Group, Unit 203A - 116 Geary Avenue, Toronto, Ontario, M6H 4H1 (CA).

Published: with international search report (Art. 21(3))

(54) Title: POLYMER BASED TRANSPLANT PRESERVATION SOLUTION

FIG. 1

(57) Abstract: Provided are transplant preservation solutions comprising a polyglycerol wherein the polyglycerol is of a molecular weight between about 0.15 kDa and about 3.99 kDa, methods and uses thereof as well as kits providing said transplant preservation solutions.
POLYMER BASED TRANSPLANT PRESERVATION SOLUTION

TECHNICAL FIELD

This invention relates to the polyglycerol field. In particular, the invention relates to transplant preservation solutions based on polyglycerols and their uses.

BACKGROUND

Different preservation solutions substantially differ in their composition, but often they aim to prevent cellular and interstitial edema, and cell death, thus, aiming to maximize organ function after transplantation. UW solution is used for both aortic in situ flush and ex vivo cold storage of the kidney, liver and pancreas. However, the inclusion of hydroxyethyl starch (HES) in UW solution can have a negative impact on its application in cold preservation of organs, particularly from deceased donors. HES is commonly used as a colloid for volume resuscitation of critically ill patients, but its safety has recently come into question; fluid resuscitation with HES is associated with coagulopathy, pruritus and acute kidney injury (Hartog, C, Reinhart, K., 2009. CONTRA: Hydroxyethyl starch solutions are unsafe in critically ill patients. Intensive Care Med 35, 1337-1342; Perner, A., Haase, N., Guttormsen, A.B., Tenhunen, J., Klemenzson, G., Aneman, A., Madsen, K.R., Moller, M.H., Elkjaer, J.M., Poulsen, L.M., Bendtsen, A., Winding, R., Steensen, M., Berezowicz, P., Soe-Jensen, P., Bestle, M., Strand, K.,...

Hyperbranched polyglycerol (HPG) is a water-soluble branched polyether polymer that has been investigated for many medical applications, such as restoring the circulation volume as an albumin substitute (Kainthan, R.K., Janzen, J., Kizhakkedathu, J.N., Devine, D.V., Brooks, D.E., 2008. Hydrophobically derivatized hyperbranched polyglycerol as a human serum albumin substitute. Biomaterials 29, 1693-1704.) and in peritoneal dialysis solution as a primary osmotic agent (Mendelson, A.A., Guan, Q., Chafeeva, I., da Roza, G.A., Kizhakkedathu, J.N., Du, C., 2013. Hyperbranched polyglycerol is an efficacious and biocompatible novel osmotic agent in a rodent model of peritoneal dialysis. Perit Dial Int 33, 15-27). HPG is a highly water soluble (>400 mg/mL) and compact polymer, has an equal or better biocompatibility profile compared to polyethylene glycol (PEG), HPG has low intrinsic viscosity that is similar to that of proteins and is approximately 10-times lower than that of linear polymers (i.e. PEG, HES, dextran) (Kainthan, R.K., Janzen, J., Kizhakkedathu, J.N., Devine, D.V., Brooks, D.E., 2008. Hydrophobically derivatized hyperbranched polyglycerol as a human serum albumin substitute. Biomaterials 29, 1693-1704; and ul-Haq, M.I., Lai, B.F.L., Chapanian, R., Kizhakkedathu, J.N., 2012. Influence of architecture of high molecular weight

SUMMARY

In one aspect, the present invention provides a transplant preservation solution comprising a polyglycerol wherein the polyglycerol is of a molecular weight between about 0.15 kDa and about 3.99 kDa. In some embodiments, the molecular weight of the polyglycerol is between about 0.20 kDa and about 3.95 kDa, or between about 0.50 kDa and about 3 kDa, or between about 0.75 kDa to about 2.0 kDa. The molecular weight (MW) of each polymer is determined by using Gel Permeation Chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy.

In some embodiments, the transplant preservation solution is in aqueous solution. In one embodiment, the polyglycerol comprises about 0.01% by weight to about 50% by weight of the transplant preservation solution solution, about 0.20% by weight to about 40% by weight of the transplant preservation solution solution, about 0.40% by weight to about 30% by weight of the transplant preservation solution solution, about 0.60% by weight to about 25% by weight of the transplant preservation solution solution, about 1.00% by weight to about 23% by weight of the transplant preservation solution solution, or about 1.25% by weight to about 20% by weight of the transplant preservation solution solution.

In some embodiments, the pH of the transplant preservation solution is between about 2.0 and about 9.0, between about 5.0 and about 7.9, between about 5.1 and about 7.9, between about 6.0 and about 7.6, between about 6.1 and about 7.6, between about 6.2 and about 7.6, between about 6.3 and about 7.6, between about 6.4 and about 7.6, or between about 6.5 and about 7.5.

In some embodiments, the transplant preservation solution has an osmolarity between about 150 milliosmols per litre and about 1500 milliosmols per litre, between about 240 and about 600 milliosmols per litre, between about 290 milliosmols per litre and about 580, between about 290
milliosmols per litre and about 480 milliosmols per litre, about 290 milliosmols per litre and about 460
milliosmols per litre, or between about 290 milliosmols per litre and about 450 milliosmols per litre.

In some embodiments, the degree of branching of the polyglycerol is between about 0.5 and
about 0.7, between about 0.6 and about 0.7, between about 0.5 and about 0.6, between about 0.55 and
about 0.7, or between about 0.55 and about 0.65.

In some embodiments, the transplant preservation solution comprises at least two polyglycerols
wherein the molecular weight of each of the at least two polyglycerols are different. In some
embodiments, the transplant preservation solution comprises polyglycerols of a single molecular
weight. In embodiments in which the transplant preservation solution comprises polyglycerols of a
single molecular weight, some of those embodiments comprise a single polyglycerol and other
embodiments comprise at least two polyglycerols having the same molecular weight but different
chemical structures.

In some embodiments, the polyglycerol may further comprise one or more hydrophobic groups,
hydrophilic groups or both. In some embodiments, the one or more hydrophobic groups, hydrophilic
groups or both are joined to form from about 1% to about 100% of hydroxy I groups on the
polyglycerol. In some embodiments, the one or more hydrophobic groups, hydrophilic groups or both
are joined to form from about 1% to about 40% of hydroxyl groups on the polyglycerol. In some
embodiments, the one or more hydrophobic groups, hydrophilic groups or both comprise one or more
of a carboxylic acid, an amine, a substituted amine, an amino acid, a phosphate, a sulfate, an alkyl, an
alkyl ether, an aromatic group, a zwitterionic group, a carbohydrate, metal chelating groups, reactive
oxygen scavenging groups, a disulfide or a thiol.

In some embodiments, the transplant preservation solution further comprises one or more of
antioxidants, nucleosides, acids, bases, xanthine oxidase inhibitor, diffusion agent, osmotic agent,
lactobionic acid, vitamins, proteins, growth factors, anti-inflammatory agents, cell death inhibitors, cell
membrane stabilizing agents, antibiotics.

In some embodiments, the present invention provides a transplant preservation solution
comprising a hyperbranched polyglycerol (HPG) as described herein.

In some embodiments, the present invention provides a transplant preservation solution
comprising a hyperbranched polyglycerol wherein the hyperbranched polyglycerol is of a molecular
weight between about 0.15 kDa and about 3.99 kDa. In a further embodiment, the molecular weight of
the polyglycerol is between about 0.20 kDa and about 3.95 kDa, or about 0.50 kDa and about 3 kDa, or
about 1.0 kDa to about 2.0 kDa.
In another aspect, use of a transplant preservation solution as described herein for limiting donor organ injury during organ procurement and transplant, wherein organ transplants may be allografts, isografts or autografts. Wherein organs can include the heart, kidneys, liver, lungs, pancreas, intestine, spleens, limbs including fingers/toes, sex organs and thymus.

In another aspect, use of a transplant preservation solution as described herein is provided for limiting donor tissue injury during tissue procurement and transplant, wherein tissue transplants may be allografts, isografts or autografts. Such tissues may include bones, tendons (both referred to as musculoskeletal grafts), cornea, skin, heart valves, islets, part of and whole face, nerves and blood vessels.

In another aspect, use of a transplant preservation solution as described herein is provided for limiting donor cell injury during cell procurement and transplant. Such cells may include endothelial cells, pancreatic cells, stem cells and immune cells.

In another aspect, use of a transplant preservation solution is provided for limiting donor organ, tissue or cell injury ex-vivo. In some embodiments, an organ has a greater chance of maintaining organ function. In some embodiments, the organs may be kept for longer periods of time outside a body.

In some embodiments, the transplant preservation solution may be used to reduce and/or minimize the damaging effects of cold ischemia and warm reperfusion on organ, tissue or cell function during organ procurement and transplant.

In some embodiments, the transplant preservation solution may be used at a low temperature.

In some embodiments the temperature of the transplant preservation solution may be between 0 and 25 degrees Celsius. In some embodiments the temperature of the transplant preservation solution may be between 0 and 10 degrees Celsius. In some embodiments, the temperature of the transplant preservation solution may be between 1 and 6 degrees Celsius. In some embodiments, the temperature of the transplant preservation solution may be between 2 and 5 degrees Celsius.

In some embodiments, the transplant preservation solution may be used at mammalian body temperature. In some embodiments, the temperature of the transplant preservation solution may be between 25 and 40 degrees Celsius. In some embodiments the temperature of the transplant preservation solution may be between 29 and 38 degrees Celsius. In some embodiments the temperature of the transplant preservation solution may be between 35 and 38 degrees Celsius.

In accordance with a further aspect of the invention, methods are provided for treating a patient having organ failure, the methods comprising procuring an organ and maintaining it in a transplant preservation solution, and transplanting said organ to the patient. In some embodiments, the organ may be from the patient. In some embodiments, the organ may be from a person different from the patient.
In accordance with a further aspect of the invention, methods are provided for treating a patient having tissue disease, tissue destruction or tissue malfunction, the methods comprising procuring tissue and maintaining it in a transplant preservation solution, and transplanting said tissue to the patient. In some embodiments, the tissue may be from the patient. In some embodiments, the tissue may be from a person different from the patient.

In accordance with a further aspect of the invention, methods are provided for treating a patient having cell based disease, cell based destruction or cell based malfunction, the methods comprising procuring cells and maintaining them in a transplant preservation solution, and transplanting said cells to the patient. In some embodiments, the tissue may be from the patient. In some embodiments, the tissue may be from a person different from the patient.

In one aspect, the present invention provides a kit for formulating a transplant preservation solution, the kit comprising a lyophilized polyglycerol wherein the polyglycerol is of a molecular weight between about 0.15 kDa and about 3.99 kDa and instructions for using the lyophilized polyglycerol for formulating the transplant preservation solution. In another embodiment, the kit further comprises one or more amino acids, diffusion agents, and/or osmotic agents.

In a further aspect, the present invention provides a composition comprising a transplant preservation solution as described herein and at least one physiologically acceptable salt, buffer, diluent and/or excipient, for use in limiting injury to a donor organ, donor tissue or donor cell. In some embodiments, the composition is in aqueous solution. In another embodiment, the composition is a lyophilized product.

In another aspect, a transplant preservation solution as described herein may be used in the transplant of an organ to a person with organ failure or with organ disease.

In another aspect, a transplant preservation solution as described herein may be used in the removal from an organ donor of a heart, kidney, liver, lung, pancreas, intestine, spleen, limbs including fingers/toes, sex organs or thymus.

In another aspect, a transplant preservation solution as described herein may be used in the removal of tissue from a tissue donor.

In another aspect, a transplant preservation solution as described herein may be used in the removal of cells from a cell donor.

In accordance with another aspect of the invention, methods are provided for keeping a transplant organ, transplant tissue, or transplant cell viable, the methods comprising contacting the organ, tissue or cell with a transplant preservation solution as described herein.
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1: Less tissue damage in mouse hearts preserved with HPG transplant preservation solution. The hearts from naïve B6 mice were stored in HPG or UW solution (0.2 mL/organ) at 4°C for 24 h. (A) The tissue damage of the hearts was determined by LDH release to the preservation solution. Data are presented as mean ± SEM. Two-way ANOVA was used for statistical analyses (p < 0.0001, HPG vs. UW, n = 4 - 7). (B) A representative image of EB-stained heart slices after 24-h cold preservation with HPG or UW solution. The hearts were stained with 0.5 μg/mL of EB in PBS for 15 min after cold preservation. After removal of unbound EB by extensive washing with PBS, the hearts were sliced transversely into four pieces. The fluorescence intensity in dead cells stained with EB was visualized with UV light.

Figure 2: Cold preservation of donor hearts in HPG solution enhances functional recovery after transplantation. Donor hearts were harvested from naïve B6 mice, and were stored in HPG or UW solution (0.5 mL/organ) at 4°C for 24 h. After transplantation to syngeneic B6 recipient mice, the graft function that was determined by the clinical score of graft contraction/beating was examined at both 15 min and 24 h post-transplantation. Score 4: normal contraction (equal to < 30 minutes of cold preservation in UW solution). At 15 min, p < 0.0001 (/-test, HPG vs. UW). At 24 h, p = 0.0209 (/-test, HPG vs. UW).

Figure 3: Cold preservation with HPG solution reduces cardiac inflammation and cell death in heart transplants. Donor hearts were treated with prolonged cold preservation in HPG solution versus UW solution and transplanted as described in Figure 2. The grafts were harvested at 24 h after transplantation, and were formalin-fixed and paraffin-embedded. (A) The graft injury was examined in H&E stained sections. Data are presented as a typical image of light microscopy, showing perivascular inflammation and cardiomyocyte necrosis. (B) Histological scores of the graft injury in HPG versus UW solution group. Data are presented as mean ± SEM in each group (p = 0.0347, /-Test, HPG vs. UW, n = 9 - 10). (C) The graft injury was determined by the LDH release from heart transplants to the serum. Sera were harvested from recipients at 24 h after transplantation, and serum levels of LDH as a biochemical marker of cardiac graft injury were quantitatively measured using cytotoxicity detection kit. Data are presented as mean ± SEM of ten recipients in each group (p = 0.0381, /-test, HPG vs. UW).

Figure 4: Cold preservation with HPG solution reduces myeloperoxidase (MPO)-positive infiltration in heart transplants. MPO-positive cells in the sections of cardiac isografts were detected by immunohistochemical stain with anti-MPO antibody. The data are presented as a typical microscopic view in each group: (A) UW group; (B) HPG group; and (C) Positive control, blood clot. Red arrows
point MPO-positive cells in the sections. (D) The number of MPO-positive infiltrates counted using a microscope under 400 x magnification (high-powered field, or hpf). The view was not overlapped and was randomly selected. At least 25 views from two separate sections were counted and averaged for each graft. Data are presented as mean ± SEM of six grafts in each group (p = 0.0287, t-Test, HPG vs. UW).

Figure 5: Cold preservation with HPG solution prolongs survival of cardiac allografts. Donor hearts from naive B6 mice were stored in HPG or UW solution (0.5 mL/organ) at 4°C for 24 h, and transplanted into allogeneic BALB/c mice that were treated with CsA daily. Graft survival was assessed by daily transabdominal palpation, and cessation of the graft beat was considered as graft failure. (A) Graft survival in HPG versus UW group (p = 0.0175, log-rank test, n = 9 - 10). (B, C) Typical microscopic views of H&E-stained sections of functioning grafts on day 20 post-transplantation.

Figure 6: Cold preservation with HPG solution protects HUVECs from cell lysis at cold temperature. A monolayer of HUVECs in 24-well plates was incubated with HPG versus UW solution at 4°C for 24 h: (A) Cell survival was determined by trypan blue exclusion assay. Data are presented as mean ± SEM of four separate experiments in each group (p =0.0063, t-test, HPG vs. UW). (B) Cell death in the same cultures was confirmed by the measurement of LDH release. LDH in the preservation solution as a marker of cell lysis was measured and was calculated as a percentage of total LDH in a corresponding positive control (UW solution containing 2% Triton- 100). Data are presented as mean ± SEM of four separate experiments in each group (p = 0.0002, Mest, HPG vs. UW).

Figure 7: Cold preservation with HPG solution enhances cell membrane fluidity of HUVECs at cold temperature. The cell membrane fluidity of HUVECs in HPG versus UW solution at 4°C was monitored with a pyrene eximer for a period of 4 h. The ratio of eximer-to-monomer (E/M) was calculated as an indicator for the membrane fluidity at the various time points. Data are presented as mean ± SEM of five separate experiments (p < 0.0001, two-way ANOVA, HPG vs. UW).

Figure 8: Effects of the molecular weight of HPG on cold preservation of mouse hearts are shown in four graphs showing the percent LDH release of various different solutions over time and at different temperatures.

DETAILED DESCRIPTION

Any terms not directly defined herein shall be understood to have the meanings commonly associated with them as understood within the art of the invention.
The term "polyglycerol" is used herein as it is normally understood to a person of ordinary skill in the art and often refers to a polymer having a degree of branching, e.g., between 0 and 1.0 wherein the number of hydroxy groups is equal to the number of repeat units and the repeat units consist of the following (wherein "r" is the repeat unit):

\[
R^1 \begin{array}{c}
\text{CH} \\
\text{CH}_2 \\
\text{OR}^3
\end{array} \begin{array}{c}
\text{O} \\
\text{CH} \\
\text{-CH}_2-R^2
\end{array} \begin{array}{c}
r \\
1 \text{to 810}
\end{array}
\]

\[
R^4 \begin{array}{c}
\text{OH} \\
\text{-CH}_2-\text{CH} \\
\text{CH} \\
\text{CH} - \text{O} + \begin{array}{c}
r \\
1 \text{to 810}
\end{array}
\end{array} R^3
\]

wherein \(R^1 \) is \(\text{H}, \text{CH}_3, \text{CH}_3\text{CH}_2-, \text{-Bu}, \text{-N}_2\text{CH}_2\text{-CH}_2, \) alkyl chains (1 to 18 carbons), \(\text{-CH}_2\text{NH}_2, \text{-CH}_2\text{Ni(CH}_3)_2, \text{-CH}_2\text{NH(CH}_3)_2, \) \(r, r\text{-CH}_2-\) or \((r)_2\text{CH}_2-\); \(R^2 \) is \(\text{-r}, \text{-O-r}, \text{-O-CH}_2\text{-CH-r}, \text{or -OH}; \) and \(R^3 \) is \(\text{-H}, \text{-CH}_3, \text{-CH}_2\text{-CH}_3, r-, \text{-CH}_2\text{-r or -CH(r)_2.} \) The foregoing repeat units are not limited to the stereochemistry shown. Examples of "polyglycerol" include a hyperbranched polyglycerol (HPG), a linear polyglycerol (LPG), or dendritic polyglycerol/polyglycerol dendrimer or chemically modified polyglycerol or biodegradable polyglycerol, comb-like polyglycerol or dendri-graft polyglycerol or cyclic polyglycerol or a combination thereof. The embodiments of the polyglycerol as described herein include all possible stereochemical alternatives, including those illustrated or described herein.

The term "hyperbranched polyglycerol" is used herein as it is normally understood to a person of ordinary skill in the art and often refers to a polyglycerol having a degree of branching between about 0.5 and about 0.7.

The term "linear polyglycerol" is used herein as it is normally understood by a person of ordinary skill in the art, and often refers to a polyglycerol having degree of branching "zero".

The term "dendritic polyglycerol or polyglycerol dendrimer" is used herein as it is normally understood by a person of ordinary skill in the art, and often refers to a polyglycerol having degree of branching 1.0.

The term "osmotic agent" is used herein as it is normally understood to a person of ordinary skill in the art and often refers to a substance that creates an osmotic gradient across a semi-permeable membrane to cause the movement of water across the membrane.

The term "diffusion agent" is used herein as it is normally understood to a person of ordinary skill in the art and often refers to a substance that creates a concentration gradient across a membrane to cause the movement of solutes from an area of higher solute concentration to an area of lower solute concentration.
The term "electrolyte" is used herein as it is normally understood to a person of ordinary skill in the art and often refers to an ionized solute.

As used herein, the term "alkyl" by itself or as part of another substituent, means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include di- and multivalent radicals, having the number of carbon atoms designated (e.g. C_1-C_{10} or 1- to 10-membered means one to ten carbons), or if undesignated is a C__C_0 alkyl. Examples of saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. An unsaturated alkyl group is one having one or more double bonds or triple bonds. Examples of unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butylnyl, and the higher homologs and isomers.

As used herein, the term "substituted" refers to the replacement of a hydrogen atom on a compound with a substituent group. A substituent may be a non-hydrogen atom or multiple atoms of which at least one is a non-hydrogen atom and one or more may or may not be hydrogen atoms. For example, without limitation, substituted compounds may comprise one or more substituents selected from the group consisting of: R'', OR'', NR''R''', SR'', halogen, SiR''R''R''', OC(0)R'', C(0)R'', C0_2R'', CONR''R'', NR''C(0)R''_R'', S(0)R'', S(0)_2R'', CN and NO_2.

As used herein, each R'', R''', and R'''' may be selected, independently, from the group consisting of: hydrogen, halogen, oxygen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, and arylalkyl groups.

The term "transplant preservation solution" is used herein as it is normally understood to a person of ordinary skill in the art and often refers to a substance that can be used minimize the damaging effects of cold ischemia and warm reperfusion on organs or tissue during transplant. Terms with a similar meaning include transplant solution, preservation solution, organ preservation solution, preservations solution for transplant. Some examples of typical compositions of some non-limiting examples of transplant preservation solutions known in the art are include, but are not limited to University of Wisconsin (UW) solutions and HTK solutions. HTK-type solutions are organ preservation solutions that comprise histidine, tryptophan and ketoglutarate, whereas UW-type solutions do not comprise histidine, tryptophan and ketoglutarate. Some examples of the compositions of these types of organ preservation solutions are provided below:
Base components of a typical UW-type transplant preservation solution

<table>
<thead>
<tr>
<th>Component</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobionic acid</td>
<td></td>
</tr>
<tr>
<td>Potassium phosphate</td>
<td>monobasic</td>
</tr>
<tr>
<td>Magnesium Sulfate</td>
<td>heptahydrate</td>
</tr>
<tr>
<td>Raffinose pentahydrate</td>
<td></td>
</tr>
<tr>
<td>Adenosine</td>
<td></td>
</tr>
<tr>
<td>Glutathione</td>
<td></td>
</tr>
<tr>
<td>Allopurinone</td>
<td></td>
</tr>
<tr>
<td>KOH</td>
<td></td>
</tr>
<tr>
<td>Hydroxyethyl Starch</td>
<td></td>
</tr>
</tbody>
</table>

Base components of a typical HTK-type transplant preservation solution

<table>
<thead>
<tr>
<th>Component</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td></td>
</tr>
<tr>
<td>Ketoglutarate/glutamic acid</td>
<td></td>
</tr>
<tr>
<td>Histidine</td>
<td></td>
</tr>
<tr>
<td>Mannitol</td>
<td></td>
</tr>
<tr>
<td>Tryptophan</td>
<td></td>
</tr>
</tbody>
</table>

Composition of UW solution

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobionic acid</td>
<td>100 mM</td>
</tr>
<tr>
<td>KOH</td>
<td>100 mM</td>
</tr>
<tr>
<td>KH$_2$PO$_4$</td>
<td>25 mM</td>
</tr>
<tr>
<td>MgSO$_4$</td>
<td>5 mM</td>
</tr>
<tr>
<td>Adenosine</td>
<td>5 mM</td>
</tr>
<tr>
<td>Glutathione</td>
<td>3 mM</td>
</tr>
<tr>
<td>Allopurinol</td>
<td>1 mM</td>
</tr>
<tr>
<td>Raffinose</td>
<td>30 mM</td>
</tr>
<tr>
<td>Hydroxyethyl starch</td>
<td>50 g/L</td>
</tr>
<tr>
<td>NaOH/HCl: pH 7.4</td>
<td>+</td>
</tr>
<tr>
<td>Osmolarity</td>
<td>320 mOsmol/kg</td>
</tr>
</tbody>
</table>
The above examples of known organ preservation solutions may be used as a basis for preparing transplant preservation solutions of the present invention. In some embodiments, a transplant preservation solution of the present invention may be prepared by adding a polyglycerol as described herein to a known organ preservation solution. In some embodiments, modifications to known organ preservation solutions may be made in addition to adding a polyglycerol as described herein. Below are some non-limiting examples of transplant preservation solutions of the present invention compared to a known organ preservation solution.

Composition of HTK solution

<table>
<thead>
<tr>
<th></th>
<th>Custodiol™ HTK</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl (mM)</td>
<td>15</td>
</tr>
<tr>
<td>KCl (mM)</td>
<td>9</td>
</tr>
<tr>
<td>Potassium hydrogen ketoglutarate (mM)</td>
<td>1</td>
</tr>
<tr>
<td>MgCl (mM)</td>
<td>4</td>
</tr>
<tr>
<td>Histidine* (mM)</td>
<td>198</td>
</tr>
<tr>
<td>CaCl (μM)</td>
<td>15</td>
</tr>
<tr>
<td>Tryptophan (mM)</td>
<td>2</td>
</tr>
<tr>
<td>Mannitol (mM)</td>
<td>30</td>
</tr>
<tr>
<td>Osmolality</td>
<td>310 mOsmol/kg</td>
</tr>
</tbody>
</table>

Below are some non-limiting examples of transplant preservation solutions of the present invention compared to a known organ preservation solution.

Composition and Comparison of HPG-UW solution

<table>
<thead>
<tr>
<th></th>
<th>Viaspan™ (DuPont) UW solution</th>
<th>HPG-UW solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobionic acid</td>
<td>100 mM</td>
<td>100 mM</td>
</tr>
<tr>
<td>KOH</td>
<td>100 mM</td>
<td>100 mM</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>25 mM<</td>
<td>25 mM</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>5 mM</td>
<td>5 mM</td>
</tr>
<tr>
<td>Adenosine</td>
<td>5 mM</td>
<td>5 mM</td>
</tr>
<tr>
<td>Glutathione</td>
<td>3 mM</td>
<td>3 mM</td>
</tr>
<tr>
<td>Allopurinol</td>
<td>1 mM</td>
<td>1 mM</td>
</tr>
<tr>
<td>Raffinose</td>
<td>30 mM</td>
<td>None</td>
</tr>
<tr>
<td>Hydroxyethyl starch</td>
<td>50 g/L</td>
<td>None</td>
</tr>
<tr>
<td>HPG</td>
<td>None</td>
<td>30 g/L</td>
</tr>
<tr>
<td>NaOH/HCl: pH 7.4</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Osmolality</td>
<td>320 mOsmol/kg</td>
<td>320 mOsmol/kg</td>
</tr>
</tbody>
</table>
Transplant preservation solutions of the present invention do not comprise lactate. For example, Ringer’s lactate solution has been used as an organ preservation solution, however embodiments comprising lactate are not included in the present invention.

An example of particular embodiments of the invention includes, a polyglycerol as described herein together with the components of a UW-type solution that does not comprise raffinose or hydroxyethyl starch. A particular embodiment includes a polyglycerol as described herein together with the components of Viaspan™, excepting raffinose and hydroxyethyl starch.

More generally, the transplant preservation solutions of the present invention comprise a typical lactate free organ preservation solution, including those known in the art, and further comprise a polyglycerol wherein the polyglycerol is of a molecular weight between about 0.15 kDa and about 3.99 kDa or between about 0.5 kDa and about 3.0 kDa or between about 0.75 kDa and about 2.0 kDa. Polyglycerol is a flexible, hydrophilic aliphatic polymer which can be synthesized in linear, hyperbranched and dendrimeric forms with precise control of molecular weight. The circulation half-life in mice often depends on the molecular weight of the polymer, but may reach about 60 hours for a molecular weight of 540 kDa. Polyglycerols for use in the present invention may contain glucose or carbohydrate and are stable and easily delivered at physiological pH.

Hyperbranched polyglycerol (HPG), which is a polyglycerol having a degree of branching between about 0.5 and about 0.7, is prepared by multi-branching ring opening polymerization of glycidol under slow monomer addition. Polyglycerol dendrimers are prepared by multiple organic reactions. The structure contains large and small branches with hydroxyl-functionalities that render HPG a highly functional material. Linear polyglycerol (LPG) may be prepared by ring opening

<table>
<thead>
<tr>
<th>Composition and Comparison of HPG-HTK solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custodiol™ HTK</td>
</tr>
<tr>
<td>NaCl (mM)</td>
</tr>
<tr>
<td>KCl (mM)</td>
</tr>
</tbody>
</table>
| Potassium hydrogen
ketoglutarate (mM) | 1 | 1 |
| 4 mM MgCl (mM) | 4 | 4 |
| Histidine* (mM) | 198 | 168 |
| CaCl (μM) | 15 | 15 |
| Tryptophan (mM) | 2 | 2 |
| Mannitol (mM) | 30 | None |
| HPG (g/100 mL) | None | 3 (3%, 1 kDa) |
| pH 7.02-7.2 at 25°C | + | + |
| pH 7.4-7.45 at 40°C | | |
| Osmolality: | 310 mOsmol/kg | 310 mOsmol/kg |

Polyglycerol is a clear, viscous liquid. At room temperature, it is highly viscous and essentially non-volatile. Both linear and hyperbranched polyglycerols are of a compact nature in solution and highly soluble in water (for example, HPG has a water solubility greater than 200 mg/mL). The hydrodynamic radius \((R_h)\) of a LPG with \(M_n = 104,000\) in aqueous 0.1 N NaNO\(_3\) solution may be 4.55 nm as determined by QELS measurements. For comparison, the \(R_h\) value of an HPG with \(M_n = 104,000\) may be 4.85 nm and a PEG with similar molecular weight may be 12.23 nm. The very small \(R_h\) value of LPG indicates that it has quite a different solution structure compared to other linear water soluble polymers and may more closely approximate the solution structure and properties of HPG. In terms of intrinsic viscosity, LPG has an intrinsic viscosity (0.047 dL/g) that is more similar to that of HPG (0.052 dL/g) than PEG (1.308 dL/g), which again suggests that LPG has a highly compact structure in solution. The intrinsic viscosity of polyglycerol increases with increasing molecular weight (similar to proteins) and is significantly lower than other linear polymers.

The transplant preservation solutions of the present invention may have a pH between about 2.0 and about 9.0 or between about 6.5 and about 7.5.

The transplant preservation solutions of the present invention may be in aqueous solution, wherein the polyglycerol comprises about 0.01% by weight to about 50% by weight of the solution or between about 1.25% by weight to about 20% by weight of the solution. For example, 1.25 wt.% of 0.5 kDa HPG to 20 wt. % of 0.5 kDa HPG.

The transplant preservation solutions of the present invention may have an osmolarity between about 150 milliosmols per litre and about 1500 milliosmols per litre. For organ transplant applications, the osmolarity may be between about 290 milliosmols per litre and about 450 milliosmols per litre. For ex vivo applications, high osmolarity may be used; for example, about 1500 milliosmols per litre may be achieved using about 40 wt. % to about 50 wt. % 0.5 kDa HPG solutions. With lower molecular weight HPGs, this osmolarity may be achieved with about 30 wt. % to about 40 wt. % HPG solutions.

14
The transplant preservation solutions of the present invention may have a polydispersity between about 1.0 and 15.

In some embodiments, the transplant preservation solutions of the present invention may comprise at least two polyglycerols wherein the molecular weight of each of the at least two polyglycerols is different. The molecular weights of each of the at least two polyglycerols may vary by as little as 74 Da, corresponding to the approximate weight of one repeat unit. The molecular weights may also vary by amounts such as about 0.5 kDa, about 1 kDa or about 2 kDa.

In some embodiments, the transplant preservation solutions of the present invention may comprise polyglycerols of a single molecular weight. In some of these embodiments, the transplant preservation solution comprises only a single polyglycerol and in other embodiments the transplant preservation solution comprises at least two polyglycerols having the same molecular weight but different chemical structures.

The polyglycerols as described herein may be derivatized. Derivatives of polyglycerol may include polymers which contain hydrophobic groups, hydrophilic groups or both. Such regions may be provided by derivatizing the hydroxyl groups of the polymer. A functional derivative may be bound to about 1% to about 100% of hydroxyl groups on the polyglycerol, or to about 1% to about 40% of hydroxyl groups on the polyglycerol. Inclusion of such groups in the polyglycerol may result in the number of hydroxyl groups no longer being equal to the number of repeat units in the polyglycerol.

The transplant preservation solution as described herein may further comprise one or more electrolytes, one or more amino acids, one or more diffusion agents, one or more antioxidants, one or more growth factors, one or more buffering agents, one or more anti-cell death agents and/or one or more osmotic agents. The diffusion agent or osmotic agent may comprise sodium, chloride, bicarbonate, a bicarbonate producing agent, sulfate, phosphate, calcium, potassium, magnesium, lactobionate, dextrose, fructose, glycerol, sorbitol, manitol, L-carnitine, bovine serum albumin (BSA), maltose, maltotriose, maltopentose, xylitol, adenosine, glutathione, lactobionic acid, potassium hydroxide or mixtures thereof. The buffering agent may comprise maleic acid, phosphoric acid, sulfate, citric acid, malic acid, formic acid, lactic acid, succinic acid, acetic acid, pivalic (trimethylacetic acid), pyridine, piperazine, picolinic acid, L-histidine, 3-(N-morpholino)propanesulfonic acid (MOPS), 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid (HEPES), tricine, glycyglycine, bicine, boric acid, glycine, or mixtures thereof.

The transplant preservation solution as described herein may be used in the process of organ transplantation. The organ transplantation may be conducted for a mammal.

Donor organs stored and transported at hypothermic temperatures (0-5°C), results in cessation of aerobic metabolism and avoids warm ischemic injury during organ procurement and transport. Transplant preservation solution may be an effective method in clinical practice to prolong the storage period, and the use of transplant preservation solutions as a hypothermic preservation solution prevents the cells from swelling during cold ischemic storage.

Keeping endothelial cell viability or endothelial monolayer integrity is helpful for successfully limiting vascular permeability of solid organs after transplantation. When the blood in a donor organ is replaced by a cold preservation solution for its cold preservation prior to transplantation, vascular endothelium is often first to interact with the cold environment. Loss of endothelial integrity often represents a primary event in cold preservation-related graft injury in various organ transplants. Cold injury may impair the barrier function of the endothelium, leading to parenchymal edema and hemorrhage following reperfusion and early graft dysfunction. Transplant preservation solutions of the present invention may increase the protection of cultured endothelial cells from necrosis, and may reduce grafts injury during cold preservation. Improved functional recovery, reduced perivascular inflammation, reduced cellular infiltration, and prolonged graft survival after transplantation may be observed using transplant preservation solutions of the present invention.

The cell membrane may be a site of cold-induced injury. When cells are transferred to a cold temperature, cell membranes may be destabilized by, for example, a change of membrane structure. Examples include, modifications of specific lipid-protein interaction, phospholipid asymmetry and lipid composition. A membrane transition from the liquid-crystalline phase to the gel phase can result in cell death. Cold transplant preservation solution can prevent such a transition as well as other cold-induced injuries.

The transplant preservation solution of the present invention may be included in a kit for formulating a transplant preservation solution. The kit may comprise a lyophilized polyglycerol as described herein and instructions for using the lyophilized polyglycerol for formulating the transplant preservation solution. The kit may comprise other components of the transplant preservation solution, including electrolytes, amino acids, one or more other diffusion agents and/or one or more other osmotic agents.

The transplant preservation solution as described herein may be included in a composition. The composition may comprise HPG as described herein and at least one physiologically acceptable salt, buffer, diluent and/or excipient, for use as a transplant preservation solution. The composition may be in aqueous solution or a lyophilized product.
Various alternative embodiments and examples are described herein. These embodiments and examples are illustrative and do not limit the scope of the invention.

Examples

C57BL/6j (B6) and BALB/c mice (males, 8-10 weeks old) were purchased from the Jackson Laboratory (Bar Harbor, ME, USA). All the procedures related to animal use in this study were performed and monitored in accordance with the Canadian Council on Animal Care guideline under the protocols approved by the Animal Use Subcommittee at the University of British Columbia. Primary human umbilical vein endothelial cells (HUVECs) were purchased from Lonza Walkersville Inc (Walkersville, MD, USA), and were immortalized with origin-deficient SV40 DNA for experiments in our laboratory. The endothelial cell cultures were maintained and grown in Medium 199 supplemented with 10% bovine calf serum, endothelial cell growth supplement, 50 µg/mL heparin, and antibiotics (penicillin and streptomycin)(Sigma-Aldrich, St. Louis, MO, USA) at 37°C under 5% CO₂. Data were presented as mean ± standard error of the mean (SEM). The statistical significance of the difference between two groups was determined by /-test. One-way analysis of variance (ANOVA) or two-way with Tukey's multiple comparison test was used as appropriate for comparisons among multiple groups. Values of p ≤ 0.05 were considered statistically significant.

Example 1: Reduced organ damage in hypothermic storage of isolated hearts with HPG solution

To demonstrate the beneficial effect of HPG solution in comparison to UW solution on the prevention of cold ischemia injury during cold storage of donor organs, the tissue damage of isolated mouse hearts preserved with HPG solution versus UW solution (0.2 mL/organ at 4°C) was determined by LDH release from donor tissues at different time points. As shown in Figure 1A, the levels of LDH in the supernatant, released from damaged tissue or dead cells of the organ, were increased with increasing the hypothermic storage time for both UW and HPG solution, but the amount of LDH was significantly lower with HPG solution compared to UW solution. The LDH level for HPG group was increased from 0.75 ± 0.43 at 2 h to 1.71 ± 0.55 at 24 h in comparison to 1.15 ± 0.22 at 2 h to 2.46 ± 0.24 at 24 h in UW group (P < 0.0001, two-way ANOVA, n = 4-7). Enhanced protection of organs was indicated by the lower levels of LDH release from the hearts in HPG group compared to UW group which was further confirmed by ethidium bromide (EB) staining (Figure 1B). EB is a cell membrane impermeable fluorescent dye that stains nucleic acids, and has been used for dead cell staining. As shown in Figure 1B, the intensity of EB staining of the hearts after 24 h with HPG solution was weaker...
than that stored in UW solution. These data suggest that hypothermic storage of isolated mouse hearts
with HPG solution results in less organ damage as compared to UW solution.

Example 2: Improvement of functional recovery of heart transplants with less tissue damage in syngeneic recipients after hypothermic storage with HPG solution

To further examine if the enhanced organ protection of donor organs after cold storage in HPG
solution could be translated to their functional recovery after transplantation, the hearts from B6 mice
after 24 h of cold storage at 4°C with HPG solution (5 mL/organ) were heterotopically transplanted to
syngeneic B6 mice. A similar experiment was performed with hearts stored in UW solution. The
function of grafts was examined at both 15 min and 24 h after surgery. As shown in Figure 2, the
clinical score of graft function of heart grafts pretreated with HPG solution was significantly higher
than those stored in UW solution at both two time points. The mean score 3.542 in HPG solution group
compared to 2.292 in UW solution group at 15 min (P < 0.0001), or 3.833 in HPG solution group
compared to 2.833 in UW solution group (P = 0.0209) at 24 h. In the case of UW solution group, 2 out
of 12 grafts lost their function at 24h time point. These data suggest that donor hearts after a prolonged
cold preservation with HPG solution have a better functional recovery than those in UW solution after
transplantation.

To further understand the reason why transplants preserved in HPG solution had better
functional recovery, the tissue injury and neutrophil infiltration in heart grafts were examined at 24 h
after transplantation. Sections of heart grafts stained with H&E stain showed that hearts stored in HPG
solution exhibited less perivascular inflammation and cardiomyocyte necrosis compared to the grafts
stored in UW solution (Figure 3A). The result was confirmed by the semi-quantitative scoring (Figure
3B), indicating a significantly lower score (1.1 1.1 ± 0.423) in HPG solution group as compared to 2.0 ±
0.258 in UW solution group (P = 0.0347). The lower serum levels of LDH in recipient mice receiving
HPG solution-preserved grafts further confirmed less tissue damage in histological analysis. Figure 3C
showed the LDH levels in serum, represented by the absorbance value in the measurement, in
recipients in the HPG group were 1.21 ± 0.76, significantly lower than in the UW group 1.97 ± 1.34 (p
= 0.0381).

Neutrophils are one of the first-responding inflammatory cells recruited to the site of injury
within minutes following trauma, and are the hallmark of acute muscle injury (Tidball JG, 1995).
MPO-expressing infiltrates (activated neutrophils) in the cardiac sections were determined using
immunohistochemical stain with anti-MPO antibody, and counted with a semiquantitative method. As
shown in Figure 4, immunohistochemical stain of MPO+ infiltrates showed that graft sections in HPG solution group had fewer infiltrating MPO+ cells (3.712 ± 0.615 cells/hpf) than that in UW solution group (6.237 ± 0.921 cells/hpf) (p = 0.0287, n=6). Taken together, all these data suggest that cold preservation of donor hearts with HPG solution could improve the recovery of graft function after transplantation, which is associated with less graft injury.

Example 3: Prolonged survival of heart transplants after hypothermic storage with HPG solution

In clinical transplantation, donor organs are mostly transplanted into allogeneic recipients, and these allografts survive under immunosuppressive therapy. To test if HPG solution was superior to UW solution in this setting, donor hearts from B6 mice were preserved both with HPG solution and UW solution (5 mL/organ) at 4°C for 24 h. Stored hearts were heterotopically transplanted to allogeneic BALB/c mice that were receiving daily CsA treatment immediately after surgery. As shown in Figure 5, allografts preserved with HPG solution survived longer than those stored in UW solution. Only one transplant with UW solution group was survived 3 days, the rest of them failed within 24 h. In comparison, within HPG groups three of the grafts survived with function in CsA-treated recipients until the end of experiment - for 20 days (P = 0.0175, Log-rank test) and four out of nine transplants in rejected within 24 h. These data suggest that cold preservation of donor hearts with HPG solution prolongs graft survival in allogeneic recipients.

Example 4: Enhanced cell survival in cultured human endothelial cells by exposure to HPG solution at hypothermic conditions

To further test the advantage of HPG solution over UW solution in hypothermic preservation of donor organs, the impact of these solutions on survival of cultured HUVECs at 4°C was compared. As shown in Figure 6, there were more survived cells in cultured HUVECs exposed to HPG solution compared to UW solution, evidenced by significantly more cell survival in HUVECs treated with HPG solution (40.19 ± 3.77%) as compared to those (20.75 ± 2.87%) with UW solution (P = 0.0063) (Figure 7A). The beneficial effect of HPG solution on cell survival was further confirmed by the lower levels of LDH release in HPG solution (21.76 ± 0.29%) compared to those (43.46 ± 2.6%) in UW solution (P = 0.0002). The LDH release from HUVEC cultures under the normal culture conditions after 24-h incubation was approximately 21%, suggesting that HPG solution might completely protect cultured human endothelial cells from cell lysis at cold temperature in a period of 24 h.
Example 5: Maintenance of cell membrane fluidity and intracellular ATP in hypothermic preservation with HPG solution

To investigate the reason behind the advantage of HPG solution over UW solution in the hypothermic protection of cultured HUVECs from cell death, their influence on membrane fluidity and intracellular ATP were examined. The cell membrane fluidity was determined by the pyrene eximer formation using a pyrene eximer-forming probe, pyrenedecanoic acid. As shown in Figure 7, there was a decreasing trend in E/M ratio from 0.99 ± 0.02 at 0 h to 0.85 ± 0.07 at 4 h (P = 0.1887, one-way ANOVA, n = 3) in HUVECs after cold exposure in UW solution. However, the E/M ratio in these cells with HPG solution remained unchanged in the period of study (4 h), indicated by 1.04 ± 0.07 at 0 h to 1.10 ± 0.1 at 4 h (P = 0.4647, one-way ANOVA, n = 3). Statistical comparison of the E/M ratio between these groups suggested that the E/M ratio was significantly higher in HUVECs with HPG solution than those with UW solution (P < 0.0001, two-way ANOVA). These data suggest that HPG solution may be able to maintain the membrane fluidity in cultured endothelial cells even when exposed to cold temperature, while the membrane fluidity in the cells with UW solution decreased during the cold preservation.

To confirm this observation, both extracellular and intracellular ATP levels in these cells were measured after 4 h of hypothermic preservation with UW and HPG solutions. As listed in Table 1, the extracellular ATP, released from HUVECs after exposure to cold UW solution or HPG solution, was not significantly different (137.14 ± 20.1 1 pmol vs. 130.04 ± 18.19 pmol, P = 0.5740), while the intracellular ATP (50.67 ± 4.03 pmol) of HUVECs with HPG solution was significantly higher than that (43.0 ± 4.4 pmol) of those preserved with UW solution (P = 0.0208), which was further supported by the fact that the ratio of extracellular to intracellular ATP in HPG solution group was significantly lower than that in UW solution group (2.55 ± 0.17 vs. 3.18 ± 0.31, P = 0.0039). Taken together, the enhanced cell survival in human endothelial cells at cold temperature with HPG solution in comparison to UW solution is positively correlated with its capacity of maintaining membrane fluidity and ATP biosynthesis.

Example 6: Preparation of HPG solution

HPG polymer (0.5, 1, 3.5 kDa) was synthesized by anionic ring opening multi-branching polymerization of glycidol as described previously (Sunder, A., Hanselmann, R., Frey, H., Mulhaupt, R., 1999. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 32, 4240-4246). The molecular characteristics of the polymer were
determined by gel permeation chromatography and proton nuclear magnetic resonance spectroscopy. HPG was purified by dialysis against MilliQ filtered water and lyophilized. HPG-based preservation solutions were prepared by dissolving HPG (3%, w/v) in a solution containing: 100 mM lactobionic acid, 100 mM potassium hydroxide (KOH), 25 mM potassium dihydrogen phosphate (KH$_2$PO$_4$), 5 mM magnesium sulfate (MgSCU), 5 mM adenosine, 3 mM glutathione, and 1 mM allopurinol, the same composition as in Viaspan™ UW solution (UW solution, DuPont Canada, Mississauga, ON, Canada) omitting 30 mM raffinose and 5% HES. The pH of HPG preservation solution was adjusted to 7.4 using NaOH/HCl at 22°C, and its osmolality (-320 mOsm/kg) was determined using Advanced® Model 3320 Micro-Osmometer (Advanced Instruments, Inc., Norwood, MA, USA) in the Vancouver Coastal Health Regional Laboratory Medicine (Vancouver, BC, Canada).

Example 7: Donor preservation and heterotopic cardiac transplantation

Donor hearts were harvested from B6 donor mice after perfusion with 10 units/mL of heparin, and stored with ligated pulmonary veins in HPG solution versus UW solution at 4°C. After 24 h of cold preservation, the donor hearts were heterotopically transplanted into either syngeneic B6 mice (isotransplantation) or allogeneic BALB/c mice (allotransplantation) as described previously (Li, S., Guan, Q., Chen, Z., Gleave, M.E., Nguan, C.Y., Du, C., 2011. Reduction of cold ischemia-reperfusion injury by graft-expressing clusterin in heart transplantation. J Heart Lung Transplant 30, 819-826). The graft function was scored by its contraction or beating at both 15 min and 24 h after graft transplantation according to a semi-quantitation method as described previously (Kuznetsov, A.V., Schneeberger, S., Seiler, R., Brandacher, G., Mark, W., Steurer, W., Saks, V., Usson, Y., Margreiter, R., Gnaiger, E., 2004. Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am J Physiol Heart Circ Physiol 286, H1633-1641; and Li, S., Guan, Q., Chen, Z., Gleave, M.E., Nguan, C.Y., Du, C., 2011. Reduction of cold ischemia-reperfusion injury by graft-expressing clusterin in heart transplantation. J Heart Lung Transplant 30, 819-826). In allotransplantation, after surgery the recipient mice received cyclosporine (CsA) therapy (15 mg/kg/day, Novartis, Basel, Switzerland) immediately until the end of experiment or for 20 days. Graft survival was assessed by daily transabdominal palpation in a blinded fashion. Cessation of heartbeat indicated the failure of heart transplant, which was subsequently confirmed by histological examination.
Example 8: Measurement of lactate dehydrogenase (LDH)

Cell death with cell membrane disruption and/or cardiac injury was determined by LDH release, that was quantitated by LDH assay using cytotoxicity detection kit (Roche Applied Science, Laval, QC) following manufacturers’ protocols. In cultured cells, LDH release in the preservation solution was presented as a percentage of positive control (cells incubating with 2% Triton X-100), or in mice, LDH release in the sera as an absorbance unit (OD490).

Example 9: Semiquantitation of cell viability by trypan blue exclusion assay

Cell viability was assessed by negatively staining with trypan blue, a cell membrane impermeable dye. In brief, a confluent monolayer of HUVECs (0.2 x 10^6 cells/well) in 24-well plates was grown overnight, followed by incubation with 0.5 mL of HPG solution or UW solution at 4°C. After hypothermic preservation for 24 h, cells were detached with trypsin-EDTA solution (Sigma-Aldrich Canada), and the viable, survived cells, stained negatively with trypan blue, were automatically counted by using TC10™ automated cell counter (Bio-Rad Laboratories Canada, Mississauga, ON, Canada). The percentage of survived cells was calculated as follows: \(\% = \left(\frac{T_x}{T_0} \right) \times 100 \), where \(T_x \) represented the total number of viable cells at indicated time point, and \(T_0 \) indicated the total number of viable cells in untreated cell monolayer (0 h time point). The number of viable cells in each sample was presented by the average of at least three determinants.

Example 10: Evaluation of cell membrane fluidity

The cell membrane fluidity of cultured HUVECs was measured using a membrane fluidity kit following the manufacturer’s protocol (Marker Gene Technologies, Eugene, OR, USA).

HUVECs (1 x10^6 cells/ml) in culture medium were labeled with lipid analog probe pyrene decanoic acid by incubation at 25°C for 20 minutes. After two washes with PBS, the cells were incubated in HPG solution or UW solution at 4°C. The emission of monomer (M) at 390 nm or eximer (E) at 480 nm of the probe in the cell membrane was monitored using a fluorescence spectrometer at an excitation of 340 nm at 4°C for a period of 6 h. The E/M ratio was calculated as an indicator of membrane fluidity.

Example 11: Immunohistochemical analysis.

Myeloperoxidase (MPO), a biomarker of infiltrating neutrophils, in the sections of cardiac tissues was localized by a standard immunohistochemical method, and MPO+ infiltrates was

Example 12: Measurement of adenosine triphosphate

The levels of adenosine triphosphate (ATP) in the solutions or cellular extracts were measured by using an ATP determination kit following the manufacturer's protocol (Invitrogen - Life Technologies Inc., Burlington, ON, Canada). In brief, HUVECs (1 x 10⁶ cells/well) were grown in culture medium in 6-well plates overnight, followed by exposure to HPG solution versus UW solution (0.5 mL/well) at 4°C for 4 h. After collection of the solution/supernatant, the intracellular ATP was extracted by the incubation of the cell with 0.35 mL/well of Somatic Cell ATP Releasing Agent (Sigma-Aldrich Canada). Both extracellular ATP in the supernatant and intracellular ATP levels in each experiment were calculated based on the ATP standards determined in the same assay.

Example 13: Histological analysis of graft injury

After phosphate-buffered saline (PBS) perfusion, tissue samples were removed at necropsy and fixed in 10% buffered formaldehyde. Specimens were then embedded in paraffin, and sectioned for the hematoxylin and eosin (H&E) staining. Graft injury was determined in H&E-stained sections by histological analysis, and was pathologically scored in a blinded fashion based on the severity of cardiac tissue damage under the microscopic view as: 0: normal cardiac tissue; 1: mild damage, indicated by perivascular injury; 2: severe damage, indicated by the presence of both perivascular injury and mild cardiac hemorrhaging; or 3: severe hemorrhaging and cardiac dilation.

Example 14: The effect of molecular weight of HPG on cold preservation of mouse hearts

An experiment to test the effects of the molecular weight of HPG on cold preservation of mouse hearts was also conducted using a protocol similar to Example 1. The results of this experiment are set out in the table below and further in Figure 8.

| The effect of molecular weight of HPG on cold preservation of mouse hearts |
|-----------------------------|-----------------|-----------------|-----------------|
| Group | 6 h** | 24 h | P value*** |
| UW solution | 1.991 ± 0.104 | 2.325 ± 0.169 | |
| 0.5 kDa HPG | 1.046 ± 0.353 | 1.723 ± 0.304 | 0.0007 |
| 1 kDa HPG | 0.739 ± 0.165 | 1.593 ± 0.148 | <0.0001 |

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Group*</th>
<th>6 h**</th>
<th>24 h</th>
<th>P value***</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 kDa HPG</td>
<td>0.987 ± 0.039</td>
<td>1.713 ± 0.346</td>
<td>0.0001</td>
</tr>
<tr>
<td>8.7 kDa HPG</td>
<td>1.129 ± 0.479</td>
<td>1.780 ± 0.699</td>
<td>0.0064</td>
</tr>
<tr>
<td>10 kDa HPG</td>
<td>1.524 ± 0.470</td>
<td>2.048 ± 0.423</td>
<td>0.0881</td>
</tr>
<tr>
<td>25 kDa HPG</td>
<td>1.705 ± 0.754</td>
<td>2.182 ± 0.678</td>
<td>0.4919</td>
</tr>
<tr>
<td>52 kDa HPG</td>
<td>1.661 ± 0.254</td>
<td>2.152 ± 0.216</td>
<td>0.0550</td>
</tr>
<tr>
<td>119 kDa HPG</td>
<td>1.833 ± 0.386</td>
<td>2.413 ± 0.175</td>
<td>0.8003</td>
</tr>
</tbody>
</table>

*All the HPG solutions contained 3% (w/v) of HPG.

**Mouse heart damage after preservation at 4°C for 6 or 24 h was determined by LDH release, and was presented by the absorbance at LDH measurement.

***The difference between UW solution and each HPG solution was statistically analyzed by two-way ANOVA (n = 3). P ≤ 0.05 was considered significant.

Although various embodiments of the invention are disclosed herein, many adaptations and modifications may be made within the scope of the invention in accordance with the common general knowledge of those skilled in this art. Such modifications include the substitution of known equivalents for any aspect of the invention in order to achieve the same result in substantially the same way. Numeric ranges are inclusive of the numbers defining the range. Furthermore, numeric ranges are provided so that the range of values is recited in addition to the individual values within the recited range being specifically recited in the absence of the range. The word "comprising" is used herein as an open-ended term, substantially equivalent to the phrase "including, but not limited to", and the word "comprises" has a corresponding meaning. As used herein, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise. Thus, for example, reference to "a thing" includes more than one such thing. Citation of references herein is not an admission that such references are prior art to the present invention. Furthermore, material appearing in the background section of the specification is not an admission that such material is prior art to the invention. Any priority document(s) are incorporated herein by reference as if each individual priority document were specifically and individually indicated to be incorporated by reference herein and as though fully set forth herein. The invention includes all embodiments and variations substantially as hereinbefore described and with reference to the examples and drawings. Citation of references herein is not an admission that such references are prior art to the present invention nor does it constitute any admission as to the contents or date of these documents.
What is claimed is:

1. A transplant preservation solution comprising a polyglycerol wherein the polyglycerol is of a molecular weight between about 0.15 kDa and about 3.99 kDa.

2. A transplant preservation solution comprising an UW-type organ preservation solution and a polyglycerol wherein the polyglycerol is of a molecular weight between about 0.15 kDa and about 3.99 kDa.

3. The transplant preservation solution of claim 1 or 2 wherein the polyglycerol is of a molecular weight between about 0.48 kDa and about 3.0 kDa.

4. The transplant preservation solution of any one of claims 1 to 3 wherein the pH of the transplant preservation solution is between about 2.0 and about 9.0.

5. The transplant preservation solution of any one of claims 1 to 4 wherein the pH of the transplant preservation solution is between about 6.5 and about 7.5.

6. The transplant preservation solution of any one of claims 1 to 5 wherein the transplant preservation solution is in aqueous solution.

7. The transplant preservation solution of claim 6 wherein the polyglycerol comprises about 0.01% by weight to about 50% by weight of the transplant preservation solution.

8. The transplant preservation solution of claim 6 or 7 wherein the polyglycerol comprises about 1.25% by weight to about 20% by weight of the transplant preservation solution.

9. The transplant preservation solution of any one of claims 1 to 8 wherein the transplant preservation solution has an osmolarity between about 150 milliosmols per litre and about 1500 milliosmols per litre.
10. The transplant preservation solution of any one of claims 1 to 9 wherein the polyglycerol has a polydispersity of about 1.0 to about 15.

11. The transplant preservation solution of any one of claims 1 to 10 wherein the polyglycerol is dendritic.

12. The transplant preservation solution of any one of claims 1 to 10 wherein the degree of branching of the polyglycerol is between about 0 and about 0.4.

13. The transplant preservation solution of any one of claims 1 to 10 wherein the degree of branching of the polyglycerol is between about 0.4 and about 0.7.

14. The transplant preservation solution of any one of claims 1 to 10 wherein the degree of branching of the polyglycerol is between about 0.7 and about 1.0.

15. The transplant preservation solution of any one of claims 1 to 10 wherein the degree of branching of the polyglycerol is zero.

16. The transplant preservation solution of any one of claims 1 to 15 comprising at least two polyglycerols wherein the molecular weight of each of the at least two polyglycerols is different.

17. The transplant preservation solution of any one of claims 1 to 16 wherein the polyglycerol further comprises one or more hydrophobic groups, hydrophilic groups or both.

18. The transplant preservation solution of claim 17 wherein the one or more hydrophobic groups, hydrophilic groups or both are joined to from about 1% to about 100% of hydroxyl groups on the polyglycerol.

19. The transplant preservation solution of claim 17 or 18 wherein the one or more hydrophobic groups, hydrophilic groups or both are joined to from about 1% to about 40% of hydroxyl groups on the polyglycerol.
20. The transplant preservation solution of any one of claims 17 to 19 wherein the one or more hydrophobic groups, hydrophilic groups or both comprise one or more of a carboxylic acid, an amine, a substituted amine, a quaternary amine, an amino acid, a phosphate, a sulfate, a sulfonate, a phosphonate, an alkyl, an alkene, an alkyne, an alkyl ether, an aromatic, an aromatic ether, a zwitterionic group, a carbohydrate, a disulfide, a ketal, a substituted ketal, an acetal, a substituted acetal, ester groups, thioesters, a urethane, ester-amides, amide groups, a peptide, a phenol, halogens, or a thiol.

21. The transplant preservation solution of any one of claims 1 to 20 further comprising one or more electrolytes.

22. The transplant preservation solution of any one of claims 1 to 21 further comprising one or more xanthine oxidase inhibitor.

23. The transplant preservation solution of any one of claims 1 to 22 further comprising one or more antioxidants.

24. The transplant preservation solution of any one of claims 1 to 23 further comprising one or more nucleoside.

25. The transplant preservation solution of any one of claims 1 to 24 further comprising one or more amino acids.

26. The transplant preservation solution of any one of claims 1 to 25 further comprising one or more diffusion agents.

27. The transplant preservation solution of any one of claims 1 to 26 further comprising one or more osmotic agents.

28. The transplant preservation solution of any one of claims 1 to 27 further comprising one or more growth factors.
29. The transplant preservation solution of any one of claims 1 to 27 further comprising one or more buffering agents.

30. The transplant preservation solution of any one of claims 1 to 27 further comprising one or more anti-cell death agents.

31. The transplant preservation solution of claim 26 or 27 wherein the osmotic agent or diffusion agent is selected from at least one of the group consisting of: sodium, chloride, bicarbonate, a bicarbonate producing agent, sulfite, phosphate, calcium, potassium, magnesium, lactobionate, dextrose, fructose, glycerol, sorbitol, manitol, L-carnitine, bovine serum albumin (BSA), maltose, maltotriose, maltopentose, xylitol, adenosine, glutathione, lactobionic acid, potassium hydroxide, synthetic polymers, and natural polymers.

32. The transplant preservation solution of claim 26 or 27 wherein the osmotic agent comprises lactobionate.

33. The transplant preservation solution of claim 29 wherein the buffering agent is selected from at least one of the group consisting of: maleic acid, phosphoric acid, sulfate, citric acid, malic acid, formic acid, lactic acid, succinic acid, acetic acid, pivalic acid, pyridine, piperazine, picolinic acid, L-histidine, 3-(N-morpholino)propanesulfonic acid (MOPS), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), tricine, glycyglycine, bicine, boric acid, and glycine.

34. The transplant preservation solution of any one of claims 1 to 33 wherein the polyglycerol comprises a hyperbranched polyglycerol.

35. The transplant preservation solution of any one of claims 1 to 34 wherein the polyglycerol comprises a linear polyglycerol.

36. Use of the transplant preservation solution of any one of claims 1 to 35 for preservation of an organ.

37. Use of the transplant preservation solution of any one of claims 1 to 35 in transportation of an organ.
38. Use of the transplant preservation solution of any one of claims 1 to 35 in transportation of a bodily tissue.

39. Use of the transplant preservation solution of any one of claims 1 to 35 in transportation of a cell.

40. The use according to any one of claims 36 to 39 wherein the organ, bodily tissue or cell is transported *ex-vivo*.

41. The use of the transplant preservation solution of any one of claims 1 to 35 for preventing or reducing cold ischemia in an organ, tissue or cell.

42. The use of the transplant preservation solution of any one of claims 1 to 35 for preventing or reducing harmful effects from warm reperfusion on an organ, tissue or cell.

43. A method of treating a patient in need of an organ transplant, the method comprising administering the transplant preservation solution of any one of claims 1 to 35 to a donor organ, transporting the donor organ and transplanting the donor organ.

44. A method of treating a patient in need of a tissue transplant, the method comprising administering the transplant preservation solution of any one of claims 1 to 35 to a donor tissue, transporting the donor tissue and transplanting the donor tissue.

45. A method of treating a patient in need of a cell transplant, the method comprising administering the transplant preservation solution of any one of claims 1 to 35 to a donor cell, transporting the donor cell and transplanting the donor cell.

46. The method of any one of claims 43 to 45 wherein the transplant preservation solution is administered more than once per day.

47. A kit for formulating a transplant preservation solution, the kit comprising:
(a) a lyophilized polyglycerol wherein the polyglycerol is of a molecular weight between about 0.15 kDa and about 3.99 kDa; and
(b) instructions for using the lyophilized polyglycerol for formulating the transplant preservation solution.

48. The kit of claim 47 wherein the kit is for formulating an UW-type transplant preservation solution.

49. The kit of claim 47 or 48 wherein the polyglycerol is of a molecular weight between about 0.48 kDa and about 3.0 kDa.

50. The kit of any one of claims 47 to 49 further comprising one or more electrolytes.

51. The kit of any one of claims 47 to 50 further comprising one or more amino acids.

52. The kit of any one of claims 47 to 51 further comprising one or more xanthine oxidase inhibitor.

53. The kit of any one of claims 47 to 52 further comprising one or more antioxidants.

54. The kit of any one of claims 47 to 53 further comprising one or more nucleoside.

55. The kit of any one of claims 47 to 54 further comprising one or more growth factors.

56. The kit of any one of claims 47 to 55 further comprising one or more buffering agents.

57. The kit of any one of claims 47 to 56 further comprising one or more anti-cell death agents.

58. The kit of any one of claims 47 to 57 further comprising one or more diffusion agents.

59. The kit of any one of claims 47 to 58 further comprising one or more osmotic agents.

60. The kit of claim 58 or 59 wherein the osmotic agent or diffusion agent is selected from at least one of the group consisting of: sodium, chloride, carbonate, a bicarbonate producing agent, sulfate,
phosphate, calcium, potassium, magnesium, lactobionate, dextrose, fructose, glycerol, sorbitol, manitol, L-carnitine, bovine serum albumin (BSA), maltose, maltotriose, maltopentose, xylitol, adenosine, glutathione, lactobionic acid, potassium hydroxide, synthetic polymers, and natural polymers.

61. The kit of claim 58 or 59 wherein the osmotic agent comprises lactobionate.

62. The kit of claim 56 wherein the buffering agent is selected from at least one of the group consisting of: maleic acid, phosphoric acid, sulfate, citric acid, malic acid, formic acid, lactic acid, succinic acid, acetic acid, pivalic acid, pyridine, piperazine, picolinic acid, L-histidine, 3-(N-morpholino)propanesulfonic acid (MOPS), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), tricine, glycyglycine, bicine, boric acid, and glycine.

63. A composition comprising the transplant preservation solution of any one of claims 1 to 35 and at least one physiologically acceptable salt, buffer, diluent or excipient, for use as a transplant preservation solution.

64. The composition of claim 63 wherein the composition is in aqueous solution.

65. The composition of claim 64 wherein the composition is a lyophilized product.
FIG. 1

A

- HPG
- UW p < 0.0001

LDH release (OD₄₅₀)

Time (h)

0 4 8 12 16 20 24

B

UW HPG
FIG. 2

- P < 0.0001
- P = 0.0209

Graft function

UW HPG UW HPG
15 min 24 h

- UW
- HPG
FIG. 3

A

UW HPG

UW HPG

B

Histological scores

P = 0.0347

C

Serum LH (OD, mU)

P = 0.0381
FIG. 5

Graph showing graft survival (%) over days for UW and HPG with a statistical significance of P = 0.0175.
FIG. 7

![Image of bar graph showing E/M ratio over time of incubation (h). The graph compares UW and HPG conditions, with P < 0.0001 indicated for the difference between conditions.]
FIG. 8

Cultured HUVECs

P = 0.6117

LDH release (%) vs. Time of cold storage (h)

HTK vs. HPG-HTK

Mouse hearts

LDH release (OD₆₂₅) vs. Time of cold storage (h)

HTK vs. HPG-HTK

Cultured H9C2 cells

At 4°C

LDH release (%) vs. Incubation (h)

Celsior, UW, HTK, HPG

At 10°C

LDH release (%) vs. Incubation (h)

Celsior, UW, HTK, HPG

Two-ANOVA

P < 0.0001 (HPG vs. Celsior, UW or HTK)

Two-ANOVA

P < 0.0001 (HPG vs. Celsior)
P = 0.0039 (HPG vs. UW)
P = 0.0006 (HPG vs. HTK)
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION NO.
PCT/CA2014/000843

A. CLASSIFICATION OF SUBJECT MATTER

IPC: **A01N 1/02** (2006.01) , **A61K 35/12** (2015.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC: **A01N 1/02** (2006.01) , **A61K 35/12** (2015.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)
Electronic databases: TotalPatent, PubMed, Google Scholar

Keywords: polyglycerol, hyperbranched, dendritic, preservation, transplant*, ischem*

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>22, 52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22, 52</td>
</tr>
<tr>
<td>Y</td>
<td>U S 2007/0178435 A1 (FISCHER et al.) 2 August 2007 (02-08-2007) see whole document</td>
<td>22, 52</td>
</tr>
</tbody>
</table>

I Further documents are listed in the continuation of Box C. **K** See patent family annex.

<table>
<thead>
<tr>
<th>Special categories of cited documents:</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
</tr>
<tr>
<td>"A" document defining the general state of the art which is not considered to be of particular relevance</td>
<td></td>
</tr>
<tr>
<td>"E" earlier application or patent but published on or after the international filing date</td>
<td></td>
</tr>
<tr>
<td>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason(s) as specified</td>
<td></td>
</tr>
<tr>
<td>"O" document referring to an oral disclosure, use, exhibition or other means</td>
<td></td>
</tr>
<tr>
<td>"P" document published prior to the international filing date but later than the priority date claimed</td>
<td></td>
</tr>
<tr>
<td>"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</td>
<td></td>
</tr>
<tr>
<td>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</td>
<td></td>
</tr>
<tr>
<td>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</td>
<td></td>
</tr>
<tr>
<td>"K" document member of the same patent family</td>
<td></td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search
27 February 2015 (27-02-2015)

Date of mailing of the international search report
27 February 2015 (27-02-2015)

Name and mailing address of the ISA/CA

Canadian Intellectual Property Office
Place du Portage I, C 114 - 1st Floor, Box PCT
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 001-819-953-2476

Authorized officer
Steven Kołodziejczyk (819) 997-3239

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Patent Document</th>
<th>Cited in Search Report Date</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AT31 1104T</td>
<td>15 December 2005 (15-12-2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT465633T</td>
<td>15 May 2010 (15-05-2010)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU4308601A</td>
<td>18 June 2001 (18-06-2001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU8822901A</td>
<td>13 February 2002 (13-02-2002)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU200321 0768A1</td>
<td>02 September 2003 (02-09-2003)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU200321 0768A8</td>
<td>02 September 2003 (02-09-2003)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2388544A1</td>
<td>07 February 2002 (07-02-2002)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2388544C</td>
<td>22 February 2011 (22-02-2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA239331 7A</td>
<td>14 June 2001 (14-06-2001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA239331 7C</td>
<td>01 February 2011 (01-02-2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE601 15461 D1</td>
<td>05 January 2006 (05-01-2006)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE601 15461T2</td>
<td>08 June 2006 (08-06-2006)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE6033231 B01</td>
<td>10 June 2010 (10-06-2010)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPI 242558A2</td>
<td>25 September 2002 (25-09-2002)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPI 242558B1</td>
<td>28 January 2015 (28-01-2015)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPI 311155B1</td>
<td>30 November 2005 (30-11-2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPI 476014A2</td>
<td>17 November 2004 (17-11-2004)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPI 476014A4</td>
<td>06 September 2006 (06-09-2006)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPI 476014B1</td>
<td>28 April 2010 (28-04-2010)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7741 018B2</td>
<td>22 June 2010 (22-06-2010)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO0142388A2</td>
<td>14 June 2001 (14-06-2001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO2009055935A2</td>
<td>26 February 2009 (26-02-2009)</td>
<td></td>
</tr>
</tbody>
</table>

CA2742345A1

CA2742345A1

EP221 1872A1

EP221 1872A4

EP221 1872A4

US201103241 50A1

23 December 2011 (23-12-2011) 0

WO2009055935A1

CA252341 7A

18 November 2004 (18-11-2004) 0

AU20042386402A2

18 November 2004 (18-11-2004) 0

AU20042386402B2

03 December 2009 (03-12-2009) 0

AU200423931 0A1

25 November 2004 (25-11-2004) 0

AU200423931 0B2

17 June 2010 (17-06-2010) 0

BRP104101 85A

16 May 2006 (16-05-2006) 0

CA252341 7C

18 November 2004 (18-11-2004) 0

CA252341 7C

30 April 2013 (30-04-2013) 0

CA2526393A1

25 November 2004 (25-11-2004) 0

CA2526393C

12 February 2013 (12-02-2013) 0

CN1784142A

07 June 2006 (07-06-2006) 0

CN1784142A

09 August 2008 (09-08-2008) 0

CN17814161 7B

01 December 2011 (01-12-2011) 0

EP1745434A1

10 November 2004 (10-11-2004) 0

EP1745434A1

08 February 2006 (08-02-2006) 0

EP1745434A1

15 February 2006 (15-02-2006) 0

EP1745434A1

25 October 2006 (25-10-2006) 0
<table>
<thead>
<tr>
<th>Application Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP2007524368A</td>
<td>30 August 2007 (30-08-2007)</td>
</tr>
<tr>
<td>JP4870551 B2</td>
<td>08 February 2012 (08-02-2012)</td>
</tr>
<tr>
<td>JP20075021 30A</td>
<td>08 February 2007 (08-02-2007)</td>
</tr>
<tr>
<td>JP5192694B2</td>
<td>08 May 2013 (08-05-2013)</td>
</tr>
<tr>
<td>KR20066001 9525A</td>
<td>03 March 2006 (03-03-2006)</td>
</tr>
<tr>
<td>MXPA05012070A</td>
<td>23 June 2006 (23-06-2006)</td>
</tr>
<tr>
<td>RU2005138320A</td>
<td>27 April 2006 (27-04-2006)</td>
</tr>
<tr>
<td>US2005037330A1</td>
<td>07 February 2005 (07-02-2005)</td>
</tr>
<tr>
<td>US2007042338A1</td>
<td>22 February 2007 (22-02-2007)</td>
</tr>
<tr>
<td>US7640933B2</td>
<td>20 October 2009 (20-10-2009)</td>
</tr>
<tr>
<td>WO2004101758A3</td>
<td>11 August 2005 (11-08-2005)</td>
</tr>
<tr>
<td>ZA200509760A</td>
<td>29 November 2006 (29-11-2006)</td>
</tr>
</tbody>
</table>
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ✔ Claim Nos.: 43 - 46
 because they relate to subject matter not required to be searched by this Authority, namely:

Claims 43 - 46 are directed to a method for treatment of the human or animal body by surgery or therapy, which the International Searching Authority is not required to search under Rule 39.1(iv) of the PCT. However, this Authority has carried out a search based on the alleged effect or purpose/use of the product defined in claims 43 - 46.

2. ✔ Claim Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ✔ Claim Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

1. ✔ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ✔ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. ✔ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claim Nos.:

4. ✔ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant=s protest and, where applicable, the payment of a protest fee.

- The additional search fees were accompanied by the applicant=s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

- No protest accompanied the payment of additional search fees.