(54) Title: SENSOR AND SYSTEM FOR PHYSIOLOGICAL MONITORING

(57) Abstract

A patient (1) is provided with a sensor patch (2) which is worn on the skin of the chest of the patient. The sensor patch (2) includes a central structural support member (8) formed of a flexible, but rigid, plastics material. The structural member (8) is surrounded by an adhesive gel (9) which is preferably a hydrogel compound. The patch (2) is provided with a number of electrodes (10), for example four, which are positioned on the gel (9) so as to contact the skin of the patient (1) when the gel (9) adheres to the skin. The electrodes (10) are either metallic, such as stainless steel, or formed of a silver chloride compound and are electrically connected by connections (11) to an electronic package (12), which includes a power supply, circuitry for receiving ECG signals from the electrodes (10), for conditioning the signals to provide a conditioned signal and a short range radio transmitter to transmit the conditioned signal to the portable monitor unit (3) which is nearby. The portable monitor unit (3) includes circuitry for interfacing with a telephone line (4) to send the ECG data signals to a central monitoring station (5) by the telephone line (4). The portable unit (3) preferably also has monitoring circuitry for monitoring the incoming ECG data signal to determine whether there is any abnormality and to alert the patient if an abnormality in the ECG data signal is detected. The central monitoring station (5) includes a part (6) that decodes the ECG data signals received from the portable unit (3) via the telephone line (4) and performs beat and rhythm analysis for classification of the ECG data. Periodically, data is reviewed by a professional skilled in the field and a report generated (7).
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GR	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People’s Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SK	Slovak Republic
CI	Côte d’Ivoire	LI	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	MC	Monaco	TG	Togo
DE	Germany	MG	Madagascar	UA	Ukraine
DK	Denmark	ML	Mali	US	United States of America
ES	Spain	MN	Mongolia	VN	Viet Nam
FI	Finland				
SENSOR AND SYSTEM FOR PHYSIOLOGICAL MONITORING

BACKGROUND OF THE INVENTION

This invention relates to a sensor and system that is used to monitor and analyse electrocardiogram signals remotely from patients located in non-hospital sites.

As used herein, the term "electro-cardiogram" (ECG) refers to an electrical signal from the heart which may be measured from two or more sensors placed on the patient's skin, either on a limb or about the patient's thorax.

The term "complex" refers to a period of ECG signal which, when voltage amplitude is plotted against time, exhibits a shape which may be repeated in other epochs. Typically, a complex will include a particular amplitude maxima or minima which is termed the detect point. The rate at which detect points occur in a particular ECG signal is the same as the heart rate. The term 'normal complex' refers to a complex in an ECG signal that is regularly repeated and is measured at electrodes placed on a person whose heart is beating in Normal Sinus Rhythm (NSR). The shape of a normal complex may vary from patient to patient and between ECG signals recorded from different sites on the same patient.

The terms P, Q, R, S and T when used herein in relation to ECG complexes refer to portions of a normal complex that relate to particular electro-physiological events in the cardiac cycle.

The term "normal rate" for a particular patient refers to a range of heart rates that is typical for a healthy individual of similar age to the patient when at rest.

The term "arrhythmia" relates to an abnormal rhythm of the heart that persists for multiple complexes which may or may not revert to normal sinus rhythm spontaneously. An arrhythmia may be made up of normal complexes at a rate that is abnormally high for the patient or abnormally low or, alternatively, an arrhythmia may consist of abnormal complexes at a high, low or normal rate.

In known systems, the patient is provided with sensors attached to the patient's body and which are coupled by electrical leads to an event recorder. The event recorder then sends the ECG signals to the monitoring system via a telecommunications line, e.g. a telephone line.

A major disadvantage of these known systems is that continuous monitoring of a patient has been met with a distinct lack of enthusiasm
by the patient due to the need for a lead to connect the sensors to the event recorder. This causes discomfort and difficulties in dressing and washing, and also some embarrassment as it is difficult to hide from view.

BRIEF SUMMARY OF THE INVENTION

It is an object of the present invention to provide a sensor and system whereby a patient can have their ECG monitored from home without requiring a visit by personnel skilled in the acquisition or interpretation of the ECG and which is comfortable and easy to wear and use.

Accordingly, in one aspect, the invention provides a sensor patch for attachment to a patient's body for transmitting physiological measurements to monitoring equipment, the sensor patch comprising a structural support member, sensing means for sensing physiological data from the patient's body, adhesive means for attaching the sensor patch to the patient's body and an electronic package including a power supply, means for receiving the sensed data from the sensing means, circuitry for processing the sensed data to produce a conditioned signal and means for transmitting the conditioned signal to monitoring equipment.

Preferably, the sensing means comprises a plurality of electrodes for sensing changes in electrical potential of the patient's body. The electrodes can be metallic, e.g. stainless steel, or they could be made of a silver chloride compound. A conductive paste is preferably provided as an interface between the electrodes and the skin of the patient.

Alternatively, or additionally, the sensing means could comprise one or more thermistors to sense the temperature of the patient's body. In one embodiment, the sensing means and the adhesive means could be formed of the same substance.

The adhesive means preferably comprises a hydrogel compound which is electrostatically active and rehydrates itself. A preferred hydrogel compound contains salts which migrate between the skin of the patient and the sensors, thus reducing skin irritation due to maintenance of pH by the salt migration. Electrical balance is maintained since electrical conductivity is reduced as the moisture content of the hydrogel compound is reduced, which also reduces the pH.
The transmitting means is preferably a radio transmitter, although microwave or infra-red transmitters could alternatively be used.

According to a second aspect of the invention, there is provided an ECG monitoring system comprising means for sensing data representing an ECG signal obtained from surface chest and/or limb sensors on a patient, means for receiving the sensed data at a primary site in the vicinity of the patient and for storing the sensed data, and means for sending the stored data from the primary site to a monitoring station where the ECG signal is monitored and analyzed.

In a preferred embodiment, the stored data is sent to the monitoring station at a central site via the standard voice telecommunications network.

Preferably, the central site is remote from the primary site and the monitoring station is preferably capable of receiving and monitoring data from a large number of primary sites. Preferably, the means for receiving the sensed data and the means for sending the stored data are within a portable unit, which can be easily carried around by the patient.

In a preferred embodiment, the portable unit also includes means for monitoring the received data to detect an abnormality in the sensed data, and means for alerting the patient that an abnormality has been detected.

The sensed data are preferably transmitted to the receiving means by a sensor patch of the type described above. However, any type of sensing means could be used which passes the sensed data to the receiving means. The method of modulation and transmission of the ECG signal over the voice telecommunications network is well known in the prior art and does not form part of the present invention.

According to a further aspect of the invention, there is provided a monitoring station for monitoring and analysing ECG signals from a patient, the station comprising receiving means for receiving raw ECG data signals, first processing means coupled to the receiving means for processing the received raw ECG data to provide a standardised digital signal representative of the ECG data, recognition means coupled to the first processing means for recognising and storing a current characteristic complex in a cardiac cycle of the ECG data, storage means for storing a reference complex from the cardiac cycle of the
same patient, comparing means coupled to the recognition means and the storage means for comparing the current characteristic complex stored in the recognition means with the reference complex stored in the storage means and producing a similarity index signal indicative of the degree of similarity between the current characteristic complex and the reference complex, analysing means coupled to the comparing means for analysing a current characteristic complex which has been matched with the reference complex to determine whether cardiac arrhythmia is present in the ECG data, and alarm means coupled to the analysing means for generating an alarm if the presence of a cardiac arrhythmia in the ECG data signals is detected.

In a preferred embodiment, the reference complex stored in the storage means is a normal complex. However, the storage means preferably stores, additionally or alternatively to the normal complex, one or more abnormal complexes of the cardiac cycle of the patient. Preferably, the comparing means compares the current characteristic complex with each of the stored reference complexes. In one preferred embodiment, the comparing means first compares the current characteristic complex with a normal reference complex stored in the storage means. If the similarity index signal indicates a lack of similarity between the current characteristic complex and the normal reference complex, then the comparing means compares the current characteristic complex with each abnormal reference complex, in turn, until the similarity index signal indicates a match. If the current characteristic complex does not match any of the stored reference complexes, then it is considered by a skilled operator and either discarded or entered in the storage means as another abnormal reference complex.

Although the monitoring station is usually used to monitor ECG signals from many patients at various sites remotely, the signals being sent to the monitoring station via a telecommunication system; it is equally applicable where a patient and the monitoring station are at the same site.

In an embodiment where the patient and monitoring station are conveniently at the same site and the patient is undergoing treatment using an automatic treatment device, such as an automatic drug delivery device, the alarm means is preferably coupled to a controller of the automatic treatment device so as to appropriately control the automatic
treatment device according to whether a cardiac arrhythmia in the ECG data signals is detected. The automatic treatment device can be an automatic drug delivery system, such as an infusion pump, or could be an external pacemaker device or a de-fibrillation device.

Furthermore, although the monitoring station usually monitors only one ECG signal from a particular patient at a time, it can equally be used to monitor more than one ECG signal from one patient or ECG signals from multiple patients simultaneously. The monitoring station can also be used in systems that are capable of monitoring other physiological signals (including, but not limited to: blood pressure, spirometry signals and contractility signals) in addition to the ECG signal, as well as to systems which only monitor ECG signals.

Other advantages of the monitoring station according to the invention are:

1. It detects the presence of a dangerous cardiac state from the ECG automatically at the time that the ECG is being monitored.
2. It compares ECG signals recorded from a patient at different times in a way that allows an assessment as to whether the cardiac state of the patient has changed over time.
3. It provides an alarm if a new, pathological cardiac state develops in a patient so that assessment from an expert in the art of ECG interpretation may be obtained and/or medical intervention be initiated.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages of the present invention will become more fully apparent from the detailed description of one embodiment of the invention given below, when read in conjunction with the accompanying drawings, wherein:

Figure 1 is a schematic diagram of a sensing and analysing system according to one embodiment of the invention;

Figure 2 is a schematic top plan view of a sensor patch used in the system of Figure 1;

Figure 3 is a schematic cross-sectional view through the sensor patch of Figure 2;

Figure 4 is a schematic block diagram showing a monitoring station used in the system of Figure 1;

Figure 5 is a flow diagram showing the processing carried out in the monitoring station of Figure 4;
Figure 6 is a flow diagram showing the flow of information which occurs when a patient is first presented to the system; and Figure 7 is a schematic block diagram similar to that of Figure 4, showing the alarm system used to control a drug delivery system.

DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENT

There is shown in Figure 1, in block diagram form, a system for sensing and analysing ECG data signals from a patient to determine whether arrhythmia is present, and, if so, to produce an alarm. A patient 1 is provided with a sensor patch 2, of a type to be further described below, which is worn on the skin of the chest. The sensor patch includes a radio transmitter, as well as a power supply, and transmits ECG data signals, conditioned, as necessary, by suitable conditioning circuitry in the sensor patch, to a portable monitor unit 3.

The portable monitor unit 3 is designed to be easily carried around by the patient, preferably in a pocket, and includes a receiver for receiving the ECG data signals transmitted from the sensor patch 2. The unit 3 also includes circuitry for interfacing with a telephone line 4 to send the ECG data signals to a central monitoring station 5 by the telephone line 4. The portable unit 3 preferably also has monitoring circuitry for monitoring the incoming ECG data signal to determine whether there is any abnormality and to alert the patient if an abnormality in the ECG data signal is detected.

The central monitoring station 5 includes a part 6 that decodes the ECG data signals received from the portable unit 3 via the telephone line 4 and performs beat and rhythm analysis for classification of the ECG data. Periodically, data is reviewed by a professional skilled in the field and a report generated (7).

Turning now to Figures 2 and 3, the sensor patch 2 will be further described. The patch 2 is approximately the size of a playing card, for example 110 mm long by 70 mm wide and is approximately 10 mm thick. Thus, it can be easily worn by a patient without much discomfort. The patch comprises a central structural support member 8 formed of a flexible, but rigid, plastics material, such as Milar. The structural member 8 is surrounded by an adhesive gel 9 which is preferably a hydrogel compound. The hydrogel compound is a sticky jelly which contains salts, such as Sodium and Potassium. Provided the jelly is wet, the pH balance is maintained and the salts migrate between the
skin of the patient and electrodes attached to the jelly and in contact with the skin. This migration of salts maintains the electrostatic balance and thereby reduces irritation. As the water content reduces, the pH and the electrical conductivity of the gel is reduced, thereby reducing the salt migration. By making sure that the patient wearing the patch has a bath or shower at least once a day, the gel becomes rehydrated and it is expected that such a patch will last and operate continuously for at least a week before its power supply is exhausted and it is thrown away.

The patch is provided with a number of electrodes 10, for example four, which are positioned on the gel 9 so as to contact the skin of the patient when the gel 9 adheres to the skin. A conductive paste may be used between the electrodes and the skin of the patient to improve the electrical conductivity therebetween. The electrodes 10 are either metallic, such as stainless steel, or formed of a silver chloride compound and are electrically connected by connections 11 to an electronic package 12.

The electronic package 12 includes a power supply, such as a small cell, circuitry for receiving signals from the electrodes 10, for conditioning the signals to provide a conditioned signal and a short range radio transmitter to transmit the conditioned signal to the portable monitor unit 3 which is nearby, and associated support circuitry. Thus, by having the radio transmitter at the same point as the sensors, the need for electrical signal lines from the sensor to a monitoring unit is avoided. As previously mentioned, the transmitter need not be radio, but could be microwave or infra-red, if in direct line of sight with the receiver in the portable unit.

The conditioning circuitry processes the signals from each electrode by filtering the signals and normalising according to measurements made when the respective electrode is disconnected. The normalised signals may also be compared to produce a difference signal representing the difference in potential sensed by different electrodes. Alternatively, the normalised signal from each electrode may be transmitted to the portable unit 3, where such comparisons are undertaken.

When the patient feels discomfort or concern, or if the portable unit gives an alarm, the patient telephones the central monitoring station and downloads the stored data from the portable unit via the
standard telephone line. If required, the patient can also transmit current, real time ECG data so that the it can be evaluated by the central station and any necessary action can be taken.

Figure 4 illustrates the interconnection of the hardware used at the Central Monitoring Station analysis site.

The modulated ECG signal from the telephone network is demodulated by demodulator 13. The signal is then digitized by an analogue to digital converter 14 at regular sampling intervals. The digital representation of the ECG signal is then input to a general purpose digital computer 15.

The combined gain of the demodulator 13 and analog to digital converter 14 may be automatically adjusted by the demodulator 13, analog to digital converter 14, the computer 15 or by any combination of these three. Connections for automatic gain control between these elements are not shown in figure 4.

The computer 15 processes the ECG data to decide if a dangerous cardiac event is occurring. The ECG data is also processed to extract information which may be stored in such a way that will allow tracking of the state of the patient's cardiac disease over prolonged periods. The storage media 16 which can be optical, magnetic or any other type, is used to store the digital representation of the ECG data and information derived from it, as well as patient identification data and clinical information.

When the analysis performed by the computer 15 indicate that a dangerous event is occurring in the ECG currently being processed, an alarm is raised by the alarm system 17. When an alarm is raised it is envisaged that the staff present at the analysis site would initiate medical intervention to alleviate the dangerous event.

The processing of the ECG data takes place as shown in Figure 5. In the illustrative embodiment of the invention, the sampled ECG signal 18 is initially processed by filters to remove baseline wander and mains frequency interference 19. The filters used in step 19 remove unwanted baseline wander and mains frequency interference without causing distortion of the shape of the underlying ECG complexes in the signal.

The filtered signal is then processed at step 20 to detect R wave points in time in the ECG signal. Portions of the signal either side of each R point together with the R point itself form a template which
is located in the signal by the template location step 21. This template is then processed in comparison step 22.

The comparison step 22 compares the template in the current ECG signal, referred to as the test template and produces a number termed a "similarity index". The test template is extracted from the template store 23. If the similarity index produced by the comparison of the current template with the test template is above a predetermined threshold, a match is found. If not, the two templates do not match.

The test template and current template are coherent in time in so far as the R point occurs at the same duration from the start of each template.

The templates which may be used as test templates in the template store are generated for a particular patient when the patient is first presented to the system. Generation of test templates is illustrated in Figure 6.

Referring now to Figure 6, when a patient is first presented to the system the patients raw ECG signal 30 is again processed (31) by the baseline and interference filters. A representative ECG template is automatically generated (32) for this patient and stored in the template store 33. The representative template will match most the ECG complexes in the patient's first ECG signal recorded by the system. If the patient exhibits normal sinus rhythm, the representative template will represent a normal QRS complex with morphological peculiarities relevant to the particular surface lead used to record the ECG. In a patient that does not exhibit normal sinus rhythm, the representative template will reflect the morphological abnormalities present in most of the patient's ECG complexes.

Templates that do not match the representative template are then checked by an expert in the field of ECG interpretation and artifacts are separated (34) from legitimate abnormal complexes. Abnormal complexes exhibit an abnormal morphology for the patient (such as, but not limited to Ventricular Ectopic Beats from various foci) also can be stored as templates. These abnormal templates are then annotated (35) by the expert with labels that reflect the origin of the abnormal morphology. The annotated, abnormal complexes are then stored in the template store 36.

Once an initial ECG has been recorded from a patient, subsequent ECG recordings do not generate a new representative template. The
recording of the initial ECG requires an operator skilled in the art of interpretation of ECG signals to ensure appropriate labelling of abnormal templates. Subsequent recordings from a patient do not require the presence of an operator with such skills.

Returning now to Figure 5 illustrating the operation of the analysis system when a signal is received from a patient who has previously had an ECG recorded by the system, the comparison step 22 is initially used to compare in-coming complexes with the previously generated representative template. When a complex is found that does not match the representative template, the comparison step 22 then compares the unknown complex with each abnormal template for the patient in turn. In this way, the number of beats that are considered normal for the patient as well as the number and type of ectopic or abnormal beats can be automatically generated at the time that the ECG signal is being received.

If a complex is found that does not match the representative template nor any of the patient's abnormal templates, it is marked as unknown and at a later time can be discarded by the operator if it is considered to be an artifact or used to generate a new abnormal template for the patient. This can be done after the ECG containing the unknown template has been recorded by personnel with ECG interpretation skills.

After each complex has been categorized by the comparison algorithm, an arrhythmia detection step 24 determines if the patient is experiencing a cardiac arrhythmia. The arrhythmia detection step 24 determines the presence of an arrhythmia from the underlying heart rate and the type of beat as determined by the comparison step 22.

If a cardiac arrhythmia is detected by the arrhythmia detection step 24, an alarm is raised (25) and medical intervention can be instigated by staff at the analysis centre.

A parameter measurement procedure 26 is applied after the template comparison step 22. This procedure 26 detects fiducial points in each complex that matches the representative template and generates interval parameters relating to the P, Q, R, S and T points in the complex.

The ECG signal is then annotated (27) with the results from the comparison step 22, the arrhythmia detection step 24 and the P, Q, R, S, T location procedure 26.
The annotated ECG is then stored for later review of this analysis period in store 28.

Statistics, such as average, maximum, and minimum heart rate, numbers of different types of ectopic beats, types and durations of arrhythmic episodes and average complex parameter values are generated for the period of ECG analysed in step 29 and stored in store 37.

The statistical data and annotated ECG are recorded every time a patient transmits an ECG to the system. The stored information derived by the processing from the ECG's, ECG data itself as well as representative and abnormal templates can be reviewed at a later time. This information will provide a comprehensive history of the patient's cardiac disease state.

Thus, comprehensive ambulatory surveillance of cardiac sick and high risk patients can be carried out, whilst providing the patient with a greater degree of freedom than has been possible hitherto. It will, of course, be appreciated that, although only one particular embodiment of the invention has been described in detail, various modifications and improvements can be made to what has been described without departing from the scope of the invention.

For example, as shown in Figure 7 in which the same elements have the same reference numerals as in Figure 4, the alarm system 17 is coupled to a drug delivery system 38 so that the drug delivery system 38, for example, an infusion pump is appropriately controlled according to the presence or absence of arrhythmia.
CLAIMS

1. A sensor patch for attachment to a patient's body for transmitting physiological measurements to monitoring equipment, the sensor patch comprising a structural support member, sensing means for sensing physiological data from the patient's body, adhesive means for attaching the sensor patch to the patient's body and an electronic package including a power supply, means for receiving the sensed data from the sensing means, circuitry for processing the sensed data to produce a conditioned signal and means for transmitting the conditioned signal to monitoring equipment.

2. A sensor patch according to claim 1, wherein the sensing means comprises a plurality of electrodes for sensing changes in electrical potential of the patient's body.

3. A sensor patch according to claim 2, wherein the electrodes are metallic.

4. A sensor patch according to claim 2, wherein the electrodes are made of a silver chloride compound.

5. A sensor patch according to any one of claims 2 to 4, wherein a conductive paste is provided as an interface between the electrodes and the skin of the patient.

6. A sensor patch according to any preceding claim, wherein the sensing means comprises one or more thermistors to sense the temperature of the patient's body.

7. A sensor patch according to any preceding claim, wherein the sensing means and the adhesive means are formed of the same substance.

8. A sensor patch according to any preceding claim, wherein the adhesive means comprises a hydrogel compound which is electrostatically active and rehydrates itself.

9. A sensor patch according to claim 8, wherein the hydrogel compound contains salts which migrate between the skin of the patient and the sensors, thus reducing skin irritation due to maintenance of pH by the salt migration.

10. A sensor patch according to any preceding claim, wherein the transmitting means is a radio transmitter.

11. A sensor patch according to any one of claims 1 to 9, wherein the transmitting means is a microwave transmitter.
12. A sensor patch according to any one of claims 1 to 9, wherein the transmitting means is an infra-red transmitter.

13. A monitoring station for monitoring and analysing ECG signals from a patient, the station comprising receiving means for receiving raw ECG data signals, first processing means coupled to the receiving means for processing the received raw ECG data to provide a standardised digital signal representative of the ECG data, recognition means coupled to the first processing means for recognising and storing a current characteristic complex in a cardiac cycle of the ECG data, storage means for storing a reference complex from the cardiac cycle of the same patient, comparing means coupled to the recognition means and the storage means for comparing the current characteristic complex stored in the recognition means with the reference complex stored in the storage means and producing a similarity index signal indicative of the degree of similarity between the current characteristic complex and the reference complex, analysing means coupled to the comparing means for analysing a current characteristic complex which has been matched with the reference complex to determine whether cardiac arrhythmia is present in the ECG data, and alarm means coupled to the analysing means for generating an alarm if the presence of a cardiac arrhythmia in the ECG data signals is detected.

14. A monitoring station according to claim 13, wherein the reference complex stored in the storage means is a normal complex.

15. A monitoring station according to either claim 13 or claim 14, wherein the storage means stores one or more abnormal complexes of the cardiac cycle of the patient.

16. A monitoring station according to any one of claims 13 to 15, wherein the comparing means compares the current characteristic complex with the or each of the stored reference complexes.

17. A monitoring station according to claim 16, wherein the comparing means first compares the current characteristic complex with a normal reference complex stored in the storage means and, if the similarity index signal indicates a lack of similarity between the current characteristic complex and the normal reference complex, then the comparing means compares the current characteristic complex with one or more stored abnormal reference complex, in turn, until the similarity index signal indicates a match.
18. A monitoring station according to claim 17, wherein, if the current characteristic complex does not match any of the stored reference complexes, then it is considered by a skilled operator and either discarded or entered in the storage means as another abnormal reference complex.

19. An ECG monitoring system comprising means for sensing data representing an ECG signal obtained from sensors on a patient, means for receiving the sensed data at a primary site in the vicinity of the patient and for storing the sensed data, and means for sending the stored data from the primary site to a monitoring station where the ECG signal is monitored and analyzed.

20. An ECG monitoring system according to claim 19, wherein the stored data is sent from the primary site to the monitoring station at a central site via the standard voice telecommunications network.

21. An ECG monitoring system according to claim 20, wherein the central site is remote from the primary site and the monitoring station is capable of receiving and monitoring data from a large number of primary sites.

22. An ECG monitoring system according to any one of claims 19 to 21, wherein the means for receiving the sensed data and the means for sending the stored data are within a portable unit.

23. An ECG monitoring system according to claim 22, wherein the portable unit also includes means for monitoring the sensed data to detect an abnormality in the sensed data, and means for alerting the patient that an abnormality has been detected.

24. An ECG monitoring system according to any one of claims 19 to 23, wherein the sensed data is transmitted to the receiving means by a sensor patch according to any one of claims 1 to 12.

25. An ECG monitoring system according to any one of claims 20 to 24, wherein the monitoring station is according to any one of claims 13 to 18.

26. An ECG monitoring system according to claim 19, wherein the monitoring station is according to any one of claims 13 to 18 and the monitoring station is at the primary site.

27. An ECG monitoring system according to claim 26, wherein the alarm means is coupled to a controller of an automatic treatment device for treating the patient.
28. An ECG monitoring system according to claim 27, wherein the automatic treatment device comprises any one or more taken from the group consisting of an automatic drug delivery system, an external pacemaker device or a de-fibrillation device.
MODULATED ECG FROM TELEPHONE NETWORK

ECG SIGNAL

ANALOG TO DIGITAL CONVERTER

DIGITAL REPRESENTATION OF ECG

GENERAL PURPOSE DIGITAL COMPUTER

ALARM SYSTEM

ECG DATA, CLINICAL DATA & RESULTS FROM ANALYSIS

OPTICAL OR MAGNETIC STORAGE MEDIA

FIG. 4
PATIENT'S INITIAL RAW ECG SIGNAL

BASELINE & INTERFERENCE FILTERS

AUTOMATIC CLASSIFICATION OF REFERENCE AND NON-REFERENCE TEMPLATES

STORAGE OF REFERENCE TEMPLATE

CHECK BY EXPERT TO SEPARATE ARTIFACT FROM ABNORMAL COMPLEXES

EXPERT ANNOTATION OF ABNORMAL COMPLEXES

STORAGE OF ANNOTATED ABNORMAL TEMPLATES

FIG. 6
FIG. 7

13 MODULATED ECG FROM TELEPHONE NETWORK
14 ECG SIGNAL
15 DIGITAL REPRESENTATION OF ECG
16 OPTICAL OR MAGNETIC STORAGE MEDIA
17 ALARM SYSTEM
38 INFUSION PUMP CONTROLLER

ECG DATA, CLINICAL DATA & RESULTS FROM ANALYSIS

GENERAL PURPOSE DIGITAL COMPUTER
A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl 5 A61B 5/0408

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: A61B 5/0408 5/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

AU: IPC as above

Electronic data base consulted during the international search (name of data base, and where practicable, search terms used)

DERWENT

JAPIO

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X,Y</td>
<td>WO,A,86/02538 (THOMIS) 9 May 1986 (09.05.86) Abstract, page 2 line 10 to page 4 line 15 Abstract, page 6 lines 1-16, page 7 line 34 to page 8 line 10, Figures</td>
<td>1-4,10,19,22-24</td>
</tr>
<tr>
<td>Y</td>
<td>US,A,3195534 (BETHKE) 20 July 1965 (20.07.65) Col 1 line 46 to Col 2 line 69 Col 3 line 64 to Col 4 line 28 Col 5 line 57 to Col 6 line 7, Claims, Figs.</td>
<td>1-2,10</td>
</tr>
<tr>
<td>Y</td>
<td>US,A,4791933 (ASAI et al) 20 December 1988 (20.12.88) Col 2 line 33 to Col 3 line 26, Figs.</td>
<td>1-2,10</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.
[X] See patent family annex.

* Special categories of cited documents:
 - "T": later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle of theory underlying the invention
 - "X": earlier document but published on or after the international filing date
 - "T": document which may throw doubts on priority claim(s) of the invention
 - "Y": document referring to an oral disclosure, use, exhibition or other means of public disclosure of the invention
 - "P": document published prior to the international filing date but later than the priority date claimed
 - "&": document member of the same patent family

Date of the actual completion of the international search: 2 July 1993 (02.07.93)

Date of mailing of the international search report: 8 JULY 1993 (8.07.93)

Name and mailing address of the ISA/AU

AUSTRALIAN INDUSTRIAL PROPERTY ORGANISATION
PO BOX 200
WODEN ACT 2606
AUSTRALIA

Facsimile No. 06 2853929

Authorized officer: DAVID MELHUISH

Telephone No. (06) 2832426

Form PCT/ISA/210 (continuation of first sheet (2)) (July 1992) coplym
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 4709704 (LUKASIEWICZ) 1 December 1987 (01.12.87) See entire document</td>
<td>1,2,3,5,10</td>
</tr>
<tr>
<td>X</td>
<td>GB, A, 2181554 (ATLANTIC MEDICAL SYSTEMS LTD) 23 April 1987 (23.04.87) See entire document</td>
<td>19-20,22-23</td>
</tr>
<tr>
<td>X</td>
<td>DE, A, 2315064 (BURCHARD) 10 October 1974 (10.10.74) Page 4 line 7 to page 6 line 20, Figs. 1,2</td>
<td>19,22-23</td>
</tr>
<tr>
<td>A</td>
<td>CH, A, 293560 (GLATT) 16 December 1953 (16.12.53) Col 2 lines 45-60, Fig. 1</td>
<td>1-2</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>
Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.
 - Claims Nos.:
 - because they relate to subject matter not required to be searched by this Authority, namely:

2.
 - Claim Nos.:
 - because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3.
 - Claims Nos.:
 - because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1.
 - Claims 1-12, 19-24
 - Sensor patch on patient, transmits physiological data

2.
 - Claims 13-18, 25-28
 - ECG monitoring station detects cardiac arrhythmia
 - as reasoned on the extra sheet

1.
 - As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims

2.
 - As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3.
 - As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4.
 - No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-12, 19-24

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
- No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992) copljm
The international application does not comply with the requirements of unity of invention because it does not relate to one invention or to a group of inventions so linked as to form a single general inventive concept. In coming to this conclusion the International Searching Authority has found:

Claim 1 purports to embody an inventive concept of providing a sensor patch for attachment to a patient's body which is capable of transmitting physiological measurements which have been processed in the patch into a conditioned signal to monitoring equipment.

Claim 13 is directed to a station for monitoring and analysing raw ECG data signals from a patient. The claim purports to embody an inventive concept of comparing a recognised current characteristic complex in a cardiac cycle of the received ECG data with a stored reference complex in order to analyse whether cardiac arrhythmia is present in the received data, and to generate an alarm if arrhythmia has been detected.

Hence claims 1 and 13 are directed to two different inventions, viz. claim 1 on the body patch transmits a processed signal of physiological data, claim 13 comparing current characteristic complexes of raw ECG data with reference data to analyse the occurrence of cardiac arrhythmia in raw ECG data, which clearly do not share a single inventive concept.
This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4791933</td>
<td>JP 60261432</td>
</tr>
<tr>
<td>US 3195534</td>
<td></td>
</tr>
<tr>
<td>GB 2181554</td>
<td>GB 8522816</td>
</tr>
<tr>
<td>DE 2315064</td>
<td></td>
</tr>
<tr>
<td>CH 2935560</td>
<td></td>
</tr>
</tbody>
</table>

END OF ANNEX