

(11)

EP 2 526 083 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
23.03.2016 Bulletin 2016/12

(51) Int Cl.:
C07C 213/08 (2006.01) **C07C 219/08** (2006.01)
B01J 19/18 (2006.01)

(21) Application number: 11735210.4

(86) International application number:
PCT/US2011/021961

(22) Date of filing: 21.01.2011

(87) International publication number:
WO 2011/091197 (28.07.2011 Gazette 2011/30)

(54) CONTINUOUS PRODUCTION OF QUATERNARY SALTS

KONTINUIERLICHE HERSTELLUNG QUATERNÄRER SALZE
PRODUCTION CONTINUE DE SELS QUATERNAIRES

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

(30) Priority: 21.01.2010 US 691159

(43) Date of publication of application:
28.11.2012 Bulletin 2012/48

(73) Proprietor: **Nalco Company**
Naperville, IL 60563-1198 (US)

(72) Inventors:

- **FAIR, Barbara E.**
Lisle
Illinois 60532 (US)
- **REED, Peter E.**
Plainfield
Illinois 60544 (US)
- **VER VERS, Leonard M.**
Downers Grove
Illinois 60515 (US)

- **BRAMMER, Jr., Larry E.**
Kingsport
Tennessee 37660 (US)
- **HOLADA, Charles J.**
LaGrange
Illinois 60526 (US)
- **HUANG, Cheng-Sung**
Naperville
Illinois 60565 (US)
- **SAWANT, Kailas B.**
Naperville
Illinois 60563 (US)

(74) Representative: **Chalk, Anthony John et al**
HGF Limited
Saviour House
9 St Saviourgate
York YO1 8NQ (GB)

(56) References cited:

JP-A- 3 206 067	JP-A- 2004 010 508
JP-B2- 2 837 279	US-A- 4 520 210
US-A- 5 260 480	US-B1- 6 423 871

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description**Background of the Invention**

5 [0001] This invention relates to a method and apparatus for the continuous production of quaternized N,N-dialkylaminoethyl (meth)acrylates (DMAEA.MCQ). DMAEA.MCQ is an important monomer intermediate used in producing cationic flocculant polymers. It is known that DMAEA.MCQ can be produced by reacting N,N-dimethylaminoethyl acrylate (DMAEA) under various conditions. A good method of synthesizing DMAEA is described in U.S. patent 2010/298549 A1. An efficient method of producing DMAEA.MCQ from DMAEA would involve a continuous synthesis, which avoids the burdensome and costly start and stop mechanics inherent in batch type production methods.

10 [0002] A number of unsatisfactory methods have previously been developed to produce DMAEA.MCQ from DMAEA. Japanese Patent Applications 2003/342244, 2004/010508, and 2004/155669 use continuously stirred tank reactors (CSTR) connected in series to continuously produce DMAEA.MCQ. Their preference for multiple reactors however is cumbersome and expensive. Japanese patent application 1995/206790 describes conducting the synthesis in a thin film evaporator reactor. This method unfortunately uses equipment that is typically associated with higher operating costs in comparison with the present invention. U.S. patent 6,683,203 uses a rotating disc agitated column design but suffers from an unduly long residence time. Chinese patent applications CN 1296942 and CN 1276367 use tower reactors to produce DMAEA.MCQ but are also less than ideal.

15 [0003] US-A-4520210 relates to concentrated aqueous solutions of quaternization products of tertiary aminoalkyl esters or tertiary aminoalkylamides of acrylic or methacrylic acid which are prepared by reaction of the corresponding esters or amides with an alkylating agent in a water-soluble ketone as solvent, by a process wherein, in order to isolate the quaternization product, an amount of water is added to the reaction mixture such that two phases form, and the lower aqueous phase, which contains the quaternization product in solution, is separated from the upper phase, which contains the ketone and residual alkylating agent. The processes are, however, essentially batchwise.

20 [0004] US-A-5260480 teaches a process for the preparation of aqueous solutions of unsaturated quaternary ammonium salts in the presence of polymerization inhibitors, wherein the process is carried out at a temperature of between 10 and 80°C, and wherein, initially, all or a part of the quaternizing agent is introduced into the reactor, then (meth)acrylic monomer is added and, when up to 30% of the monomer has been added, the remainder of quaternizing agent and (meth)acrylic monomer, together with water, are added continuously and simultaneously until the desired concentration of unsaturated quaternary ammonium salts (I) has been obtained. However, the document does not provide continuous processes which allow for the continuous removal of the product from the reactor.

25 [0005] Thus there is clear need and utility for an improved method of continuously and efficiently producing DMAEA.MCQ. The art described in this section is not intended to constitute an admission that any patent, publication or other information referred to herein is "prior art" with respect to this invention, unless specifically designated as such. In addition, this section should not be construed to mean that a search has been made or that no other pertinent information exists.

Brief Summary of the Invention

40 [0006] At least one embodiment of the invention is directed towards a method of continuously producing a quaternary amine product (QAP). The method comprises the steps of:

continuously feeding reactants into a CSTR, the reactants comprising a tertiary amine substrate (TAS), water, and an alkylating agent;
 maintaining conditions in the CSTR such that two substantially distinct liquid phases form, a first phase and a second phase, the second phase being denser than the first phase, the second phase comprising more than 80% QAP and less than 20% water, the first phase present at greater than 5 wt.% of the reaction mixture, and comprising TAS, and alkylating agent;
 not allowing the water content of the CSTR to exceed 16% of the reactants continuously added to the CSTR; and
 continuously removing only second phase liquid from the CSTR.

50 [0007] The method of claim 1 wherein the TAS is selected from the group consisting of: DMAEA, any n,n-dialkylaminoethyl (meth)acrylates, (meth)acrylamides, and any combination thereof.
 [0008] One or more additional embodiments are directed towards this method in which: The QAP produced may be DMAEA-MCQ. The alkylating group may be selected from the group consisting of: methyl chloride, benzyl chloride, cetyl chloride, dimethyl sulfate, and any other commonly known alkylating agent, and any combination thereof. The TAS may be added to the CSTR from the top of the CSTR. The second phase may be removed from the CSTR from the bottom of the CSTR. Additional reaction of residual TAS in the removed second phase may be facilitated by reacting it in a plug flow reactor and/or by adding additional alkylating agent. The alkylating agent may be removed by purging the second

phase liquid with a gas flow. The alkylating agent may be removed by passing it through a stripping column. The alkylating agent may be removed by passing it into the top of a stripping column and passing a gas into the bottom of the stripping column, the gas selected from the list consisting of: air, nitrogen, argon and any combination thereof. The temperature in the CSTR may be maintained at between 40-60 °C. The residence time in the CSTR may range between 30-120 minutes. The pressure in the CSTR may be maintained at 206.8-689.5 kPa (30-100 psi). The ratio of first phase to second phase may be maintained at between 1:1 and 1:20. The second phase liquid may be removed from the CSTR at a location in which shear induced mixing of TAS and QAP is low relative to other locations within the CSTR. The method may further comprise the step of adding butylated hydroxytoluene (BHT), copper, monomethylether hydroquinone (MEHQ), and any combination thereof to the produced QAP. The produced QAP may have less than 300 ppm of TAS within it. The method may further comprise the steps of:

- 15 facilitating the reaction of any residual TAS in the second phase liquid;
- stripping the alkylating agent from the second phase liquid; and
- adding water to the second phase liquid to obtain desired physical properties.

Brief Description of the Drawings

[0009] A detailed description of the invention is hereafter described with specific reference being made to the drawings in which:

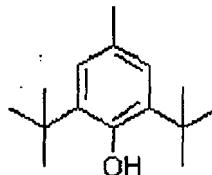

20 FIG. 1 illustrates the inventive alkylation reaction.

FIG. 2 is a schematic type drawing illustrating an apparatus used in the inventive synthesis reaction.

Detailed Description of the Invention

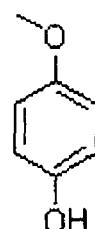
DEFINITIONS

[0010] For purposes of this application the definition of these terms is as follows: "BHT" means a molecule according to the formula:

"Continuous Process" means an ongoing chemical process, which is capable of being run continuously over an unlimited period of time in which reagents can be constantly fed into a reaction operation to continually produce product. Continuous Process and Batch Process are mutually exclusive.

"CSTR" means continuously stirred tank reactor.

"DMAEA" means N,N-dimethylaminoethyl acrylate


"DMAEA-MCQ" means quaternized N,N-dialkylaminoethyl acrylates.

"DMAEM" means N,N-dimethylaminoethyl (meth)acrylate

"DMAEA-MCQ" means quaternized N,N-dialkylaminoethyl (meth)acrylates.

"Percent" or "%", unless otherwise stated, means weight percent

"MEQ H" means a molecule according to the formula:

"TAS" means tertiary amine substrate.

"QAP" means quaternary amine product.

5 [0011] In the event that the above definitions or a definition stated elsewhere in this application is inconsistent with a meaning (explicit or implicit) which is commonly used, in a dictionary, or stated in a source incorporated by reference into this application, the application and the claim terms in particular are understood to be construed according to the definition in this application, and not according to the common definition, dictionary definition, or the definition that was incorporated by reference.

10 RECITAL

15 [0012] In at least one embodiment, an alkylation reaction is used to produce an alkylated quaternary amine salt from a tertiary amine substrate. This alkylation reaction is facilitated by an alkylating agent. In at least one embodiment, the TAS is one selected from those listed in US Patent 2010/298549 A1. As illustrated in FIG.1, in at least one embodiment, the tertiary amine substrate is DMAEA, and it is alkylated by the alkylating agent methyl chloride to form the QAP quaternary amine salt DMAEA·MCQ. In at least one embodiment the TAS is DMAEM and the QAP it forms is the quaternary amine salt DMAEM·MCQ.

20 [0013] One major utility inherent in the inventive reaction is that it allows water to be present in the final product while at the same time inhibiting the presence of impurities. Because of the reactive nature of the aminoacrylate substrate, side reactions such as hydrolysis, polymerization, and other reactions can occur at such a rate that impurities accumulate in large enough quantities to negatively impact the quality of the product. Because these side reactions are promoted by water, one approach to prevent such side reactions would be to conduct the reaction in a water free environment. Such a strategy however is frustrated by the physical properties of QAPs such as DMAEA·MCQ and DMAEM·MCQ. Specifically, these QAPs have a lower than desired solubility. They can comprise no more than about 80% of a solution or else they precipitate out of solution when exposed to cold weather during transport. When precipitated out of solution, the QAPs become much harder to store, transport, and pump. These difficulties are avoided in the inventive method, which allows for the presence of water without undue impurities in the reaction product.

25 [0014] In at least one embodiment, the alkylation reactant is selected from the group consisting of: methyl chloride, benzyl chloride, cetyl chloride, dimethyl sulfate, and any other commonly known alkylating agent, and any combination thereof.

30 [0015] In at least one embodiment, the tertiary amine substrate (TAS) is selected from the group consisting of: DMAEA, any N,N-dialkylaminoalkyl (meth)acrylates, (meth)acrylamides, and any combination thereof.

35 [0016] Referring now to FIG. 2. there is shown an apparatus (10) in which the alkylated quaternary amine salt product (QAP) (1) is continuously produced. The apparatus (10) as a whole comprises three sections: a reaction and phase-separation section (11), a post-heat section (21), and a stripping section (31). The starting materials (TAS, an alkylating agent, and water) are added via sources.

40 [0017] In the reaction section (11), TAS is continuously added via a TAS source (6). An alkylating agent is added to the reactions section (11) via an alkylating agent source (7) and water is added via a water source (8). These starting materials are continuously fed into a CSTR (12) as needed.

45 [0018] Within the CSTR (12) as the starting materials react, an environment comprising two liquid phases is formed. The light phase (13) is predominantly comprised of the reagents, TAS and alkylating agent. The dense phase (14) comprises predominantly QAP product within a concentrated aqueous solution.

50 [0019] In at least one embodiment, this two liquid phase environment is achieved by imposing specific reaction conditions within the CSTR (12). The pressure in the CSTR (12) is maintained at 206.8-689.5 kPa (30-100 psi). The temperature in the CSTR (12) is maintained at 40-60 °C. The starting materials provide a residence time of between 30-120 minutes. Water comprises about 10 to less than 20 weight % of the starting materials added to the CSTR (12) (which is far less than the 20% that the QAP will ultimately be dissolved within). In some embodiments, the water comprises between 10 and 16 weight %. The ratio of light phase (13) to the dense phase (14) is maintained at a stable and desirable proportion, such as 1:4, as measured by sampling the lower portion of the CSTR under agitation.

55 [0020] These conditions cause the product QAP to form readily and to contain few impurities. The low amount of water added to the reactor allows the desired reaction to occur at a rapid rate and promotes the two solution phases to form in the CSTR and to separate readily. The low water level also slows down the rate of formation of undesirable impurities via unwanted hydrolytic side reactions. Because this environment allows for a rapid rate of QAP formation and a relatively slow rate of impurity formation, it results in the formation of a relatively high purity QAP with few impurities.

56 [0021] As a continuous reaction, starting materials are continually added to the CSTR (12), while a product-containing stream is constantly being removed from the CSTR (12). A novel aspect of this invention is that the reaction section functions as a separation device as well as a reaction device, so that only the dense-phase (14) is continuously removed. In this way, the reactant concentration can be held high in the CSTR to maximize the reaction rate, while the exiting

stream is enriched in product and contains only low amounts of reactants. In at least one embodiment, the product exit (15) is located substantially at the bottom of the CSTR (12) to take advantage of the fact that the CSTR can be made to operate so that only the dense phase is present at this location. This is because there is less shear induced mixing at the bottom of the reactor, so that some of the dense phase tends to separate from the light phase and settle out at that location.

[0022] In at least one embodiment, other or additional mechanisms are used to separate and remove the dense phase from the CSTR (12), optionally using devices located outside and/or attached to the CSTR. These include and are not limited to, a vertical standpipe at the bottom of the CSTR (12), a baffle, weir, or other mechanism that provides time for the phases to undergo density induced separation, and any combination thereof. In at least one embodiment, sampling equipment (16, 17) is located at the top and/or bottom of the CSTR and is used to ascertain the contents of the two liquid phases.

[0023] In at least one embodiment, the starting materials input continuously to the CSTR comprise 10-16 weight % water. This critical amount of water promotes the formation and separation of the desired two liquid phases in the CSTR, while minimizing the amount of undesired hydrolytic byproducts in the product.

[0024] After it is removed from the CSTR (12), the dense phase is passed to the post heat section (21). In the post heat section, residual levels of the unreacted TAS is converted into QAP. In at least one embodiment the post heat section (21) comprises of a plug flow reactor (22). In at least one embodiment the plug flow reactor (22) is maintained at a temperature range of 50-70 °C and the dense phase is provided a residence time of 0.5-1.5 hours. In at least one embodiment, additional alkylating agent is fed into the post heat section (21) to further assure that sufficient alkylating agent is present to react with all of the remaining TAS.

[0025] After treatment, the product of the post heat section (21) is passed on to a stripping section (31). There any unreacted alkylating agent is stripped away and all that remains in the product is QAP as virtually all of the TAS has been reacted. The stripping section (31) comprises one or more tanks such as tank (32), which is in fluidic communication with a gas source (33). In at least one embodiment the fluidic communication is in liquid-gas kinetic equilibrium. The gas source (33) allows the gas to flow over the product, which depurates/removes any remaining alkylating agent from the product. In at least one embodiment, the gas used includes but is not limited to air, nitrogen, argon or any combination thereof. In at least one embodiment, the gas flows in a countercurrent manner to the product.

[0026] In at least one embodiment the tank is a flash tank or flash drum. In at least one embodiment, the product of the post heat section passes into a flash tank/flash drum (35) before being passed onto the tank (32). In at least one embodiment the gas inlet (37) is positioned at the bottom of the flash tank/flash drum. Positioning at the bottom allows it to be submerged in liquid and better facilitate the gas purge

[0027] In at least one embodiment the tank (32) is a stripping column. The stripping column comprises a plurality of column internals such as packing, trays, baffles, wiers or a combination of thereof, which cause an increase in the interfacial area for vapor-liquid contact.

[0028] In at least one embodiment, the product inlet (34) is located at the top of the tank (32). In at least one embodiment, the stripping section (31) reduces the amount of alkylating agent to less than about 100 ppm in the product. After a highly pure QAP (1) is produced, additional water is added to obtain a QAP solution that contains about 20 weight % water (the additional water is added after the post-heat section, and before or during the stripping section). In at least one embodiment, the tanks (32 or 35) in the stripping section (31) may also be vented using pressure release valves (36).

[0029] While this method does continually produce high quality QAP, the ultimate purity of the QAP is also dependent on the quality of TAS input into the apparatus (10). Unfortunately, some TAS and DMAEA in particular, have short shelf lives and the QAP produced (and DMAEA-MCQ in particular) from poor-quality TAS (and DMAEA in particular) have been observed to result in degraded QAP quality. In at least one embodiment, after the QAP has been produced, a stabilizing additive is added to the QAP containing solution. Previously, MEHQ and copper have been used a stabilizer for DMAEA. Unfortunately MEHQ is not ideal as it has compatibility problems with downstream chemicals used in polymerizing the QAP, is expensive, and causes unwanted side reactions with copper.

[0030] In at least one embodiment, the added stabilizing additive is BHT. In at least one embodiment, BHT is combined with copper. BHT is less expensive than MEHQ, is chemically compatible with downstream polymerization chemicals, and does not react with copper. The use of BHT allows the produced QAP to reside in a high water (20%) solution without degrading over time. In at least one embodiment a combination of BHT, MEHQ, and copper are used together to stabilize the QAP.

EXAMPLES

[0031] The foregoing may be better understood by reference to the following example, which is presented for purposes of illustration and is not intended to limit the scope of the invention.

[0032] A pilot plant unit was assembled to demonstrate the process and to obtain comparative data. Using the process equipment described above, the process was repeatedly executed in successive experiments. Each experiment used

a specific set of conditions and was run for a period of time long enough to reach steady-state conditions. In addition to sampling the final product, an in-process sample was also taken from the lower portion of the CSTR by means of a dip-tube installed in the CSTR, in order to observe the physical state of the reaction mixture in the lower portion of the reactor at any given time.

[0033] The final product was analyzed for the impurities acrylic acid (AA), N,N-dimethylaminoethyl acrylate (DMAEA), and N,N-dimethylaminoethanol (DMAE). The level of acrylic acid impurity in the final product is commonly measured to give an indication of the level of acrylate ester hydrolysis over the course of the entire process. Also measured were the total amine impurities (DMAEA + DMAE), which indicate the total level of TAS present in the final product. These amine impurities are primarily generated in the CSTR or reaction section of the process, where they arise from hydrolytic side reactions that ultimately form DMAEA and DMAE salts that are unreactive towards the desired quaternization reaction. We have discovered that the amount of these total amines (DMAEA and DMAE) is an important indicator of the quality of the final product, as these amine impurities cause the final product to be unstable towards polymerization during processing and storage.

[0034] As shown in table 1, control runs 1 and 4 gave unacceptably high levels of residual acrylic acid and unquaternized amine impurities. In contrast, run 11 provided extremely low levels of unquaternized amine impurities in the final product, while also providing low levels of acrylic acid impurity. Runs 9 and 10B, provided reasonably low levels of acrylic acid and unquaternized amine impurities in the final product, but the impurity levels were higher than those provided by run 11.

Table 1:					
Experiment	CSTR Operating Conditions (at 50 °C/413.7 kPa (60 psi))			Final Product Impurities (ppm)	
Run #	Residence Time (min)	Water Added (wt.%)	Physical State	Acrylic Acid	DMAE+ DMAEA
1	60	20	One-phase	3,230	5,600
4	50	17	One-phase	1,848	3,240
11	75	13.3	Two-phase	770	< 300
9	60	15.5	Two-phase	930	1669
10B	75	15.5	Two-phase	883	1447

[0035] While this invention may be embodied in many different forms, there are shown in the drawings and described in detail herein specific preferred embodiments of the invention. The present disclosure is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.

[0036] The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. The term "comprising" means "including, but not limited to".

[0037] All ranges and parameters disclosed herein are understood to encompass any and all subranges subsumed therein, and every number between the endpoints. For example, a stated range of "1 to 10" should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more, (e.g. 1 to 6.1), end ending with a maximum value of 10 or less, (e.g. 2.3 to 9.4, 3 to 8, 4 to 7), and finally to each number 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 contained within the range.

[0038] This completes the description of the preferred and alternate embodiments of the invention.

Claims

1. A method of continuously producing a quaternary amine product (QAP) comprising the steps of:

continuously feeding reactants into a continuously stirred tank reactor (CSTR), the reactants comprising a tertiary amine substrate (TAS), water, and an alkylating agent;
 maintaining conditions in the CSTR such that two substantially distinct liquid phases form, a first phase and a second phase, the second phase being denser than the first phase, the second phase comprising more than 80% QAP and less than 20% water, the first phase present at greater than 5 wt.% of the reaction mixture, and comprising TAS and alkylating agent;
 not allowing the water content of the CSTR to exceed 16% of the reactants continuously added to the CSTR; and

continuously removing, only second phase liquid from the CSTR.

2. The method of claim 1 wherein the TAS is selected from the group consisting of: N,N-dimethylaminoethyl acrylate (DMAEA), any N,N-dialkylaminoalkyl (meth)acrylates, (meth)acrylamides, and any combination thereof.

5

3. The method of claim 1 wherein QAP produced is quaternized N,N-dimethylaminoethyl acrylates (DMAEA·MCQ).

10

4. The method of claim 1 in which the alkylating group is selected from the group consisting of: methyl chloride, benzyl chloride, cetyl chloride, dimethyl sulfate, and any other commonly known alkylating agent, and any combination thereof.

15

5. The method of claim 1 in which the second phase is removed from the CSTR from the bottom of the CSTR.

6. The method of claim 1 in which additional reaction of residual TAS in the removed second phase liquid is facilitated by adding additional alkylating agent.

20

7. The method of claim 1 in which the alkylating agent is removed by purging the second phase liquid with a gas flow.
8. The method of claim 1 in which the alkylating agent is removed by passing it through a stripping column.

25

9. The method of claim 1 in which the alkylating agent is removed by passing it into the top of a stripping column and passing a gas into the bottom of the stripping column, the gas selected from the list consisting of: air, nitrogen, and any combination thereof.
10. The method of claim 1 in which the temperature in the CSTR is maintained at between 40-60°C and/or the pressure in the CSTR is maintained at 206.8-689.5 kPa (30-100 psi).

30

11. The method of claim 1 in which the second phase liquid is removed from the bottom of the CSTR at a location in which shear induced mixing of TAS and QAP is low relative to other locations within the CSTR.
12. The method of claim 1 further comprising the step of adding butylated hydroxytoluene (BHT) and copper to the produced QAP, and optionally further comprising the step of adding monomethylether hydroquinone (MEHQ) to the produced QAP.

35

13. The method of claim 1 in which the produced QAP has less than 300 ppm of TAS within it.
14. The method of claim 1 further comprising the steps of:

40

- facilitating the reaction of any residual TAS in the second phase liquid;
- stripping the alkylating agent from the second phase liquid; and
- adding water to the second phase liquid to obtain desired physical properties.

Patentansprüche

45

1. Verfahren zum kontinuierlichen Herstellen eines quartären Aminprodukts (QAP), umfassend die folgenden Schritte:

50

- kontinuierliches Zuführen von Reaktionsmitteln in einen Ausschwemmreaktor, wobei die Reaktionsmittel ein tertiäres Aminsubstrat (TAS), Wasser und ein Alkylierungsmittel enthalten;
- Aufrechterhalten von Bedingungen im Ausschwemmreaktor, sodass sich zwei im Wesentlichen unterschiedliche Flüssigphasen bilden, eine erste Phase und eine zweite Phase, wobei die zweite Phase dichter als die erste Phase ist und die zweite Phase mehr als 80 % QAP und weniger als 20 % Wasser enthält, wobei die erste Phase bei mehr als 5 Gew.-% des Reaktionsgemisch vorliegt, und TAS und ein Alkylierungsmittel enthält;

55

- Nichterlauben des Wassergehalts des Ausschwemmreaktors, 16 % der Reaktionsmittel, die dem Ausschwemmreaktor kontinuierlich zugeführt werden, zu überschreiten; und
- kontinuierliche Entnahme von nur der Flüssigkeit der zweiten Phase aus dem Ausschwemmreaktor.

2. Verfahren nach Anspruch 1, wobei das TAS aus der Gruppe gewählt wird, bestehend aus: N,N-Dimethylamino-

thylacrylat (DMAEA), jedes N,N-Dialkylaminoalkyl-(meth)-acrylate, (Meth-)Acrylamide und jede Kombination davon.

3. Verfahren nach Anspruch 1, wobei das erzeugte QAP quaternisierte N,N-Dimethylaminoethylacrylate (DMAEA·MCQ) ist.

5

4. Verfahren nach Anspruch 1, wobei die alkylierende Gruppe aus der Gruppe gewählt wird, bestehend aus: Methylchlorid, Benzylchlorid, Cetylchlorid, Dimethylsulfat und jedem anderen gemeinhin bekannten Alkylierungsmittel und jeder Kombination davon.

10 5. Verfahren nach Anspruch 1, wobei die zweite Phase vom Boden des Ausschwemmreaktors entfernt wird.

6. Verfahren nach Anspruch 1, wobei zusätzliche Reaktion des restlichen TAS in der entfernten Flüssigkeit der zweiten Phase erleichtert wird durch Hinzugabe zusätzlichen Alkylierungsmittels.

15

7. Verfahren nach Anspruch 1, wobei das Alkylierungsmittel entfernt wird durch Spülen der Flüssigkeit der zweiten Phase mit einem Gasfluss.

20

8. Verfahren nach Anspruch 1, wobei das Alkylierungsmittel entfernt wird, indem es durch eine Stripperkolonne gegeben wird.

9. Verfahren nach Anspruch 1, wobei das Alkylierungsmittel entfernt wird, indem es oben in eine Stripperkolonne gegeben wird und Gas in den Boden der Stripperkolonne geleitet wird; wobei das aus der Liste gewählte Gas besteht aus: Luft, Stickstoff und jeder Kombination davon.

25

10. Verfahren nach Anspruch 1, wobei die Temperatur des Ausschwemmreaktors zwischen 40 und 60 °C und/oder der Druck im Ausschwemmreaktor auf (30-100 psi) 206.8-689.8 kPa gehalten wird.

11. Verfahren nach Anspruch 1, wobei die Flüssigkeit der zweiten Phase vom Boden des Ausschwemmreaktors an einer Stelle entfernt wird, an der scherinduziertes Mischen von TAS und QAP im Verhältnis zu anderen Stellen im Ausschwemmreaktor gering ist.

30

12. Verfahren nach Anspruch 1, ferner umfassend den Schritt des Hinzugebens von Butylhydroxytoluol (BHT) und Kupfer zum erzeugten QAP und optional ferner umfassend den Schritt des Hinzugebens von Monomethyletherhydrochinon (MEHQ) zum erzeugten QAP.

35

13. Verfahren nach Anspruch 1, wobei das erzeugte QAP weniger als 300 ppm TAS enthält.

14. Verfahren nach Anspruch 1, ferner die folgenden Schritte umfassend:

40

Erleichtern der Reaktion von restlichem TAS in der Flüssigkeit der zweiten Phase; Abscheiden des Alkylierungsmittels aus der Flüssigkeit der zweiten Phase; und Hinzugeben von Wasser zur Flüssigkeit der zweiten Phase, um die gewünschten physikalischen Eigenschaften zu erhalten.

45

Revendications

1. Procédé de production continue d'un produit amine quaternaire (QAP) comprenant les étapes consistant à :

50

charger en continu des réactifs dans un réacteur à cuve agitée en continu (CSTR), les réactifs comprenant un substrat amine tertiaire (TAS), de l'eau et un agent alkylant ; maintenir les conditions dans le CSTR telles que deux phases liquides distinctes forment une première phase et une seconde phase, la seconde phase étant plus dense que la première phase, la seconde phase comprenant plus de 80 % de QAP et moins de 20 % d'eau, la première phase étant présente à plus de 5 % en poids du mélange réactionnel, et comprenant le TAS et un agent alkylant ; empêcher la teneur en eau du CSTR de dépasser 16 % des réactifs ajoutés en continu au CSTR ; et supprimer continuellement le liquide de seconde phase seulement du CSTR.

2. Procédé de la revendication 1 dans lequel le TAS est sélectionné dans le groupe constitué des éléments suivants : acrylate de N,N-diméthylaminoéthyle (DMAEA), tous (méth)acrylates de N,N-dialkylamino-alkyle, (méth)acrylamides et toute combinaison de ceux-ci.
- 5 3. Procédé de la revendication 1 dans lequel le QAP produit est des N,N-diméthylaminoéthylacrylates quaternisés (DMAEA·MCQ)
4. Procédé de la revendication 1 dans lequel le groupe alkylant est sélectionné dans le groupe constitué de : chlorure de méthyle, chlorure de benzyle, chlorure de cétyle, sulfate de diméthyle, et tout autre agent communément appelée 10 agent alkylant, et toute combinaison de ceux-ci.
5. Procédé de la revendication 1 dans lequel la seconde phase est supprimée du CSTR par le bas du CSTR.
- 15 6. Procédé de la revendication 1 dans lequel une réaction supplémentaire du TAS résiduel dans le liquide de seconde phase supprimé est facilitée par l'ajout d'un autre agent alkylant.
7. Procédé de la revendication 1 dans lequel l'agent alkylant est supprimé en purgeant le liquide de seconde phase avec le flux de gaz.
- 20 8. Procédé de la revendication 1 dans lequel l'agent alkylant est supprimé en le faisant passer à travers une colonne de stripping.
9. Procédé de la revendication 1 dans lequel l'agent alkylant est supprimé en le faisant passer dans le haut d'une 25 colonne de stripping et en faisant passer un gaz par le bas de la colonne de stripping, le gaz sélectionné dans la liste étant constitué des éléments suivants : air, azote et toute combinaison de ceux-ci.
10. Procédé de la revendication 1 dans lequel la température dans le CSTR est maintenue entre 40 et 60 °C et/ou la pression dans le CSTR est maintenu à 206,8-689,8 kPa (30-100 psi).
- 30 11. Procédé de la revendication 1 dans lequel le liquide de seconde phase est supprimé par le bas du CSTR à un emplacement dans lequel le cisaillement produit par le mélange du TAS et du QAP est relativement faible par rapport à d'autres emplacements à l'intérieur du CSTR.
12. Procédé de la revendication 1 comprenant en outre l'étape consistant à ajouter de l'hydroxytoluène butylé (BHT) 35 et du cuivre au QAP produit, et comprenant en outre, optionnellement, l'étape consistant à ajouter de l'éther monométhyle d'hydroquinone (MEHQ) au QAP produit.
13. Procédé de la revendication 1 dans lequel le QAP produit contient moins de 300 ppm de TAS.
- 40 14. Procédé de la revendication 1 comprenant en outre l'étape consistant à :
 - faciliter la réaction de tout TAS résiduel dans le liquide de seconde phase ;
 - éliminer l'agent alkylant du liquide de seconde phase ; et
 - ajouter de l'eau au liquide de seconde phase pour obtenir les propriétés physiques voulues.

45

50

55

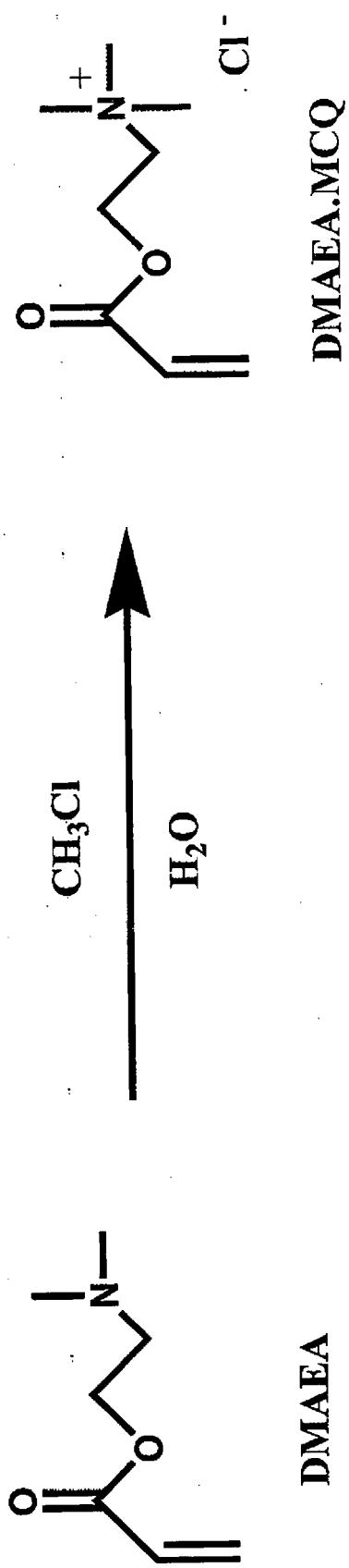


FIGURE 1

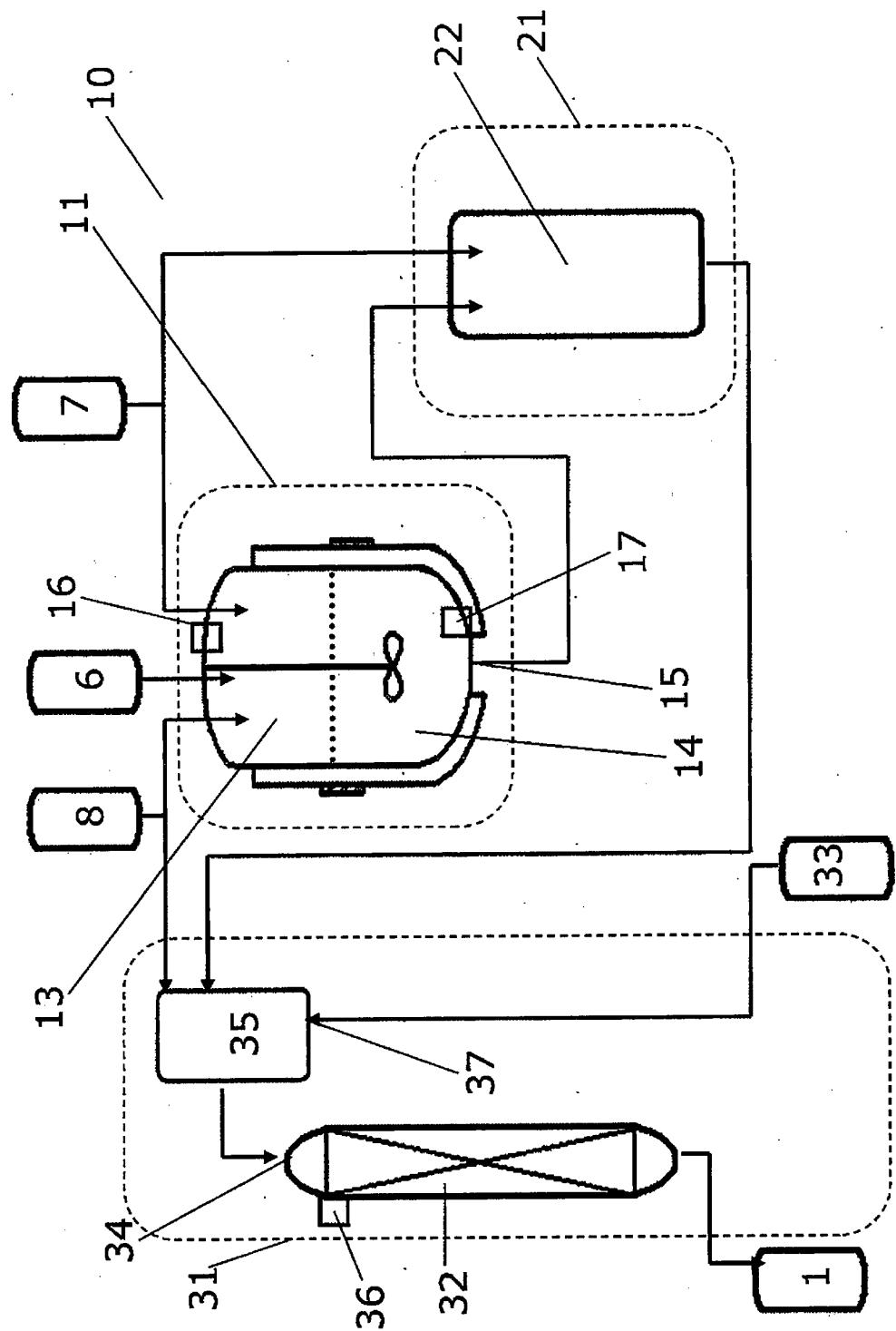


FIGURE 2

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 2010298549 A1 [0001] [0012]
- JP 2003342244 A [0002]
- JP 2004010508 A [0002]
- JP 2004155669 A [0002]
- JP 7206790 A [0002]
- US 6683203 B [0002]
- CN 1296942 [0002]
- CN 1276367 [0002]
- US 4520210 A [0003]
- US 5260480 A [0004]