wo 2013/120686 A 1[I N0FV 00O RO A0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/120686 A1

22 August 2013 (22.08.2013) WIPO | PCT
(51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
GO6N 3/02 (2006.01) GO6F 9/50 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HO4L 29/08 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
. L KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(21) International Application Number: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
PCT/EP2013/051563 NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(22) International Filing Date: RW, SC, SD, SE, S@G, SK, SL, SM, ST, SV, SY, TH, TJ,
28 January 2013 (28.01.2013) ™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(25) Filing Language: English
L.) (84) Designated States (uniess otherwise indicated, for every
(26) Publication Language: English kind of regional protection available): ARTPO (BW, GH,
(30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
12305171.6 15 February 2012 (15.02.2012) EP UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(71) Applicant: ALCATEL LUCENT [FR/FR]; 3, avenue EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Octave Gréard, F-75007 Paris (FR). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
(72) Inventors: SATZKE, Klaus; Alleenstrasse 88, 71732) I\?IQPII\I](EBE,I\IB‘IEDCFI: GC)G’ CL M, GA, GN, GQ, GW,
Tamm (DE). WAHL, Stefan; Stettiner Stralle 8, 71701 ’ R ’
Schwieberdingen (DE). Declarations under Rule 4.17:
(74) Agents: WETZEL, Emmanuelle et al.; Alcatel-Lucent — as to applicant’s entitlement to apply for and be granted a
Deutschland AG, Intellectual Property & Standards, Loren- patent (Rule 4.17(ii))
zstrasse 10, 70435 Stuttgart (DE). — of inventorship (Rule 4.17(iv))
(81) Designated States (unless otherwise indicated, for every Published:

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

with international search report (Art. 21(3))

[Continued on next page]

(54) Title: METHOD FOR MAPPING MEDIA COMPONENTS EMPLOYING MACHINE LEARNING

Fig. 5 2
w 202 202
201—— VC EU
.
S CDN vC global —~-200
201 203
(O Ss3) vo pap
v 202
Feature vector (q,,v,,w4) 204
q
201
/' \placements
205 tameawc o
placements

(57) Abstract: The present document relates to cloud computing. In particular, the present document relates to methods and systems
for cloud computing which enable the efficient and flexible placement of application components within a cloud. A computing
device (101) is described. The computing device (101) is adapted to receive a plurality of component placement requests for one or
more components (703) of a corresponding plurality of applications (700); determine a plurality of feature vectors (203) from the

plurality of component placement requests, respectively; wherein each feature vector (203) comprises vector dimensions which de-
scribe different attributes of the respective component placement request: determine a plurality of placement decisions (205) regard -
ing the plurality of component placement requests, respectively: wherein each placement decision (205) comprises an indication of
one or more executing computing devices (101) onto which the one or more components (703) of the respective application (700)
have been placed; cluster the plurality of feature vectors (203), thereby yielding one or more clusters (202); wherein each cluster
(202) comprises a default feature vector (203) describing the different attributes of a default component placement request; determ-
ine a default placement decision (205) for each of the one or more clusters; and store the one or more default feature vectors and the
respective one or more default placement decisions (205) in a database (204) of the computing device (101).

WO 2013/120686 A1 |IIWAT 00N AN AT A AE T AR

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2013/120686 PCT/EP2013/051563

10

15

20

30

Method for mapping Media Components employing Machine Learning

The present document relates to cloud computing. In particular, the present document
relates to methods and systems for cloud computing which enable the efficient and

flexible placement of application components within a cloud.

The Internet is changing the way how users consume media. Enabled by Internet
technologies, the evolution is quickly moving towards a point allowing users to enjoy
media services like live 3D broadcasting, time-shifted viewing of live events or video on
demand whenever wanted, wherever needed and on any preferred device. Even more, in
the Internet, the user will not only be a spectator but an immersed participant. Web based
services are the catalyst for a whole class of new personalized media centric applications,
like massive sharing of multimedia content in real-time or immersive multimedia
communication. These services will not be realized as a pure content stream, but as an
orchestrated flow of media processing functions that will provide the requested data at the
appropriate time, location and format. With the introduction of high definition video
formats, the transferred data volume will outrun the size of the code building in the data
transformation process. Therefore placing service components in an intelligent way on a
distributed service infrastructure will provide a way to increase the scaling of the future
Internet infrastructure. In other words, as the transferred data volumes increase, it may
become more efficient to transfer and place SW components of a distributed application

at appropriate positions within a cloud network.

The present document addresses the technical problem of providing a cloud of computing
devices (also referred to as nodes) which enable the efficient and flexible placement of
service / application components. In particular, the present

document addresses the technical problem of providing an efficient scheme of placing

application components within the cloud of computing devices.

O. Niehorster et al. “Autonomic Resource Management With Support Vector Machines”,
Grid Computing, 12" IEEE/ACM International Conference on, IEEE, 21.09.2011, pp.
157-164, describes a software solution that reduces the degree of human intervention to

manage cloud services.

WO 2013/120686 PCT/EP2013/051563

10

20

s
Ly

30

According to an aspect a comiputing device {also referred to as a computing node or node)
adapted for distributed cloud computing is described. The computing device miay be
adapted to receive a plurality of component placement requests for one or more
components of a corresponding plurality of applications. Furthermore, the computing
device may be adapted to determine a plurality of feature vectors from the plurality of
component placement requests, respectively. A feature vector of the plurality of feature
vectors comprises vector dimensions which describe different attributes (or different
aspects)of the respective component placement request. As such, the feature vector may

be understood as a structured model of a corresponding component placement request.

In addition, the computing device may be adapted to determine a plorality of placement
decisions regarding the plurality of component placement requests, respectively. A
placement decision comprises an indication of one or more executing computing devices
onto which the one or more components of the respective application have been placed.
In particular, the computing device may be adapted to receive control messages from
other computing devices and fo determine the plurality of placement decisions (and

possibly the feature vectors) based on the received control messages.

As such, the computing device may be adapted to gather training data comprising a
plurality of feature vectors and a corresponding plurality of placement decisions, In
particular, the computing device may be adapted to structure the information comprised
in a component placement request and in a placement decision, thereby providing training
data which can be used for machine learning, and thereby enabling an accelerated

placement of future component placement requests.

In the context of machine learning, the computing device may be adapted to cluster the
plurality of feature vectors, thereby yvielding one or more clusters. The ¢lustering may be
performed using a machine learning algorithm, e.g. a support vector machine algorithm.
Each cluster typically comprises a-default feature vector describing the different attributes
of a default component placement request. In other words, a cluster may be represented
by a default feature vector. Furthermore, the computing device may be adapted to
determinea default placement decision for each of the one or more clusters. The one or

more default feature vectors and the respective one or more default placement decisions

WO 2013/120686 PCT/EP2013/051563

10

I5

20

25

-3

may be stored in a database of the computing device. In particular, the one or more
default feature vectors and the respective one or more default placement decisions may be

used for future placement decisions.

The computing device may be adapted to reduce the number of vector dimensions in the
context of machine learning, i.e. the computing device may be adapted to reduce the
dimension of the vector space, thereby reducing the overall complexity for handling
future component placement requests. In particular, the computing device may be adapted
to determine that a first vector dimension of the plurality of feature vectors has a
correlation with the corresponding plurality of placement decisions which is smaller than
a correlation threshold. In other words, the computing device may determine a first vector
dimension which has little to no influence on the placement decisions. If such a first
vector dimension is determined, the first vector dimension can be removed from the

plurality of feature vectors.

The vector dimensions may be indicative of one or more of® a location of a sink and/or a
source of data processed by an application component; a number of sinks and/or sources
processed by an application; computing resources required by an application component
{wherein the computing resources may be one or more of: processor resources, memory
resources, bandwidth résources): connection attributes required by an application
component (wherein the connection attributes may be one or more of: bandwidth, latency,
maximum bit error rate); and/or a graph structure of the one or more components of an
application (wherein the graph structure may indicate how the one or more components
of the application are interlinked). The vector dimensions may have appropriate metrics

in order to make them comparable with one another.

The computing device may be adapted to make use of the stored default feature vectors
and the corresponding default placement decisions for handling a new component
placement request. In particular, the computing device may be adapted to receive the new
component placement request for the placement of one or more components of a new
application. A new feature vector may be determined from the new component placement
request (in a similar manner as is done in the context of the above mentioned machine
learning phase). The computing device may then determine where to place the one or

more components of the new application based on the one or more default feature vectors

WO 2013/120686 PCT/EP2013/051563

1o

25

30

4

stored at the computing device. In particular, the computing device may compare the new
feature vector with the one or more default feature vectors, in order to determine if the
new placement request can be handled in the same (or similar manner) as one of the one

or more default placement decisions.

The computing device may be adapted to determine a minimum distance of the new
feature vector from the one or more default feature vectors. The distance between the new
feature vectorand a default feature vector may be determined based on the respective
metrics of the vector dimensions. By way of example, the distance may be determined
based on a weighted difference of the respective vector dimensions of the new feature
vector and the one of the one or more default feature vectors. If the minimum distance is
below a minimum threshold, the computing device may determine where to place the one
or more components of the new application based on the default placement decision
corresponding to the default feature vector at the minimum distance from the new feature
vector. In particular, the computing device may pass the component placement request to

an executing computing device indicated within the default placement decision.

As outlined above, the present document relates to a media ¢cloud comprising a plurality
of computing devices. Furthermore, the present document relates to a distributed
placement scheme, where each computing device is configured to take an individual
decision regarding the placement of the one-or more components of a new application.
This placement decision may be taken based on default placement decisions derived from
previous placement decisions (using machine fearning). Alternatively or in addition, the
computing device may be adapted to make use of topological and/or resource information

available at the computing device, in order to make an individual placement decision.

The computing device may be positioned in a first topological area. Typically, the
distributed cloud (referred herein as the media cloud) comprising a plurality of such
computing devices is partitioned into a plurality of topological areas (which may be
further subdivided into one or more regions). The computing device comprises a
topological list indicating a plurality of reference computing devices positioned ina
plurality of topological areas other than the first topological area, respectively. In other
words, the computing device holds a topological list which provides an indication (e.g. a

network identifier) of at least one reference computing device positioned within each of

WO 2013/120686 PCT/EP2013/051563

10

15

20

30

-5

the other areas (or regions) of the distributed cloud. The topological list may comprise
one or two reference computing devices per other area (or region). Typically, the
reference computing devices are randomly selected from the available list of computing
devices within a region, in order to ensure that each computing device has a different

anchor point to the region, thereby removing single points of failure.

The computing device may further comprise a local resource list indicating available
computing resources of the computing device and of at least one neighbor computing
device positioned in a neighborhood of the computing device. The neighborhood of the
computing device may be defined by one or more neighborhood conditions which need to
be met by the at least one neighbor computing device. The one or more neighborhood
conditions may comprise a maximum round trip time between the computing device and
the at least one neighbor computing device. Alternatively or in addition, the one or more
neighborhood conditions may comprise the condition that the at least one neighbor

computing device is positioned within the first, i.e. within the same, topological area.

Upon determining that the minimum distance is greater than a minimum threshold (i.e.
upon determining that the computing device cannot rely on previous placement
decisions), the computing device may be adapted to determine, based (only) on the
topological list, if the one or more components of the new application are to be placed in
the first topological area or in one of the plurality of topological areas other than the first
topological area. Typically, a new component placement request comprises information
regarding the preferred location of a sink or a source of the component / application. By
way of example, the information regarding the preferred location of a sink or a source of
the one or more components may be derived from a description of the requirements of the
one or more components and other components of the application that the one or more
components are interworking with. The computing device may compare the preferred
location with its own location and the location of the topelogical areas of the media

cloud.

If it is determined that the one or more components are to be placed in one of the plurality
of topological areas other than the first topological area, the computing device may be
adapted to pass the component placement request to the reference computing device of

the respective topological area of the plurality of topological areas other than the first

WO 2013/120686 PCT/EP2013/051563

10

15

20

[
LA

30

6=

topological area. In other words, if it is determined that another topological area is closer
to the preferred location, the placement request is passed to the reference computing
device (or to one of the reference computing devices) of the another topological area,
wherein the reference computing device (i.e. the indication to the reference computing
device) is taken from the topological list of the computing device. As such, the computing
device may be adapted to perform a topology management task based on its topological
list, without the need to consult another computing device or a higher level network
management entity. In other words, the topology management task may be performed

autonomously by the computing device.

If it is determined that the one or more components are to be placed in the first
topological area, the computing device may be adapted to identify from the local resource
list a selected computing device having the computing resources for executing the one or
more components of the new application. In other words, if the computing device
determines that the preferred location of the component lies within the first topological
area (or-within the region of the computing device), the computing device may perform a
resource management task based on the resource information available within its local
resource list, without the need to consult another computing device or a higher level
network management entity. This means that the resource management task may be

performed autonomously by the computing device.

It should be noted that the above mentioned handling of a new placement request based
on a topological list and/or a local resource list may also be used, when a default
placement decision has been identified and when the new placement request is passed to
an executing computing device identified within the default placement decision. In
particular, the executing computing device may make use of its topological list and/or its
local resource list to further optimize the handling of the one or more components of the

new-application.

The computing device may be a default application server of a point-to-multipoint, a

point-to-point or a multipoint-to-multipoint application. Such a default application server
may be a default point of access in a cloud of a plurality of computing devices for setting
up the point-to-multipoint, the point-to-point or the multipoint-to-multipoint application.

Examples for such default application servers are e.g. a central video conference server in

WO 2013/120686 PCT/EP2013/051563

10

20

7

a particular topological area, a central broadcasting server in a particular topological area,

and/or a central call handling server in a particular topological area.

According to another aspect, a method for determining a database of default placement
decisions and/or a method for placing one or more components of a new application onto
a computing device of a cloud of computing devices is described. The method comprises
receiving a plurality of component placement requests for one or more components of a
corresponding plurality of applications. The method proceeds in determining a plurality
of feature vectors from the plurality of component placement requests, respectively;
wherein each feature vector comprises vector dimensions which describe different
attributes of the respective component placement request. Furthermore, the method
proceeds in determining a plurality of placement decisions regarding the plurality of
component placement requests, respectively; wherein each placement decision comprises
an indication of one or more executing computing devices onto which the one or more
components of the respective application have been placed. As such, the method
comprises determining a set of training placement requests (represented by the plurality
of feature vectors) and placement decisions for enabling machine learning. The method
comprises clustering the plurality of feature vectors, thereby yielding one or more
clusters; wherein each cluster comprises a default feature vector describing the different
attributes of a default component placement request. In addition, a default placement
decision is determined for each of the one or more clusters. The one or more default
feature vectors and the respective one or more default placement decisions are stored in a
database of the computing device. Hence a database of default placement decisions may
be determined. Furthermore, the one or more default feature vectors and the respective
one or more default placement decisions stored in the database may be used for placing

the one or more components of the new application.

According to a further aspect, a software program is described. The software program
may be adapted for execution on a processor and for performing the method steps

outlined in the present document when carried out on a computing device.

According to another aspect, a storage medium is described. The storage medium may
comprise a software program adapted for execution on a processor and for performing the

method steps outlined in the present document when carried out on a computing device.

WO 2013/120686 PCT/EP2013/051563

According to a further aspect, a computer program product is described. The computer
program may comprise executable instructions for performing the method steps outlined

in the present document when executed on a computer.

It should be noted that the methods and systems including its preferred embodiments as
outlined in the present document may be used stand-alone or in combination with the
other methods and systems disclosed in this document. Furthermore, all aspects of the
methods and systems outlined in the present document may be arbitrarily combined. In
] particular, the features of the claims may be combined with one another in an arbitrary

manncr.

The invention is explained below in an exemplary manner with reference to the

accompanying drawings, wherein

Fig. 1 shows an example arrangement of computing nodes within a cloud;
Fig. 2 illustrates an example representation of the regional grouping of a plurality of
computing nodes;
Fig. 3 illustrates an example resource and topology graph of a computing node;
20 Fig. 4 illustrates example components of an application;
Fig. 5 shows an example vector space describing an application placement situation;
Fig. 6 shows a flow chart of an example learning method for application placement; and
Fig. 7 shows a flow chart of an example method for application placement making use of
machine learning.
25
Up to today increased transport capacity demands in the networks are mainly achieved by
enhancing installed bandwidth in the networks either by technological breakthroughs or
the installation of new infrastructure elements. But there exist substantial concerns, that
this evolution of networks subject to increased capacity demands cannot be expected to
30 - last, at least at reasonable costs. As future network enhancements become more and more
challenging, there is a need for alternative approaches to meeting the increasing capacity
demands. A well established approach to handling an increasing demand for network
capacity is toradd "higher layer” intelligence to the networks. The added “higher layer”

intelligence aims to reduce the overall traffic, thus enhancing available transport capacity

WO 2013/120686 PCT/EP2013/051563

15

20

25

30

_9.

e.g. by localizing traffic. The first success of this concept of “higher layer” intelligence
was the introduction of Content Delivery Networks (CDN). CDNs basically enable the
massive scale adoption of (imedia) services comprising broadcast delivery characteristics

in the Internet.

However, there is an emerging trend towards personalized media streams, where the -
media streams need to undergo processing somewhere in the Internet, i.e. in the cloud,
thereby enabling the evolution of e.g. IP-TV towards personalized "multi-view" video
service (see e.g. Ishfaq Ahmad, "Multi-View Video: Get Ready for Next-Generation
Television," IEEE Distributed Systems Online, vol. 8, no 3, 2007, art. no. 0703-03006) or
enabling cloud based gaming services like “OnLive” (see e.g. OnLive,
http://www.onlive.com/). While CDNs are built for the efficient delivery of the same
coritent to a multitude of receivers, the new trend to individualized content streams which

requires processing within the network is challenging the Internet infrastructure.

Today's applications and corresponding cloud infrastructures are typically designed in a
way that data is moved through the network towards a dedicated location (i.e. a data
center) where the application is executed. Preserving this cloud computing paradigm in
the future Internet design would result in huge amounts of traffic which need to be
transported to “arbitrary” data centers, where the processing functionality for media
streams is located. It is proposed in the present document to change this paradigm of a
centralized application processing at designated data centers. In particular, an intelligent
infrastructure is proposed which forces the movement of applications or parts of the
applications according to application requirements. Such schemes can offload
unnecessary “long distance™ traffic from the networks by localizing traffic and thus will

help to overcome the issue of limited availability of transport capacity in future networks.

Even with today’s cloud infrastructures, offloading of computing infrastructure into the
Internet has become a commodity. Cloud computing providers, like Amazon EC2,
Rackspace or Microsoft Azure, offer their infrastructure or platforms as a service,
providing features like automated scalability and instant deployment, which supports the

very dynamic needs of Internet based services like Facebook or Animoto.

WO 2013/120686 PCT/EP2013/051563

- 10 =~

However, today’s approach has a significant cost: today’s approach increases the overall
load on the core networks because instead of keeping traffic local, more traffic is routed
to centralized data centers (provided by the cloud computing providers). The centralized
data centers process the data and send it back to the requestors. While this seems to be

5 feasible for traditional request/response based web-services, this centralized approach
might break the design of the actual Internet architecture for massive media centric real-

time applications like personalised MultiView video rendering.

It is proposed that the Internet enibeds intrinsic capabilities to directly support a service
10 - oriented computing paradigm that enables developers and end-users to execute their

personalized applications onto an integrated network and computing infrastructure.

Autonomous services should be the comiponents from which such applications can be
built. The autonomous services should not be bound to a specific host infrastructure
15 hardware addressed by their physical instantiation on that machine but should become
moveable objects, which can be dynamically deployed on the distributed computing
resources and collocated to the data-flows between the sources and sinks of the data

flows.

20 The autonomotis services may make use of well-defined abstraction models of the
services, in order to enable the dynamic composition of services and the potential
adaptation or relocation of services if workflow or context conditions change. A loose
coupling of service components should enable the interconnection of the service
workflow on demand and should facilitate adaptations of the workflow needed to provide

25 the same relevant data to the user by modifying the service composition (given that

services and their interfaces have some semantic service description).

Fromi a user’s perspective, a cloud typically behaves like a centralized server:
Nevertheless, the cloud typically utilizes an aggregated or distributed set of free resources
30 - ima coherent manner. By monitoring the computational load and the network résources, it
is possible to dynamically scale-up and scale-down instances and manage the network
load without necessarily applying QoS (Quality of Service) management mechanisms on

the data-paths.

WO 2013/120686 PCT/EP2013/051563

10

15

20

30

.

Especially in media applications such components can be implemented as data
transformation services, i.e. entities, which consume data in order to generate another
data stream. In other words, media applications may be modelled as a sequence of data
transformation services. As such, video cameras are data sources that generated video
data. Video processing components, like video codecs, scaling or framing components
may allow forthe transformation of data in order to adapt the media stream to a suited
format e.g. for mobile terminals or TV displays. Image recognition can identify objects
out of the video signal, which can be merged from different sources to generate a 3D

model of the scene.

Using such a data transformation model and the original video streams of the cameras, a
new personalized view for a user can be rendered and sent to the display. Such a service
can be represented by a directed graph, which will be instantiated upon deployment time.
During the instantiation process, the required resources are selected from an available
resource pool. As a result of selecting the required resources during the instantiation
process, the overall traffic imposed by the service onto the network will be reduced. In
other words, the resource selection process may be directed at reducing the overall traffic
imposed by the service onto the network. The resource selection process may furthermore

consider optimizing QoE (Quality of Experience} aspects for consumers of the service,

Applications with varving service characteristics can benefit to a different extend from
the Media Cloud (MC) concept. Major benefits can be achieved on applications that
require a ¢onsistent flow of continuous data over a certain period.of time or on
applications that require the transfer of large amounts of data for processing. On the other
hand, for applications which require only a very limited transfer of data, the service
transfer overhead and the instantiation cost may exceed the gained benefits. Asa
consequence, it may be beneficial within the MC concept, to provide mechanisms
allowing the retrieval of “meta-information” associated with data. Such “meta-
information” associated with data may provide information on where the data is located,
on how much data needs to be transferred for service execution, if the data is a constant
media (e.g. video) stream oronly a limited amount of data (e.g. a'data filey which needs

to be transferred prior to service execution.

WO 2013/120686 PCT/EP2013/051563

15

20

30

212 -

In order to support media cloud scenarios inherently by the network architecture, some
basic principles from the existing Internet architecture should be reconsidered. First, well-
known principles from content networking should be extended to support the MC
approach described in the present document. Content networks explore locality of data,
i.e. instead of serving a request for data at the source, a local cached copy of the data is
delivered. A scheme may be proposed that directly addresses the content and uses this
information for routing purposes, instead of using the location where the content was

generated for routing decisions.

Anextension of the above mentioned scheme would be to not only address the content,
but to also address a service that is able to provide the requested data and instantiate a
processing pipeline to do the necessary transformations. Instead of performing centralized
processing for all users in a single domain, media flows may be combined or split at
appropriate locations exploiting intrinsic “multi-cast” capabilities in the network layer
where available. This is beneficial over existing schemes, where multi-cast has to be
explicitly incorporated by the service developer not knowing if “multi-cast™ is supported

in the network and therefore can only be achieved by means of overlay mechanisms.

If the traffic patterns of (media) flows exchanged between different service components
are accurately predicted, the MC-enabled network described herein can operate on such
flow patterns directly, instead of executing routing decisions on a per packet basis. Thus
the MC-enabled network can enable efficient flow-based switching by providing
available meta-information of media streams, exchanged between service components to
the network. This information can enable the control plane in such MC-enabled networks

to increase the overall throughput,

The MC scheme may also consider that a flow based switching paradigm is typically
achieved at the cost of supporting more dynamicity in flow control handlers. In order to
“limit” such costs, MC-enabled netwarks should provide capabilities to aggregate
multiple data streams which are sharing paths between service components executed in
the same data centers. By introducing an aggregated granularity of joint streams between

data centers, the control complexity in the core network itself can be limited.

WO 2013/120686 PCT/EP2013/051563

10

15

20

30

S13 -

A further requirement on the network when providing a MC is that flows should be
handled in the network in such ways, that uninterrupted relocation of media flow end-
points, which are no longer machines but services (i.e. service components), is supported.
In consequence, for MC-enabled networks, client APIs like the socket interface may need
to be modified. As MC-enabled services are built from self-contained components
generally operating on input stream(s) of data to generate their output data, which is then
distributed to the subsequent consumer components of this service, the use of dedicated
sockets for communication purposes may no longer be sufficient and new paradigms may

need to be considered in the context of a future Internet,

Typically, the processing resources of a usual cloud application have to be assigned prior
to service runtime. Most often this mapping is a manual administrative task of deciding
which data centre should host a specific application. As a consequence, regardless the
location of origin of data to be processed, the data to be processed typically has to be sent
towards its pre-assigned data centre, be processed there and sent oul to its destination.
Such a static placement scheme is not sufficient to exploit the benefits of distributed
media application deployments, which improve service performance and resource
utilization by dynamically adapting service execution at runtime. For example, a global
video conferencing service may be enabled to grow and shrink, or move to more
appropriate locations following the usage pattern of the users of the video conferencing
service. This adaption of resources may be achieved by creating, by taking down or by
moving application components of the video conferencing service within the MC. The
present document is directed at efficiently providing such placement and re-placement
decisions for application components, while avoiding complex service logic (middleware)

taking care about service scaling and component locality.

For truly distributed service deployments, which operate at least on the granularity of per-
user components, educated component placement decisions can typically only be
achieved during service runtime. Only at that time data sources and data sinks of relevant
media streams are known and thus media processing components can be assigned to
close-by processing resource locations, thereby resulting in reduced end-to-end service
latency and in offloaded networks by keeping the traffic local. Changing service profiles
and varying traffic patterns might even require resource re-assignment for components

during service runtime. Thus efficient component placement typically requires not only a

WO 2013/120686 PCT/EP2013/051563

10

15

20

30

-14 -

one-shot mapping decision when an application component is instantiated, but typically

also requires the continuous evaluation of resource assignments.

The Media Cloud described herein typically uses light-weight application components
(i.e. application components having a relatively small data size) and provides a
distributed orchestration middleware following a flow-based programming model adapted
to effective media processing. Due to the small size of the application component, the
components are flexibly deployable during execution time and can be placed at a location
where the application component runs most effectively to provide highest user experience

at lowest ¢ost,

Application components may separate the inner functional logic from the external
application logic. Typically, application components are triggered by the arrival of a new
instance of streamed media e.g. by the arrival of a video frame. In response, messages are
delivered towards an appropriate application component via determined connectors —
which are referred to as “ports”™ in the Media Cloud - that connect the application
component to the execution environment. When a new video frame is received the
application component operates on it, e.g. converts the received frame from a Red-Green-
Blue (RGB) colour space 1o a gray-scale image, merges frames from two input streams

intoa single output image, or performs face detection.

Whenever the application component has concluded its operation and has generated
results, it invokes the execution environment to transfer the processed data to potential
consumers of the data generated by the application component. The execution
environment identifies and resolves consumers of the generated output and handles the
data transport. This handling by the execution environment hides external bindings from
the application component and allows dynamic binding and reconfiguration of the overall
application even at execution time. In order to assure that the sender and receiver are

interpreting a message in a consistent way, different port types may be considered.

Within the MC context described in the present document, the overall application logic is
established by control components which create or dismiss application components and
which construct or release connections between the application components. Although

control components typically do not participate in the media path, the control components

WO 2013/120686 PCT/EP2013/051563

20

-15-

are connected to their child components through a special control port, in order to provide
configuration parameters, send control commands to the child components or to receive

CITOr messages.

Typically, a new application component is instantiated at the same local resource where
the corresponding control component resides. After the connections to other application
coniiponients in the media flow dre established, the exécution environment invokes a
mapping process as outlined above and transfers the application component and the state
of the application component to a resource that is better suited to host the application

component for performance, latency or other reasons.

The flexibility of the application component-based approach allows extending
applications by on-demand addition of further application components e.g. by a face
detection functionality in order to identify the presence of a known person instead of an

arbitrary moving object.

In the context of the application component placement process various technical
problems are e.g.: The realization of efficient resource assignment strategies and
management schemes that provide sufficient performance and scale even in the case of
highly distributed resource deployments algorithms, the identification of reasonable limits
of fine-grained service deployments (i.e. the identification of an optimum granularity of
the application components), the design of appropriate assignment algorithms and
strategies, and the feasibility of a fully distributed assignment approach. The present
document addresses these technical problems. In particular, the present document

describes a method for placing application components within the MC.

A possible solution to a fully distributed assignment approach could be to not assign an
application component in a single computational step to a computational resource based
on ‘global” knowledge, but to forward a component from resource to resource based on
local knowledge at the resource until the currently best fitting resource is reached. This
approach is comparable to the forwarding approach for IP packets in IP networks. In such
a forwarding approach the topology and demand information may be limited to
neighbourhoods, or circles of small radius around selected facilities, whereas demand

information is captured implicitly for the remaining (remote) clients outside these

WO 2013/120686 PCT/EP2013/051563

10

I5

20

30

« 16 -

neighbourhoods, by mapping the components to clients on the edge of the neighborhood.
The circle radius may be used to regulate the trade-off between scalability and

performance.

A further approach may be the use of distributed mapping nodes for replica selection. An
algorithm may be used which maintains a weighted split of requests to a customer’s
replicas, while preserving client—replica locality to the greatest possible extent. Such an
approach solves an optimization problem that jointly considers client performance and

server load.

The above mentioned approaches typically do not memorise the current distributed
system state together with the distributed service requests. As a consequence each minor
change of the system state or the request rate may lead to the necessity to solving an
optimisation problem which requires time and processing effort and/or to a multi-step
application component re-placement process which is slow and may involve local
minima. Furthermore, the above mentioned approaches do not provide capabilities for the

identification of recurrent and synchronized service aftacks.

Fig. 1 illustrates a set 100 of computing nodes (also referred to as computing devices)
101. These computing nodes 101 form a flat arrangement without hierarchy, i.e. none of
the computing nodes 101 of the set 100 has an overall control or management
functionality. Each of the computing nodes 101 works independently from the other
computing nodes 101 and solely relies on the individual information of the structure of
the set 100 available at the computing node 101. The set 100 is referred to as a media
cloud (MC) 100 in the present document. The different nodes 101 are interconnected via

a communication network 103 such as the Internet,

It is proposed to use a distributed arrangement 100 of cloud computing appliances 101, in
order to provide services or applications in a distributed manner (as opposed to a
centralized manner). As a result of a distributed provisioning of services or applications,
it is expected that the services or applications can be provided in a more resource efficient
manner (notably with regards to the required transmission resources of the
communication network 103). In this context; a fully distributed resource management

(RM) system for the cloud computing appliances 101 is described, whereby none of the

WO 2013/120686 PCT/EP2013/051563

10

15

20

17 -

RM functions provided on the cloud computing appliances 101 has full knowledge with
respect of the available resources and of the topology of the arrangement 100. Overall, it
is desirable to provide an autonomous, distributed and autarkic resource management

(RM) function of each of the nodes 101 of the MC 100.

In this context, an “autononious” RM function means that each node 101 decides
autonomously about its local resource neighbors, in order to decide whete to have an
application or a component of an application executed. Furthermore, an “autonomous”
RM function decides autonomously on the representative of another cloud resource
region. In other words, the MC 100 may be subdivided into a plurality of cloud areas 102,
and each of the nodes 101 of a first area 102 may autonomously select a node 101 of a
second area which is representative of the entire second area 102 (or a sub-region of the
second area 102). As such, each node 101 may autonomously build up a local resource
graph of the resources which are available in the neighborhood of the node 101 within the
area 102 of the node. Furthermore, each node 101 may build up a topological list of
representative nodes of the other area 102 of the MC 100, thereby providing each node
101 with a point of entry into all the area 102 (and possibly all of the sub-regions) of the
MC 100.

The RM function of each node 101 is “distributed” in that a resource management
function is placed on every node 101. In an embodiment, none of the nodes 101 has any
particular special role {e.g. a coordination role). Each node 101 performs its RM function
in-an “autarkic” manner, meaning that a decision on where to place a software component
within the MC 100 is solely performed by the node’s RM function (without consulting a
higher layer control function). In order to work in an “autarkic™ manner, each node 101
holds an individual view of near/local resources (e.g. via a local resource graph) and an

individual linkage to other areas and/or (sub)regions (e.g. via the topological list).

The nodes 101 of the MC 100 do not share a common overall network map of the
position of all the nodes 101 within the MC 100. Instead. each node 101 comprises an
individual network map which reflects the node’s view of the entire MC 100. The
individual network map may comprise the local resource graph (thereby indicating some

of the neighboring nodes within the same area or region 102) and the topological list

WO 2013/120686 PCT/EP2013/051563

10

20

25

- 18-

(thereby providing at least one representative node of each area 102 (or region) of the MC
100).

Fig. 2 illustrates a topological ¢lustering 300 of nodes 101. As indicated above, the
topology of the MC 100 can be ordered into hierarchy levels (e.g. of areas 102 which
comprise one or more regions 302). As such, a node 101 (e.g. the node B of Fig. 3) may
be attributed to a region 302 (e.g. the region a) which itself is attributed to-an area 102

{e.g. the area a).

A particular node 101 only has a limited view of the entire MC 100. This limited view of
the MC 100 is used by the node 101 to perform an “autonomous™ RM function. This part
of the RM function may be referred to as the topology management performed by the
node 101. In order to be ableto reach each area 102 (or region 302} of the MC 100, each
node 101 adds one (inaybe several) representative of another area 102 (or region 302)
into'its topology tree or topology list {also referred to as topological list). If the nodes of
the MC 100 are organized in one hierarchy level e.g. in areas 102 (without any
subdivision into regions 302) then each root node 101 should store an (arbitrary)
representative of any other area 102. If the nodes 101 are organized into two hierarchy
levels e.g. regions 302 and areas 102 (each area 102 holding one or more regions 302)
then each root node 101 should store an (arbitrary) representative of any other area 102

and an (arbitrary) representative of any of the regions 302 in this area 102,

As such; each node 101 puts itself into the root position of its local resource graph (RG)
which provides the node 101 with the ability to perform resource management within an
area 102 (or within a region 302). Furthermore, each node 101 puts itself into the root
position of its topology graph (or topology list). This provides the node 101 with its
individual view of the network. Each (root) node 101 adds one or more representatives of
other regions 302 (and/or areas 102} into its topology graph (TG). It should be noted that
any node within a region 302 can be a representative of this region 302, i.e. all nodes are
equal and none of the nodes of an area 102 or region 302 has special tasks. In case of a
two hierarchical topology (comprising areas 102 and regions 302), a maximum of two
steps are required to address the correct region 302 from each of the nodes 101 using the

TG of the node 101,

WO 2013/120686 PCT/EP2013/051563

10

15

20

30

-19-

The local and regional topological information may be stored within a table 600 as shown
in Fig. 3. The table 600 indicates the nodes of the local resource graph 601 including the
costs 611 associated with the respective nodes of the local resource graph 601. The costs
611 of another node may comprise resource values attached to the other node, e.g.
available processing resources, available link bandwidth, available memory resources,
achievable round trip time, etc. Furthermore, the table 600 provides a topology list 602
indicating the representative nodes of other regions and/or areas. The topology
information entries may also hold multiple alternatives (instead of a single entry per
region / area). As such, the memory table 600 is a representation of the nodes viewpoint
of the MC 100. The number of nodes within the local resource list 601 is typically limited
to a predetermined number which is smaller than the total number of nodes within an area
/ region. The number of nodes per area / region within the topology list 602 is limited to a
number of nodes (e.g. one or two nodes) which is smaller than the total number of nodes
within an area / region. This means that each node 101 only has a restricted view of the

complete MC 100.

A node 101 manages the resources and topology in a table 600. The resource entries 611
store the cost tuple information received from the neighboring nodes. Depending on the
distance (d) from the root clement, the precision of the cost tuple values can vary with
respect of accuracy, actuality, aggregated view, etc.. The cost tuples may contain resource
values such as processing, memory, link bandwidth, RTT (round trip time), etc.. In case
of a component instantiation process (i.e. a component placement process), the node first
analyzes its own resource state and then compares it with the nodes in the RG 601. The
node decides whether it instantiates the component locally or forwards the request to a

neighbor node within the RG 601.

The local resource graph 601 may be used for the resource management performed by a
node 101. As indicated above, each node performs an independent resource management
function based on the limited information available at the node 101, in particular based on
the local resource graph 601. The local resource graph 601 is based on a subset of nodes
(which is typically taken from the same region). It should be noted that, for nodes 101
which are positioned near the border between a plurality of regions 302, the neighboring
nodes within the local resource graph 601 may comprise nodes of other regions.

Typically, the local resource graph (RG) tree depth is limited (to the near network

WO 2013/120686 PCT/EP2013/051563

10

15

20

220 -

neighbors, or to the vicinity). In a booting process of the node 101, the positions within
the local resource graph may be negotiated from a given set of (regional) nodes. In other
words, the node 101 may select an appropriate subset of available nodes to be placed
within the local resource graph. A continuous (slow) optimization process allows to
replace nodes by other nodes in the same region. This means, if a root node 101 observes
that a node within its local resource node does not contribute (significantlyv) to-the
resource management function of the node 101, the root node 101 may decide to replace

the non contributing node by another node from the neighborhood of the root node 101.

Ag indicated above, each node 101 in the local RG is attributed with a cost scalavtuple
611, This tuple 611 helps to decide where a new component instantiation request has to
be placed. In other words, when deciding where to place the execution of the component
of an application within the MC 100, the node 101 may consult the local RG 601 and
place the component with one of the nodes comprised within the {ocal RG 601, based on
the costs 611 provided by the node. The nodes in the local RG 601 inform their RG root
node 101 regularly about the current resource state. In-other words, the nodes of the local
RG 601 push information regarding their resources to the root node 101, thereby ensuring
that the root node 101 can make substantiated resource management decisions. In
particular, the local RG information (e.g. the cost 611) is used to identify one of the nodes
within the local RG (incl. the root node itself) as an appropriate node for component
placement. It should be noted that the placement process of a component can take several
iterations. On the other hand, there is no central or partial central functionality for
performing the resource management function, thereby removing the risk of a single

point of failure:

As such; each node 101 has a limited network view which comprises the local resource
graph 601 and the topological graph 602 indicating one or more representative nodes of
the other regions. As indicated above, the topology of the MC 100 may be determined in
a distributed manner using the Vivaldi and Meridian algorithms. At an initialization stage,
each node 101 may be able to access the complete list of nodes within the same region /
arca. The node 101 uses this list of nodes to build the local resource graph 601.
Furthermore, at the initialization stage, each node 101 may select at least one node from
the remaining regions / areas. The selection of the at least one node of the remaining

regions / areas should be performed in a random manner, in order to ensure that the nodes

WO 2013/120686 PCT/EP2013/051563

10

20

25

30

-21-

of a region have different representative nodes of the other regions, thereby preventing

single point of failures or loopholes.

In the following, further details regarding the mapping function 401 provided by a node
101 are described. Based on the topology and resource information available at the nodes
(i.e. the information 600}, the nodes of the MC 100 may determine on the (optimum}
placement of software (media) components on the nodes 101 of a Media Cloud system
100. As shown in Fig. 4, an application 700 is typically composed of a plurality of
components 703. By way of example; a conference call application comprises a plurality
of audio cedec (coding / decoding) components (one for each participant of the
conference call), as well as a mixer component (for connecting the voice channels of the
participants). Typically, an application 700 {and the components 703) has a source 701
(from which data is provided) and a sink 702 (to which data is provided). In the above
mentioned examiples, the individual participants of the confererice call application may be
considered to be sources and sinks. The task of the component placement process is to
place the components 703 of the application 700 at appropriate locations within the MC
100, in order to reduce the consumption of resources of the communication network 103.
By way of example, by placing the audio codec component of a conference call
application within the proximity of the respective participants, the transmission
bandwidth required by the application can be reduced (as only encoded voice traffic is
transmitted through the communication network 103). Furthermore, the mixer component
of the coriference call application should be placed ata central location between the

participants of the conference call.

In Fig. 4, the different widths of the links between the different components 703 and
between the source 701 and the sink 702 indicate different requirements regarding the
links (rubber band model). Bands between components 703, which indicate a higher
spring constant, indicate that the components 703 should be placed in proximity with

respect to one another (e.g. on the same node)

The placement procedure should take into account the available node resource and the
available link resources. Furthermore, the requirements of the application components
703 (e.g. with regards to processor resources, memory resources, link bandwidth, delay,

jitter) should be taken into account.

WO 2013/120686 PCT/EP2013/051563

10

135

g
5

30

S92

Such placement decisions could be performed in a centralized manner. However, central
or meshed solutions for component placement typically do not scale in large systems.

Furthermore, such central solutions tend to provide single points of failure.

In the present document, a distributed placement scheme using the limited information
available at the nodes 101 of the media cloud 100 is described. The distributed placement
scheme makes use of individual mapping functions 401 performed by the individual
nodes 101. These mapping functions are separated into two sub-tasks: Topology
management and Resource management. Topology management makes use of the
topology information available at each of the nodes 101 (in particular, the topology list
602). A component placement request is typically accompanied with regional information
about the sink or source of the application (or the component). The node checks this
topology information and forwards the request to the representative of the region (or
area), if the topology info does not match with his own. In other words, the node verifies
if the desired sink or source location of the component is in line with the region of the
node. If not, the component placement request is passed to the representative node of the
appropriate area or region, which is known to the node (from the topology list 602). In a
two hierarchical topology (regions and areas), maximum two steps are required to address
the correct region 302. In case of a placement request for multiple components, the
topology process needs only to be performed once. In other words, a list of related
components (which belong to the same service or application) can be placed in a single

step.

Resource management is directed at the local resource placement depending on the load
status of the different nodes of the MC 100. If the node receives a component placement
request and indentifies that the component should be placed within its region, then the
node consults its local resource graph 601 to identify a node within the graph 601 which
has the necessary resources to execute the component. Typically, the different nodes 101
of a network already have cached copies of the component which is to be placed. As
such, it is typically only necessary to initiate the instantiation of the component on the
identified node. Otherwise, the identified node may download the component from a

central component database.

WO 2013/120686 PCT/EP2013/051563

10

15

2
A

-

In an example, the node 311 (source) of Fig. 2 requests the setup of an application which
has a sink involving the node 312 (sink). The question is how the node 311 can find a
node which is in the proximity of the sink (or vice versa). As indicated above, the
mapping function (MF) 401 in each node 101 of the MC 100 stores its own and the
neighbor’s resource occupations and topology information, so that each node can draw its
placement decision in an autarkic way. Firstly, the available topological information is
used to find a network region which is near to either the sink or source. Secondly, the
local resource information of neighboring nodes in the selected region is used, so that a
node can decide where to place the new component within its neighborhood. Using the
above mentioned placement scheme, none of the nodes need to know the full and precise
resource and topology information of the MC 100. Nevertheless, the achieved placement
is almost perfect. It should be noted that in the placement scheme outlined in the present
document, none of the MC nodes 101 has an extraordinary role during the online
processing. As a consequence, one or several of arbitrary MC nodes 101 may fail without

causing a system breakdown.

A node’s mapping decision process may involve the following steps. In a first step it may
be checked whether the sink {requested within the component placement request) is in the
same area/region as the node. If this is not the case, then the node searches in its table 602
for a representative node in an area/region which should match the requested sink. The
node forwards the component placement request to the representative node. The
representative node validates that the sink is in its area and region otherwise it would
have to forward the request to its individual representative from the destination region.
The representative node checks its local RG 601 for the best suited MC node which is
near and which has the best cost value to execute the component. It should be noted that
as an application typically consists of multiple components whereby the interconnection
between these components has various requirements. The placement decision can be
improved if the whole or larger parts of the application graph information can be

provided for a more holistic mapping decision.

As indicated above, each node 101 comprises a local resource graph 601. When receiving
a component placement request, the node 101 searches for an appropriate node within its
local resource graph 601 and forwards the component placement request to this node.

This node also comprises a local resource graph 601 and searches for an appropriate node

WO 2013/120686 PCT/EP2013/051563

10

20

25

30

-04 -

within its local resource graph 601 to handle the component placement request. In order
to ensure a convergence of this iterative process, the forwarding of a component
placement request may be submitted to a condition regarding a minimum required
improvement. In particular, it may be specified that a component placement request can
only be forwarded to a node within the local resource graph 601, if this leads to a
minimum required improvement for the component placement (e.g. a 20% reduction of

processor capacity / bandwidth, etc.).

As such, the plurality of nodes 101 of a MC 100 is enabled to perform a distributed
placement of application components within a network, without the involvement of a
centralized placement server. The plurality of nodes 101 rely on the exchange of
component placement messages (e.g. component placement requests and/or messages
regarding information about the available computing resources in one or more
neighboring computing device). In the following, a method for accelerating the

distributed placement scheme based on machine self-learning is described.

As has been outlined above, deployment algorithms (as part of the distributed placement
scheme) calculate the locations of Virtual Machines (VM), applications or application
components on the nodes 101 of a distributed Media/Cloud Computing system 100, so
that the placement of the service software (VM, applications, components) is optimized
with respect to resource usage (CPU, memory, bandwidth,..) and service quality
experienced by a user. By way of example, a video conferencing application is
considered. If most of the participants of the conference are located in the US, then the
mixer application component 703 should preferably be located in the US. In another case
of evenly distributed (location) participants of the conference, the location of the common
mixer application component 703 should be determined so that the network resource

allocation is minimal.

Overall, a high number of applications (and corresponding application components) are
placed within the MC 100. The results of the distributed placement processes may be
used to extract placement knowledge which can be used for the placement of future
application placement requests. In particular, a classifier could distinguish between
different service access situations {conferencing applications, broadcasting applications,

ete), by identifying the ingress ports of the Media Cloud 100 where a particular service

WO 2013/120686 PCT/EP2013/051563

10

I5

20

25

-25 -

(application) was accessed from. If the (distributed) placement algorithm has found an
(almost) optimal placement for a particular service access situation, the placement
decision can be remembered together with the concrete service access situation.
Consequently, the next time, when the classifier identifies an access situation which is
similar to the stored access situation, the remembered placement location can be used and
setup. As such, future placement decisions can be accelerated by relying on previous

placement decisions,

Typically, there is a huge amount of diverse services (applications) 700 used in parallel
on the MC 100. Each of these services 700 can be used by a different amount of clients
reaching the service 700 and the MC 100 via different ingress ports. Typically, minor
variations in an access situation {e.g. a scenario where n conference clients are located in
the US, compared to a scenario where (n-1) conference clients are located in the US and 1
is located from Germany) result in an unchanged optimal placement of the software
components 703. A machine learning-based classification can be applied to identify
which access situation can be served optimal using the same placement decision.
Machine learning based classification also allows for the definition/learning of local
hyperspheres (around a particular access situation) which define a so called (g)-room of
similar access situations which can be served using the same placement decision. The
local hypersphere may be assigned with a database entry storing the optimum
component/software placement known so far. The assignment of the hypersphere with a
database entry comprising an optimum component placement is part of the online
learning procedure. After the MC resource management has set up the placement
according to the database entry, a further improvement of the component placement may
be achieved by applying distributed mapping algorithms (as outlined above). If an
improved placement situation can be determined, the database entry comprising the
suggested component placement would be overwritten with the improved placement,

thereby providing for a continuous online learning process.

The online learning process could result in a classifier (used for classifying access
situations) separating one local hypersphere into several different local hyperspheres.
This can happen, if a unique (former) best placement solution for an access situations
clagsified by a single hvpersphere disjoins into different placement solutions with

individual hyperspheres.

WO 2013/120686 PCT/EP2013/051563

-6 -

Classification can be performed separately per service type, or with a single classifier for
all services running on the Media/Cloud system 100. A service (or application) type may
be defined based on the type of access situation (e.g. many-to-many (as is the case for a

5 wideo conference), one-to-many (as is the case for broadcasting), point=to-point (as is the
case in point-to-point communications). Alternatively or in-addition, the service type may
be defined based on regional considerations (continent, country, city). Aliernatively or in
addition, the service type may be defined based on the actual service rendered (e.g.
conferencing, broadcasting, etc.). In case of a single clagsifier for all services, the

10 interaction between competing services may also be taken into account. Asa

consequence, the namber of local hyperspheres may inerease significantly.

In addition to the service access situation, the resource allocation situation of (servers and
links) can be used as additional inputs to the classifier. By way of example, the machine
15 learning (ML) classifier could take into account
& service access situations from-different clients:
e types of offered (cloud) services and their access situation;
¢ the ingress and egress cloud ports from which the services is accessed;
the nodes 101 and network resource allocations, whereby different

20 characterisation tuples could be foreseen per resource;

During a learning phase, the ML classifier builds a plurality of hyperspheres which
comprise equal or similar placement situations. Furthermore, the ML classifier

determines the individual resource deployment decisions for the plurality of hypersheres.

25
Hence, in order to enable an optimum and efficient application component placement
decision, a machine self-learning system may be used. The ML system operates in two
different phases: the learning phase and the execution phase. The ML system may be
executed on an individual node 101 of the MC 100,

30

During the learning phase, the ML system (e.g. running on a particular node 101)
analyses the Media Cloud control traffic messages (e.g. the placement requests and the
messages regarding the resources, and messages regarding placement decisions), in order

to derive a feature vector which describes a particular placement situation. The feature

WO 2013/120686 PCT/EP2013/051563

10

15

25

27 s

vector typically has various dimensions describing the placement situation, such as a type
of application-graph (star type graph of application components, linear graph of
application components), the geographic distribution of the application components,
attributes of the connections between the application components (e.g. bandwidth,
latency, etc.). The feature vectors may be embedding into a feature space formed by the
different dimensions of the feature vectors. The feature vector of a particular application
placement request is stored along with a certain component mapping and the
corresponding placement details in a feature vector database. During the learning phase,
the system learns to distinguish between feature vector dimensions and properties which
are important for the classification of component placements, and feature vector
dimensions and properties which are obsolete and can therefore be omitted. This
reduction of feature space dimensions increases the efficiency of the learning process and

the quality of the media ¢loud classification results.

As aresult of the learning phage, a geometric embedding reflecting the classification of
media cloud application access situations into clusters (e.g. content distribution network
(CDN)-like, Videoconference-like etc.) is obtained. In other words, the learning phase
provides a plurality of clusters for typical application access situations (identified via

their feature vectors), along with placement decisions.

During the execution phase, the mapping results which were obtained for already known
Media Cloud applications during the learning phase are exploited to propose an
application component mapping for a new and/or unknown media cloud application

placement request.

For this purpose, the feature vector for a new application placement request is extracted
from: the application placement request emploving the same scheme as used for the
learning phase. Iy particular, the control messages may be analysed in order to deterimine
the feature vector of the application placement request. The feature vector extracted for
the new application placement request is then embedded into the media cloud feature

space,

Then, by geometrical consideration, the closest representation of a previously learned

media cloud placement inthe feature space and the corresponding application

WO 2013/120686 PCT/EP2013/051563

10

25

30

e

classification is obtained. As a consequence, it is possible to recall the corresponding
placement details for this feature vector from the trained MC placement database which

has been filled with application mapping information during the machine learning phase.

As a result, a re-placement proposal for the Media Cloud mapping is obtained based on
prior Media Cloud application mapping experience from the maching learning process in
a fast and efficient manner. Consequently, application placement requests can be directed

to appropriate MC nodes 101 in a fast and efficient manner.

The identification of a feature vector describing an application placement situation by
geometrical considerations is possible e.g. by defining a suitable metric in the feature
space and by calculating the distance between the different feature vectors under
consideration of the metric. This metric may make use of different weights for the
different vector dimensions, thereby emphasising different dimensions during the

learning and execution phase.

Media Cloud feature vectors may comprise the following example information
characterising the application and its mapping to the Media Cloud infrastructure:

¢ - the relation within the application graph (e.g. star like graph, linear graph);

¢ the allocation of application components to resources;

s application component resource consumption;

s geo-location of the application components;

¢ theingress/egress points (devices) of the clients (sinks 702, sources 701); and/or

s . connection attributes (bandwidth, latency, loss rate, ...}

Fig: 5 illustrates an example vector space 200 of possible application placement
situations. A particular application placement situation is typically linked to a particular
application placement request. The example vector space 200 comprises three vector
dimensions 201 g, v. w, wherein each vector dimension represents a corresponding
attribute of possible application placement situations. As indicated above, example
attributes (or vector dimensions) may relate to the application graph (i.e. the relative
arrangement of the application components 703, e.g. in a star like arrangement or in-a

linear arrangement), the resource consumption of the different application components

WO 2013/120686 PCT/EP2013/051563

10

I5

25

30

-29.

701, the location of the sinks 702 / sources 701 foran application 700, etc.. Hence, a
point {(or feature vector) 203 in the vector space 200 describes a particular application

placement situation (via the values of the different dimensions of the feature vector).

In order to represent an application placement situation in the vector space 200, the
values of an attribute {or vector dimension) 201 may be associated with a numeric value
which can be represented in the vector space 200. By way of example, the geo-locations
of the different sinks 702 / sources 701 foran application 700 may correspond to-two
vector dimensions 201 (one for the latitude angle and another one for the longitude
angle). It should be noted that a typical vector space 200 may have hundreds of

dimensions 201.

During the learning phase various placement requests are handled in a distributed manner
by the MC 100. A node 101 involved in a placement request can observe the messages
which are exchanged between the nodes 101 regarding a particular placement request. As
a consequence, the node 101 can extract information regarding the placement request
from the messages, thereby populating a feature vector 203 which describes the particular
application placement request. Furthermore, the node 101 learns from the exchanged
messages the final placement details 205 (i.e. the information where within the MC 100
the application components have been placed). The feature vector 203 and the

corresponding placement details 205 can be stored in a database 204 of the node 101.

As a result, the node 101 gathers a plurality of feature vectors 203 and corresponding
placement details 205 which can be used as training data for machine learning. In
particular, a classifier can be used in order to determine a plurality of clusters 202 of
feature vectors 203, wherein the feature vectors 203 within a cluster 202 have a relatively
low distance in the feature space 200. In other words, the placement situations of a cluster
202 are similar to each other. In the illustrated example, the classifier has determined a
different cluster 202 for Video Conferencing (VC) application requests with participants
from the EU, a different cluster 202 for VC application requests with participants
distributed across the worlds, a different cluster 202 for VC application requests with two
participants, and a different cluster 202 for content distribution network (CDN)
application requests, such as viewpoint rendering of a broadcasted TV stream. The

classifier is configured to determine average and/or representative placement details 205

WO 2013/120686 PCT/EP2013/051563

1o

15

20

25

30 -

for each cluster 202. These average and/or representative placement details 205 can be
used by the node 101, in order to accelerate the placement of a new placement request. In
particular, the node 101 may determine a feature vector 203 of a new placement request.
Furthermore, the node 101 may determine if the feature vector 203 falls within {or is
close to) a cluster 202 and then use the average and/or representative placement details

205 of the cluster 202, in order to handle the placement request.

Fig. 6 shows a flow chart of an example learning method 400. The node 101 monitors the
MC control traffic (step 401) in order to populate the feature vectors of a plurality of
application placement requests. Furthermore, the mappings (i.e. the placement details)
regarding the application placement requests are extracted from the control messages
(step 402) and stored in a database (step 404). The extracted feature vectors and
corresponding mappings are used as training data of a learning model (step 403). An
example learning model makes use of the support vector machine (SVM) scheme, The
learning model may apply a classifier for clustering the plurality of application placement
requests. As a result of such clustering, it may be observed that certain dimensions of'a
feature vector 203 may be important for placement purposes, while other dimensions of a
feature vector 203 may have no or little impact on a placement decision (step 406). The
latter dimensions may be removed from the feature vector 203, thereby reducing the
computational complexity of the machine learning scheme and of the placement process
(step 406). Finally, representative feature vectors 203 of the clusters 202 may be
embedded into the feature space 200 (step 407). A representative feature vector 203 may
define a hypershere within the feature space 200, wherein the hypersphere comprises
placement situations which are similar to the placement situation described by the
representative feature vector 203, and which could be handled according to the placement

details 205 stored for the representative feature vector 203.

Fig. 7 shows the flow chart of an example placement method 500 using the placement
information stored within the database 204 of 4 node 101 (step 501). The node 101
observes the control messages related to a new placement request and uses the extracted
information to populate a feature vector 203 (step 502) which is embedded into the
feature space 200 (step 503). Subsequently, the closest representative feature vector 203
is determined from the database 204 (step 504), thereby determining placement details

205 which may be appropriate for the new placement request (step 505). The new

WO 2013/120686 PCT/EP2013/051563

10

13

20

30

~ 31 -«

application request may be handled by the node 101 in accordance to the placement
details 205 taken from the database 204 of the node 101. Subsequently, the placement
may be improved using the distributed placement scheme described in the present
document (step 506). It should be noted that the updated placement details and the
original feature vector 203 may be used as further training data in the learning method

400.

In the present document, an architecture for a network and corresponding computing
devices (nodes) for ¢loud computing have been described. The described architecture
allows for the implementation of a decentralized application component placement
scheme, which allows components of applications to be placed at appropriate nodes
within a computing cloud. Furthermore, machine learning technology is used to render
the application component placement scheme more effective, because the knowledge
obtained from past placements in similar situations may be used to rapidly find an
optimum mapping for a new application. The described architecture and method is
scalable to increasing demands and does not exhibit single points of failure. Furthermore,
the described architecture enables the reduction of bandwidth resources required within a

communication network when using cloud computing.

It should be noted that the description and drawings merely illustrate the principles of the
proposed methods and systems. It will thus be appreciated that those skilled in the art will
be able to devise various arrangements that; although not explicitly described or shown
herein, embody the principles of the invention and are included within its spirit and
scope. Furthermore, all examples recited herein are principally intended expressly to'be
only for pedagogical purposes to aid the reader in understanding the principles of the
proposed methods and systems and the concepts contributed by the inventors to
furthering the art, and are to be construed as being without limitation to such specifically
recited examples and conditions. Moreover, all statements herein reciting principles,
aspects, and embodiments of the invention, as well as specific examples thereof, are

intended to encompass equivalents thereof.

Furthermore, it should be noted that steps of various above-described methods and
components of described systems can be performed by programmed computers. Herein,

some embodiments are also intended to cover program storage devices, e.g., digital data

WO 2013/120686 PCT/EP2013/051563

10

15

20

25

-32-

storage media, which are machine or computer readable and encode machine-executable
or computer-executable programs of instructions, wherein said mstructions perform some
or all of the steps of said above-described methods. The program storage devices may be,
e.g., digital memories, magnetic storage miedia such asa magnetic disks and magnetic
tapes, hard drives, or optically readable digital data storage media. The embodiments are
also intended to cover computers programmed to perform said steps of the above-

described methods.

In addition, it should be noted that the functions of the various elements described in the
present patent document may be provided through the use of dedicated hardware as well
as hardware capable of executing software in association with appropriate software.
When provided by a processor, the functions may be provided by a single dedicated
processor, by a single shared processor, or by a plurality of individual processors, some
of which may be shared. Moreover, explicit use of the term “processor” or “controller”
should not be construed to refer exclusively to hardware capable of executing software;
and may implicitly include, without limitation, digital signal processor (DSP) hardware,
network processor, application specific integrated circuit (ASIC), field programmable
gate array (FPGA), read only memory (ROM) for storing software, random access
memory (RAM), and non volatile storage. Other hardware, conventional and/or custom,

may also be included.

Finally, it should be noted that any block diagrams herein represent conceptual views of
illustrative circuitry embodying the principles of the invention. Similarly, it will be
appreciated that any flow charts, flow diagrams, state transition diagrams, pseudo code,
and the like represent various processes which may be substantially represented in
computer readable medium and so executed by a computer or processor, whether or not

such computer or processor is explicitly shown:

WO 2013/120686

20

25

30

Claims

PCT/EP2013/051563

1} A computing device (101), wherein the computing device (101) is adapted to

receive a plurality of component placement requests for one or more
components (703) of a corresponding plurality of applications (700);
determine a plurality of feature vectors (203) from the plurality of component
placement requests, respectively; wherein each feature vector (203)
comprises vector dimensions which describe different attributes of the
respective component placement request;

determine a plurality of placement decisions (205) regarding the plurality of
component placement requests, respectively; wherein each placement
decision (205) comprises an indication of one or more executing computing
devices (101} onto which the one or more components (703) of the respective
application (700) have been placed;

cluster the plurality of feature vectors (203), thereby yielding one or more
clusters (202); wherein each cluster (202) comprises a default feature vector
(203) describing the different attributes of a default component placement
request;

determine a default placement decision (205) for each of the one or more
clusters;

store the one or more default feature vectors and the respective one or more
default placement decisions (205) in a database (204) of the computing
device (101);

receive a new component placement request for one or more components
(703) of a new application (700);

determine a new feature vector (203) from the new component placement
request; and

determine where to place the one or more components (703) of the new

application (700) based on the one or more default feature vectors (203).

2) The computing device (101) of claim 1, wherein the clustering is performed using a

machine learning algorithm, in particular a support vector machine algorithm.

WO 2013/120686

20

PCT/EP2013/051563

-34 -

3) The computing device (101) of any previous claims, wherein the computing device
{101) is adapted to

determine that a first vector dimension of the plurality of feature vectors
(203) has a correlation with the corresponding placement decisions which is
smaller than a correlation threshold; and

remove the first vector dimension from the plurality of feature vectors (203).

4} The computing device (101) of any previous claims, wherein the computing device

(101} is adapted to

receive control messages from other computing devices (101); and
determine the plurality of placement decisions (205) based on the received

control messages.

5) The computing device (101) of any previous claims, wherein the vector dimensions

are indicative of one or more of:

a location of a sink (702) and/or a source (701) of data processed by an
application component (703);

a number of sinks (703) and/or sources (701) processed by an application
(700);

computing resources required by an application component (703); wherein
the computing resources are one or more of: processor resources, memory
resources, bandwidth resources;

connection attributes required by an application component (703); wherein
the connection attributes are one or more of: bandwidth, latency, maximum
bit error rate;

graph structure of the one or more components (703) of an application (700);
wherein the graph structure indicates how the one or more components (703)

of the application (700} are interlinked;

6) The computing device (101) of any previous claim, wherein the computing device

{101) is adapted to

WO 2013/120686 PCT/EP2013/051563

~35.

— determine a minimum distance of the new feature vector (203) from the one
or more default feature vectors (203); and
~ if'the minimum distance is below a minimum threshold, determine where to
place the one or more components (703) of the new application (700) based
5 on the default placement decision (205) corresponding to the default feature

vector (203) at the minimum distance from the new feature vector (203).

7) The computing device (101) of claim 6, wherein the minimum distance is
determined based on a weighted difference of the respective vector dimensions of

10 the new feature vector (203) and the one or more default feature vectors (203).

8) The computing device (101) of any of claims 6 to 7, wherein the computing device
(101} is adapted to
— pass the component placement request to an executing computing device

15 (101} indicated within the default placement decision (205).

9) The computing device (101) of any of claims 6 to 8, wherein
= the computing device (101) is positioned in a first topological area (102);
= the computing device (101) comprises a topological list (602) indicating a
20 plurality of reference computing devices positioned in a plurality of
topological areas (102) other than the first topological area (102),
respectively;
— the computing device (101) comprises a local resource list (601) indicating
available computing resources of the computing device (101) and of at least
25 one neighbor computing device (101) positioned in a neighborhood of the
computing device (101);
= upon determining that the minimum distance is greater than a minimum
threshold, the computing device (101) is adapted to
- determine, based on the topological list (602), if the one or more
30 components (703) of the new application (700) are to be placed in
the first topological area (102) or in one of the plurality of

topological areas (102) other than the first topological area (102);

WO 2013/120686 PCT/EP2013/051563

-36 -

— if it is determined that the one or more components (703) of the new
application are to be placed inone of the plurality of topological
areas other than the first topological area, pass the component
placement request to the reference computing device of the

5 respective topological area of the plurality of topological areas other
than the first topological area; and

— if'it is determined that the one or more components (703) of the new
application (700) are to be placed in the first topological area (102),
identify from the local resource list {601):a selected computing

10 device having the computing resources for executing the one or more

components of the new application.

10) The computing device (101) of any previous claim, wherein
— 'the computing device (101) is a default application server of & point-to-
15 multipoint, a point-to-point or a multipoint-to-multipoint application (700);
— the default application server is a default point of access in a cloud (100) of a
plurality of computing devices (101) for setting up the point-to-multipoint,

the point-to-point or the multipoint-to-multipoint application (700).

20 11y A method for placing one or more components (703) of a new application (700)
onto a computing device (101) of a media cloud (100}, the method comprising
— receiving (401} a plurality of component placement requests for one or more
components (703) of a corresponding plurality of applications (700);
~ determining (402) a plurality of feature vectors (203) from the plurality of
25 component placement requests, respectively; wherein each feature vector
(203) comprises vector dimensions which describe different attributes of the
respective component placement request;
= determining (402) a plurality of placement decisions (205} regarding the
plurality of component placement requests, respectively: wherein each
30 placement decision (205) comprises an indication of one or more executing
computing devices (101) onto which the one ormore components (703) of

the respective application (700) have been placed;

WO 2013/120686

15

PCT/EP2013/051563

-37-

clustering (403) the plurality of feature vectors (203), thereby yielding one or
more clusters (202); wherein each cluster (202) is represented by a default
feature vector (203) describing the different attributes of a respective default
component placement request;
determining (403) a default placement decision (205) corresponding to a
default feature vector (203), for each of the one or more clusters;
storing (404) the one or more default feature vectors and the respective one
or more default placement decisions (205) in a database (204) of the
computing device (101);
using (500) the one or more default feature vectors and the respective one or
more default placement decisions (205) stored in the database (204) for
placing the one or more components (703) of the new application, wherein
using (500) comprises
— receiving a new component placement request for one or more
components (703) of a new application (700);
- determining a new feature vector (203) from the new component
placement request; and
—determining where to place the one or more components (703) of the
new application (700) based on the one or more default feature

vectors (203},

WO 2013/120686 PCT/EP2013/051563

115

WO 2013/120686

215

PCT/EP2013/051563

Fig. 2
Ig nod\e B.c.a
3 o
00~ O W
101 O O IZI?ElI:lI:I
O]]] O]
302 5 O L5
I:||:| c
102 —
]
N E:
] O DEIE||:|/'\/311
|:| 1°
] O
I b
303—77 a
Fig. 3 61"
600—— cD cost§ Local
R L
E,F,G,H costs G‘:::: - 501
K.B.a topology | Region | _g0g9
P.c topology | Area | _eno
T.nb topology |Area L ___g02

WO 2013/120686 PCT/EP2013/051563

Application < O_

C1 Component

——200

Feature vector (q4,v4,W4)
) q

201
@ ©,

— 1/ S

4 placements
N~ details

205 trained MC

placements

204

WO 2013/120686 PCT/EP2013/051563

4]/%5

Fig. 6

- (Continuous) Monitoring of MC control traffic }—~—- 401

Y

Extract feature vector from MC control traffic | _ 402
and given (optimum) MC mapping

Y

\ Feed both vector and placement into 403
leading model

400——

Y

Store corresponding placement details for
feature vector in database ~— 404
(trained placements)

Y

Extraction of learning model (separation of 405
essential from obsolete information)

Y

Reduction of feature vec_tors d_imensions 406
(only keep relevant dimensions)

Y

Geometric embedding of feature 407
vector in feature space

WO 2013/120686 PCT/EP2013/051563

515

Fig. 7

Best result for Components 501
Mapping for given MC application
Y
Extract feature vector 502
for given MC mapping
Y
Geometric embedding of feature 503
vector in feature space
500——
Y
Find closest representation of previously 504

learned placement in feature space

Y

Recall corresponding placement details for
feature vector in database ~— 505
(trained placements)

Y

Re-placement proposals for MC mapping ~—- 506

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2013/051563
A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6N3/02 HO4L29/08 GO6F9/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6N HO4L GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

OLIVER NIEHORSTER ET AL: "Autonomic 1-11
Resource Management with Support Vector
Machines",

GRID COMPUTING (GRID), 2011 12TH IEEE/ACM
INTERNATIONAL CONFERENCE ON, IEEE,

21 September 2011 (2011-09-21), pages
157-164, XP032021774,

DOI: 10.1109/GRID.2011.28

ISBN: 978-1-4577-1904-2

abstract

page 1, left-hand column, paragraph 1 -
page 4, right-hand column, last paragraph
WO 20127005611 Al (GREENBUTTON LTD [NZ]; 1-11
FREAN MARCUS [NZ]; KYDD DAVID [NZ];
TEELING CHRI) 12 January 2012 (2012-01-12)
page 3, line 3 - Tine 11

page 21, line 29 - page 22, last line
page 28, line 8 - last line

D Further documents are listed in the continuation of Box C. See patent family annex.

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other
special reason (as specified)

* Special categories of cited documents :

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is

"Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
25 June 2013 05/07/2013
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016 Cankaya, Sukru

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2013/051563
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2012005611 Al 12-01-2012 NZ 586691 A 28-03-2013
WO 2012005611 Al 12-01-2012

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - wo-search-report
	Page 46 - wo-search-report

