. Deep Sequencing Set-up

[0120] The amplicon library was normalized to a 4 nmolar concentration as calculated from Nanodrop values and size of the amplicons. The library were analyzed on MiSeq Sequencer (Illumina, San Diego, CA) with MiSeq Reagent Kit v2 (Illumina, San Diego, CA) for 300 cycles with two 151-cycle paired-end run plus two eight-cycle index reads.

G. Deep Sequencing Data Analysis

[0121] The identity of products in the sequencing data were determined based on the index barcode sequences adapted onto the amplicons in the barcoding round of PCR. A computational script was used to process the MiSeq data by executing the following tasks:

- Reads were aligned to the human genome (build GRCh38/38) using Bowtie (http://bowtie-bio.sourceforge.net/index.shtml) software.
- Aligned reads were compared to the expected wild-type AAVS-1 locus sequence, reads not aligning to any part of the AAVS-1 locus were discarded.
- Reads matching wild-type AAVS-1 sequence were tallied.
- Reads with indels (insertion or the deletion of bases) were categorized by indel type and tallied.
- Total indel reads were divided by the sum of wild-type reads and indel reads give the percent indels detected.

[0122] FIGURE 7 shows the results of an analysis of the AAVS-1 target locus from human K562 cells nucleofected with sgD(R)NA/Cas9 targeting a region in the AAVS-1 locus. The x-axis shows the SEQ ID NO. For the sgD(R)NA used, the y-axis shows the percent indel detected from MiSeq data. Series A shows the average percent indels detected for three independent replicates for a given sgD(R)NA at 20pmols Cas9:120pmols sgD(R)NA, and Series B shows the average percent indels detected for three independent replicates for a given sgD(R)NA at 100pmols Cas9:600pmols sgD(R)NA. Standard deviation of the average percent of the three replicates is represented by vertical black lines. The numbers below the bars correspond to the SEQ ID NO. of the sgD(R)NA used in the transfection, sequences of the sgD(R)NA are provided in Table 10. This data shows the ability of various types of sgD(R)NA to induce modifications at a target region in human cells in a sequence specific and dose dependent manner.

[0123] The methods described herein were practiced by one of ordinary skill in the art to demonstrate *in vivo* activity of a sgD(R)NA/Cas9 through analysis of deep sequencing.

Example 8

5

10

15

20

25

30

35

Screening of Multiple crD(R)NAs Comprising DNA Target-Binding Sequences

[0124] This example illustrates the use of crD(R)NAs of the present disclosure to modify targets present in human genomic DNA and measure the level of cleavage activity at those sites. Target sites can first be selected from genomic DNA and then crD(R)NAs can then be designed to target those selected sequences. Measurements can then be carried out to determine the level of target cleavage that has taken place. Not all of the following steps are required for every screening nor must the order of the steps be as presented, and the screening can be coupled to other experiments, or form part of a larger experiment.

A. Select a DNA Target Region from Genomic DNA

40 **[0125]** Identify all PAM sequences (e.g., `NGG') within the selected genomic region.

[0126] Identify and select one or more 20 nucleotide sequence long sequences (target DNA sequence) that are 5' adjacent to PAM sequences.

- 5 **[0127]** Selection criteria can include but are not limited to: homology to other regions in the genome; percent G-C content; melting temperature; presences of homopolymer within the spacer; and other criteria known to one skilled in the art.
- [0128] Append an appropriate crD(R)NA sequence to the 3' end of the identified target DNA sequence. A crD(R)NA construct is typically synthesized by a commercial manufacturer and the cognate tracrRNA is produced as described in Example 1 by *in vitro* transcription.
- [0129] A crD(R)NA as described herein can be used with cognate tracrRNA to complete a crD(R)NA/tracrRNA system for use with a cognate Cas protein.

B. Determination of Cleavage Percentages and Specificity

20

25

30

35

40

[0130] In vitro cleavage percentages and specificity associated with a crD(R)NA/tracrRNA system are compared, for example, using the Cas cleavage assays of Example 3, as follows:

- 1. (a) If only a single target DNA sequence is identified or selected, the cleavage percentage and specificity for the DNA target region can be determined. If so desired, cleavage percentage and/or specificity can be altered in further experiments using methods of the present disclosure including but not limited to modifying the crD(R)NA, introducing effector proteins/effector protein-binding sequences or ligand/ligand binding moieties.
- 2. (b) The percentage cleavage data and site-specificity data obtained from the cleavage assays can be compared between different DNAs comprising the target binding sequence to identify the target DNA sequences having the best cleavage percentage and highest specificity. Cleavage percentage data and specificity data provide criteria on which to base choices for a variety of applications. For example, in some situations the activity of the crD(R)NA may be the most important factor. In other situations, the specificity of the cleavage site may be relatively more important than the cleavage percentage. If so desired, cleavage percentage and/or specificity are altered in further experiments using methods of the present disclosure including but not limited to modifying the crD(R)NA, introducing effector proteins/effector protein-binding sequences or ligand/ligand binding moieties.

[0131] Optionally, or instead of, the *in vitro* analysis, *in vivo* cleavage percentages and specificity associated with a crD(R)NA system are compared, for example, using the T7E1 assay described in Example 5, as follows:

1. (a) If only a target DNA sequence is identified the cleavage percentage and specificity for the DNA target region can be determined. If so desired, cleavage percentage and/or specificity are altered in further experiments using methods of

- the present disclosure including but not limited to modifying the crD(R)NA, introducing effector proteins/effector protein-binding sequences or ligand/ligand binding moieties.
- 2. (b) The percentage cleavage data and site-specificity data obtained from the cleavage assays can be compared between different target DNAs to identify a crD(R)NA sequence that results in the highest percentage cleavage of target DNA and the highest specificity for the target DNA. Cleavage percentage data and specificity data provide criteria on which to base choices for a variety of applications. For example, certain embodiments may rely on the activity of a crD(R)NA and may be the most important factor. In certain embodiments, the specificity of the cleavage site may be relatively more important than the cleavage percentage. In certain embodiments, cleavage percentage and/or specificity can be altered using methods of the present disclosure including but not limited to modifying the RNA, introducing effector proteins/effector protein-binding sequences or ligand/ligand binding moieties.
- **[0132]** Following the guidance of the present specification and examples, the screening described in this example can be practiced by one of ordinary skill in the art with other Class II CRISPR Cas proteins, including, but not limited to Cas9, Cas9-like, Cas, Cas3, Csn2, Cas4, proteins encoded by Cas9 orthologs, Cas9-like synthetic proteins, Cas9 fusions, Cpfl, Cpfl-like, C2c1, C2c2, C2c3, and variants and modifications thereof, combined with their cognate polynucleotide components modified as described herein to comprise a crD(R)NA.

25 **Example 9**

5

10

15

20

30

35

crD(R)NA:tracrRNA and sgD(R)NA Mediated Nicking

[0133] This example illustrates the method through which a crD(R)NA:tracrRNA complex or sgD(R)NA of the present disclosure might be used to induced nicks in a double stranded DNA (dsDNA) plasmid target in conjunction with *S. pyogenes* Cas9 containing a D10A mutation (Cas9-D10A) rendering the RuvC nuclease lobe inactive. Not all of the following steps are required, nor must the order of the steps be as presented.

- **[0134]** The *S. pyogenes* Cas9 has two active nuclease domains, the RuvC and the HNH domains. A mutation of the aspartic acid at the 10th amino acid position of the *S. pyogenes* Cas9, converting it to an alanine, reduces the nuclease capability of the RuvC domain. The HNH domain remains active but the Cas9-D10A site-directed polypeptide can only cause nicks in the phosphodiester backbone of the DNA target strand complementary to the spacer sequence.
- 40 [0135] Examples of suitable vectors, media, culture conditions, etc. are described. Modifications of these components and conditions will be understood by one of ordinary skill in the art in view of the teachings of the present specification.

[0136] Guide reagents were generated according to Example 1 of the present specification.

10

15

20

25

30

35

[0137] The dsDNA target was generated as described in Example 2 using SEQ ID NOs 133 and 134. The amplified fragment was then cloned into suitable LIC compatible vector. One such suitable vector is the commercially available pET His6 LIC cloning vector (Addgene, Cambridge, MA). The plasmid was transformed into bacterial strain for plasmid expression, using commercially available XL1-Blu bacterial cells (Agilent, Santa Clara, CA).

[0138] Bacterial cells containing the LIC vectors were grown in LB media supplemented with 100ug/mL ampicillin (Sigma-Aldrich, St. Louis, MO) for 18 hours at 37°C. Cells were centrifuged at 5,000 rpm for 15 minutes, after which the plasmid was extracted using Qiagen Plasmid Kit (Qiagen, Venlo, Netherlands).

[0139] Biochemical cleavage of purified plasmid was performed as detailed in Example 3 of the present specification, with the modification that DNA target was replaced with the purified plasmid at a final concentration of 1nM in the reaction. crD(R)NA were hybridized with tracrRNA (SEQ ID NO: 2) in the manner described in Example 3.

[0140] Biochemical reactions were analyzed by running on a 1% agarose gel stained with SYBR gold (Life Technologies, Grand Island, NY). Nicking efficiency was calculated based upon the disappearances of supercoiled plasmid form and the appearance of the nicked-open circular form of the plasmid (nicked plasmid), which was distinguishable by the shift in the migration rate of the plasmid on the gel.

[0141] Percentages of the nicked plasmid were calculated from the intensities of stained bands on the gel containing the nicked plasmid and the supercoiled plasmid. Intensities were measured using area under the curve values as calculated by FIJI (ImageJ; an open source Java image processing program). Percentages of nicking were calculated by dividing the staining intensity of the nicked plasmid by the sum of both the staining intensities of the nicked plasmid species and the supercoiled plasmid species.

[0142] SEQ ID NOs for the crD(R)NA and sgD(R)NA used in this experiment are shown in Table 12.

Table 12

N icking crD(R)NA and sgD(R) NA			
Sample ID	Description	SEQ ID NO:	
A	crD(R)NA	SEQ ID NO: 38	
В	crD(R)NA w/ 18nt spacer	SEQ ID NO: 135	
C	crD(R)NA	SEQ ID NO: 41	
D	crD(R)NA w/ 17nt spacer	SEQ ID NO: 136	
E	crD(R)NA	SEQ ID NO: 43	
F	crD(R)NA w/ 18nt spacer	SEQ ID NO: 137	
Н	sgD(R)NA	SEQ ID NO: 127	

N icking crD(R)NA and sgD(R) NA			
Sample ID	Description	SEQ ID NO:	
Ι	sgRNA control	SEQ ID NO: 1	
Н	target plasmid only	-	

[0143] FIGURE 8 shows the results of the biochemical nicking activity of a crD(R)NA or sgD(R)NA with a Cas9-D10A protein against a plasmid target. Nicking percentages are shown on the y-axis. crD(R)NA and sgD(R)NA samples are shown on the x-axis and correspond to the sample IDs shown in Table 12. The data show the ability of crD(R)NA and sgD(R)NA to support nicking activity of the Cas9-D10A protein against a target plasmid. The data also show that truncation of the spacer sequence from the 5' end of the spacer (SEQ ID NOs: 135, 136, and 137) is capable of nicking activity.

[0144] Following the guidance of the present specification and the examples herein, the design and validation of the nicking activity of crD(R)NA:tracrRNA and sgD(R)NA can be practiced by one of ordinary skill in the art.

Example 10

5

10

20

25

15 Identification and Screening of CRISPR RNA and Trans-activating CRISPR RNA

[0145] This example illustrates the method through which CRISPR RNAs (crRNAs) and trans-activating CRISPR RNAs (tracrRNAs) of a CRISPR-Cas Type II system may be identified. The method presented here is adapted from Chylinski, et. al., (RNA Biol;10(5):726-37 (2013)). Not all of the following steps are required for screening nor must the order of the steps be as presented.

A. Identify a Bacterial Species Containing a CRISPR-Cas9 Type-II System

[0146] Using the Basic Local Alignment Search Tool (BLAST, blast.ncbi.nlm.nih.gov/Blast.cgi), a search of various species' genomes is conducted to identify Cas9 or Cas9-like proteins. Type II CRISPR-Cas9 systems exhibit a high diversity in sequence across bacterial species, however Cas9 orthologs exhibit conserved domain architecture of central HNH endonuclease domain and a split RuvC/RNase H domain. Primary BLAST results are filtered for identified domains; incomplete or truncated sequences are discarded and Cas9 orthologs identified.

[0147] When a Cas9 ortholog is identified in a species, sequences adjacent to the Cas9 ortholog's coding sequence are probed for other Cas proteins and an associated repeat-spacer array in order to identify all sequences belonging to the CRISPR-Cas locus. This may be done by alignment to other CRISPR-Cas Type-II loci already known in the public domain, with the knowledge that closely related species exhibit similar CRISPR-Cas9 locus architecture (*i.e.*, Cas protein composition, size, orientation, location of array, location of tracrRNA, etc.).

B. Identification of Putative crRNA and tracrRNA

[0148] Within the locus, the crRNAs are readily identifiable by the nature of their repeat sequences interspaced by fragments of foreign DNA and make up the repeat-spacer array. If the repeat sequence is from a known species, it is identified in and retrieved from the CRISPRdb database (crispr.u-psud.fr/crispr/). If the repeat sequence is not known to be associated with a species, repeat sequences are predicted using CRISPRfinder software (crispr.u-psud.fr/Server/) using the sequence identified as a CRISPR-Cas Type-II locus for the species as described above.

- [0149] Once the sequence of the repeat sequence is identified for the species, the tracrRNA is identified by its sequence complementarity to the repeat sequence in the repeat-spacer array (tracr anti-repeat sequence). *In silico* predictive screening is used to extract the anti-repeat sequence to identify the associated tracrRNA. Putative anti-repeats are screened, for example, as follows.
- 15 **[0150]** The identified repeat sequence for a given species is used to probe the CRISPR-Cas9 locus for the anti-repeat sequence (*e.g.*, using the BLASTp algorithm or the like). The search is typically restricted to intronic regions of the CRISPR-Cas9 locus.
- **[0151]** An identified anti-repeat region is validated for complementarity to the identified repeat sequence.
 - **[0152]** A putative anti-repeat region is probed both 5' and 3' of the putative anti-repeat for a Rho-independent transcriptional terminator (TransTerm HP, transterm.cbcb.umd.edu/).
- [0153] Thus, the identified sequence comprising the anti-repeat element and the Rhoindependent transcriptional terminator is determined to be the putative tracrRNA of the given species.

C. Preparation of RNA-Seq Library

5

- [0154] The putative crRNA and tracrRNA that were identified *in silico* are further validated using RNA sequencing (RNAseq).
 - **[0155]** Cells from species from which the putative crRNA and tracrRNA were identified are procured from a commercial repository (*e.g.*, ATCC, Manassas, VA; DSMZ, Braunschweig, Germany).
 - **[0156]** Cells are grown to mid-log phase and total RNA prepped using Trizol reagent (Sigma-Aldrich, St. Louis, MO) and treated with DNasel (Fermentas, Vilnius, Lithuania).
- [0157] 10ug of the total RNA is treated with Ribo-Zero rRNA Removal Kit (Illumina, San Diego, CA) and the remaining RNA purified using RNA Clean and Concentrators (Zymo Research, Irvine, CA).
- [0158] A library is then prepared using TruSeq Small RNA Library Preparation Kit (Illumina, San Diego, CA) following the manufacturer's instructions, which results in the presence of adapter sequences associated with the cDNA.

[0159] The resulting cDNA library is sequenced using MiSeq Sequencer (Illumina, San Diego, CA).

D. Processing of Sequencing Data

- 5 **[0160]** Sequencing reads of the cDNA library can be processed using the following method.
 - **[0161]** Adapter sequences are removed using cutadapt 1.1 (pypi.python.org/pypi/cutadapt/1.1) and 15 nt are trimmed from the 3'end of the read to improve read quality.
 - **[0162]** Reads are aligned back to each respective species' genome (from which the putative tracrRNA was identified) with a mismatch allowance of 2 nucleotides.
- 15 **[0163]** Read coverage is calculated using BedTools (bedtools.readthedocs.org/en/latest/).
 - **[0164]** Integrative Genomics Viewer (IGV, www.broadinstitute.org/igv/) is used to map the starting (5') and ending (3') position of reads. Total reads retrieved for the putative tracrRNA are calculated from the SAM file of alignments.
 - **[0165]** The RNA-seq data is used to validate that a putative crRNA and tracrRNA element is actively transcribed *in vivo*. Confirmed hits from the composite of the *in silico* and RNA-seq screens are validated for functional ability of the identified crRNA and tracrRNA sequences to support Cas9 mediated cleavage of a double-stranded DNA target using methods outline herein (see Examples 1, 2, and 3).
 - **[0166]** Following the guidance of the present specification and the examples herein, the identification of novel crRNA and tracrRNA sequences can be practiced by one of ordinary skill in the art.

30 **Example 11**

10

20

25

35

Design of crD(R)NA and sgD(R)NA

[0167] This example illustrates the method through which crD(R)NA and sgD(R)NA are designed from crRNA and tracrRNA, respectively. Not all of the following steps are required for screening nor must the order of the steps be as presented.

- **[0168]** Identification of the crRNA and tracrRNA guide sequences for a given species are performed as described in Example 10.
- [0169] Identified crRNA and tracrRNA sequences are reverse-transcribed in silico to DNA.
 Upper stem, lower stem and bulge elements are identified from the sequences of the crRNA and tracrRNA. RNA bases are introduced into the DNA sequence of the crDNA and tracrDNA sequences creating crD(R)NA and sgD(R)NA, respectively. The placement, number and distribution of RNA bases within the crDNA and tracrRNA can be chosen

using either computational or experimental screening methods. A collection of crD(R)NAs are designed with ribonucleotides placed in a number of different locations within the molecule. Preferably, deoxyriboucleotides within the lower stem are substituted for ribonucleotides in some crD(R)NA sequences. Ribonucleotides are substituted at the 3' end of the spacer sequence in some crD(R)NA sequences. Additional crD(R)NA and sgD(R)NA sequences are designed, for example, as follows.

5

10

15

20

25

[0170] Repositories of 3-dimensional protein structures (*e.g.*, RCSB PDB; rcsb.org) in the public domain are searched to identify Cas endonuclease structures. The repository is searched for high resolution coordinate files of Cas endonucleases bound to their cognate crRNA and tracrRNA. Structural neighbors, defined by sequence or tertiary structural similarities to the Cas endonuclease of interest are used if there is no solved structure for the Cas endonuclease of interest. Deposited coordinate files are downloaded. Using visualization software, such as PyMOL (PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC), the coordinates are analyzed to identify ribose-specific interactions between the Cas endonuclease protein and the nucleotides of the crRNA and tracrRNA. Positions where the protein makes direct or indirect contact (*i.e.*, through a water or metal intermediate) with the nucleotides of the crRNA and tracrRNA are used to identify favored positions within the guide sequences for replacing deoxyribonucleotides with ribonucleotides or other nucleotide variants.

[0171] crRNA and tracrRNA sequences are conserved when compared with Cas9 proteins from related species. Alignment of a guide sequence with the other known guide sequences from similar species provides additional information on conserved bases that would confer a preference for ribonucleotides. Multiple sequence alignments of crRNA or tracrRNA are performed using the web-based software MUSCLE (ebi.ac.uk/Tools/mas/muscle/). Alignments are then assessed for conserved nucleotide sequence positions along the backbone.

- [0172] Nucleic acid secondary structure prediction software (e.g RNAfold; rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) is used to analyze the folding of the guide backbone. Regions where RNA specific torsion angles would be favored are used to inform placement of ribonucleotide locations in both the crDNA and/or tracrDNA.
- [0173] Combinations of secondary structure, protein-nucleic acid interaction, and sequence conservation are used to inform the positioning of ribonucleotides within crD(R)NA, tracrD(R)NA and sgD(R)NA sequence. Multiple designs of crD(R)NA and tracrD(R)NA are tested with the understanding that different configurations may support different desired properties (*i.e.*, activity, specificity, stability, etc.). The crD(R)NA and tracrD(R)NA can be joined into a single molecule by a linker to form a sgD(R)NA. The combining of the crD(R)NA and tracrD(R)NA may be accompanied by a reduction in the total number of nucleotides at the 3' end of the crD(R)NA and 5' end of the tracrD(R)NA that together would form the upper stem. SEQ ID NOs 138-142, 147-150, 154-157, and 161-164 show designs for crD(R)NAs and tracrD(R)NAs. SEQ ID NOs 143-146, 151-153, 158-160, and 165-167 show designs for sgD(R)NAs. Table 13 gives the identity of sequences.

Table 13

	crD(R)NA, tracrD(R)NA, and sgD(R)NA			
ID	Genus/Species	Guide Description		
SEQ ID NO: 138	Staphylococcus aureus	crD(R)NA		
SEQ ID NO: 139	Staphylococcus aureus	crD(R)NA		
SEQ ID NO: 140	Staphylococcus aureus	crD(R)NA		
SEQ ID NO: 141	Staphylococcus aureus	crD(R)NA		
SEQ ID NO: 142	Staphylococcus aureus	tracrRNA		
SEQ ID NO: 143	Staphylococcus aureus	sgD(R)NA		
SEQ ID NO: 144	Staphylococcus aureus	sgD(R)NA		
SEQ ID NO: 145	Staphylococcus aureus	sgD(R)NA		
SEQ ID NO: 146	Staphylococcus aureus	sgD(R)NA		
SEQ ID NO: 147	Streptococcus thermophilus CRISPR-I	crD(R)NA		
SEQ ID NO: 148	Streptococcus thermophilus CRISPR-I	crD(R)NA		
SEQ ID NO: 149	Streptococcus thermophilus CRISPR-I	crD(R)NA		
SEQ ID NO: 150	Streptococcus thermophilus CRISPR-I	tracrRNA		
SEQ ID NO: 151	Streptococcus thermophilus CRISPR-I	sgD(R)NA		
SEQ ID NO: 152	Streptococcus thermophilus CRISPR-I	sgD(R)NA		
SEQ ID NO: 153	Streptococcus thermophilus CRISPR-I	sgD(R)NA		
SEQ ID NO: 154	Neisseria meningitidis	crD(R)NA		
SEQ ID NO: 155	Neisseria meningitidis	crD(R)NA		
SEQ ID NO: 156	Neisseria meningitidis	crD(R)NA		
SEQ ID NO: 157	Neisseria meningitidis	tracrRNA		
SEQ ID NO: 158	Neisseria meningitidis	sgD(R)NA		
SEQ ID NO: 159	Neisseria meningitidis	sgD(R)NA		
SEQ ID NO: 160	Neisseria meningitidis	sgD(R)NA		
Dr. Control of the Co	Streptococcus pasteurianus	crD(R)NA		
	Streptococcus pasteurianus	crD(R)NA		
4	Streptococcus pasteurianus	crD(R)NA		
SEQ ID NO: 164	Streptococcus pasteurianus	tracrRNA		
SEQ ID NO: 165	Streptococcus pasteurianus	sgD(R)NA		
SEQ ID NO: 166	Streptococcus pasteurianus	sgD(R)NA		
5	Streptococcus pasteurianus	sgD(R)NA		

[0174] Sequences are provided to a commercial manufacturer (*e.g.*, Integrated DNA Technologies, Coralville, IA) for synthesis.

[0175] crD(R)NA, tracrD(R)NA, and sgD(R)NA are tested experimentally to determine the

activity of different sequences to support Cas9 mediated cleavage of a double-stranded DNA target using methods set forth herein (see Examples 1, 2, and 3).

[0176] Following the guidance of the present specification and the examples herein, the design and validation of novel crD(R)NA, tracrD(R)NA, and sgD(R)NA sequences can be practiced by one of ordinary skill in the art.

Example 12

5

<u>Design of Type V Cpf1 crD(R)NA and sgD(R)NA Elements and Use with Cpf1 to Modify DNA</u>

10 [0177] Tables 14 and 15 below provide exemplary dual guide crD(R)NAs and sgD(R)NAs for use with Type V CRISPR systems. The reference to exemplary figures and SEQ ID NOs is not intended to be limiting in anyway and it is understood by one of skill in the art that, based on the disclosure in Tables 14, 15, and the associated SEQ ID Nos and exemplary figures, dual guide crD(R)NAs and sgD(R)NAs for use with Type V CRISPR systems can be designed to target any desired sequence within a target nucleic acid.

Table 14

<u> </u>				
Description of Type V crD(R)NA 5' and 3' Elements and Combinations Used to				
Form Dual Guide crD(R)NAs and to Direct Cpf1 Activity to DNA Sequence of				
<u>Interest</u>	·			
Description of Sequence	Exemplary Figure	SEQ ID NO:		
Type V Cpf1 crRNA 5' element	12B, 13D, 13E, 13H	SEQ ID NO: 168		
Type V Cpf1 crD(R)NA 5' element	12C, 13B, 13C, 13F, 13G	SEQ ID NO: 169		
Phosphorothioate-protected Type V Cpf1 crRNA 5' element	12B, 13D, 13E, 13H	SEQ ID NO: 170		
Phosphorothioate-protected Type V Cpf1 crD(R)NA 5' element	12C, 13B, 13C, 13F, 13G	SEQ ID NO: 171		
Type V Cpf1 crRNA 3' element with 25 nucleotide RNA targeting region	12D	SEQ ID NO: 172		
Type V Cpf1 crRNA 3' element with 20 nucleotide RNA targeting region	12D	SEQ ID NO: 173		
Phosphorothioate-protected Type V Cpf1 crRNA 3' element with 25 nucleotide RNA targeting region	12D	SEQ ID NO: 174		
Phosphorothioate-protected Type V Cpf1 crRNA 3' element with 20 nucleotide RNA targeting region	12D	SEQ ID NO: 175		
Type V Cpf1 crD(R)NA 3' element with 25 nucleotide DNA targeting region	12F,13E ,13F	SEQ ID NO: 176		

Description of Type V crD(R)NA 5' and 3' Ele	ements and Com	binations Used to
Form Dual Guide crD(R)NAs and to Direct C	pf1 Activity to I	NA Sequence of
<u>Interest</u>	<u> </u>	;·····
Description of Sequence	Exemplary Figure	SEQ ID NO:
Type V Cpfl crD(R)NA 3' element with 25 nucleotide DNA/RNA targeting region	12H, 12I	SEQ ID NO: 177
Type V Cpf1 crD(R)NA 3' element with 25 nucleotide DNA/RNA targeting region	12H, 12I	SEQ ID NO:178
Type V Cpf1 crD(R)NA 3' element with 25 nucleotide DNA/RNA targeting region	12H, 12I	SEQ ID NO: 179
Type V Cpf1 crD(R)NA 3' element with 25 nucleotide RNA targeting region	12E, 13C, 13D	SEQ ID NO: 180
Phosphorothioate-protected Type V Cpf1 crD(R)NA 3' element with 25 nucleotide RNA targeting region	12E, 13C, 13D	SEQ ID NO: 181
Type V Cpf1 crD(R)NA 3' element with 20 nucleotide RNA targeting region	12E, 13C, 13D	SEQ ID NO: 182
Phosphorothioate-protected Type V Cpf1 crD(R)NA 3' element with 20 nucleotide RNA targeting region	12E, 13C, 13D	SEQ ID NO: 183
Type V Cpf1 crD(R)NA 3' element with 25 nucleotide DNA targeting region	12G, 13G, 13H	SEQ ID NO: 184
Type V Cpf1 crD(R)NA 3' element with 25 nucleotide DNA/RNA targeting region	12H, 12I	SEQ ID NO: 185
Type V Cpf1 crD(R)NA 3' element with 25 nucleotide DNA/RNA targeting region	12H, 12I	SEQ ID NO: 186
Type V Cpf1 crD(R)NA 3' element with 25 nucleotide DNA/RNA targeting region	12H, 12I	SEQ ID NO: 187
Dual guide Type V Cpf1 crRNA containing 3' and 5' elements	13A	SEQ ID NO: 168; SEQ ID NO: 172
Dual guide Type V Cpf1 crRNA containing phosphorothioate protected 3' and 5' elements	13A	SEQ ID NO: 170; SEQ ID NO: 173
Dual guide Type V Cpf1 cr(D)RNA containing 3' and 5' elements	13B	SEQ ID NO: 169; SEQ ID NO: 172
Dual guide Type V Cpf1 cr(D)RNA containing 3' and 5' elements	13C	SEQ ID NO: 169; SEQ ID NO: 180
Dual guide Type V Cpf1 cr(D)RNA containing 3' and 5' elements	13D	SEQ ID NO: 168; SEQ ID NO: 180

Description of Type V crD(R)NA 5' and 3' Elements and Combinations Used to				
Form Dual Guide crD(R)NAs and to Direct Cpf1 Activity to DNA Sequence of				
<u>Interest</u>				
Description of Sequence	Exemplary Figure	SEQ ID NO:		
Dual guide Type V Cpf1 cr(D)RNA containing 3' and 5' elements	13E	SEQ ID NO: 168; SEQ ID NO: 176		
Dual guide Type V Cpf1 cr(D)RNA containing 3' and 5' elements	13F	SEQ ID NO: 169; SEQ ID NO: 176		
Dual guide Type V Cpf1 cr(D)RNA containing 3' and 5' elements	13G	SEQ ID NO: 169; SEQ ID NO: 184		
Dual guide Type V Cpf1 cr(D)RNA containing 3' and 5' elements	13H	SEQ ID NO: 168; SEQ ID NO: 184		

<u>Table 15</u>

Description of Type V sgD(R)NA Designs				
Description of Sequence	Exemplary Figure	SEQ ID NO:		
Type V Cpf1 sgD(R)NA with 25 nucleotide RNA targeting region	10 A	SEQ ID NO: 188		
Type V Cpf1 sgD(R)NA with 25 nucleotide RNA targeting region	10B	SEQ ID NO: 189		
Type V Cpf1 sgD(R)NA with 25 nucleotide RNA targeting region	10C	SEQ ID NO: 190		
Type V Cpf1 sgD(R)NA with 25 nucleotide DNA targeting region	11 D	SEQ ID NO: 191		
Type V Cpf1 sgD(R)NA with 25 nucleotide DNA targeting region	11B	SEQ ID NO: 192		
Type V Cpf1 sgD(R)NA with 25 nucleotide DNA/RNA targeting region	11E	SEQ ID NO: 193		
Type V Cpf1 sgD(R)NA with 25 nucleotide DNA/RNA targeting region	11E	SEQ ID NO: 194		
Type V Cpf1 sgD(R)NA with 25 nucleotide DNA/RNA targeting region	11E	SEQ ID NO: 195		
Type V Cpf1 sgD(R)NA with 25 nucleotide DNA targeting region	11 A	SEQ ID NO: 196		
Type V Cpf1 sgD(R)NA with 25 nucleotide DNA/RNA targeting region	11E	SEQ ID NO: 197		
Type V Cpf1 sgD(R)NA with 25 nucleotide	11E	SEQ ID		

Description of Type V sgD(R)NA Designs				
Description of Sequence	Exemplary Figure	SEQ ID NO:		
DNA/RNA targeting region		NO: 198		
Type V Cpf1 sgD(R)NA with 25 nucleotide DNA/RNA targeting region	11E	SEQ ID NO: 199		
Type V Cpf1 sgD(R)NA with 25 nucleotide DNA targeting region	11C	SEQ ID NO: 200		
Type V Cpf1 sgD(R)NA with 25 nucleotide DNA/RNA targeting region	11E	SEQ ID NO: 201		
Type V Cpf1 sgD(R)NA with 25 nucleotide DNA/RNA targeting region	11E	SEQ ID NO: 202		
Type V Cpf1 sgD(R)NA with 25 nucleotide DNA/RNA targeting region	11E	SEQ ID NO: 203		

A. Design of Type V Cpf1 crD(R)NA and sgD(R)NA Elements

5

10

15

20

25

30

[0178] Cpf1 orthologs are identified using sequence analysis programs such as PSI-BLAST, PHI-BLAST and HMMer. Once a Cpf1 ortholog is identified, nearby sequences are searched to identify the associated CRISPR array. crRNA sequences are identified as repeat sequences located within the CRISPR array as described in Zetsche et al. (Cell:163(3):759-71(2015)). Type V crRNA sequences contain a stem loop within the repeat sequence, located 5' to the targeting region sequence. The stem loop comprises a 5' element and a 3' element. The sequences of both the 5' element, the 3' element, and the loop of the crRNA are identified. The sequence of these crRNA elements are reversetranscribed in silico to DNA. 5' elements are designed containing mixtures of ribonucleotides and deoxyribonucleotides. Examples of 5' elements are shown in FIGURE 12, FIGURE 13 and Table 14. 3' elements are designed containing mixtures of ribonucleotides and deoxyribonucleotides. Examples of 3' elements are shown in FIGURE 12, FIGURE 13 and Table 14. Targeting region sequences are selected to be adjacent to PAM sequences in the the DNA of interest and are appended to the 3' end of 3' crRNA elements. Targeting region sequences are designed containing DNA, DNA and RNA, or RNA nucleotides. By combining crD(R)NA 3' elements and crD(R)NA 5' elements together (Table 14, FIGURE 12, FIGURE 13) to form dual guide TypeV crD(R)NAs, Cpf1 is directed to cut target nucleic acid sequences in the target nucleic acid of interest. A collection of crD(R)NAs for testing are designed with ribonucleotides placed in a number of different locations within the crD(R)NA sequences. Preferably, deoxyriboucleotides within the 3'stem and 5'stem are substituted for ribonucleotides in some crD(R)NA sequences. Ribonucleotides are substituted at the 5' end of the targeting region sequence in some crD(R)NA sequences.

[0179] Using combinations of targeting region, 3' elements, and 5' elements connected by a loop sequence, different versions of sgD(R)NA are designed. The placement, number, and distribution of RNA bases within the sgD(R)NA can be chosen using either computational or experimental screening methods. A collection of sgD(R)NAs are

designed with ribonucleotides placed in a number of different locations within the sgD(R)NAs. Preferably, deoxyriboucleotides within the 3'stem and 5'stem are substituted for ribonucleotides in some sgD(R)NA sequences. Ribonucleotides are substituted at the 5' end of the targeting region sequence in some sgD(R)NA sequences. Examples of designed sgD(R)NAs are listed in Table 15, and shown in **FIGURES 10A-C** and **FIGURES 11A-E**.

[0180] In the following, sgD(R)NA sequences are used, but it is understood that pairs of 3' and 5' crD(R)NA elements (examples of which are shown in Table 14) can be used in place of the sgD(R)NA.

B. Digestion of Nucleic Acid Sequences with Cpf1 and sgD(R)NA

5

10

15

20

40

[0181] Cpf1 sgD(R)NA can be used together with Cpf1 to target and cut nucleic acid sequences. Target nucleic acid is either RNA, genomic DNA, plasmid DNA, or amplified DNA. Amplified target DNA can be prepared as described in Example 2. sgD(R)NA sequences are synthesized containing spacer sequences targeting sequences of interest in the target DNA. Cleavage assays are carried out as described in Zetsche *et al.* (2015) and analyzed using methods described in Example 3. In summary, target nucleic acid is incubated with Cpf1 and the sgD(R)NA sequence or sequences in an appropriate buffer chosen to support Cpf1 activity. Nucleic acid is analyzed to determine whether digestion has taken place as described in Example 3. Two or more Cpf1/sgD(R)NA complexes can be used to cut sections of DNA from a target DNA. The section of DNA has overhanging ends and can be ligated to complementary sequence adaptors or vectors after it has been separated from the parent DNA.

C. Genome Editing with Cpf1 sqD(R)NA Ribonucleoprotein Complexes

25 [0182] An E. coli expression vector is constructed by synthesizing a codon-optimized open-reading frame encoding Cpf1 and cloning the open-reading frame into an expression plasmid (e.g., pET27b). The coding sequence can include an affinity tag for purification of the protein, and a NLS sequence at the C-terminus to drive nuclear localization in eukaryotic cells. Cpf1 protein can be expressed in E. coli from the expression vector and purified using a combination of affinity, ion exchange and size exclusion chromatography. 30 The purified protein is concentrated to 10 mg/ml and combined with the sgD(R)NA to make a ribonucleoprotein complex. 200pmol of Cpf1 is combined in separate reaction tubes with 50pmol, 100pmol, 200pmol, 400pmol, 600pmol, 800pmol, 1000 pmol of sgD(R)NA and a reaction buffer. Cpf1-sgD(R)NA complexes are electroporated in replicate into HEK293 35 cells according to the methods described in Example 7. Cells are grown at 37°C and genomic DNA is harvested from each reaction after 4, 8, 16, 24, 48, and 72 hours. Genomic DNA is analyzed using PCR and Illumina sequencing to determine that the genome has been edited according to the methods described in Example 7.

D. Genome Editing using Cpf1 Expression Vectors and sgD(R)NA in Eukaryotic Cells

[0183] A mammalian expression vector can be constructed by synthesizing a codon-optimized open-reading frame encoding Cpf1 and cloning the open-reading frame into a

suitable mammalian expression plasmid (e.g., pcDNA3.1). The coding sequence can include a HA affinity tag for purification or detection of the protein, and a NLS sequence at the C-terminus to drive nuclear localization in eukaryotic cells. The coding sequence can be operably linked to the CMV promoter in the plasmid. Cpf1-expressing plasmids are combined in separate reaction tubes with 50pmol, 100pmol, 200pmol, 400pmol, 600pmol, 800pmol, 1000 pmol of sgD(R)NA and a reaction buffer. Reaction mixtures are electroporated in replicate into HEK293 cells according to methods described in Example 7. Cells are grown at 37°C and genomic DNA is harvested from each reaction after 4, 8, 16, 24, 48, and 72 hours. Genomic DNA is analyzed using PCR and Illumina sequencing to determine that the genome has been edited according to the methods described in

Example 7.

5

10

20

25

Example 13

In planta Modification of Maize Embryos

[0184] This example illustrates the method by which single guide D(R)NA can be used to modify maize embryos. The method presented here is adapted from Svitashev, et. al. (Plant Physiol; 169(2):931-945 (2015)). Not all of the following steps are required for screening nor must the order of the steps be as presented.

[0185] This example illustrates the use of single guide D(R)NAs to guide a Cas endonucleases to cleave chromosomal DNA in maize embyos. Six single guide D(R)NAs (sgD(R)NAs) were designed targeting a region near the *liguleless 1* gene and the fertility gene *Ms45* (Table 16), and were delivered into a maize line containing a pre-integrated constitutively expressing *S. pyogenes* Cas9 gene. The maize *liguleless* 1 and *Ms45* genomic loci were examined by deep sequencing for the presence of mutations induced by sgD(R)NAs/Cas9 mediated cleavage.

Table 16

	Maize Liguleless 1 and Ms45 Targeting sgD(R)NA			
Locus	Location	Sequence (RNA bases are bracketed, phosphorothioate bonds are shown with an *)	SEQ ID NO:	
liguleless 1	Chr. 2: 28.45cM	5' - T*A*CGCGTACG CGTA[C][G][U][G][U][G]	204	
		[G][U][U][U][U][A][G][A][G][C]		
		[U][A][G][A][A][U][A][G][C]		
		[A][A][G][U][U][A][A][A][A][U]		
		[A][A][G][G][C][U][A][G][U][C]		
		[C][G][U][U][A][U][C][A][A][C]		
		[U][U][G][A][A][A][A][G][U]		
		[G][G][C][A][C][C][G][A][G][U]		
		[C][G][G][U][G][C][U] - 3'		

Locus	Location	Sequence (RNA bases are bracketed,	SEQ
Dovas	Location	phosphorothioate bonds are shown with an *)	ID
			NO:
7. 7.7	C1 0		205
liguleless 1	Chr. 2: 28.45cM	5' - T*A*CGCGTACG CGTA[C][G][U][G][U][G]	205
1	20. 13011	[G][U][U][U][A][G][A]GC TATGCT[G][A][A][A]	
		AGCATAGC[A][A] [G][U][U][A][A][A][A][A][U][A][A]	
		[G][G][C][U][A][G][U][C][C][G]	
		[U][U][A][U][C][A][A][C][U][U]	
		[G][A][A][A][A][G][U][G][G]	
		[C][A][C][C][G][A][G][U][C][G] [G][U][G][C][U] - 3'	
liguleless	Chr. 2:		206
I	28.45cM	5' - T*A*CGCGTACG CGTA[C][G][U][G][U][G]	
		[G][U][U][U][U][A][G][A]GC TATGCT[G][A][A][A]	
		AGCATAGC[A][A] [G][U][U][A][A][A][A][A][U][A][A]	
		[G][G][C][U][A][G][U][C][C][G]	
		[U][U][A][U][C][A][A][C][U][U]	
		[G][A][A][A][A][G][U][G][G]	
		CACCG[A][G][U]CG GTG[C][U] - 3'	
Ms45	Chr. 9:	TI OVOVOGO A COTTO O A CITI A HOLI QUI QUI QUI QUI	224
	119.15 cM	5' - G*G*CCGAGGTC GACT[A][C][C][G][G][C]	
	CIVI		
		[U][A][G][A][A][A][U][A][G][C]	
		[C][G][G][U][G][C][U] - 3'	
Ms45	Chr. 9:		225
	119.15 cM		

	Maize	Liguleless 1 and Ms45 Targeting sgD(R)NA	****************
Locus	Location	Sequence (RNA bases are bracketed, phosphorothioate bonds are shown with an *)	SEQ ID NO:
		5' - G*G*CCGAGGTC GACT[A][C][C][G][G][C] [G][U][U][U][U][A][G][A]GC TATGCT[G][A][A][A] AGCATAGC[A][A] [G][U][U][A][A][A][A][A][A][A] [G][G][C][U][A][G][U][C][C][G] [U][U][A][U][C][A][A][C][U][U] [G][A][A][A][A][A][G][U][G][G] [C][A][C][C][G][A][G][U][G][G][U] - 3'	
Ms45	Chr. 9: 119.15 cM	5' - G*G*CCGAGGTC GACT[A][C][C][G][G][C] [G][U][U][U][U][A][G][A]GC TATGCT[G][A][A][A] AGCATAGC[A][A] [G][U][U][A][A][A][A][U][A][A] [G][G][C][U][A][G][U][C][C][G] [U][U][A][U][C][A][A][C][U][U] [G][A][A][A][A][A][G][U][G][G] CACCG[A][G][U]CG GTG[C][U] - 3'	226

[0186] A pre-integrated constitutively expressing *S. pyogenes* Cas9 maize line was generated as described in Svitashev *et al.* (2015).

5

10

15

20

[0187] sgD(R)NAs desgins were provided to a commercial manufacturer for synthesis (Eurofins Scientific, Huntsville, AL).

[0188] sgRNAs (SEQ ID NOS: 207 and 227) were constructed as described in Example 1.

[0189] Biolistic-mediated transformation of immature maize embryos (IMEs) derived from the constitutively expressing *S. pyogenes* Cas9 line with the sgD(R)NAs was carried-out as described in Svitashev *et. al.* (2015). Briefly, 100 ng of each sgD(R)NA was delivered to 60-90 IMEs in the presence of cell-division stimulating genes, *ZmODP2* (US Publ. No. 20050257289) and *ZmWUS2* (US Pat. No. 7,256,322), as described in Ananiev et. al. (Chromosoma;118(2):157-77 (2009)). Since particle gun transformation can be highly variable, a visual selectable marker DNA expression cassette, MoPAT-DsRED, was also co-delivered with the cell-division promoting genes as described in Svitashev *et. al.* (2015). Embryos transformed with 100 ng of T7 transcribed single guide RNA (sgRNA) targeting the same region for cleavage (SEQ ID NOS: 207 and 227) served as a positive control and embryos transformed with only the *ZmODP2*, *ZmWUS2* and Mo-PAT-DsRED expression cassettes served as a negative control. After 3 days, the 20-30 most uniformly transformed embryos from each treatment were selected based on DsRED fluorescence, pooled and

total genomic DNA was extracted. The region surrounding the intended target site was PCR amplified with Phusion® HighFidelity PCR Master Mix (M0531L, New England Biolabs, Ipswich, MA) adding on the sequences necessary for amplicon-specific barcodes and Illumnia sequencing using "tailed" primers through two rounds of PCR. The primers used in the primary PCR reaction are shown in Table 17 and the primers used in the secondary PCR reaction were SEQ ID NO: 214 and 215.

Table 17

	PCR Primer Sequences	
ID	Sample	Primers
BARCODING PRIMER set-37	SEQ ID NO. 204	SEQ ID NOs: 208, 209
BARCODING PRIMER set-38	SEQ ID NO. 205	SEQ ID NOs: 208, 210
BARCODING PRIMER set-39	SEQ ID NO. 206	SEQ ID NOs: 208, 211
BARCODING PRIMER set-40	SEQ ID NO. 207	SEQ ID NOs: 208, 212
BARCODING PRIMER set-41	No guide RNA (negative control)	SEQ ID NOs: 208, 213
BARCODING PRIMER set-42	SEQ ID NO. 224	SEQ ID NOs: 228, 229
BARCODING PRIMER set-43	SEQ ID NO. 225	SEQ ID NOs: 228, 230
BARCODING PRIMER set-44	SEQ ID NO. 226	SEQ ID NOs: 228, 231
BARCODING PRIMER set-45	SEQ ID NO. 227	SEQ ID NOs: 228, 232
BARCODING PRIMER set-46	No guide RNA (negative control)	SEQ ID NOs: 228, 233

10

15

20

5

[0190] The resulting PCR amplifications were purified with a Qiagen PCR purification spin column, concentration measured with a Hoechst dye-based fluorometric assay, combined in an equimolar ratio, and single read 100 nucleotide-length deep sequencing was performed on the Illumina MiSeq Personal Sequencer with a 25% (v/v) spike of PhiX control v3 (Illumina, FC-110-3001) to off-set sequence bias. Only those reads with a ≥1 nucleotide indel arising within the 10 nucleotide window centered over the expected site of cleavage and not found in a similar level in the negative control were classified as mutant. Mutant reads with the same mutation were counted and collapsed into a single read and visually confirmed as having a mutation arising within the expected site of cleavage. The total numbers of visually confirmed mutations were then used to calculate the percent mutant reads based on the total number of reads of an appropriate length containing a perfect match to the barcode and forward primer.

[0191] As shown in Table 18, mutations were recovered in all treatments indicating that sgD(R)NAs may be used to guide Cas endonucleases to cleave maize cellular chromosomal DNA. Furthermore, certain sgD(R)NA designs (SEQ ID NOS. 205 and 226) exhibited mutation frequencies near that of the T7 transcribed sgRNA (SEQ ID NOS. 207 and 227). Examples of the mutations recovered with the sgD(R)NAs are shown in **FIGURE 14A** (corresponding to SEQ ID NOs: 217-223, wherein SEQ ID NO: 216 is the reference maize sequence comprising the *liguleless 1* target locus) and **FIGURE 14B** (corresponding to SEQ ID NOS: 235-254, wherein SEQ ID NO: 234 is the reference maize sequence comprising the *Ms45* target locus).

5

Table 18

	Table 10	
Mutant Reads at maize ligule	_	
sgD(R)NA/Cas Endonucleas	•	o the sgRNA/Cas
<u>Endo</u>	nuclease System	
Treatment	Total Number of Reads	Number of Mutant Reads
Liguleless 1 No Guide RNA (Negative Control)	2,849,145	0
SEQ ID NO. 207	3,155,695	552
SEQ ID NO. 204	2,816,705	5
SEQ ID NO. 205	3,053,967	192
SEQ ID NO. 206	2,979,282	9
<i>Ms45</i> No Guide RNA (Negative Control)	1,248,142	16
SEQ ID NO. XX4	1,194,050	8,784
SEQ ID NO. XX1	1,192,758	190
SEQ ID NO. XX2	1,206,632	114
SEQ ID NO. XX3	1,192,110	878

Patentkrav

- 1. Class-2 CRISPR-singlepolynucleotid der omfatter:
- en targetingregion som omfatter deoxyribonucleinsyre (DNA); og
 en aktiveringsregion der støder op til targetingregionen, som omfatter
 DNA;
 - hvilken aktiveringsregion omfatter en stem-loop-struktur og er i stand til at interagere Cpf1.
- 2. Class-2 CRISPR-singlepolynucleotidet ifølge krav 1, hvor targetingregionen omfatter en blanding af DNA og RNA, og/eller aktiveringsregionen omfatter en blanding af DNA og RNA.
 - 3. Class-2 CRISPR-system der omfatter:
- 15

25

- (i) et singlepolynucleotid som defineret i et hvilket som helst af kravene 1 til 2; og
- (ii) Cpf1.
- 20 4. Class-2 CRISPR-systemet ifølge krav 3 der yderligere omfatter et donorpolynucleotid.
 - 5. *In vitro*-fremgangsmåde til at modificere et targetnucleinsyremolekyle, hvilken fremgangsmåde omfatter: at bringe targetnucleinsyremolekylet der har en targetsekvens, i kontakt med
 - (i) et singlepolynucleotid der omfatter:
 - (a) en targetingregion der omfatter deoxyribonucleinsyre (DNA) og som er konfigureret til at hybridisere til targetsekvensen; og
 - (b) en aktiveringsregion der støder op til targetingregionen, som omfatter DNA, og hvilken aktiveringsregion omfatter en stem-loop-struktur; og

(ii) et Cpf1, hvilket Cpf1 binder til aktiveringsregionen af singlepolynucleotidet, hvor targetnucleinsyremolekylet spaltes, hvilket targetnucleinsyremolekyle omfatter DNA.

5

- 6. Class-2 CRISPR-system til anvendelse i en fremgangsmåde til at modificere et targetnucleinsyremolekyle *in vivo*, hvilket CRISPR-system omfatter:
- (i) et singlepolynucleotid der omfatter: (a) en targetingregion der omfatter
 deoxyribonucleinsyre (DNA) og som er konfigureret til at hybridisere til
 targetsekvensen; og (b) en aktiveringsregion der støder op til targetingregionen, som omfatter DNA, hvilken aktiveringsregion omfatter en
 stem-loop-struktur; og
 - (ii) et Cpfl;

15

- og hvilken fremgangsmåde omfatter: at kontakte targetnucleinsyremolekylet der har en targetsekvens, *in vivo*, med CRISPR-systemet, hvor Cpf1 binder til aktiveringsregionen af singlepolynucleotidet, og hvor targetnucleinsyremolekyle spaltes,
- 20 hvilket targetnucleinsyremolekyle omfatter DNA.
 - 7. Fremgangsmåde eller CRISPR-system til anvendelse ifølge et hvilket som helst af kravene 5 til 6 der yderligere omfatter at tilvejebringe et donorpolynucleotid.

- 8. *In vitro-*fremgangsmåde til modulering af transkription af mindst ét gen inden i et targetnucleinsyremolekyle, hvilken fremgangsmåde omfatter at bringe targetnucleinsyremolekylet, der har en targetsekvens, i kontakt med:
- 30 (i) et singlepolynucleotid der omfatter:
 - (a) en targetingregion der omfatter deoxyribonucleinsyre (DNA) og som er konfigureret til at hybridisere til targetsekvensen; og

- (b) en aktiveringsregion der støder op til targetingregionen, som omfatter DNA, og hvor aktiveringsregionen omfatter en stem-loop-struktur; og
- 5 (ii) et Cpf1,

hvilket Cpf1 ikke har nogen nucleaseaktivitet, hvor Cpf1 binder til aktiveringsregionen af singlepolynucleotidet, hvor targetingregionen af singlepolynucleotidet hybridiserer til targetsekvensen, og hvor transkriptionen af mindst ét gen inden i targetnucleinsyremolekylet moduleres.

9. Class-2 CRISPR-system til brug i en fremgangsmåde til modulering af transkription af mindst ét gen i et targetnucleinsyremolekyle *in vivo*, hvilket CRISPR-system omfatter:

15

20

- (i) et singlepolynucleotid der omfatter:
 - (a) en targetingregion der omfatter deoxyribonucleinsyre (DNA) og som er konfigureret til at hybridisere til targetsekvensen; og
 - (b) en aktiveringsregion der støder op til targetingregionen, som omfatter DNA, og hvor aktiveringsregionen omfatter en stem-loop-struktur; og

(ii) et Cpf1,

25 hvilket Cpf1 ikke har nogen nucleaseaktivitet; og hvilken fremgangsmåde omfatter: at bringe targetnucleinsyremolekylet der har en targetsekvens, i kontakt med CRISPR-systemet in vivo, hvor Cpf1 binder til aktiveringsregionen af singlepolynucleotidet, hvor targetingregionen af singlepolynucleotidet hybridiserer til targetsekvensen, og hvor transskriptionen af mindst ét gen i targetnucleinsyremolekylet moduleres.

- 10. Fremgangsmåde eller CRISPR-system til anvendelse ifølge et hvilket som helst af kravene 5 til 9, hvor targetingregionen og/eller aktiveringsregionen omfatter en blanding af DNA og RNA.
- 11. Fremgangsmåde eller CRISPR-system til anvendelse ifølge et hvilket som helst af kravene 5 til 10, hvor cellen, hvori fremgangsmåden forekommer, er valgt fra gruppen, der består af: en bakteriecelle, en arkæcelle, en plantecelle, en algecelle, en svampecelle, en hvirvelløsdyrcelle, en hvirveldyrcelle, en pattedyrcelle og en human celle.

10

15

12. Class-2 CRISPR-singlepolynucleotid ifølge et hvilket som helst af kravene 1-2, Class-2 CRISPR-systemet ifølge et hvilket som helst af kravene 3 til 4, eller fremgangsmåderne eller CRISPR-systemerne til anvendelse ifølge et hvilket som helst af kravene 5 til 11, hvor Cpf1 er fra *Francisella novicida U112* eller *Acidaminococcus sp. BV3L6*.

DRAWINGS

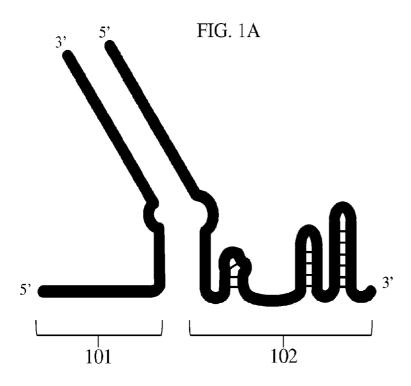


FIG. 1B

106

108

108

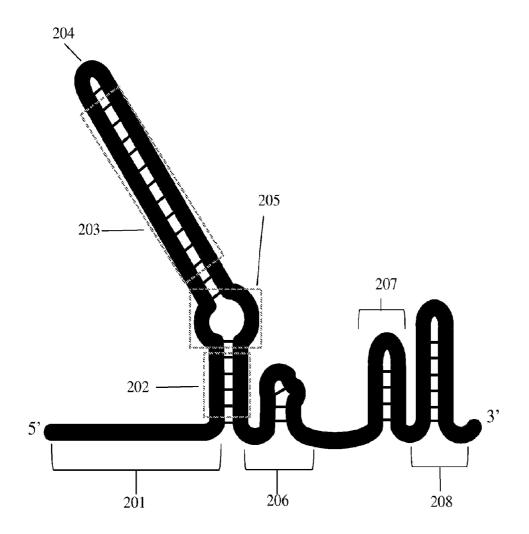
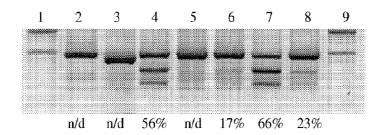
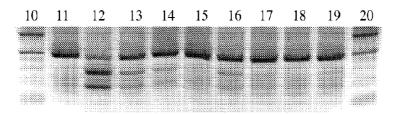
5'

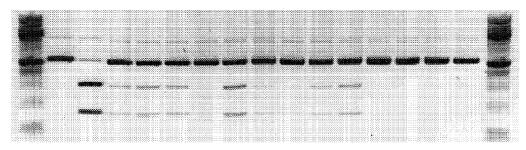
104

103

107

109


FIG. 2

n/d 70% 47% 41% n/d 44% 30% 15% 33%

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

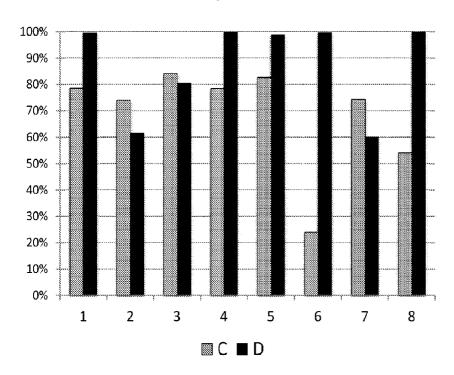

n/d 87% 22% 34% 28% 1% 46% 10% 4% 17% 34% n/d n/d n/d 4%

FIG. 3

FIG. 4A

	А	В	С	D
1	n/d	n/d	79%	100%
2	n/d	n/d	74%	62%
3	n/d	n/d	84%	80%
4	n/d	n/d	78%	100%
5	n/d	n/d	83%	99%
6	n/d	n/d	24%	100%
7	n/d	n/d	74%	60%
8	n/d	n/d	54%	100%

FIG. 4B

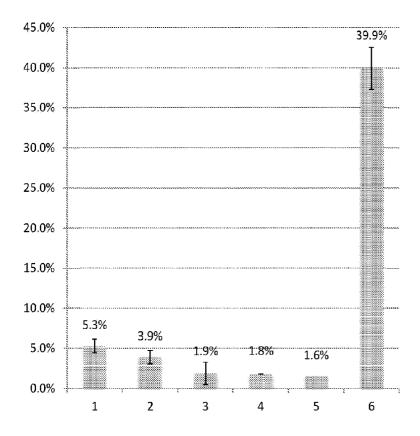


FIG. 5

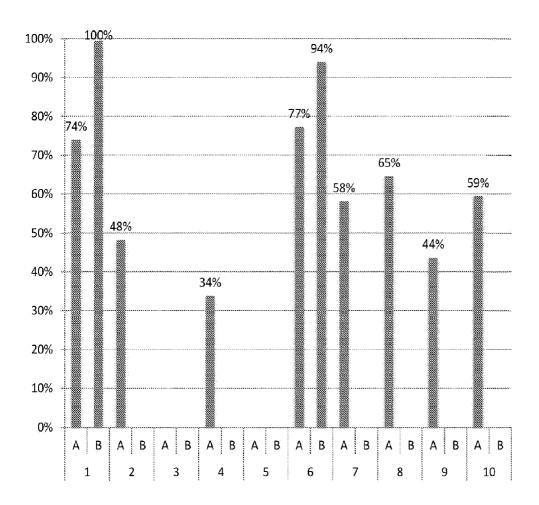
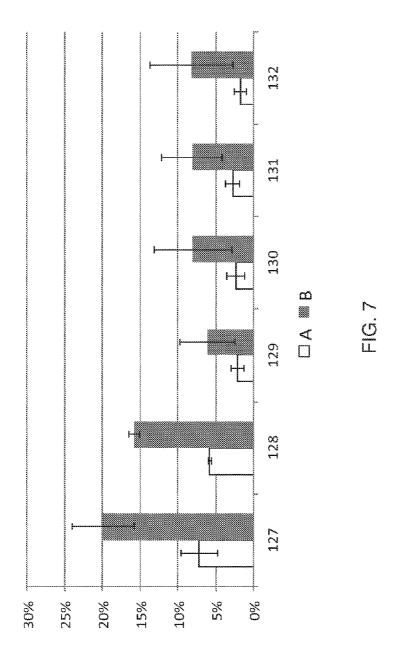
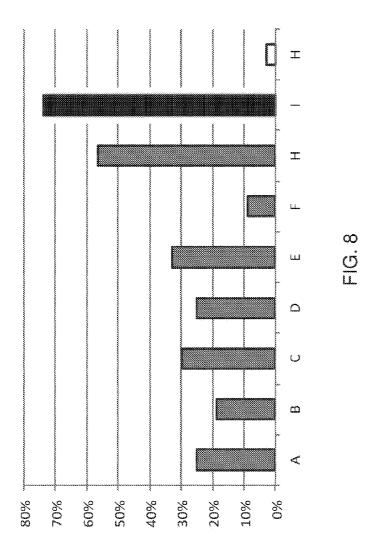




FIG. 6

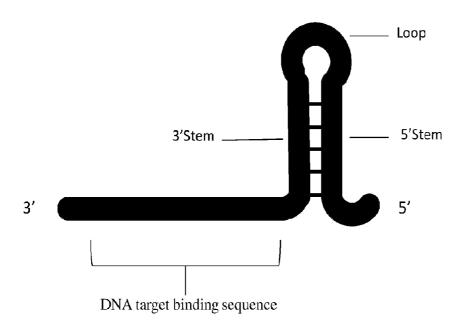
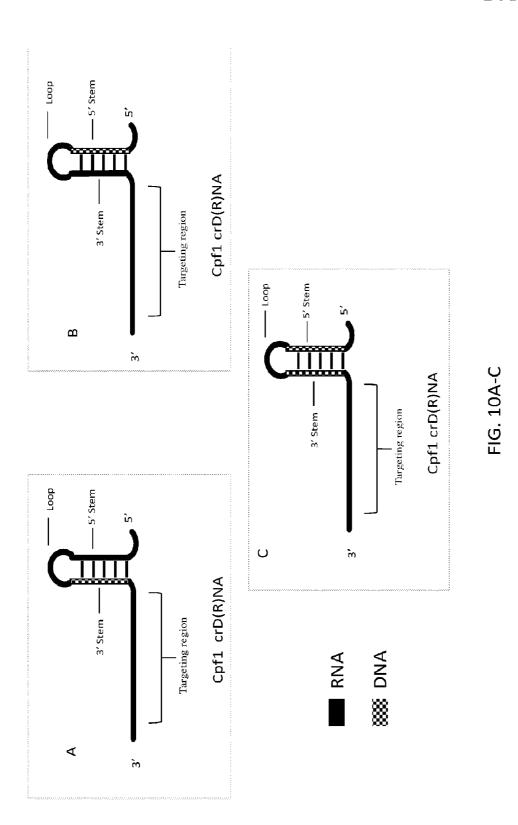
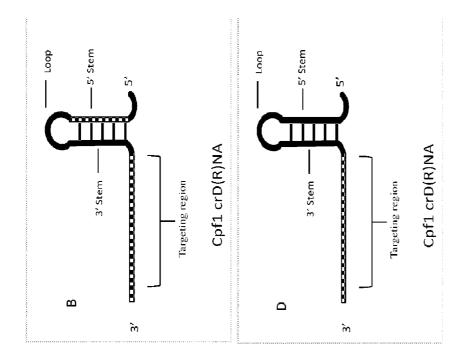




FIG. 9

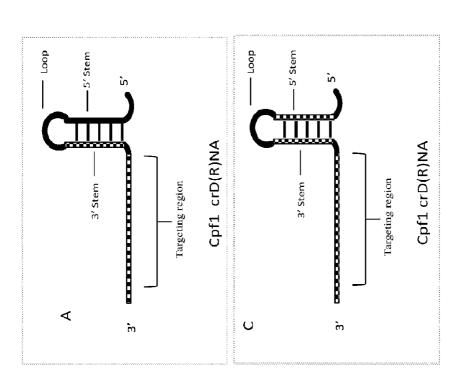


FIG. 11A-D

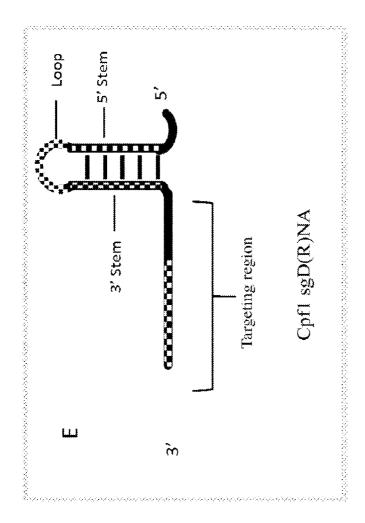
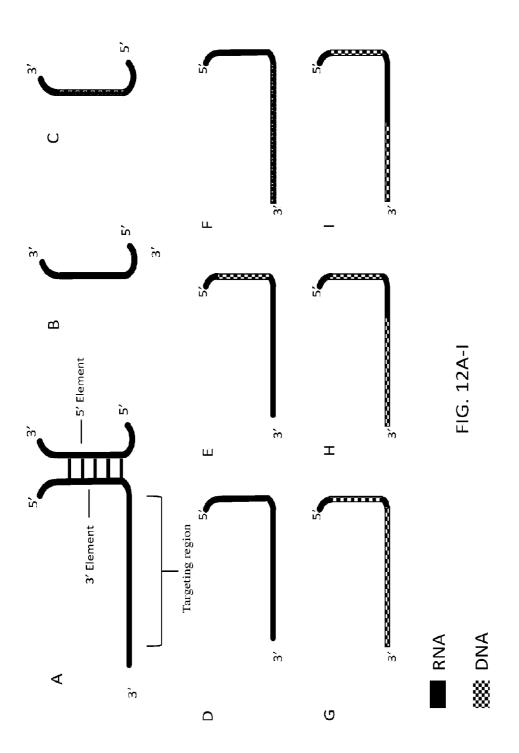



FIG. 11E

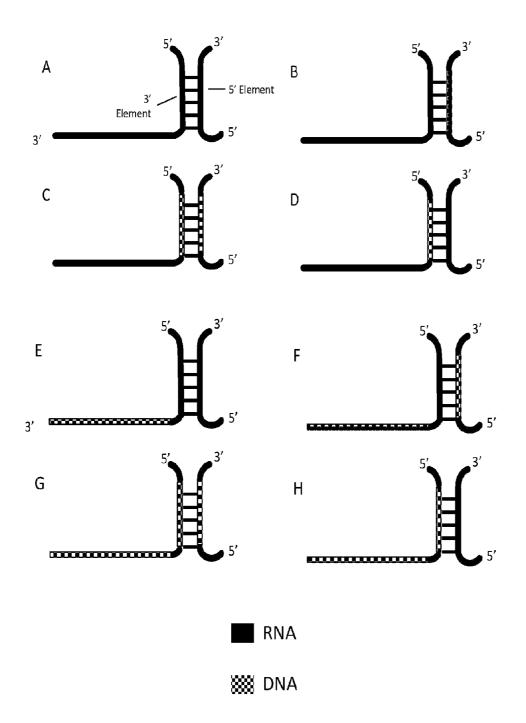


FIG. 13A-H

		Protospacer Expected Site of Protospacer Target Cleavage Adjacent Motif	SEQ ID	Frequency in Treated	Frequency in Control
	Reference	CAGCGCACGTATATAACGCGTACGTGTGTGTGTGTATATATA	216		
sgD(R)NA corresponding to Mutation SBQ ID NO.: 204	1	1 CAGCGCACGTATATACGCGTACGCGTACGT-TGAGGTATATATATATCTCCGCCG	217	رح 1	0
sgD(R)NA corresponding to Mutation SEQ ID NO.: 205	Mutation 1	CAGCGCACGTATATATGCGCGTACGCTACGT <u>E</u> GTGAGGTATATATATCTCCGCCG	218	113	0
	Mutation 2	2 CAGCGCACGTATATACGCGTACGCGTACG-GTGAGGTATATATATATCCTCCGCCG	21.9	62	0
	Mutation 3	CAGCGCACGTATATATCCTCCGCCG	220	12	0
	Mutation 4	CAGCGCACGTATATATACGCGTACGT-TGAGGTATATATATATCCTCCGCCG	221	щ	0
agD (R) NA corresponding to Mutation SEQ ID NO:: 206	-	CAGCGCACGTATATACGCGTACGCGTATGAGGTATATATATCTCCGCCG	222	ī.	0
	Mutation 2	CAGCGCACGTATATACGCGTACGTACGT-TGAGGTATATATATCCTCCGCCG	223	4	0

FIG 14A

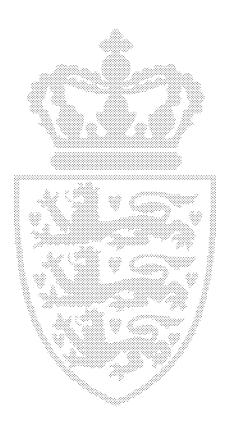

				Protospacer	acer		
		Protospacer	Expected Site of	Adjacent Motif	Motif		
		Target /	Cleavage	_	SEQ ID	Frequency	Frequency
		/	_		NO:	in Treated	in Control
	Reference	AGTCCCTGCCCGAGGT	AGTCCGCTGGCCGAGGTCGACTACCGGCCGGTGAAGCAC	AGCAC	234		
sgD(R)NA corresponding to							
SEQ ID NO.: 224	Mutation 1	AGICCGCIGGCCGAGGI	AGTOCGCTGGCCGAGGTCGACTACCAGGCCGGTGAAGCAC	SAAGCAC	235	88	16
	Mutation 2	AGTOCGCTGGCCGAGGT	AGTCCGCTGGCCGAGGTCGACT <mark>tg</mark> CCGGCCGGTGAAGCAC	BAAGGAG	236	30	0
	Mutation 3	AGICCGCIGGCC	GGTGAAGCAC	AAGCAC	237	/. T	0
	Mutation 4	AGTOCGCTGGCCGAGGI	AGTCCGCTGGCCGAGGTCGÄC—— <u>ca</u> GGCCGGTGAÄGCAC	AAGCAC	238	14	0
	Mulalion 5	AGTCCCCTGCCCGAGGI	AGTCCGCTGGCCGAGGTCGACTACCLGGCCGGTGAAGCAC	SAAGCAC	239	12	.0
	Mutation 6	AGICCGC	<u>ca</u> gtgaagcac	AAGCAC	240	10	0
	Mutation 7	ACTCCCCTCCCCCACCT	AGTCCCCTGCCCGAGGTCCACTAC-GCCCGGTGAACCAC	AGCAC	2.41	10	0
	Mulalion 8	AGTOCGCTGGCCGAGGT	AGTCCGCTGGCCGAGGTCGACTACC_GGGCCGGTGAAGCAC	SAAGCAC	242	S	0
sgD (R) NA							
corresponding to							
SEQ ID NO.: 223	Mutation 1	AGICCGCIGGCCGAGGI	AGTCCGCTGGCCGAGTCGACTACCaGGCCGGTGAAGCAC	SAAGCAC	243	81	16
	Mutation 2	AGICCGCIGGCCG	GTB	-GTGAAGCAC	244	2.7	Ö
	Mutation 3	AGICCGCIGGCCGAGGI	AGTCCGCTGGCCGAGGTCGACTAC-GGCCGGTGAAGCAC	ABGCAC	245	6	.0
	Mutation 4	AGTOCGOTGGCCGAGGT	AGTOCGCTGGCCGAGGTCGACTLGGCCGGTGAAGCAC	AAGCAC	246	8	Ö
sgD (R) NA							
corresponding to					,	,	
SEC ID NO 226		AGTCCGCTGGCCGAGGT	AGICCGCIGGCCGAGGICGACIACCAGGCCGGIGAAGCAC	SAAGCAC	247	638	16
	Mutation 2	AGTCCGCTGGCCGAGGT	AGTCCCCTGCCCGAGGTCGACTAC-GGCCGGTGAAGCAC	AAGCAC	248	52	0
	Mutation 3	AGTCCGCTGGCCGAGGT	AGTCCGCTGGCCGAGGTCGACTACC <u>L</u> GGCCGGTGAAGCAC	SAAGCAC	249	46.	.0
	Mutation 4	AGTCCCCTGCCCGAGGT	AGTCCGCTGGCCGAGGTCGACTACC_GGGCCGGTGAAGCAC	SAAGCAC	250	35	.0
	Mutation 5	AGICCCTGGIC	<u>aa</u> ggccggcgaagcac	AAGCAC	251	29	0
	Mutation 6	AGTCCGCTGGCCG	GTGAAGCAC	AAGCAC	252	28	0
	Mulalion 7	AGTCCGCTGGCCGAGGT	AGTCCGCTGGCCGAGGTCGACTA <u>a</u> GCCGGTGAAGCAC	AAGCAC	253	27	0
	Mutation 8	AGICCGCIGGCCGAGGI		-GAAGCAC	254	23	0

FIG. 14B

SEKVENSLISTE

Sekvenslisten er udeladt af skriftet og kan hentes fra det Europæiske Patent Register.

The Sequence Listing was omitted from the document and can be downloaded from the European Patent Register.

