PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(22) International Filing Date: 3 February 1995 (03.02.95)

(30) Priority Data:

8/191,874 4 February 1994 (04.02.94) Us

(71) Applicant: CADENCE DESIGN SYSTEMS, INC. [US/US];
555 River Oaks Parkway, San Jose, CA 95134 (US).

(72) Inventors: LOWE, Mitchell, Richard; 13425 Sycamore Drive,
Morgan Hill, CA 95037 (US). EDWARDS, Russell, Paul;
1604 Mission Springs Circle, San Jose, CA 95051 (US).

(74) Agents: WELLER, Edward, B. et al.; Fenwick & West, Two
Palo Alto Square, Suite 600, Palo Alto, CA 94306 (US).

(51) International Patent Classification 6 : (11) International Publication Number: WO 95/21416
17/30 Al

Go6k (43) International Publication Date: 10 August 1995 (10.08.95)

(21) International Application Number: PCT/US95/01423 | (81) Designated States: CA, JP, KR, European patent (AT, BE, CH,

DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: DISTRIBUTED FILE SYSTEM PROVIDING TRANSPARENT DATA MANAGEMENT

\\

(57) Abstract

12
i “ i I
10
\ o® . .® ° r’12
DESIGN NODE PROJECT NODE
16 processor 18" processor
5 J
. STORAGE r?‘ . STORAGE J
([X X]
CONFIGURATION| _° | repostToRY
: DIRECTORY : S . DIRECTORY
. : 0 .
X ‘.32\
o ;
. 27 -3‘
o ¢ U D H e ewe
: .26
o _mE] :

An electronic file management system enables virtual read access to files (30) in a configuration directory (24) by effectively accessing |
actual copies of such files (32, 34, 36) in a repository directory (26) using symbolic referencing between the directories (40). User-defined
symbolic references specify whether static or dynamic linking is established.

applications under the PCT.
AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CG Congo

CH Switzerland

Cl Cbte d'Ivoire
CcM Cameroon

CN China

(o1} Czechoslovakia
Cz Czech Republic
DE Germany

DK Denmark

ES Spain

FI Finland

FR France

GA Gabon

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

GB
GE
GN
GR
HU
IE

JP

KE
KG
KP

KR

LI
LK

LV
MC

SESE

United Kingdom
Georgia

‘Guinea

Greece

Hungary

Treland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

MR
MW
NE

NO

PL

RO
RU
SD
SE
St

SK
SN

TG
T

Us
vz

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

WO 95/21416 PCT/US95/01423

DISTRIBUTED FILE SYSTEM PROVIDING TRANSPARENT DATA MANAGMENT

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates generally to the field of
distributed processing and storage systems, particularly
to methods for improving data management in such

10 distributed systems.

2. Description of Background Art
Design of electronic systems through the use of
computer-aided design (CAD) software has and continues
15 to have a dramatic increase in complexity associated
with exponential increases in the size and number of
data files, number of people involved, and design tools
from an increasingly varied set of design tool wvendors.
There is tremendous pressure to reduce design cycle
20 times, while the complexity of the designs also
increases exponentially. Management of the versions of
the computer files representing these designs must now
be automated given the current and increasing complexity
(beyond the ability to cope via manual methods).
25
The standard approach to this problem is to
create a database to represent ali of this information,
"define and store a complex model of all the data files
in that database, create a programming interface to

30 access the information in the database, and copy files '

10

15

20

25

WO 95/21416 PCT/US95/01423

out of the system when tools need to access the files.

The problems with this approach are increasing
system complexity to the point that nobody can
understand the system as a whole, performance problems
as additional tools and users attempt to access the
database(s), the inability to integrate all the design
tools into the design management system, and the lack of
a simple, well-defined method for using the system to
achieve the desired result. Further, the ability to

customize these systems is very low.

SUMMARY OF THE INVENTION

The invention resides in an electronic file
management system having at least one processor and
corresponding storage device wherein a configuration and
repository directory are provided, such that a first
symbolic reference in the configuration directory links
to the repository directory, and a second symbolic
reference in the configuration directory links through
the first symbolic reference to a file in the repository
directory. Thus, access of the file in the
configuration directory effectively accesses the file in

the repository directory.

Preferably, the invention defines a software-

implemented method for utilizing the decentralized

10

15

20

25

WO 95/21416 PCT/US95/01423

facilities provided thfough distributed storage on a
computer network made available by distributed file
system constructs combined with a prescribed method for
using the system to track and process changes made by
design engineers, for example, in designs of electronic
systems and to combine and integrate those changes into
a coordinated set of files that define a consistent
state of the electronic system for release to other
organizations, including manufacturing groups, both in

local and remote physical locations.

Through this invention, complex electronic
systems can be designed by a larger number of engineers
than otherwise possible without the system, requiring
less training of the engineers and less diversion from
actual design work, on a distributed network of
computers, without undue hardship created by the failure
from time to time of portions of the computer network or
computers on the network, utilizing the latest and most
advanced design tools without any special integration
requirements. Designs developed by many engineers can
be more easily and accurately assembled into complete
and consistent systems. The system is easily customized
to optimize the methodology used to assemble electronic

systems.

10

15

20

25

WO 95/21416 PCT/US95/01423

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a generalized block diagram of a

system according to the present invention.

FIG. 2 is a simplified flow chart of a method

according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 1 shows a general block diagram of
electronic file management system having one or more
processor-based 16, 18 nodes, systems or engineering
workstations 10, 12, which may be networked 14 using
conventional techniques to other such nodes. Each node
10, 12 includes conventional storage devices 20, 22,
such as semiconductor and/or disk-based digital memory

units.

Preferably, node 10 serves as designer
workstation, and node 12 serves as project manager
workstation, in the context of a distributed engineering
data system for managing electronic design, particularly
managed object configurations or file sets in a given
project. Thus, nodes 10, 12 may also include in storage
20, 22 an operating system, such as UNIX or VMS, and
various computer-aided engineering and design (CAE/CAD)

software tools, for example, for circuit schematic

10

15

20

25

WO 95/21416 PCT/US95/01423

capture, logic synthesis, digital or analog simulation,
system layout, test vector generation, design

documentation, database management, etc.

It is contemplated that nodes 10, 12 may be
configured, nonetheless, in the context of other
distributed software applications, particularly where
complex projects give rise to the generation and
management of a large number of files or directories

located at multiple storage sites.

Further, it is contemplated that optional nodes
10', 12' having corresponding parts such as processors
16', 18', storages 20', 22', configuration and
repository directories 24', 26', and so on, are
distributed across and networked 14 to the system.
Thus, as used herein, the apostrophe (') associated with
a reference number represents corresponding parts for
optional implementations, such as nodes 10', 12' which
are functionally equivalent to primary parts

corresponding in nodes 10, 12.

In accordance with the present invention, an
electronic file management system or technique enables
object or file access by an external software program or
other user tool from one to another (or the same)

directory, in a flexible and transparent manner.

10

15

20

25

WO 95/21416 PCT/US95/01423

In particular, using conventional operating
system commands, a first or "configuration" storage
portion or directory hierarchy 24 is provided 42,
preferably in storage 20 of design node 10, and a second
or "repository" storage portion or directory hierarchy
26 is provided 42, preferably in storage 22 of project
node 12, as shown in the simplified flow chart of FIG.
2. Directories 24, 26 may be provided in the same node
or may be a common directory. (See Appendix-A for

simplified sample for directory creation.)

Optionally, a third "shadow" storage portion or
directory 26' is similarly provided, including the same
file information and directory structure included in
repository directory 26. In this way, fault tolerance
and data redundancy is provided in case repository

directory 26 becomes corrupted or inaccessible.

Next, first symbolic reference or link file 40
is provided 44, within configuration directory 24, which
defines a direct, virtual data coupling, preferably from
repositéry'link file 27 provided in configuration
directory 24, to repository directory 26. Preferably,
at any given moment, the repository link in
configuration directory 24 is linked symbolically to

only one repository directory 26.

As used herein, a symbolic reference or "link"

is a file system special file type that points or refers

10

15

20

25

WO 95/21416 PCT/US95/01423

to another named file or object. Such links can span
multi-processor or storage device file systems and point
to files, directories or other lihks provided therein.
The named file or object to which a link points is
indicated by link contents, which include file system
path name to the file or object to which such link
points. Thus, when an operating system operation (e.g.,
read, write, close, open, etc.) is applied to a link,
such operation effectively acts on the file to which the

links points.

Preferably, symbolic reference 40 is provided in
network or global name space or path name. A network
path name is a file system path name that, when used on
one computer or node, results in access of a file or
object that resides on another computer or node coupled
thereto. Additionally, a global path name is a network
path name that can be used on each computer or node
coupled to a network (e.g., local or wide area), which

resolves to a common file on one of such computers.

Then, at least one managed object or data file
32, preferably identified initially as "file,1", is
provided 46 or copied into repository directory 26 or
sub directory thereunder. As described herein, a file
set having more than one version of file 32 may be
provided 46 therein. A "managed object" may be composed
of many files 32, 34, 36 and optional additional files

32' contained in the repository directory 26. Files

10

15

20

25

WO 95/21416 PCT/US95/01423

that make up a managed object may have pathé of the
form: <data-file path>,<managed object extension>. The
"managed object extension" is a unique string added to
the names of the files composing the managed object 32,
34, 36 stored in the repository directory 26, in order
to uniquely distinguish them from each other. (See
Appendix-B for simplified sample of managed object

creation.)

Preferably, file 32 is provided 46 in repository
directory 26 initially by providing such file 32, as
"file" 30, in configuration directory 24, possibly
generated from external program or tool. Versions of
file 30, each version having a unique, positive non-zero
integer managed object extension and possibly containing
different information, may be created using the check-in
process, for instance, when user checks out files for
editing and then returns edited file versions therein.
At check-in, a corresponding link file 28 is created for

the version created of file 30.

To provide each version of file 32 in repository
directory 26, file 30 is copied from configuration
directory 24 to repository directory 26; then, file 30
is deleted from configuration directory 24. 1In this
way, link 28, having the same file name as deleted file
30, may be provided in configuration directory 24 to
refer symbolically to copied file 32 in repository

directory 26 through link 40, as described further

WO 95/21416 PCT/US95/01423

10

15

20

25

herein.

Optionally,‘associated text file 34 related to
file 32 is provided, preferably identified as
"file,@info", in the same directory or sub directory
where file 32 is provided. Preferably, associated file
34 is provided for each managed object or file 32,
including information thereof, such as version history,
properties, status, user descriptions, check-out/in,
etc. For example, file 34 is updated with version
number reserved by a check-out operation or version
number from which a new managed object is created by an

initial checkin operation.

Preferably, file 32 is provided with a unique
file néme, which relates to a name assigned to
corresponding file 28, 30 defined by user or tool. In
this way, more than one version of file 32 may be stored
in repository directory 26, and the system may detect
when more than one file 32 is provided 46 with the same
file name into repository directory or sub directory

thereunder.

As described herein, check-in operation is the
mechanism which saves current state of file 30 within
repository directory 26. (See Appendix-C for simplified
sample of check-in process.) In particular, this
operation is done by copying contents of file 30 into a

managed object version file 32 within repository

10

15

20

25

WO 9521416 PCT/US95/01423

directory 26. After copying file 30 into version file
32, operating system access permissions of version file
32 are set not to allow additional modification of
version file contents. This restriction is done to
preserve contents as they were when check-in operation

was performed.

Additionally, the copy of data file within
configuration directory 24 is deleted and replaced by a
symbolic reference, known as the managed object
reference 28 to managed object version into which file
30 was copied 32. The managed object version into which

file 30 is copied must have been created by checkout-

for-write operation, or never have been checked in

before, as described herein. The same user performs
both checkout-for-write and check-in operations because
version to copy data file into is determined by which
version file was checked out by user performing check-
in. Preferably, this determination is done by examining

contents of managed object's "co.<user-name>" link.

If there is no version file checked out by the
user performing the check-in operation, such operation

will fail, and an error is reported. After successfully

copying file 30 into version file 32, the managed

object's "co.<user-name>" link is removed from
repository directory 26. Whenever file 30 is checked in
to managed object version file 32 by check-in operation,

contents of managed object's "@current" link 36 is

-10-

WO 95/21416 PCT/US95/01423

10

15

20

25

modified to point to version file 32. This modification
causes dynamic Managed Object References to the managed
object to refer automatically to newly checked-in

version.

Check-in operation requires three pieces of data
on which to operate: (1) configuration directory path
24, (2) file 30 path within configuration directory 24,
and (3) binding type specification. Configuration
directory path identifies configuration directory 24 and
repository directory 26, via configuration directory's
repository link 27, which check-in operation is to use;
data file path identifies which data‘file is to be
operated on; and binding type specification indicates

what type of managed object reference to create.

The act of performing check-in operation on file
30 is termed "checking the data file in" and after
completion, such data file is said to have been "checked
in." Check-in operation does not operate on managed
object references (such as 28). Performing check-in
operation on data file twice in a row is not permitted
because the first check-in operation replaces data file
with managed object reference. Note that checkout-for-
write operation may remove managed object reference,
thereby replacing such reference with writable copy of

one of managed object's version files.

-11-

10

15

20

25

WO 95/21416 PCT/US95/01423

Further, second symbolic reference or link file
28 is provided 48, which defines a direct, virtual data
coupling through, or which includes effectively,
symbolic reference 40 to file 32. This second symbolic
reference is termed a "Managed Object Reference."
Preferably, symbolic reference 28 is provided in local
name space in configuration directory 24 or sub
directory therein, according to user-defined link
specification or binding type, which indicates type of

symbolic reference 28.

Two types of reference to managed object file 32
can be defined by link 28. One type of reference is
termed "static." A static reference is one in which
link 28 includes path to link 40 and then the path to

file 32 directly within repository directory 26.

Another type of reference is termed "dynamic."
To provide a dynamic reference, third symbolic reference
or link file 36 is created in repository directory 26
which includes path 38 to file 32. Preferably, link 36
is identified as "file,@current" and serves to determine
which version file is referenced by dynamic managed
object reference. Further, to provide such dynamic
reference, link 28 includes path to link 40 and path to
link 36 within repository directory 26. Thus, when read
operation 50 on link 28 is performed (e.g., by external

program or tool,) the effective result of read operation

-12-

10

15

20

25

WO 95/21416 PCT/US95/01423

50 is the same, such that content of file 32 is read.

Hence, by changing the file to which link 28
references, the file referenced may be redefined. For
example, in a static case, link 28 must be changed to
refer to a different file, other than file 32, such that
link 28 points to another version of file 32, preferably
provided in repository directory 26 or sub directory
therein.

Additionally, in a dynamic case, either link 28
or link 36 may be changed to achieve the same result
(i.e., accessing a particular version of file 32). For
example, link 36 may be caused to refer to version-X of
file 32, without changing content of link 28, but
effectively changing the file to which link 28 points.
Thus, dynamic referencing allows link 28 to be fixed
once and then remain unchanged, while permitting the
file to which accessing is performed to be changed by
changing link 36. Note that during the file check-in
process, content of link 36 may be changed to point to

most recently-created file version.

Preferably, managed object references contain
three path name components: (1) reference to repository
link 27, (2) directory portion of path to file 32, and
(3) file name of one of managed object files for data
file. 1In particular, the repository link reference
portion is a "relative path" from the directory that the

managed object reference is in to the repository link

-13-

10

15

20

25

WO 95/21416 PCT/US95/01423

for configuration directory 24. Because of how symbolic
links function, this relative path allows contents of
the managed object reference to determine the particular
repository directory 26 to which the managed object
reference refers. When the managed object reference and
repository link are in the same directory, this portion

merely contains the name of repository link.

Moreover, the managed object file name component
that is selected depends on type of managed object
reference. Hence, in the case of static managed object
references, the file name selected is the managed object
version corresponding to the version specified in the
configuration reference. Preferably, such static
references always refer to the same managed object

version.

In the case of dynamic managed object
references, the file name selected is the managed
object's "@current" symbolic link. As described further
herein, such dynamic links enable the managed object
version selected to be controlled by

contents of managed object's "@current" link.

Optionally, an other storage portion or
configuration directory 24' is provided, on any node 10'
on system network 14, which may include information
different from that included in primary configuration

directory 24. 1In this implementation, third symbolic

-14-

10

15

20

25

WO 95/21416 PCT/US95/01423

reference or link 40' is provided, which defines a
direct, virtual data coupling from the Repository Link
27' in the other configuration directory 24', or sub
directory thereunder, to repository directory 26, or sub
directory thereunder. 1In this way, fourth symbolic
reference 28' provided in corresponding storage 20' of
other node 10' similarly links file 32 or other version
of file 32' or version of different file 32, 34 provided
in repository directory 26 through, or which includes

effectively, symbolic reference 40'.

Additionally, an other repository storage
portion or directory 26' may be provided, on any node
12' on system network 14, which may include information
different from that included in primary repository
directory 26. In this implementation, fifth symbolic
reference or link 40' is provided, which defines a
direct, virtual data coupling from the Repository Link
27' in the configuration directory 24, or sub directory
thereunder, to other repository directory 26', or sub
directory thereunder. In this way, sixth symbolic
referenée 28' provided in storage 20' of design node 10
similarly links an other object or file 32' provided in
other repository directory 26' through, or which

includes effectively, symbolic reference 40°'.
After symbolic reference 28 is provided 48, file
32 may be accessed through such symbolic reference 28 to

perform read operation 50. Symbolic Reference 28 is

~15-

10

15

20

25

WO 95/21416 ' PCT/US95/01423

created preferably through checkout-for-read process
which provides a reference to the read-only copy of file
32. Alternately, any tool or user program may how
access file 32 through Symbolic Reference 28 withouth
knowing its version or true location. (See Appendix-D

for simplified samplerf check-out process for read.)

Preferably, checkout-for-read operation is used
to create managed object reference in configuration
directory 24. As described further herein, such
operation requires three pieces of information on which
to operate: (1) configuration directory path, (2) data
file path within configuration directory, and (3)

binding type specification.

In particular, configuration directory path
identifies configuration directory 24 and repository
directory 26 via configuration directory's repository
link 27, on which checkout-for-read operation will
operate. Additionally, data-file path identifies which
managed object the managed object reference is for, and
binding type specification indicates what type of

managed object reference to create.

Optionally, version specification is provided
for use when static binding type is specified. 1If
dynamic binding type is specified and version
specification is provided, version specification is

ignored because dynamic managed object reference points

-16-

10

15

20

25

WO 95/21416 PCT/US95/01423

to "@current" link and not a specific version.

No modification of a managed object's files is
performed by checkout-for-read operation. This
restriction is done explicitly to allow users to perform
checkout-for-read operation on managed objects which
they may not be able modify, because of operating system
access restrictions. The act of performing checkout-
for-read operation on a data file may be termed
"checking the data file out for reading" and after
completion, data file may be said to have been "checked

out for reading."

Checkout-for-read operation does not operate if
there is a writable copy of data file in specified
configuration directory 24. This restriction is done to
prevent accidental loss of data by unintentional use of
checkout-for-read operation. If this situation is'
encountered, such checkout operation will fail, and
error is reported. In any other situation, checkout-
for4read operation will remove any copy or managed
object reference for data-file in configuration
directory 24 and replace it with specified managed

object reference.

Alternately, to perform write operation 52, file
32 is copied, preferably using a checkout-for-write
process to generate a modifiable or writable file copy

in configuration directory 24 or a sub-directory

-17-

10

15

20

25

WO 95/21416 PCT/US95/01423

thereof. Such checkout process is used to create a
modifiable (i.e., "checked-out") managed object version
file for the user performing write operation 52. (See
Appendix-E for simplified sémple of check-out process

for write.)

In particular, an existing managed object
version, which cannot be modified ordinarily, is copied
to create another checked-out version, which is
modifiable. Also, a managed object check-out link,
which records which version was checked-out, may be
created by user performing such check-out operation.
This link is usable during check-in to determine into
which managed object version file the writable file is

to be copied.

If the user performing a check-out for write
operation already has a checked-out version of the
managed object, then such operation fails, and error is
reported. Preferably, each user may check out one

version at a time of a managed object.

The checkout-for-write operation requires three
pieces of information on which to operate: configuration
directory 24 path, data file path within configuration
directory 24, and version selection option.
Configuration directory path identifies configuration
directory 24 and repository directory 26, for example,

via configuration directory's repository link 27, 40, on

=18~

10

16

20

25

WO 95/21416 PCT/US95/01423

which such operation operates. Data file path
identifies managed object on which to operate, and
version selection option identifies how version to copy

is selected.

There are three different version selection
options which may be specified: (1) Current: this option
indicates that version to be copied should be the
version pointed at by the managed object "@current"
link. (2) Reference: this option indicatés that version
to be copied should be the version pointed at by the
managed object reference for data file in configured
directory 24. (3) Version <version_number>: this option
indicates that a version <version_number> is to be
copied. If version <version_number> does not exist, then

checkout-for-write operation fails and reports error.

The checked out version is a modifiable copy of
specified version 32, which is stored in configuration
directory 24 as specified to checkout-for-write
operation. Preferably, managed object's "@info" file 34
is examined to find the largest version number -used to
date for such managed object. The new version is
assigned a version number which is one larger than that,

and an entry for the newly created version is added to

the "@info" file.

The new "@info" file entry records version

number of the neWiy created version and also records

-19-

10

WO 9521416 PCT/US95/01423

which version number from which it was copied. These
entries represent the version derivation history of
managed object (i.e., which versions were created from

which others).

A managed object checkout symbolic reference or
link file is created in repository directory 26 for the
user performing checkout-for-write operation. This link
is named "co.<user-name>", where user-name is replaced
by the name of users account on node running checkout-
for-write operation. Contents of such link is the name

of the newly created managed object version file.

-20-

WO 95/21416 PCT/US95/01423

10

15

20

25

Appendix A
SIMPLIFIED SAMPLE OF CREATING A CONFIGURATION DIRECTORY

ConfigDirPath [Get Path to Configuration Directory]

ReposDirPath [Get Path to Repository Directory]

RepositoryLinkName = ".raw_data"

RepositoryLinkPath ConfigDirPath/RepositoryLinkName
if (ConfigDirPath does not exist) {
create directory ConfigDirPath
if (error while creating) {
print error
quit
}
}
if (RepositoryLinkPath exists) {
print "Error - ConfigDirPath is already a
Configuration Directory"
quit
}
create symbolic link RepositoryLinkPath with contents

ReposDirPath

if (error while creating link) {

print error

quit

Done

21~

WO 95/21416 PCT/US95/01423

Appendix B
SIMPLIFIED SAMPLE OF CREATING A MANAGED OBJECT

5
ConfigDhirPath = [Get ConfigDirPath]
DataFilePath = [Get data file-path]
ConfigDataFilePath = ConfigDirPath/DataFilePath
RepositoryLinkName = ".raw_data"

10 RepositoryLinkPath = ConfigDirPath/RepositoryLinkName

DataFileName filename portion of DataFilePath
if (ConfigDirPath does not exist) {
print "Error - Configuration Directory does not exist"®

15 quit

if (ConfigDataFilePath does not exist) {
print "Error - ConfigDataFilePath does not exist"

20 quit

if (RepositoryLinkPath does not eist) {

print "Error -

25 quit

RepositoryDirectoryPath = contents of RepositoryLinkPath symbolic link
MOPath = RepositoryDirectoryPath/DataFilePath

30 InfoPath = MOPath + ",@info"

-22-

WO 95/21416 PCT/US95/01423

if (InfoPath exists) {

print "Error - MO already exists for DataFilePath"

quit

if (MOPath exists and is a directory) ({

print "Error - DataFilePath is already Checked in as a Directory"

quit

VersionPath = MOPath + ",1"

for all directories in MOPath ({
if (directory does not exist) {
create directory
if (error while creating) {
print error

quit

}

InfoRecord = "1 0"

Open InfoPath for Write
Write InfoRecord to InfoPath

Close InfoPath

Copy ConfigDataFilePath to VersionPath
if (exror) {

print "Error = Unable to copy file"

-23-

WO 95/21416 PCT/US95/01423

quit

Change Access permission of VersionPath to non-modifiable

5
CurrentPath = MOPath + ",@current"
CurrentContents = DataFileName + ",1"
Create Symbolic link CurrentPath with Contents CurrentContents

10
RepositoryLinkRelativePath = "

for each directory in DataFilePath {

RepositoryLinkRelativePath = RepositoryLinkRelativePath + .

}
15 RepositoryLinkRelativePath = RepositoryLinkRelativePath -+

RepositoryLinkName

if (BlindingType = STATIC) ({

'/n

MORContents = RepositoryLinkRelativePath + DataFilePath + ",1"

20
if (BlindingType = DYNAMIC) {

MORContents = RepositoryLinkRelativePath + DataFilePath +
",@current"

}

25 Delete ConfigDataFilePath

Create symbolic link ConfigDataFilePath with contents MORContents

Done

-24-

10

15

20

25

WO 95/21416
Appendix C

SIMPLIFIED SAMPLE OF CHECK-IN PROCESS
ConfigDirPath = [Get ConfigDirPath]
DataFilePath = [Get data-file-path]
BindingType = [Get BindingType value]
ConfighataFilePath = ConfigDirPath/DataFilePath
RepositoryLinkName = ".raw_data"
RepositoryLinkPath = ConfigDirPath/RepositoryLinkName
DataFileName = filename portion of DatéFilePath

if (ConfigDirPath does not exist) {
print "Error - Configuration Directory does not

exist"

quit

if (ConfigbhataFilePath does not exist) ({

print "Error - ConfigDataFilePath does not exist”

quit

if (RepositoryLinkPath does not exist) {

print "Error - ..."

quit

RepositoryDirectoryPath = contents of

-25-

PCT/US95/01423

10

15

20

25

WO 95/21416 PCT/US95/01423

RepositoryLinkPath symbolic link
MOPath = RepositoryDirectoryPath/DataFilePath
InfoPath = MOPath + ",@info"

CheckoutPath = MOPath + ",@co." + <user-account-name>

if (InfoPath does not exist) {

print "Error - MO does not exist for DataFilePath"

quit

if (CheckoutPath does not exist) {
print "Error - user <user> does not have
DatafilePath checked out"

quit

if (ConfDataFilePath does not exist) ({
print "Error - no file to checkin"
quit

}

if (ConfigbhataFilePath is a directory) {

print "Error - cannot checkin a directory"

quit

CheckoutPathContents = read contents of CheckoutPath
CheckedOutVersion = [parse version number from

CheckoutPathContents]

VersionPath = MOPath + "," + CheckedOutVersion

-26-

10

15

20

25

WO 95/21416 PCT/US95/01423

Copy ConfigDataFilePath to VersionPath
Set 0S access permissions of VersionPath to non- '

modifiable

CurrentPath = MOPath + ",@current"
CurrentContents = DataFileName + "," +
CheckedOutVersion

delete CurrentPath

create symbolic link CurrentPath with contents

CurrentContents

RepositoryLinkRelativePath = ""

for each directory in DataFilePath ({
RepositoryLinkRelativePath =

RepositoryLinkRelativePath A

}

RepositoryLinkRelativePath = RepositoryLinkRelativePath
+ RepositoryLinkName
if (BindingType = STATIC) ({

MORContents

RepositoryLinkRelativePath +
DataFilePath + "," + CheckedOutVersion

}

if (BindingType = DYNAMIC) ({

MORContents RepositoryLinkRelativePath +
DataFilePath + ",@current"

}

-27-

10

15

20

WO 95/21416 PCT/US95/01423

Delete ConfigDataFilePath
Create symbolic link ConfigDataFilePath with contents
MORContents

delete CheckoutPath link

Done

-28-

WO 95/21416 PCT/US95/01423

Appendix D

SIMPLIFIED SAMPLE OF CHECK-OUT FOR READ OPERATION

ConfigDirPath = [Get ConfigDhirPath]
5 DataFilePath = [Get data-file-path]
BindingType = [Get BindingTypel
ConfigDataFilePath = ConfigDirPath/DataFilePath
RepositoryLinkName = ".raw_data"
RepositoryLinkPath = ConfigDirPath/RepositoryLinkName

10 DataFileName filename portion of DataFilePath

if (ConfigDirPath does not exist) {
print "Error - Configuration Directory does not
exist"

15 quit

if (ConfigDataFilePath is a writable file) {
print "Error - ConfighataFilePath is writable, this
20 operation will

not overwrite it"

quit

25 if (RepositoryLinkPath does not exist) ({

print "Error -

quit

-29-

10

15

20

25

WO 95/21416 PCT/US95/01423

RepositoryDirectoryPath = contents of
RepositoryLinkPath symbolic link
MOPath = RepositoryDirectoryPath/DataFilePath

InfoPath = MOPath + ",@info"

if (InfoPath does not exists) {

print "Error - MO for DataFilePath does not exist"

quit

if (MOPath exists and is a directory) {
print "Error - DataFilePath is Checked in as a
Directory"

quit

RepositoryLinkRelativePath = ""
for each directory in DataFilePath ({
RepositoryLinkRelativePath =

RepositoryLinkRelativePath + "../"

}

RepositoryLinkRelativePath = RepositoryLinkRelativePath

+ RepositoryLinkName
if (BindingType = STATIC) ({

VersionNumber = [Get Version Number]

if (no Version Number provided) {

-30-

WO 95/21416 PCT/US95/01423

CurrentPath = MOPath + ",@current”
CurrentContents = read contents of CurrentPath
VersionNumber = Parse Managed Object Extension

from CurrentContents

5 }

MORContents = RepositoryLinkRelativePath +

DataFilePath + VersionNumber

10

if (BindingType DYNAMIC) {
MORContents = RepositoryLinkRelativePath +
DataFilePath + ",@current"

15 1}

delete ConfigDataFilePath
create symbolic link ConfigDataFilePath with contents
MORContents

20

-31-

WO 95/21416 PCT/US95/01423

Appendix E

SIMPLIFIED SAMPLE OF CHECK-OUT FOR WRITE OPERATION

ConfigDirPath = [Get ConfigDirpath]
5 DataFilePath = [Get data-file-path]
VersionSpec = [Get Version Specification]
ConfighataFilePath = ConfigDhirPath/DataFilePath
RepositoryLinkName = ".raw_data"
RepositoryLinkPath = ConfigDirPath/RepositoryLinkName
10 DataFileName = filename portion of DataFilePath

if (ConfigDirPath does not exist) {
print "Error - Configuration Directory does not exist"
quit
}
15 if (ConfigDataFilePath exists and is writable) ({
print "Error - ConfigDataFilePath is writable, this operation will
not overwrite it"
quit
}
20 if (RepositoryLinkPath does not exist) ({

print "Error - . . ."

quit
}
RepositoryDirectoryPath = contents of RepositorylLinkPath symbolic
25 link
MOPath = RepositoryDirectoryPath)DataFilePath
InfoPath = MOPath + ",@info"

if (InfoPath does not exists) ({
print "Error - MO for DataFilePath does not

30 exist"

-32-

WO 95/21416 PCT/US95/01423

quit
}

if (MOPath exists and is a directory){

print "Error - DataFilePath is Checked in as a Directory"
5 quit
}
if (VersionSpec = Reference) ({
CurrentPath = MOPath + ",@current"
CurrentContents = ©read contents of
10 CurrentPath
VersionNumber = parse version number from CurrentContents
}
if (VersionSpec = Current) {

if (ConfigDataFilePath is not a symbolic link) {

15 print "Error - ConfigDataFilePath is not a Managed Object
Reference"
quit
}
MORContents = read contents of ConfigDhataFilePath
20 MORExten = parse MOR Contents for the Managed Object Extension

if (error finding Managed Object Extension) {

print "Error - ConfigDataFilePath is not a Managed Object
Reference"
quit
25 }
if (MORExten is "@current") {
CurrentPath = MOPath + ",@current"
CurrentContents = read contents of CurrentPath
VersionNumber = parse version numbexr from CurrentContents

-33-

WO 95/21416 : PCT/US95/01423

} else {

/* MORExten must be a version number */

VersionNumber = MORExten
}
5
if (VersionSpec = Version) {
VersionNumber = [Get Version Number]
}
CheckoutLinkPath = MOPath + ",@co." + user account name
10 if (CheckoutLinkPath exists) {
print "Error - user <account name> already has DataFilePath
checked out”
quit
}

15 if (don't have 0S access permission to modify InfoPath file OR
don't have 0S access permission to create file in InfoPath

directory) {

print "Error - lack sufficient permission to checkout
20 DataFilePath"
quit
}
VersionPath = MOPath = "," = VersionNumber
if (VersionPath does not exist) {
25 print "Error"
quit
}
LargestVersion = 0

Open InfoPath file for reading

-34-

WO 95/21416 PCT/US95/01423

for each Record in InfoPath {
Parse record into RecordVersionNumber and RecordDerivedFromVersion

if (RecordVersionNumber > LargestVersion)

LargestVersion = RecordVersionNumber
5
NewVersionNumber = LargestVersionNumber + 1
Construct NewInfoRecord = NewVersionNumber + " " + VersionNumber

Write NewInfoRecord to InfoPath
for each directory in ConfigDataFilePath {
10 if (directory does not exist)

create directory

}
" NewVersionPath = MOPath + ",* .+ NewVersionNumber
CheckoutLinkContents = DataFileName + "," + NewVersionNumber
15 if (ConfigDataFilePath exists) {
delete ConfigDataFilePath
}

copy file VersionPath to ConfigDataFilePath
set OS permissions of ConfigDataFilePath to modifiable
20 create symbolic link CheckoutLinkPath with contents

CheckoutLinkContents

=35~

WO 95/21416 PCT/US95/01423

CLAIMS
We claim:
1. A method for electronic file management
comprising the steps of:
5 providing a first and second directory;
providing a first link in the first directory to
the second directory;
providing a first file in the second directory;
and
10 providing a second link in the first directory
or a sub-directory thereunder through the first link to

the first file.

2. The method of Claim 1 wherein:
15 the first and second directory comprise a common

directory.

3. The method of Claim 1 further comprising the
step of:
20 providing a third directory that includes the

same information as included in the second directory.

4. The method of Claim 1 wherein:
the first and second links comprise symbolic

25 references.

5. The method of Claim 1 further comprising the

step of:

providing a fourth directory that includes

- -36-

10

15

20

25

WO 95/21416 PCT/US95/01423

different information than included in the second
directory;

providing a third link in the first directory to
the fourth directory;

providing a second file in the fourth directory;
and

providing a fourth link through the third link

to the second file.

6. The method of Claim 1 wherein:
the first file is provided in a sub directory

under the second directory.

7. The method of Claim 1 wherein:
the second link is provided from a sub directory

under the first directory;

8. The method of Claim 1 further comprising the
step of:
providing in the second directory a third file

associated with the first file.

9. The method of Claim 8 wherein:
the third file comprises version information

about the first file.
10. The method of Claim 1 wherein:
the first file is provided with a first name,

such that providing another file with the same name is

-37-

10

15

20

25

WO 95/21416 . PCT/US95/01423

detectable.

11. The method of Claim 1 wherein:
a plurality of versions of the first file is

provided in the second directory.

12. The method of Claim 1 wherein:
the second link is provided according to a user-

defined link specification.

13. The method of Claim 12 wherein:
the link specification indicates whether the

second link is static or dynamic.

14. The method of Claim 12 further comprising
the step of:
providing in the second directory a third link

which refers to the first file.

15. The method of Claim 14 wherein:
the second link to the first file is provided

also through the third link.

16. The method of Claim 14 wherein:

the second link refers to the third link to

refer indirectly to the first file.

17. The method of Claim 14 wherein:

the second link is pointable either to the first

-38-

WO 95/21416 PCT/US95/01423

file in static mode or to the third link in dynamic

mode.
18. The method of Claim 14 wherein:
5 the third link is modifiable to refer to an
other file.

19. The method of Claim 1 further comprising
the steps of:
10 providing a fifth directory;
providing a fifth link in the fifth directory to
the second directory; and
providing a sixth link in the firth directory
through the fifth link to the first file in the second

15 directory.

20. The method of Claim 1 further comprising
the step of:
'accessing the first file through the second link

20 to perform a read operation.

21. The method of Claim 1 further comprising
the steps of:
deleting the second link; and
25 copying the first file to the first directory to

perform a write operation.

22. The method of Claim 1 wherein:

the first link is provided in a network name

-39-

10

15

20

25

WO 95/21416 PCT/US95/01423

space.

23. The method of Claim 1 wherein the step of
providing the first file in the second directory
comprises the following steps:

providing the first file in the first directory;

copying the first file from the first directory
to the second directory;

deleting the first file in the first directory;
and

providing the second link in the first directory
to the copied first file in the second directory through

the first link.

24. The method of Claim 1 wherein:
the second link is provided a link name which is

identical to a file name provided to the first file.

25. The method of Claim 1 wherein:

the second link is provided with a link name
which is identical to a file name provided to a copied
file provided in the first directory, wherein the copied

file is identical to the first file.

26. A method for object management comprising
the steps of:

providing a configuration directory and a
repository directory;

providing a first symbolic reference in the

-40-

WO 95/21416 PCT/US95/01423

10

15

20

25

configuration directory to the repository directory;
providing an object in the repository directory;
and
providing a second symbolic reference through
the first symbolic reference to the object, wherein the
second symbolic reference is provided according to a
user-defined specification which indicates whether the

second symbolic reference is static or dynamic.

27. A method for electronic file management
comprising the steps of:

providing a configuration directory and a
repository directory;

providing a first symbolic reference in the
configuratipn directory to the repository directory;

providing a file in the configuration directory;

copying the file from the éonfiguration
directory to the repository directory;

deleting the file in configuration directory;
and

providing a second symbolic reference through
the first symbolic reference to the file copy in the

repository directory.

28. The method of Claim 27 wherein:

the second symbolic reference is provided
according to a user-defined specification which
indicates whether the second symbolic reference is

static or dynamic.

-41-

WO 95/21416 PCT/US95/01423

29. An electronic file management system
comprising:
at least one processor unit, each processor unit
5 having a corresponding storage device;
a configuration directory in one of the storage
units;
a repository directory in one of the storage
units;
10 a first symbolic reference in the configuration
directory to the repository directory;
a file in the repository directory; and
a second symbolic reference for linking through
the first symbolic reference to.the file;
15 wherein an access to the file in the
configuration directory effectively accesses the file in

the repository directory.

20

25

-42-

PCT/US95/01423

WO 95/21416

L 3HNOI4

ANJHHNO® TN oo i, 08
” O4NI® ‘114 MNIT 82
om.ﬂl fvm - H
. LI SOday i
- z¢
oy
AHOL1034Hia < ,J AHOL1034Ia
AHOLISOd3H NOILYHNODIINOOD
p 0o \.\
JOVHOLS IADVHOLS
U R K I ve
Nm\ 0z
HOSS300Hd | g1 HOSS3IO0Hd ol
300N LO3ArOHd 300N NDIS3a
\.\) ° ® /J
21 o ® o * o}
\ ' vl !
2L

1/2

WO 95/21416

42

/

PROVIDE CONFIGURATION DIRECTORY
AND REPOSITORY DIRECTORY

44

IJ

PROVIDE SYMBOLIC REFERENCE IN
CONFIGURATION DIRECTORY TO
REPOSITORY DIRECTORY

46

/J

PROVIDE OBJECT IN REPOSITORY
DIRECTORY

48

/J

PROVIDE SYMBOLIC REFERENCE TO
BOJECT THROUGH INTER-DIRECTORY

SYMBOLIC REFERENCE
50 52
o COPY FILE
READ OBJECT TO CONFIG. DIR.
o WRITE OBJECT
FIGURE 2

2/2

PCT/US95/01423

INTERNATIONAL SEARCH REPORT International application No.
PCT/US95/01423

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :GO6F 17/30
US CL : 395/600
According to International Patent Classification (IPC) or to both national classification and IPC

|B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/600, 650, 700, 425

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used),

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X MICROSOFT PRESS, 1988, R. DUNCAN, "THE MS-DOS| 1-7,10,12,14-
_ ENCYCLOPEDIA", PAGES 279-281. 16,18-21,23
Y
2,8,9,11,1%:17
,22,24-29

AP US, A, 5,355,497 (COHEN-LEVY) 11 OCTOBER 1994 1-29

D Further documents are listed in the continuation of Box C. D See patent family annex.

hd Specinal categories of cited documents: T :ler documeat published after the intemnational filing date or priority
5 - . : ate and notmconfbctwnhthcnpphahon but cited to understand the
"A" documentdefining the general state of the art which is not considered
40 be part of parts o principle or theory underlying the invention
g . " . . X d of parti ! s the claimed i jon cannot be
E carlier document published on or after the interational filing date considered novel or be considered 1o involve an inveative step
L document which may throw doubts on pnomy claim(s) or which is when the document is taken alone
cited to establish the publication date of or other
special reason (as ,pec,fed) Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
‘o document referring to an oral disclosure, use, exhibition or other combined with one or more other such d such bii
means being obvious to a person skilled in the art
°p" document published prior to the international filing date but later than =g, document member of u\.e same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
22 MARCH 1995 29 JUL 1995
Name and mailing address of the ISA/US uthorized officer
Commissioner of Patents and Trademarks ’b& Q/Q
Box PCT . N
R e, D.C. 21 LEN MACDONALD :ieﬁ NS
Facsimile No. (703)'305-3230 lephone No. (703) 305-9646

Form PCT/ISA/210 (second sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

