(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10) 申请公布号 CN 104940042 A
(43) 申请公布日 2015.09.30

(21) 申请号 201510340496.1
(22) 申请日 2015.06.18
(71) 申请人 杭州孔政化妆品有限公司
 地址 310018 浙江省杭州市杭州经济技术开发
 区八号大街13号北房标准厂房西侧
 2幢2楼
(72) 发明人 施昌松
(74) 专利代理机构 广州三环专利代理有限公司
 44202
 代理人 韩旭 张治思

(51) Int. Cl.
 A61K 8/66(2006.01)
 A61K 8/92(2006.01)

(54) 发明名称
 一种低刺激洗浴产品配方组合及其制备方法

(57) 摘要
 本发明涉及一种低刺激洗浴产品配方组合及其制备方法。包括以下重量百分含量的
 组分:富脂增稠剂1.0-4.0%,富脂流变改良剂2.0-6.0%,阴离子表面活性剂3.5-10.0%,两性
 表面活性剂2.4-8.0%,添加剂0.01-5.0%,余量为水。制备方法为往纯水中加入阴离子表面活性
 剂,加温后加入富脂增稠剂至溶解完全;再加入两性表面活性剂和余量的纯水,在45℃或以下加
 入添加剂和富脂流变改良剂,搅拌至混合均匀。本发明通过富脂增稠剂与富脂流变改良剂相互协
 同,提供自身增稠及流变改良,提高流变性,同时作为保湿滋养或卸妆富脂成分,提供富脂作用,从
 而减少产品的脱脂性,降低表面活性剂的使用量,规避高表活体系的脱脂乳化能力,降低刺激,提升
 产品温和性,实现流变改良,洁净富脂方面的综合平衡。
1. 一种低刺激洗浴产品配方组合，其特征在于，包括以下重量百分含量的组分：富脂增稠剂 1.0～4.0%、富脂流变改善剂 2.0～6.0%、阴离子表面活性剂 3.5～10.0%，两性表面活性剂 2.4～8.0%，添加剂 0.01～5.0%，余量为水。

2. 根据权利要求 1 所述低刺激洗浴产品配方组合，其特征在于，所述富脂增稠剂为PEG-120 甲基葡糖倍半硬脂酸酯、PEG-120 甲基葡糖二硬脂酸酯、PEG-120 甲基葡糖三硬脂酸酯、PEG-120 甲基葡糖三异硬脂酸酯、PEG-150 硬脂酸酯或 PEG-150 液戊四醇四硬脂酸酯中的至少一种。

3. 根据权利要求 1 所述低刺激洗浴产品配方组合，其特征在于，所述富脂流变改善剂为聚山梨醇酯-20、聚山梨醇酯-21、聚山梨醇酯-40、PEG-40 失水山梨醇月桂酸酯、PEG-80 失水山梨醇月桂酸酯中的至少一种。

4. 根据权利要求 1 所述低刺激洗浴产品配方组合，其特征在于，所述阴离子表面活性剂为月桂醇聚醚硫酸酯钠。

5. 根据权利要求 1 所述低刺激洗浴产品配方组合，其特征在于，所述两性表面活性剂包括甜菜碱类的衍生物和咪唑啉类衍生物；所述甜菜碱类的衍生物为月桂基甜菜碱、月桂酰胺丙基甜菜碱、椰油基甜菜碱、椰油酰胺丙基甜菜碱、月桂酰胺丙基羟磺基甜菜碱或椰油酰胺丙基羟磺基甜菜碱中的至少一种；所述咪唑啉类衍生物为烷基硫代乙酸钠、烷基酰胺二乙硫化钠、月桂酰胺两性基乙酸钠或月桂酰胺两性基二乙酸钠中的至少一种；所述甜菜碱类的衍生物和所述咪唑啉类衍生物的重量比为 0.5：1.0～2.0：1.0。

6. 根据权利要求 1 所述低刺激洗浴产品配方组合，其特征在于，所述添加剂包括螯合剂、pH 调节剂、防腐剂、芳香剂或增溶剂中的至少一种。

7. 根据权利要求 3 所述低刺激洗浴产品配方组合，其特征在于，所述富脂流变改善剂为聚山梨醇酯-20 和 PEG-80 失水山梨醇月桂酸酯；所述聚山梨醇酯-20 和 PEG-80 失水山梨醇月桂酸酯的重量百分含量为 2.5～6.0%。

8. 根据权利要求 5 所述低刺激洗浴产品配方组合，其特征在于，所述两性表面活性剂为椰油酰胺丙基甜菜碱和月桂酰胺两性基乙酸钠。

9. 根据权利要求 1 所述低刺激洗浴产品配方组合，其特征在于，包括以下重量百分含量的组分：富脂增稠剂 2.5%，富脂流变改善剂 3.5%，阴离子表面活性剂 8.4%，两性表面活性剂 4.8%，添加剂 1.1%，余量为纯水。

10. 根据权利要求 1-9 任一项所述低刺激洗浴产品配方组合的制备方法，其特征在于，包括以下步骤：

 步骤一，在搅拌的条件下往纯水中加入阴离子表面活性剂，升温至 80～85℃保温至物料溶解完全；

 步骤二，再加入富脂增稠剂至溶解完全；

 步骤三，加入两性表面活性剂，搅拌混合均匀后加入剩余的纯水；

 步骤四，在 45℃或以下，加入添加剂和富脂流变改善剂，搅拌至完全混合均匀。
一种低刺激洗浴产品配方组合及其制备方法

技术领域
[0001] 本发明涉及日用化学品技术领域, 尤其是在一种配方增稠体系与流变改良体系相
互协同基础上的低刺激洗浴产品配方组合及其制备方法。

背景技术
[0002] 日常的毛发、肌肤清洁自然离不开洗浴产品的使用, 为了达到产品清洁与护理
effect, 一般产品配方结构较为复杂, 10 种、15 种物料组合成为了一个配方体系是常态。一
般包含阴离子表面活性剂、两性表面活性剂、非离子表面活性剂、毛发或肌肤调理剂、保湿
剂、富脂剂、电解质粘度调节剂、芳香剂、防腐剂等等。
[0003] 目前产品配方中过多的物料组合, 尤其是构建清洁系统的表面活性剂体系愈是复
杂往往产品物料所带来的隐患潜在风险愈大。大多数的表面活性剂脱脂能力均较强, 对皮
肤有一定的刺激性。而且它易在皮肤或毛发的表面形成吸附膜，残留在皮肤或毛发上，从
而带来肌肤的刺激性。目前解决这一问题的主要办法是更换成刺激性相对比较小表面活性
剂，但是如果常规表面活性剂的用量都比较大，那么其脱脂能力和刺激性降低就相对比较
少, 没有从根本上解决问题。
[0004] 因此怎样才能围绕产品质量标准, 配方功能诉求, 在确保形成胶束浓度所需的配
方基本组分基础上, 保障产品使用过程中的乳化清洁作用, 平衡配方物料使用, 减少物料所
带来的隐患潜在风险, 降低产品脱脂力、刺激性, 提升配方的温和性, 这是低刺激洗浴产品
亟待解决的问题。

发明内容
[0005] 本发明第一目的在于提供一种低刺激洗浴产品配方组合, 解决现有洗浴产品表面
活性剂用量过大, 脱脂作用过强, 刺激性大, 不够温和等问题。
[0006] 为了实现上述的目的, 采用如下的技术方案：包括以下重量百分含量的组分: 富
脂增稠剂 1.0-4.0%, 富脂流变改良剂 2.0-6.0%, 阴离子表面活性剂 3.5-10.0%, 两性表
面活性剂 2.4-8.0%, 添加剂 0.01-5.0%, 余量为水。
[0007] 富脂增稠剂与富脂流变改良相互协同, 提供较为优异的流变曲线, 再与两性表面
活性剂配合使用, 增进产品泡沫结构, 改善使用肤感, 协同增稠以及提升产品的综合温和性。
[0008] 富脂增稠剂属于非离子增稠剂, 主要用于表面活性剂水溶液体系中, 具有增稠和
富脂作用。这类增稠剂不容易水解, 在宽的 pH 和温度范围内粘度稳定。一般相对分子质量
都较大, 具有一些高分子化合物的性能。增稠理是在水相中形成三维水化网络, 从而将
表面活性剂胶束包含进去。但产品使用性能受温度影响较大, 极易形成果冻状的外观, 使用
时易滑落, 且不易打开, 因此, 一般添加量在 0.01 ~ 0.5% 之内, 目前很少见大量添加使用
案例。本发明利用富脂增稠剂与富脂增稠流变改良相互协同, 提供较为优异的流变曲线, 为
产品的使用带来方便。当富脂增稠剂的用量达到 1% 以上, 它可以体现良好的保湿富脂
作用，具有更好的润肤和保湿作用。当富脂增稠流变改良重量百分含量达到 2.0%或以上时，他们不仅能有效增稠，且能较好的降低配方刺激性，带来更为理想的富脂效果。

[0009] 进一步的，所述富脂增稠剂为 PEG-120 甲基葡糖倍半硬脂酸酯、PEG-120 甲基葡萄二油酸酯、PEG-120 甲基葡萄三油酸酯、PEG-120 甲基葡萄三硬脂酸酯、PEG-150 硬脂酸酯、PEG-150 甲基葡萄四硬脂酸酯中的至少一种。这类增稠剂，均带有不同聚合度的聚乙二醇结构，并在分子端链连接不同结构的酯基，使其具有一般高分子化合物的性能与油水双亲结构。该类物质通过在水相中形成三维水化网络，从而将表面活性剂胶束包含进去，体现产品的增稠性能。利用 PEG-150 硬脂酸酯等作为增稠剂的基础上，通过变性加入，尤其是在 1.0%～2.5%左右加入的条件下，它的聚乙二醇结构与硬脂酸酯结构均可以体现较为良好的保湿富脂作用。

[0010] 进一步的，所述富脂流变改良剂为聚山梨醇酯-20、聚山梨醇酯-21、聚山梨醇酯-40、PEG-40 失水山梨醇月桂酸酯、PEG-80 失水山梨醇月桂酸酯中的至少一种。这类富脂流变改良剂可以降低刺激性的两性表面活性剂。

[0011] 进一步的，所述阴离子表面活性剂为月桂醇聚醚硫酸酯钠。所述月桂醇聚醚硫酸酯钠的环氧聚合度为 1.5～2.5，它们能提供较好的泡沫、乳化、增稠效果。

[0012] 进一步的，所述两性表面活性剂包括甜菜碱类的衍生物和咪唑啉类衍生物；所述甜菜碱类的衍生物为月桂基甜菜碱、月桂酰胺丙基甜菜碱、椰油基甜菜碱、椰油酰胺丙基甜菜碱、月桂酰胺丙基羟基磺基甜菜碱或椰油酰胺丙基羟基磺基甜菜碱中的至少一种；所述咪唑啉类衍生物为硫酸二性基乙酸钠、月桂酰胺二性基乙酸钠或月桂酰胺二性基乙酸钠中的至少一种；所述甜菜碱类的衍生物和咪唑啉类衍生物重量比为 0.5:1.0～2.0:1.0。两种或以上的两性表面活性剂配合使用，再加上增稠剂与流变改良相互协同，可以进一步增进产品泡沫结构、改善使用肤感、协同增稠以及提升产品的综合温和性能。当甜菜碱类的衍生物和咪唑啉类衍生物重量比为 0.5:1.0～2.0:1.0 时，可以使整个体系表现出较好的胶束结构与较低的眼角膜刺激。易于协助配方增稠与降低整个配方体系的刺激性。

[0013] 进一步的，所述添加剂包括螯合剂、PH 调节剂、防腐剂、芳香剂、增溶剂中的至少一种。所述的螯合剂包括乙二胺四乙酸、乙二胺四乙酸 TEA 盐、EDTA 二钠和 EDTA 四钠中的至少一种；所述的 PH 调节剂包括柠檬酸、谷氨酸、精氨酸或乳酸中的至少一种；所述增溶剂可以是 PEG-40 氢化蓖麻油或者其它。它们均符合化妆品卫生规范的要求，且需符合《已使用化学物质名录》。

[0014] 进一步的，所述富脂流变改良剂为聚山梨醇酯-20 和 PEG-80 失水山梨醇月桂酸酯；所述聚山梨醇酯-20 和 PEG-80 失水山梨醇月桂酸酯的重量百分含量为 2.5%～6.0%。当聚山梨醇酯-20 和 PEG-80 失水山梨醇月桂酸酯用量达到 2.5%或以上时，他们不仅能使有效降低配方刺激性，同时也是性能优良的富脂剂、流变改良剂，尤其是与 PEG 类增稠剂如 PEG-120 甲基葡糖倍半硬脂酸酯、PEG-120 甲基葡糖二油酸酯、PEG-120 甲基葡糖三油酸酯、PEG-120 甲基葡糖三硬脂酸酯、PEG-150 硬脂酸酯、PEG-150 甲基葡萄四硬脂酸酯中的相关组分混合使用，可以在通常使用条件下，极大的改善由于结构增稠带来的果冻状外观，提供较为优异的使用质感。

[0015] 进一步的，所述两性表面活性剂为椰油酰胺丙基甜菜碱和月桂酰胺二性基乙酸钠。
[0016] 更进一步的，包括以下重量百分含量的组分：富脂增稠剂 2.5%，富脂流变改良剂 3.5%，阴离子表面活性剂 8.4%，两性表面活性剂 4.8%，添加剂 1.1%，余量为纯水。

[0017] 本发明第二目的是在于提供一种低刺激洗浴产品配方组合的制备方法。

[0018] 主要包括以下步骤：步骤一，在搅拌的条件下将纯水中加入阴离子表面活性剂，升温至 80～85℃，保温至物料溶解完全；

[0019] 步骤二，再加入富脂增稠剂至溶解完全；

[0020] 步骤三，加入两性表面活性剂，搅拌混合均匀后，加入剩余的纯水；

[0021] 步骤四，在 45℃或以下，加入添加剂和富脂流变改良剂，搅拌至完全混合均匀。

[0022] 本发明最优配方为：月桂醇聚醚硫酸酯钠 8.4%，椰油酰胺丙基甜菜碱 2.4%，月桂酰两性基乙酸钠 2.4%，PEG-150 硬脂酸酯 2.5%，PEG-40 橄榄油 5.5%，PEG-80 失水山梨醇月桂酸酯 2.5%，聚山梨醇酯 -201%，柠檬酸 0.3%，卡松 0.0012%，香精 0.3%，余量为纯水。

[0023] 制备方法为：在洁净的加热搅拌槽中加入配方量的 40%的纯水，打开搅拌，加入月桂醇聚醚硫酸酯钠，并升温至 80～85℃，保温至物料溶解完全，加入 PEG-150 硬脂酸酯，至溶解完全，加入椰油酰胺丙基甜菜碱，搅拌混合均匀后，加入剩余的纯水，然后依次加入月桂酰两性基乙酸钠、柠檬酸，在 45℃或以下，加入香精、PEG-40 橄榄油、PEG-80 失水山梨醇月桂酸酯和聚山梨醇酯 -20 的混合组分以及防腐剂。继续搅拌至物料完全混合均匀。

[0024] 配方师在进行配方设计时通常要考虑配方最终产品的流变形态，适当的流变形态能给产品带来美感，便于产品货架展示与消费者使用，对配方的稳定性也有一定的影响。增稠剂可以提高配方产品黏度或稠度，一般增稠剂加入量都不大，但是能够大幅提高产品的黏度或稠度。

[0025] 目前增稠剂有很多，在具体配方中如何选择合适的增稠剂要考虑到很多方面的因素：配方主体是选择增稠剂的首要考虑因素，什么样的体系决定采用什么样的增稠剂；其次是产品形态，产品形态要求不同类型的增稠剂，有些要求牛顿流体，有些要求塑性流体，根据不同的需要采用不同的增稠剂；在最终产品中增稠剂的比例、配方的成本也是增稠剂选择的重要因素，如果配方的成本让生产商和消费者都难以承受，那么这配方是没有应用价值的，平衡增稠剂的效果及其成本是非常重要的。另外配方的理化指标也是选择增稠剂必须考虑的，比如配方的稳定性、泡沫等，这些都是配方所关注的一些重要因素，有些增稠剂虽然增稠效果理想，但货架稳定性差或是综合配伍性差，也不太适合使用。

[0026] 目前最常用的增稠剂有聚丙烯酸类增稠剂、纤维素类增稠剂和电解质类增稠剂。

[0027] 聚丙烯酸类增稠剂自 1953 年美国公司 Carborner 934 引入市场，至今已有近 60 多年的历史了。聚丙烯酸类增稠剂的增稠机理有两种，即中和增稠与氢键缔合增稠。中和增稠是将酸性的聚丙烯酸类增稠剂中和，使其分子离子化并沿着聚合物的主链产生负电荷，同电荷之间的排斥促使分子伸直张开形成网状结构达到增稠效果。氢键缔合增稠是聚丙烯酸类增稠剂与水结合形成水合分子，再与质量分数为 10% -20% 的羟基给予体结合，使其卷曲的分子在水系统中解开形成网状结构达到增稠效果。但耐离子性差，与离子配伍存在不协调的可能，而且还有聚丙烯酸胶残留的风险，不适合广泛使用。

[0028] 纤维素类增稠剂，如乙基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维
素等。由于它是天然有机物，通常含有重复的葡萄糖苷单元，每个葡萄糖苷单元含有3个羟基，通过这些羟基可以形成各种各样的衍生物。纤维素类增稠剂通过水合膨胀的长链而增加产品稠度。纤维素增稠的体系表现明显的假塑性流变形态，但由于受透明度的影响或长期存放产品可能会发生降解使粘度会有较大波动。

[0029] 电解质增稠剂是洗浴类产品的主要增稠剂，通过电解质的离子效应，影响表面活性剂的胶束。它通过改变胶束状态使胶束的缔合数增加，导致球形胶束向棒状胶束转化，使运动阻力增大，从而使体系的粘稠度增加。但当电解质过量时会影响胶束结构降低运动阻力，从而使体系粘稠度降低，这就是所说的盐析效应，产生盐析效应是很难再通过配方结构的调控来实现胶束缔合数的增加。这一点对于相对较低的表面活性剂体系来讲，显得风险相对较高。同时高浓度的氯化钠体系，会带来钠离子的透皮渗透吸收，增强对肌肤的刺激。

[0030] 与现有技术相比，本发明通过增稠与流变改良相互协同基础上利用其自身增稠剂以及流变改良剂作为富脂成分，从而减少产品的脱脂性，降低表面活性剂的使用量，规避高表活体系的脱脂乳化能力、降低刺激，提升产品温和性，实现流变改良、洁净富脂方面的综合平衡。

具体实施方式
[0031] 为使本发明的目的、技术方案和优点更加清楚，下面将对本发明作进一步地详细描述。
[0032] 表1为实施例1-10的各组分及其重量百分含量。表2为实施例11-15的各组分及其重量百分含量。
[0033] 表1为实施例1-10的各组分及其重量百分含量
[0034]
<table>
<thead>
<tr>
<th>序号</th>
<th>组分</th>
<th>实施例（重量百分含量%）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>月桂醇聚醚硫酸酯钠</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>椰油酰胺丙基甜菜碱</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>椰油酰两性基乙酸钠</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>PEG-150硬脂酸酯</td>
<td>2.8</td>
</tr>
<tr>
<td>5</td>
<td>PEG-40氢化蓖麻油</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>PEG-80失水山梨醇月桂酸酯</td>
<td>4.0</td>
</tr>
<tr>
<td>7</td>
<td>柠檬酸</td>
<td>适量</td>
</tr>
<tr>
<td>8</td>
<td>防腐剂</td>
<td>适量</td>
</tr>
<tr>
<td>9</td>
<td>芳香剂</td>
<td>适量</td>
</tr>
<tr>
<td>10</td>
<td>水</td>
<td>至100</td>
</tr>
</tbody>
</table>

表2 为实施例11-15的各组分及其重量百分含量
表1

<table>
<thead>
<tr>
<th>序号</th>
<th>组分</th>
<th>实施例（重量百分含量%）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>月桂醇聚醚硫酸酯钠</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>蔗油酰胺丙基甜菜碱</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>月桂醇两性基乙酸钠</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>PEG-150 硬脂酸酯</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>PEG-80 月水梨醇月桂酸酯</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>聚山梨醇酯-20</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>PEG-40 氢化蓖麻油</td>
<td>适量</td>
</tr>
<tr>
<td>8</td>
<td>柠檬酸</td>
<td>适量</td>
</tr>
<tr>
<td>9</td>
<td>卡松</td>
<td>适量</td>
</tr>
<tr>
<td>10</td>
<td>芳香剂</td>
<td>适量</td>
</tr>
<tr>
<td>11</td>
<td>水（至40）</td>
<td>至100</td>
</tr>
</tbody>
</table>

[0037] 实施例 1-15 所述低刺激洗浴产品配方组合的制备方法如下：在洁净的加热搅拌锅中加入配方量的40%的纯水，打开搅拌，加入月桂醇聚醚硫酸酯钠，并升温至80～85℃，保温至物料溶解完全，加入PEG-150 硬脂酸酯，至溶解完全，加入蔗油酰胺丙基甜菜碱，搅拌混合均匀后，加入剩余的纯水，然后依次加入蔗油酰胺两性基乙酸钠（或月桂醇两性基乙酸钠）、柠檬酸，在45℃或以下，加入香精、PEG-40 氢化蓖麻油、PEG-80 月水梨醇月桂酸酯、聚山梨醇酯-20 以及防腐剂。继续搅拌至物料完全混合均匀，取样检测，半成品理化指标合格后，停止搅拌、过滤出料，进行产品陈化及卫生指标检验。

[0038] 该半加热混合工艺较传统工艺相比，依配方月桂醇聚醚硫酸酯钠与 PEG-150 硬脂酸酯加热溶解所需的纯水量进行加热体系的设计，从而节约 50～60%的加热热能，并减少由于体系加热而带来的降温能耗以及时间，提升生产效率30%以上，是一种节能减排的绿色生产工艺，在确保产品质量、工艺需求的基础上，符合可持续化的发展战略。并且在保障配方使用性能与质量稳定的基础上，简化物料配方品种以及安全风险物质（如防腐剂）的用量，进一步提升产品的温和性质，当用于儿童或婴幼儿产品配方设计中，更能符合《儿童（含婴幼儿）化妆品申报与审评指南》，是符合时代发展的优化选择。

[0039] 卫生指标检测：通过对产品的理化指标检测；产品各项指标均符合 GB/T29679 和 QB/T 1994 的各项标准。优于配方组分相对简单，更能符合《儿童（含婴幼儿）化妆品申报与审评指南》，是符合时代发展的优化选择。

[0040] 在产品使用性能上：分别取100 套发明配方，选取 100 名受试者（其中男性 50 名，女性 50 名）进行对比测试，并以产品质感、起泡速度、泡沫量、用后滋润感、产品温和性 5 项
指标展开测试，积分结果显示：平均满意率 90.92%，大都表示产品温和性刺激性小，品质感、起泡速度、泡沫量、用后滋润感都很满意。

【0041】本发明并不限于以上实施例，实施例1-15中还包括以下等同替换。PEG-150 硬脂酸酯可以替换成 PEG-120 甲基葡糖倍半硬脂酸酯、PEG-120 甲基葡糖二油酸酯、PEG-120 甲基葡糖三油酸酯、PEG-120 甲基葡糖三异硬脂酸酯、PEG-150 硬脂酸酯或 PEG-150 季戊四醇四硬脂酸酯中的至少一种或它们的组合。

【0042】PEG-80 失水山梨醇月桂酸酯可替换成聚山梨醇酯-20、聚山梨醇酯-21、聚山梨醇酯-40、PEG-40 失水山梨醇月桂酸酯、PEG-80 失水山梨醇月桂酸酯中的至少一种或它们的组合。

【0043】椰油酰胺丙基甜菜碱可以替换成月桂基甜菜碱、月桂酰胺丙基甜菜碱、椰油基甜菜碱、椰油酰胺丙基甜菜碱、月桂酰胺丙基羟磺基甜菜碱、椰油酰胺丙基羟磺基甜菜碱中的至少一种或它们的组合。

【0044】月桂酰两性基乙酸钠可以替换成橄榄油酰两性基乙酸钠、椰油酰两性基乙酸钠、月桂酰两性基乙酸钠、月桂酰两性基乙二酸二钠中的至少一种或它们的组合。

【0045】椰油酰两性基乙酸钠可以替换成橄榄油酰两性基乙酸钠、椰油酰两性基乙酸钠、月桂酰两性基乙酸钠、月桂酰两性基乙二酸二钠中的至少一种或它们的组合。

【0046】柠檬酸可以替换成谷氨酸、精氨酸或乳酸。

【0047】以上所揭露的仅为本发明一种较佳实施例而已，当然不能以此来限定本发明之权利范围，因此依本发明权利要求所作的等同变化，仍属本发明所涵盖的范围。