一种发电机组一次调频功能优化试验方法

本发明涉及一种发电机组一次调频功能试验优化改进方法，包括步骤有：(1) 将转速偏差信号变换成频差——功率信号；(2) 经标幺处理转换成一次调频功率——阀位增量指令；(3) 设置速率限制模块及功率限幅模块产生实际负荷指令；(4) 将频差——功率信号与实际负荷指令进行求和形成综合负荷指令，再与发电机组的实际负荷反馈信号进行偏差运算；(5) 进行比例—积分PI运算处理，最终产生电调的综合调门指令；(6) 综合调门指令与一次调频功率——阀位增量指令叠加求和，处理后调节汽轮发电机组的负荷。本发明有效提高机组参加电网一次调频的能力，电网的供电质量有了明显的改善。
1. 一种发电机组一次调频功能试验优化改进方法，其特征在于包括步骤如下：
 (1) 发电机组的额定转速与机组的实际转速测量值经过偏差计算，产生的转速偏差
 信号经过转速不等率功 - 频函数 f1(x) 计算转换成频差 - 功率信号；
 (2) 将上述频差 - 功率信号经过标幺处理函数 f2(x) 处理转换成一次调频功率 - 间位
 增量指令；
 (3) 在分散控制系统的协调控制系统的功率控制回路中设置速率限制模块及功率限幅
 模块产生实际负荷指令；
 (4) 将步骤(1) 得到的频差 - 功率信号与上述经过功率限幅后的信号进行求和形成发
 电机组的综合负荷指令，与发电机组的实际负荷反馈信号进行偏差运算；
 (5) 将上述经过偏差运算的输出信号进行比例 - 积分 PI 运算处理，最终产生电调的综
 合调门指令；
 (6) 实现一次调频优化改进；将上述生成的电调综合调门指令与步骤(2) 中一次调频
 功率 - 间位增量指令叠加求和，再经过电调的阀门管理处理后分别去控制各调速汽门的开
 度，调节汽轮发电机组的负荷，实现一次调频优化改进。

2. 根据权利要求 1 所述的发电机组一次调频功能试验优化改进方法，其特征在于，步骤
 (1) 中所述偏差计算所采用的公式为；发电机组的额定转速值减去实际转速测量值，公式
 中各参数均以工程量，单位为转 / 分钟。

3. 根据权利要求 1 所述的发电机组一次调频功能试验优化改进方法，其特征在于，步骤
 (1) 中所述转速不等率功 - 频函数 f1(x) 为分段函数由 6 个坐标点 (-150, -8%Pe)；
 (-14, -8%Pe)；(-2, 0)；(2, 0)；(14, 8%Pe)；(150, 8%Pe) 拟合而成。

4. 根据权利要求 1 所述的发电机组一次调频功能试验优化改进方法，其特征在于，步骤
 (2) 中所述标幺处理函数 f2(x) 是将转速不等率功 - 频函数 f1(x) 计算后输出的频差 - 功
 率信号转换成百分量的一次调频功率 - 间位增量指令信号，即 f1(x) 的输出除以 100 即为
 f2(x)。

5. 根据权利要求 1 所述的发电机组一次调频功能试验优化改进方法，其特征在于，步骤
 (3) 中所述速率限制模块是将输入的机组负荷指令信号变化速率限制在机组额定负荷的
 0-2% 范围内，所述功率限制模块是将输入信号的功率限制在机组额定负荷的 50%-100% 范
 围内，以保证机组的负荷变化在正常范围内。

6. 根据权利要求 1 所述的发电机组一次调频功能试验优化改进方法，其特征在于，步骤
 (4) 中所述偏差运算的公式为；综合负荷指令减去发电机组的实际负荷反馈信号。

7. 根据权利要求 1 所述的发电机组一次调频功能试验优化改进方法，其特征在于，步骤
 (5) 中所述 PI 运算处理的数学描述式是：

 \[Y(s) = \frac{(K_p + \frac{1}{T_i * s})E(s)}{ } \]

 式中 Kp 为比例放大系数，Ti 为积分时间，单位为秒，公式中各参数可根据实际运行情
 况做适当调整。
一种发电机组一次调频功能优化试验方法

技术领域
[0001] 本发明属于自动发电控制技术领域，是一种发电机组一次调频功能优化试验方法。

背景技术
[0002] 随着科学技术的发展，对电能质量的要求越来越高，这就要求并网发电机组不仅具备快速适应外界负荷变化的能力，还必须具备快速调整电网频率的能力。汽轮发电机组调速系统根据电网频率的变化自动改变调速汽门的开度调节汽轮发电机组的功率以适应电网频率波动的能力，即为一次调频。新建的大容量汽轮发电机组或经过控制系统技术改造的汽轮发电机组其控制系统普遍采用数字电液调节系统，其一次调频功能需要由数字电液调节系统组态编程实现，原采用液压调节控制技术的汽轮发电机组现有的一次调频功能失去，所以要求并网运行的所有发电机组的调速系统共同承担电网的一次调频功能。
[0003] 由于不同的电调生产厂家在设计理念、实现方法上存在一些差异，造成汽轮发电机组一次调频功能存在较大问题，甚至一些发电机组一次调频功能长期不能正常投入，导致电网频率经常发生波动，使得电网运行存在一定的安全隐患。为此电监会要求电力技术监督部门强对汽轮发电机组的一次调频功能进行定期试验验证。

发明内容
[0004] 本发明的目的是针对现有技术的不足，而提出一种发电机组一次调频功能试验优化改进方法。
[0005] 本发明解决其技术问题是采取以下技术方案实现的：
[0006] 一种发电机组一次调频功能试验优化改进方法，包括步骤如下：
[0007] （1）发电机组的额定转速值与机组的实际转速测量值经过偏差计算，产生的转速偏差信号经过转速不等率功－频函数 f1(x) 计算变换成频差－功率信号；
[0008] （2）将上述频差－功率信号经过标么处理函数 f2(x) 处理转换成一次调频功率－阀位增量指令；
[0009] （3）在分散控制系统的协调控制系统的功率控制回路中设置速率限制模块及功率限幅模块产生实际负荷指令；
[0010] （4）将步骤（1）得到的频差－功率信号与上述经过功率限幅后的信号进行求和形成发电机组的综合负荷指令，与发电机组的实际负荷反馈信号进行偏差运算；
[0011] （5）将上述经过偏差运算的输出信号进行比例－积分 PI 运算处理，最终产生电调的综合调门指令；
[0012] （6）实现一次调频优化改进：将上述生成的电调综合调门指令与步骤（2）中一次调频功率－阀位增量指令叠加求和，再经过电调的阀门管理处理后分别去控制各调速汽门的开度，调节单个发电机组的负荷，实现一次调频优化改进。
而且，步骤(1)中所述偏差计算所采用的公式为：发电机组的额定转速值减去实际转速测量值，公式中各参数均为工程量，单位为：转 / 分钟。

而且，步骤(1)中所述转速不等率功 - 频函数 f1(x) 为分段函数由 6 个坐标点(-150, -8%Pe); (-14, -8%Pe); (-2,0); (2,0); (14,8%Pe); (150,8%Pe) 拟合而成。

而且，步骤(2)中所述标么处理函数 f2(x) 是将转速不等率功 - 频函数 f1(x) 计算后输出的频差 - 功率信号转换成百分表的一次调频功率 - 额定增量指令信号，即 f1(x) 的输出除以 100 即为 f2(x)。

而且，步骤(3)中所述速率限制模块是将输入的机组负荷指令信号变化速率限制在机组额定负荷的 0%-2% 范围内；所述功率限制模块是将输入信号的功率限制在机组额定负荷的 50%-100% 范围内，以保证机组的负荷变化在正常调整范围内。

而且，步骤(4)中所述偏差运算的公式为：综合负荷指令减去发电机组的实际负荷反馈信号。

而且，步骤(5)中所述 PI 运算处理的数学描述式是：

\[Y(s) = \frac{Kp}{T_i S} + \frac{1}{T_i S} E(s), \]

式中 Kp 为比例放大系数，Ti 为积分时间，单位为秒，公式中各参数可根据实际运行情况做适当调整。

本发明的优点和积极效果是：

现役发电机组的一次调频控制功能采取本发明方法优化改进后，经过多方联调试验和长期运行考核验证，机组响应电网频率变化的能力有效提高，既能保证机组一次调频的响应速度，又保证机组参与一次调频的持续性，同时可以保证机组的一次调频功能始终在投入状态。满足机组一次调频响应 15 秒内达到目标负荷的 75%、30 秒达到目标负荷 90% 及机组转速不等率为 4%～5% 的技术指标要求，并且控制稳定，机组的主要技术指标均高于《汽轮机调节控制系统试验导则》(DL/T711-1999) 的要求，有效提高机组参与电网一次调频的能力，电网的供电质量有了明显的改善。

附图说明

图 1 为本发明一次调频功能在分散控制系统中的电调控制回路及功率控制回路投入示意图；

图 2 为转速不等率功 - 频函数 f1(x) 由 6 个坐标点(-150, -8%Pe); (-14, -8%Pe); (-2,0); (2,0); (14,8%Pe); (150,8%Pe) 拟合而成的曲线图。

具体实施方式

以下结合附图对本发明实施做进一步详述，以下实施例只是描述性的，不是限定性的，不能以此限定本发明的保护范围。

一种发电机组一次调频功能试验优化改进方法，该方法采取将频差信号经转速不等率功 - 频函数转换的信号叠加在汽轮机调速汽门指令处的方法实现；同时在分散控制系统中的功率控制回路中投入频率校正功能，以保证机组一次调频的响应速度和机组参与一次调频的持续性，并且要保证二者的功能一致且要相互匹配。如图 1 所示，包括步骤如下：

4
[0027]（1）发电机组的额定转速值（3000rpm）与机组的实际转速测量值经过偏差计算，产生的转速偏差信号经过转速不等率功—频函数 f1(x) 计算变换成频差—功率信号；

[0028]（2）转速不等率功—频函数 f1(x) 计算后输出的频差—功率信号经过标幺处理函数 f2(x) 处理转换成一次调频功率—频位增量指令；

[0029]其中，所述偏差计算所采用的公式为：发电机组的额定转速值（3000rpm）减去实际转速测量值（单位为：rpm），公式中各参数均为工程量，单位为：转／分钟；

[0030]其中，所述转速不等率功—频函数 f1(x) 为分段函数由 6 个坐标点（-150，-8%Pe）；（-14，-8%Pe）；（-2，0）；（2，0）；（14，8%Pe）；（150，8%Pe）拟合而成。其中 Pe 为发电机组的额定功率，单位为兆瓦（MW）。拟合后的实际曲线如图 2 所示。

[0031]其中，为了与电调的综合调门指令匹配，所述标幺处理函数 f2(x) 是将转速不等率功—频函数 f1(x) 计算后输出的频差—功率信号转换成百分量的一次调频功率—频位增量指令信号，即 f1(x) 的输出除以 100 即为 f2(x)。

[0032]（3）在分散控制系统的协调控制系统的功率控制回路中投入频率校正功能，以保证机组一次调频的响应速度和机组参与一次调频的持续性；

[0033]发电机组负荷管理中接受的中调负荷指令，或现场值班员设置的手动负荷指令一经限制模块限速、功率限幅模块限幅处理产生实际负荷指令，所述速率限制模块是将输入的机组负荷指令信号变化速率限制在机组额定负荷的 0～2% 范围内，所述功率限幅模块是将输入信号的功率限制在机组额定负荷的 50%～100% 范围内，以保证机组的负荷变化在正常调整范围内；

[0034]（4）将转速不等率功—频函数 f1(x) 转换处理后的一次调频负荷增量信号与上述经过功率限幅后的信号进行求和形成发电机组的综合负荷指令，与发电机组的实际负荷反馈信号进行偏差运算；

[0035]其中，所述偏差运算的公式为：综合负荷指令减去发电机组的实际负荷反馈信号，公式中各参数单位为：兆瓦（MW）。

[0036]（5）将上述经过偏差运算的输出信号进行比例—积分 PI 运算处理，最终产生电调的综合调门指令，其中 PI 控制模块的数学描述式是：

\[Y(s) = \left(K_p + \frac{1}{T_i} \right) E(s). \]

[0037] 式中 Kp 为比例放大系数，Ti 为积分时间，单位为秒，公式中各参数可根据实际运行情况作适当调整。

[0038]（6）将上述生成的电调综合调门指令与频差—功率信号经过标幺处理函数 f2(x) 处理转换成一次调频功率—频位增量指令叠加求和，再经过电调的阀门管理程序处理后分别到控制各调速汽门的开度，调节汽轮发电机组的负荷，实现其一次调频功能。