Abstract: The present invention relates to a coated cutting tool and a method of making such cutting tool, wherein the tool comprises a substrate and a surface coating deposited on the substrate and covering at least a portion of the substrate, the surface coating having a thickness \(T_c \). The substrate comprises a plurality of recesses into the substrate within a patterned surface area within the coated portion of the substrate wherein each recess is at least partly filled by the surface coating.

Fig 1
Published:

— with international search report (Art. 21(3))
Coated cutting tool with patterned surface area

Technical field

The present invention relates to coated cutting tools suitable for turning, milling, drilling or other chip forming machining methods.

5

Background

Coating of cemented carbide cutting tools with hard refractory coatings have dramatically improved wear resistance and cutting performance of the tools, and thereby increased tool life and productivity in machining operations. In order to further improve the wear resistance and the performance of the tools they are typically optimized with respect to material properties of the cemented carbide substrate and the coating and with respect to the geometry of the tool for a particular application. The optimization of the material properties is typically aiming at diminishing the predominant wear mechanism of the particular application and the optimization of the geometry of the cutting tools is typically aiming at improvement of the cutting process, such as the chip removal or the roughness of the work piece. Hence, a positive effect accomplished by one optimization may have no or negative effect on other properties of the cutting tool and/or the cutting process.

For example, coated cemented carbide cutting tool insert often comprise a coating with an inner layer consisting of one or more sub-layers selected from titanium carbide, titanium nitride, titanium carbonitride, titanium oxycarbide and titanium oxycarbonitride sub-layers, and an outer alumina layer. The alumina layer is known to improve resistance to crater wear on the rake face of the cutting tool insert, whereas on the flank face of the cutting tool insert the alumina has less attractive properties and the TiCN contributes with high abrasive wear resistance. Since the crater wear on the rake face in many applications is the fatal wear mechanism the properties of the alumina layer are prioritized. One way to improve the crater wear resistance is to increase the thickness of the alumina layer. However, this optimization with respect to crater wear is at the expense of other properties, such as resistance to flaking of the coating, in particular on the edge line or the flank face.

As one solution to this different post treatments have been used. By way of example, US 5,776,588 discloses a cutting tool coated with a multi-layered wear resistant coating including e.g.
an innermost TiCN layer, an intermediate Al₂O₃ layer and an outermost TiN layer. The TiN layer and the Al₂O₃ layer are removed by mechanical means such as a vibratory tumbling, brushing, shot blasting, grinding from the edge line of the cutting tool, so that the innermost TiCN layer is exposed, in order to improve the resistance to flaking of the coating at the edge line. In another example, US 7,431,747 discloses a cutting tool coated with a multi-layered wear resistant coating including an alumina layer deposited on a hard material layer. The alumina layer is selectively removed by means of laser treatment from at least a portion of the flank face so that the underlying hard material layer is exposed in order to simultaneously avoid increase in the width of the wear mark on the flank face and retention of the resistance to crater wear on the rake face.

Albeit these post treatments may improve the overall properties of the cutting performance of the cutting tool insert, the maximum thickness of the alumina layer, and hence the improvement of crater wear resistance due to the thickness increase, is limited.

Summary

One object of the invention is to improve cutting performance of a coated cutting tool. Another object is to improve wear resistance of the coated cutting tool. Yet another object of the invention is to improve the crater wear resistance of a coated cutting tool, in particular by providing an improved wear resistance locally on the coated cutting tool without impairing properties of other portions of the coated cutting tool. Another object is to provide an improved cutting tool for machining in iron based materials such as steels.

This is accomplished by a coated cutting tool in accordance with the independent claims. Preferred embodiments are disclosed in the dependent claims.

A coated cutting tool according to the present invention comprises a substrate and a surface coating deposited on the substrate and covering at least a portion of the substrate. The surface coating has a thickness Tₒ and the substrate comprises a plurality of recesses into the substrate within a patterned surface area within the coated portion of the substrate. Each of said recesses has a depth D which is smaller than 100 µm, preferably < 75 µm, and a width W, at half depth [D/2] of the recess, where W₁<2Tₒ,Tₒ is between 2 µm and 30 µm, preferably between 5 and 25 µm, more preferably between 5 µm and 22 µm, and the recess is at least partly filled by the surface coating.
The cutting tool according to the present invention has shown higher crater wear resistance compared to a cutting tool not provided with such a patterned surface area. The crater wear is typically a wear of a chemical and abrasive type. Both the mechanical load and the temperature are very high in this area. The tool according to the present invention has improved properties in at least one of these aspects.

One advantage with the formation of recesses in the substrate is that it provides an increased surface area of the substrate. An applied coating into the recesses provides a coating with an extension down into the substrate. Thus the filled recesses provides an effective thickness of the coating within the patterned surface area that is larger than T₀, the nominal thickness of the coating itself. The increased volume of coating material in the surface area is one reason for the improvement. Locally the effective thickness of the coating has been increased due to the pattern. An increased coating thickness implies an increased wear resistance as long as the coating is worn continuously and do not spall off. Since recesses can be formed in areas that are critical with respect to wear, the wear resistance of the coated cutting tool is improved without impairing the performance with respect to other areas of the cutting tool.

Another advantage with the recesses in the substrate is that the orientation of the coating/substrate interface is not parallel to the sliding direction of for example a chip sliding at the surface of the tool. This increases the resistance to delamination.

A cutting tool in accordance with the present invention may be a cutting tool insert or a round tool.

Suitable materials for substrate are ceramics, cermets, cemented carbides, cubic boron nitride, polycrystalline diamond or high speed steel, preferably cemented carbides.

The patterned surface area is preferably placed in a critical area with respect to wear. The patterned surface area may at least partly cover the flank face and/or the rake face. If the pattern is on the rake face the patterned surface area is preferably placed at a distance of at least 100 µm, preferably more than 150 µm from the edge line. If the patterned surface area is on the flank face, said area is preferably at least 50 µm from the edge line. The edge line is here defined as the line along the edge of the tool when studying the patterned surface area from a direction perpendicular
to the patterned surface area. A pattern placed too close to the edge would imply an increased risk for an uneven wear of the cutting edge.

The cutting tool of the present invention comprises a surface coating deposited on the substrate. This surface coating is typically a wear resistant coating covering at least areas subjected to wear during cutting. If the cutting tool is an insert with a rake face and a flank face, the coating can be applied on one or both of these faces.

The coating thickness T_c is the thickness of the coating as deposited on a flat surface outside a recess. The surface of the substrate within the patterned area but outside a recess is in this application called a first surface of the substrate. This first surface of the substrate is a surface arranged with recesses, and the surfaces that defines each recess, the walls and bottom of the recess, are not a part of the first surface of the substrate.

The width W_e of the recess is considered to be the width at the first surface of the substrate. The width W_s is the width of the recess at half depth $[D/2]$ of the recess and $W ≤ 2T_c$. In one embodiment $W_e < 2T_c$.

The recesses have a depth D which is the distance from the first surface of the substrate, i.e. the substrate surface outside the recess, and down to the bottom of the recess. The bottom of the recess can comprise artifacts or irregularities such as local deep narrow holes caused by for example a non-optimized laser process. Examples of such artifacts can be seen in Fig. 3. The depth D is preferably more than 2 μm, more preferably more than 5 μm. The depth D is less than 100 μm, preferably less than 75 μm. The depth should be large enough to impact the life time of the tool, and small enough not to negatively impact the toughness of the edge. A too large depth of the recess would not increase the life time of the tool, since a large wear depth anyhow weakens the edge of the tool. In one embodiment the aspect ratio of the recess is $D/W_e < 2$, preferably 0.5-1.5.

A coated cutting tool in accordance with one embodiment of the present invention comprises a substrate, preferably made of cemented carbide, and a coating. The substrate comprises a geometric pattern with recesses, such as holes or grooves, in the surface thereof. These recesses are at least partly filled with the coating such that the coating at least has started to coalesce in the recesses. Each recess is at least partly filled by the surface coating such that the surface coating is grown together in the recess. This is accomplished during the deposition of the surface coating.
Since the width at some depth in the recess is less than twice the total thickness of the surface coatings growing on opposite sidewalls of the recess a portion of the surface coating will finally coalesce in the recess. The coating can have a first initial type of growth replicating the substrate surface profile, and a second type of growth wherein the coating coalesce within the recess such that a portion of the surface of a growing coating meets another portion of surface of a growing coating, and the coating coalesce when the growth of the coating is a second type of growth. This is advantageous since it provides a locally larger coating thickness, and thereby a higher wear resistance.

In accordance with one embodiment of the present invention the cutting tool is provided with a coating, wherein the thickness of the coating deposited in the recess is larger than the coating deposited on the first surface of the substrate.

The shape of the recess is preferably such that the width at the bottom of the recess is smaller than the width \(W_a\) at the first surface of the substrate. This is advantageous due to that voids and pores can be avoided. The recess can have side walls that are perpendicular to the first substrate surface, or the walls can be inclined. The angle between the sidewall of a recess and the first substrate surface is preferably between 45° and 90°. In one embodiment of the present invention the surface coating has an outer surface and wherein a point at the maximum depth of a remaining recess at/on the outer surface is located above the first surface of the substrate such that the coating is continuous along a line parallel to the first surface of the substrate across several recesses. This can for example be studied at a cross section of the tool. This is advantageous in increased wear resistance.

In one embodiment of the invention the coating completely fills the recesses and covers surrounding substrate surfaces, at least within the patterned surface area. In one embodiment of the invention, the underlying structure of the patterned substrate surface area is not retained on the outer surface of the coating. This is advantageous since a lower surface roughness often implies a lower wear rate.

In one embodiment of the present invention the recesses are arranged in a pattern with a pitch between adjacent recesses that is larger than 10 \(\mu m\) and less than 100 \(\mu m\), preferably between 70 \(\mu m\) and 90 \(\mu m\). The pitch can vary within the patterned area, but preferably the pitch is constant.
within the patterned area. The preferred pitch P depends on the specific width W_e of the recess, such that the pitch P should always exceed the width W_e.

In one embodiment of the present invention the patterned surface area is provided with recesses covering 50-98% of the nominal surface area, preferably 75-95%. The nominal surface area of the patterned area is equivalent to the first surface of the substrate if no recesses are present. A higher surface coverage results in a larger amount of coating down into the substrate. The coverage should not be too high since recesses that are getting too close tend to lower the first surface of the substrate. A too low surface coverage leads to a wear rate similar to a surface without any recesses.

In one embodiment of the present invention the cutting tool is provided with a surface coating that is conformal, i.e. deposited by a conformal deposition method. In one embodiment of the invention the coating is a CVD (chemical vapor deposition) coating. Due to the properties of the CVD deposition process the coatings are substantially conformal and thus the coating on the substrate surfaces within the recesses becomes as thick as on other substrate surfaces, at least until the coating grows together or coalesces in the recess as disclosed above.

In another embodiment the coating is a PVD (Physical vapor deposition) coating.

In one embodiment of the present invention, the recesses are grooves. The grooves can be arranged in an irregular or a regular pattern. The grooves can be oriented parallel to or perpendicular to the cutting edge. As an alternative, the grooves can be oriented in a specific angle relative to the cutting edge. The grooves can have a specific length and width, or these can vary over the patterned area.

The recesses may have "equiaxed width" for example be of circular or square shape. Alternatively, the recesses may be elongated, thereby forming short grooves. Preferable the recesses are arranged in tracks arranged in a corresponding pattern as the grooves in the above embodiment.

In one embodiment of the present invention, the recess is a pit or a groove with a curved outer shape such as a circle, a ring or an oval. The recesses can for example comprise a ring with a larger radius enclosing rings with smaller radius. This is advantageous in that the distance between two adjacent recesses can be arranged to be close to independent of orientation.
In one embodiment of the present invention, the recesses comprise grooves arranged in a pattern with crossing grooves forming islands enclosed by the grooves. The maximum width of one island is preferably less than 100 \(\mu \text{m} \), more preferably less than 70 \(\mu \text{m} \), even more preferably less than 50 \(\mu \text{m} \). This is advantageous since typically thermal cracks of a CVD coating generate islands that has shown to be in the range of 50-70 \(\mu \text{m} \). The coating applied on the recesses can be seen as a coating with artificial cracks. These artificial cracks seems to work as traps or a stress reservoirs such that thermal crack in the coating itself can be avoided. Thermal cracks in a coating do always imply an increased risk for wear and coating spallation.

In one embodiment of the present invention, the coated cutting tool comprises a rake face and a flank face and the patterned surface area is on a rake face of the coated cutting tool. The coated cutting tool is preferably covering a crater area on the rake face of the coated cutting tool, wherein the crater area is an area with increased risk for crater wear in cutting operations.

The coating may comprise one or more layers. Suitable materials to be deposited as a layer are compounds of one or several first elements selected from Group 4, Group 5, Group 6 (IUPAC) and one or several second elements selected from N, B, O, C.

In one embodiment of the present invention, the coating comprises one or several layers of compound of one or several first elements selected from Group 4, Group 5, Group 6 (IUPAC), Al and Si, and one or several second elements selected from N, B, O, C.

In one embodiment of the present invention at least half the thickness of the coating comprises one or several layers consisting of compound of one or several first elements selected from Group 4, Group 5, Group 6 (IUPAC), Al and Si, and one or several second elements selected from N, B, O, C.

In one embodiment of the present invention the coating consists of one or more layers consisting of compound of one or several first elements selected from Group 4, Group 5, Group 6 (IUPAC), Al and Si, and one or several second elements selected from N, B, O, C.

Preferred compounds comprise Ti(C,0, N), Ti(C, N), TiC, TiN, or combinations thereof. Preferably a MTCVD process is used for at least one of these layers. In one embodiment the coating comprises at least one Al\(_2\)O\(_3\) layer and at least one refractory metal nitride, carbide or carbonitride layer selected from the group of Ti(C, N), TiN, TiC, Ti(C,N,0). The refractory metal nitride, carbide or carbonitride layer is preferably deposited prior to the Al\(_2\)O\(_3\) layer.
In one embodiment of the present invention, the coated cutting tool comprises a coating with an inner layer with thickness T_{ci} and an outer layer with thickness T_{co}. The inner layer may be made of Ti(C,0, N), Ti(C,N), TiC, TiN, or combinations thereof and the outer layer may be made of Al$_2$O$_3$. The inner layer may have a thickness T_{ci} of 2-10 μm and the outer layer may have a thickness T_{co} of 1-10 μm.

In one embodiment $W_i<2T_{ci}$, preferably $W_e<2T_{ci}$. If the inner layer for example comprises Ti(C,N) this implies an increased abrasive wear resistance.

In another embodiment $W_i<2(T_{ci}+T_{co})$, preferably $W_e<2(T_{ci}+T_{co})$. This is advantageous since the recess comprises material from both the inner layer and the outer layer. If the outer layer is for example Al$_2$O$_3$ this implies an increased thermal resistance effect. It is advantageous that a patterned surface area comprising a thermal barrier layer, such as an alumina layer, is placed in the area where crater wear usually appears, i.e. on the rake face of the cutting tool insert where the temperature during machining is the highest.

A method of manufacturing a coated cutting tool in accordance with one embodiment of the invention comprises the steps of: providing a substrate, preferably made of cemented carbide; prior to coating, forming, preferably by laser machining, a patterned surface area of the substrate, which recesses has a depth D, a width W_e at the first surface of the substrate and a width W_i at half depth $[D/2]$ of the recess, and an aspect ratio $D/W_e<2$; depositing a coating onto the patterned surface area, which coating has a thickness T_{co} of 2-30 μm, wherein $W_i<2T_{ci}$ and the recesses are at least partly filled by the surface coating.

Other ways of forming a surface pattern can be by embossing, by focused ion beam, dry etching such as reactive ion etching (RIE), electric discharge machining, wet etching or any other technique known in the art for forming surface patterns in accordance with the appended claims.

The recesses may be formed with laser machining. The laser equipment used is preferably a pico second laser. Laser machining is performed by exposing the substrate to a laser beam. The laser beam is scanned in multiple or single scans to form the recesses. By laser machining the substrate can be structured in almost any geometric pattern, for example grooves or holes. Moreover the laser machining is fast as compared to many other machining techniques. The geometric pattern formed may be ordered or disordered. Regarding the control of density of recesses, this depends on
how close recesses can be formed by the particular laser machining system used, which is matter of at least the optical system (lenses), laser parameters (peak power, pulse length, pulse frequency), substrate material, etc.

The method of manufacturing the surface patterns in accordance with the above identified invention may further comprises a final blasting step of the tool as deposited with a surface coating on at least the patterned area. This is advantageous in that a smoothening effect can be reached whereby minor retained patterns on the surface at the patterned area can be reduced in dimensions or removed.

Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings and claims.

Brief description of drawings

Embodiments of the invention will now be described with reference to the accompanying drawings, wherein:

FIG. 1 schematically illustrates part of an insert provided with a geometrical pattern of recesses provided with a coating,

FIG. 2 shows pictures of A) perpendicular, B) parallel, C) crossed recesses formed by laser on a rake face of an insert and D) shows a reference,

FIG. 3 shows an scanning electron microscope (SEM) picture of a cross section of a groove in a cutting tool surface. The substrate is coated with an inner Ti(C,N) layer and thereon a Al₂O₃ layer which layer has grown together in the recess,

FIG. 4 shows pictures of the samples A-D shown in Fig. 2, after 28 minutes operation in accordance with Example 1,

FIG. 5 shows a SEM picture of a portion of the crater wear of the inserts shown in Fig. 3 C, and

FIG. 6 shows pictures of the samples A-D shown in Fig. 2, after 36 minutes operation in accordance with Example 1.
Detailed description

Figure 1 is a schematic view of a surface provided with recesses, wherein each recess has a depth \(D \), a width \(W_w \) at the first surface 4 of the substrate 1, and a width \(W_i \) at half the depth \(D/2 \). The recesses are arranged with a pitch \(P \) between two adjacent recesses. A coating 2 with a thickness \(T_c \) is applied to the substrate 1. The coating 2 covers the first surface 4 of the substrate 1 and also the surfaces 3 in the recess. The coating 2 coalesces along the ditched line 7 in the recess, where coating surfaces growing in different directions has met each other. The surface coating 2 has an outer surface 6 and the point 5 at the maximum depth of any remaining recess at the outer surface 6. The coating is continuous along a line across several recesses parallel to the first surface 4 of the substrate 1. As can be seen the sidewalls of the recess are inclined relatively the first substrate surface 4.

As can be seen in the figure 1, these recesses are filled by the surface coating, since a point 5 at the maximum depth of the remaining recess at the outer surface 6 is located above a first surface 4 of the substrate 1. In an alternative embodiment, not shown, the recesses are not completely filled by the surface coating.

Example 1

Grooves were formed in a cutting insert 120408 NM4 made of cemented carbide using a Lasertech 40S pico second laser (50W) from DMG. The wavelength was 1064 nm, the spot diameter 40-50 \(\mu \text{m} \) and the pulse frequency 500 kHz. The scanner velocity was 2000 mm/s and the thickness of the layer removed per scan was 0.6 \(\mu \text{m} \). The movement of the laser spot was parallel.

The substrate is made of cemented carbide and comprises 7.5 wt% Co, 2.9 wt% TaC, 0.5 wt% NbC, 1.9 wt% TiC, 0.4 wt% TiN and balance WC. The cemented carbide substrate has a surface zone 22-30 \(\mu \text{m} \) free of gamma phase, a bulk hardness of 1450-1550 HV3 and a He \([\text{KA/m}]\) of 12.9-14.4.

The patterned surface area is placed in a position on the rake face of the cutting tool insert where crater wear usually appear and spaced 0.15 mm from the cutting edges. The patterned area has an extension of 2x3 mm.

Three types of patterns of grooves were made:

- grooves perpendicular to the main cutting edge (sample A, invention), as shown in Fig. 2A,
- grooves in parallel with the main cutting edge (sample B, invention), as shown in Fig. 2B,
- parallel grooves crossing each other at right angle forming a crossed pattern of grooves surrounding islands of (sample C, invention), as shown in Fig. 2C.

These patterned tools were compared in performance with a reference sample not laser treated and not comprising any patterned surface area, but comprising the corresponding substrate and coatings, (sample D, prior art), as shown in Fig. 2D.

The geometry of these patterned surfaces were studied in cross section in a light microscope. The average maximum width \(W_e \) of the grooves at the first surface of the substrate is about 45-50 \(\mu \text{m} \) and the average width \(W \), at half the depth \((D/2) \) is about 27 \(\mu \text{m} \). The depth \(D \) of the grooves is about 45-55 \(\mu \text{m} \). The pitch \(P \) is about 80 \(\mu \text{m} \). The side walls of the grooves are slightly inclined and thereby the surface area coverage at a level at the bottom of the groove is lower than the surface area coverage at the first surface of the substrate. In this particular case a surface area coverage for the crossed pattern is of about 83% coating at the first surface of the substrate and about 44% surface area coverage at the depth of about 50 \(\mu \text{m} \). The profile is shown in Fig. 1 and Fig. 3. Figure 3 is a SEM micrograph of a cross section of sample C.

After laser micromachining the cutting inserts were coated in a CVD reactor. The surface coating consists of an inner 10 \(\mu \text{m} \) thick MT-Ti(C,N) layer and an outer 10 \(\mu \text{m} \) thick a-alumina layer. An 1 \(\mu \text{m} \) thick outermost TiN coating was deposited. All the inserts were finally treated with a wet blasting with 220 mesh Al\(_2\)O\(_3\) grits.

The coated cutting tools made in accordance with above were evaluated with respect to crater wear in a continuous longitudinal turning operation in ball bearing steel (Ovako 825B) with depth of cut 2 mm, cutting speed 220 m/min, feed speed 0.3 mm/rev and using coolant.

The wear of the reference cutting tool was studied each 2 minutes in a light microscope and the size of exposed area of the substrate was measured. The wear of the patterned cutting tools were measured after finished tests. In a worn patterned area, each of the exposed substrate subareas were added and the sum of exposed subarea is presented in Table 1.

The cutting tools can be considered to be worn out when a stop criteria of an exposed substrate in the crater area of 0.2 mm\(^2\) is reached and at the cutting time required to reach this criteria. This stop criteria was reached at 28 minutes for the Reference insert. The stop criteria for
the parallel and the perpendicular were reached at 44 minutes. The turning of the reference was continued although the stop criteria was reached, but had to be stopped at 40 minutes due to an expected soon forthcoming total breakage of the tool. At 44 minutes crossed had not reached the above stop criteria, as can be seen in Table 1.

Figure 4 A-D shows the samples after 28 minutes operation. The exposed substrate area is obviously larger for the reference sample D than for all the other samples. Figure 5 is a SEM micrograph showing in close up a central part of the worn surface of sample C, shown in Fig. 4C. Figure 6A-D shows the samples after 36 minutes operation. The reference sample shown in Fig. 6D shows excessive crater wear.

Even though the same depth of the crater wear results in a larger exposed substrate area for the reference compared to a lower exposed substrate area, as long as the recesses are not worn through, this value is considered to indicating a wear rate that differs between the patterned tools and the reference tools. And the increase in wear rate of the reference tool between 36 minutes and 40 minutes operation time confirms this behavior. Just to confirm this, the depth of the wear mark was also studied at samples after 28 minutes operation, and the results are presented in Table 1.

The flank wear did not differ significant between the samples A, B, C and D.

Table 1. Results from wear tests in accordance with Example 1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pattern</th>
<th>Surface area coverage of pattern at first substrate surface</th>
<th>Crater wear: Area exposed of substrate after 28 min [mm²]</th>
<th>Crater wear: Area exposed of substrate after 36 min [mm²]</th>
<th>Crater wear: Area exposed of substrate after 40 min [mm²]</th>
<th>Crater wear: Area exposed of substrate after 44 min [mm²]</th>
<th>Crater depth after 28 min [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (invention)</td>
<td>Grooves perpendicular to edge</td>
<td>59% coating</td>
<td>0.08</td>
<td>0.175</td>
<td>Not analysed</td>
<td>0.208</td>
<td>23</td>
</tr>
<tr>
<td>B (invention)</td>
<td>Grooves parallel with edge</td>
<td>59% coating</td>
<td>0.049</td>
<td>0.144</td>
<td>Not analysed</td>
<td>0.223</td>
<td>Not analysed</td>
</tr>
<tr>
<td>C (invention)</td>
<td>Crossed grooves</td>
<td>83% coating</td>
<td>0.071</td>
<td>0.098</td>
<td>Not analysed</td>
<td>0.142</td>
<td>3</td>
</tr>
<tr>
<td>D (reference)</td>
<td>No grooves</td>
<td>0% coating</td>
<td>0.203</td>
<td>0.372</td>
<td>0.64</td>
<td>Not analysed</td>
<td>21</td>
</tr>
</tbody>
</table>
Example 2

Tools provided with a patterned area comprising crossed grooves as disclosed above, were compared to reference tools without any patterned area, wherein different coating thicknesses were studied. Samples E and F were coated with an inner 5.5 µm thick MT-TiCN layer, an 4 µm thick a-alumina layer and an 1.2 µm thick outermost TiN coating. Sample G and H were coated with an inner 8.5 µm thick MT-TiCN layer, an 4.5 µm thick a-alumina layer and an 1.2 µm thick outermost TiN coating. Sample I and J were coated with an inner 10 µm thick MT-TiCN layer, an 10 µm thick α-alumina layer and an 0.8 µm thick outermost TiN coating. All the inserts were finally treated with a wet blasting with 220 mesh Al₂O₃ grits.

The cutting tools made in accordance with above were evaluated with respect to crater wear in a continual longitudinal turning operation in ball bearing steel (Ovako 825B) with depth of cut 2 mm, cutting speed 220 m/min, feed speed 0.3 mm/rev and using coolant. The stop criteria was set to: crater area of 0.2 mm², or obvious plastic deformation of the cutting edge, and cutting times required to reach any of these criterias. A cutting edge with any of those two levels of wear is considered worn out and the life time of the cutting edge reached. The test was also stopped if the flank wear, defined as the distance seen from the flank side between the edge line and unworn coating, exceeded 0.4 mm. The results as an average of two parallel tests are presented in Table 2.

As can be seen in Table 2, the sample E with the crossed grooves and the thinnest coating with a total thickness of 10.5 µm suffered from plastic deformation while the corresponding reference F to the corresponding without grooves that suffered from excessive crater wear. The sample G with crossed grooves and a coating thickness of 13.5 µm also suffered from plastic deformation while the corresponding reference, sample H, suffered from excessive crater wear. The thickest coating tested in this example has a thickness of 21 µm, and in this case both the reference, sample J, and the patterned sample, sample I, showed a flank wear of more than 0.4 mm, while only the reference sample J suffered from excessive crater wear. The conclusion is therefore that the patterned tools do have increased resistance to crater wear.

Table 2. Results from wear tests in accordance with Example 2.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface pattern</th>
<th>Coating</th>
<th>Total coating thickness, Tc [µm]</th>
<th>Average life length [min]</th>
<th>Critical wear mechanism</th>
<th>Wc/Tc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E (comparative) Crossed grooves 5.5 µm TiCN 4 µm Al₂O₃ 1.2 µm TiN 10.5 12 Plastic deformation 27/10.5=2.57

F (reference) No pattern 5.5 µm TiCN 4 µm Al₂O₃ 1.2 µm TiN 10.5 13 Excessive crater wear

G (invention) Crossed grooves 8.5 µm TiCN 4.5 µm Al₂O₃ 1.2 µm TiN 13.5 20 Plastic deformation 27/13.5=2

H (reference) No pattern 8.5 µm TiCN 4.5 µm Al₂O₃ 1.2 µm TiN 13.5 17 Excessive crater wear

I (invention) Crossed grooves 10 µm TiCN 10 µm Al₂O₃ 0.8 µm TiN 21 >28 Flank wear ≥ 0.4 mm 27/21=1.29

J (reference) No pattern 10 µm TiCN 10 µm Al₂O₃ 0.8 µm TiN 21 28 Excessive crater wear Flank wear ≥ 0.4 mm

The present invention is above described with the substrate being made of cemented carbide. However, the advantageous effect of locally having an increased effective thickness of the coating may be accomplished in substrates for cutting tools made of different materials as well such as ceramics, cermets, cubic boron nitride, polycrystalline diamond, high speed steel.

While the invention has been described in connection with various exemplary embodiments, it is to be understood that the invention is not to be limited to the disclosed exemplary embodiments, on the contrary, it is intended to cover various modifications and equivalent arrangements within the appended claims.
Claims

1. A coated cutting tool comprising a substrate (1) and a surface coating (2) deposited on the substrate (1) and covering at least a portion of the substrate (1), the surface coating (2) having a thickness T_c wherein the substrate (1) comprises a plurality of recesses into the substrate (1) within a patterned surface area within the coated portion of the substrate, characterized in that each of said recesses has a depth D, wherein $2 \mu m < D < 100 \mu m$, a width W at half depth $[D/2]$ of the recess, where $W \leq 2T_c$, and T_c is between $2 \mu m$ and $30 \mu m$, and wherein the recess is at least partly filled by the surface coating (2).

2. The coated cutting tool of claim 1, wherein the patterned surface area of the substrate (1) comprises a first surface (4) of the substrate (1) provided with recesses into the substrate (1), and wherein the thickness of the coating deposited in the recess, as measured in a direction perpendicular to said first surface (4) of the substrate (1), is larger than the coating deposited outside the recess on the first surface (4) of the substrate (1).

3. The coated cutting tool according to claim 2, wherein the surface coating (2) has an outer surface (6) and wherein a point (5) at a maximum depth of a remaining recess at the outer surface (6) is located above a first surface (4) of the substrate (1) such that the coating (2) is continuous along a line parallel to the first surface (4) of the substrate (1) across several recesses.

4. The coated cutting tool of any of the preceding claims, wherein the pitch P between two adjacent recesses is larger than $10 \mu m$ and smaller than $100 \mu m$.

5. The coated cutting tool of any of the preceding claims, wherein the patterned surface area comprises recesses covering 50-98% of the nominal surface area.

6. The coated cutting tool of any of the preceding claims, wherein each recess has an aspect ratio $D/W_e < 2$, wherein W_e is the width of the recess at a first surface (4) of the substrate (1).

7. The coated cutting tool of any of the preceding claims, wherein the surface coating is deposited by chemical vapour deposition.

8. The coated cutting tool of any of the preceding claims, wherein each recess is a groove.
9. The coated cutting tool of any of the preceding claims, wherein the grooves are arranged in a pattern with crossing grooves forming islands enclosed by the grooves.

10. The coated cutting tool according to any of claims 1-7, wherein the recess is a pit or a groove with a curved outer shape such as a ring or an oval.

11. The coated cutting tool of any of claim 9, wherein a maximum width of said islands is less than 100 μm.

12. The coated cutting tool of any of the preceding claims, wherein the cutting tool comprises a rake face and a flank face and wherein the patterned surface area is on a rake face of the coated cutting tool.

13. The coated cutting tool of claim 12, wherein the patterned surface area covers a crater area on the rake face of the coated cutting tool, wherein the crater area is an area with increased risk for crater wear.

14. The coated cutting tool according to any of the preceding claims, wherein the coating comprises one or several layers made of compound of one or several first elements selected from Group 4, Group 5, Group 6 (IUPAC) and one or several second elements selected from N, B, O, C.

15. The coated cutting tool according to any of the preceding claims, wherein the coating comprises one or several layers made of compound of one or several first elements selected from Group 4, Group 5, Group 6 (IUPAC), Al or Si, and one or several second elements selected from N, B, O, C.

16. The coated cutting tool of any of the preceding claims, wherein the coating comprises an inner layer with thickness \(T_i \) and an outer layer with thickness \(T_o \).

17. The coated cutting tool of claim 16, wherein the inner layer is made of Ti(C,0, N), Ti(C, N), TiC, TiN, or combinations thereof and the outer layer is made of \(Al_2O_3 \).

18. The coated cutting tool of claim 16 or 17, wherein \(Wi<2T_i \).

19. The coated cutting tool of claim 16 or 17, wherein \(Wi<2(T_i+T_o) \).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C23C30/00 B23B27/14 C23C16/04 C23C16/02
ADD.

According to International Patent Classification (IPC) and to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C23C B23B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>col umn 1, lines 6-9; figures 1-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col umn 4, lines 1-46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col umn 5, lines 23-35; tabl e 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 1-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col umn 1, line 51 - col umn 2, line 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col umn 3, lines 44-49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col umn 4, lines 7-24,44-64</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

6 December 2013

Date of mailing of the international search report

20/12/2013

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Joffreau, P

Form PCT/ISA210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 2 210 692 AI (SUMITOMO ELECTRIC INDUSTRIES [JP]; SUMITOMO ELEC HARDMETAL CORP [JP]) 28 July 2010 (2010-07-28) figures 1,4 page 4, paragraph 12 - page 5, paragraph 16 page 7, paragraph 23 page 9, paragraph 33-36 page 11, paragraph 40 - page 12, paragraph 48 page 14, paragraph 55 - page 16, paragraph 61</td>
<td>1-19</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 787 820 A2 (SAINT GOBAIN NORTON IND CERAMI [US] SAINT GOBAIN [US]) 6 August 1997 (1997-08-06) column 3, line 40 - column 4, line 18 column 4, line 49 - column 5, line 16 figures 7,8</td>
<td>1-19</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 860 515 AI (DE BEERS IND DIAMOND [ZA]) 26 August 1998 (1998-08-26) column 3, lines 11-51; figures 1-4</td>
<td>1-19</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 5935323</td>
<td>10-08-1999</td>
<td>AU 5346596 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5935323 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9634131 A</td>
</tr>
<tr>
<td>US 5558789</td>
<td>24-09-1996</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5297381 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010255264 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009034716 Al</td>
</tr>
<tr>
<td>EP 0787820</td>
<td>06-08-1997</td>
<td>CA 2192900 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0787820 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H09300139 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5776355 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6025076 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9801162 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6068913 A</td>
</tr>
</tbody>
</table>