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(57) ABSTRACT 
A data processor of a processing system, such as a graphics 
processing system, converts an input data value into an 
output data value by approximating a function which maps 
input values to output values. The data processor approxi 
mates the function using first and second predetermined 
ranges of values which are quantized into plural correspond 
ing pairs of range sections, a predetermined gradient for 
each pair of range sections, and predetermined section end 
values for each pair of range sections. By using these 
predetermined parameters, the approximation of the func 
tion can be implemented efficiently by the data processor of 
the processing system. 

15 Claims, 4 Drawing Sheets 
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1. 

METHODS OF AND APPARATUS FOR 
APPROXMLATING A FUNCTION 

BACKGROUND 

The technology described herein relates to a method of 
and apparatus for approximating a function that maps input 
values to output values, particularly in the context of com 
puter graphics processing. 
As is known in the art, graphics processing is normally 

carried out by first dividing the output to be generated. Such 
as a frame to be displayed, into a number of similar basic 
components (so-called “primitives') to allow the graphics 
processing operations to be more easily carried out. These 
“primitives are usually in the form of simple polygons, 
Such as triangles. 
The graphics primitives are usually generated by the 

applications program interface for the graphics processing 
system, using the graphics drawing instructions (requests) 
received from the application (e.g. game) that requires the 
graphics output. 

Each primitive is at this stage usually defined by and 
represented as a set of vertices. Each vertex for a primitive 
has associated with it a set of data (such as position, colour, 
texture and other attributes data) representing the vertex. 
This data is then used, e.g., when rasterising and rendering 
the vertex (the primitive(s) to which the vertex relates) in 
order to generate the desired output of the graphics process 
ing System. 
Once primitives and their vertices have been generated 

and defined, they can be processed by the graphics process 
ing system, in order, e.g., to display the frame. 

This process basically involves determining which Sam 
pling points of an array of sampling points covering the 
output area to be processed are covered by a primitive, and 
then determining the appearance each sampling point should 
have (e.g. in terms of its colour, etc.) to represent the 
primitive at that sampling point. These processes are com 
monly referred to as rasterising and rendering, respectively. 

(In graphics literature, the term “rasterisation' is some 
times used to mean both primitive conversion to sample 
positions and rendering. However, herein “rasterisation 
will be used to refer to converting primitive data to sampling 
point addresses only.) 
The rasterising process determines the sample positions 

that should be used for a primitive (i.e. the (x, y) positions 
of the sampling points to be used to represent the primitive 
in the output, e.g. Scene to be displayed). This is typically 
done using the positions of the vertices of a primitive. 
The rendering process then derives the data, Such as red, 

green and blue (RGB) colour values and an “Alpha' (trans 
parency) value, necessary to represent the primitive at the 
sampling points (i.e. 'shades' each sampling point). This 
can involve, as is known in the art, applying textures, 
blending sampling point data values, etc. 

The data which is used to represent the primitive at the 
sampling point may have one or more functions applied to 
it, e.g. So as to apply gamma correction and/or to store the 
data in a different (e.g. more efficient) format. However, 
applying functions to inputted data can sometimes be com 
putationally expensive, particularly where division is to be 
carried out in order to implement the function. For this 
reason, it is known to apply approximations of functions to 
inputted data which are computationally more efficient than 
applying the true functions. However, an approximation of 
a function can introduce errors between the data outputted 
using the approximated function and data which would have 
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2 
been outputted had the true function been applied. Further 
more, further errors can be introduced if the inverse of the 
approximation of the function is then later applied to the 
outputted data so as to recover the inputted data. These 
errors can be compounded if the approximation of the 
function and then its inverse are repeatedly applied to the 
data. 
The Applicants, therefore, believe that there remains 

Scope for improved techniques for approximating functions 
in, inter alia, the context of computer graphics processing. 

BRIEF DESCRIPTION OF THE DRAWINGS 

A number of embodiments of the technology described 
herein will now be described by way of example only and 
with reference to the accompanying drawings, in which: 

FIG. 1 shows schematically a graphics processing pipe 
line that can be operated in the manner of the technology 
described herein; 

FIG. 2 shows a look-up table according to one embodi 
ment of the technology described herein; 

FIG.3 shows a true function and an approximation of that 
function made in the manner of the technology described 
herein; and 

FIG. 4 shows a look-up table according to another 
embodiment of the technology described herein. 

Like reference numerals are used for like components 
where appropriate in the drawings. 

DETAILED DESCRIPTION 

An embodiment of the technology described herein com 
prises a method of converting an input data value to an 
output data value by approximating a function that maps 
input values to output values, the method comprising: 

deriving a first value from the input data value, wherein 
the first value is within a predetermined first range of 
values, the first range of values being quantised into a 
first set of plural range sections, wherein each range 
section of the first set of plural range sections com 
prises a first predetermined section end value; 

converting the first value into a second value that is within 
a predetermined second range of values, the second 
range of values being quantised into a second set of 
plural range sections, wherein each range section of the 
second set of plural range sections comprises a second 
predetermined section end value, wherein each range 
section of the second set of plural range sections 
corresponds to a range section of the first set of plural 
range sections such that there are respective pairs of 
corresponding first and second range sections, wherein 
each pair of corresponding first and second range 
sections is associated with a gradient, the gradient for 
each pair of corresponding first and second range 
sections approximating the gradient of the function for 
that pair of corresponding first and second range sec 
tions, wherein the step of converting the first value into 
the second value comprises: 

determining a first predetermined section end value for a 
first range section of the first set of plural range sections 
within which the first value lies, 

identifying a second predetermined section end value for 
a second range section of the second set of plural range 
sections that corresponds to the first range section, 

identifying the gradient associated with the pair of cor 
responding first and second range sections, and 



US 9,489,344 B2 
3 

converting the first value into the second value using the 
first section end value, the second section end value and 
the gradient; and 

deriving the output data value from the second value. 
Another embodiment of the technology described herein 

comprises a processing system comprising: 
a data processor comprising processing circuitry, the 

processing circuitry being configured to perform a 
method of converting an input data value to an output 
data value by approximating a function that maps input 
values to output values, the method comprising: 

deriving a first value from an input data value to be 
converted to an output data value, wherein the first 
value is within a predetermined first range of values, 
the first range of values being quantised into a first set 
of plural range sections, wherein each range section of 
the first set of plural range sections comprises a first 
predetermined section end value; 

converting the first value into a second value that is within 
a predetermined second range of values, the second 
range of values being quantised into a second set of 
plural range sections, wherein each range section of the 
second set of plural range sections comprises a second 
predetermined section end value, wherein each range 
section of the second set of plural range sections 
corresponds to a range section of the first set of plural 
range sections such that there are respective pairs of 
corresponding first and second range sections, wherein 
each pair of corresponding first and second range 
sections is associated with a gradient, the gradient for 
each pair of corresponding first and second range 
sections approximating the gradient of the function for 
that pair of corresponding first and second range sec 
tions, wherein the step of converting the first value into 
the second value comprises: 

determining a first predetermined section end value for a 
first range section of the first set of plural range sections 
within which the first value lies, 

identifying a second predetermined section end value for 
a second range section of the second set of plural range 
sections that corresponds to the first range section, 

identifying the gradient associated with the pair of cor 
responding first and second range sections, and 

converting the first value into the second value using the 
first section end value, the second section end value and 
the gradient; and 

deriving the output data value from the second value. 
The technology described herein relates to approximating 

a function that maps input values to output values. In the 
technology described herein, the function is approximated 
using first and second predetermined ranges of values which 
are quantised into plural corresponding pairs of range sec 
tions, a predetermined gradient for each pair of range 
sections, and predetermined section end values for each pair 
of range sections. Thus, predetermined sets of values (e.g. 
section end values and gradients) are provided for approxi 
mating a function, and a computer Such as a data processor 
can accordingly be optimised to apply the approximation of 
the function using the predetermined sets of values. The 
Applicants have therefore identified a way in which an 
approximation of a function can be optimized, e.g. in terms 
of computational efficiency and/or error, when approximat 
ing a function. 
The method of the technology described herein may be 

performed as part of any suitable computer implemented 
process in which a function is to be approximated. However, 
in an embodiment, the method of the technology described 
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4 
herein is performed as part of a graphics processing opera 
tion and/or is performed by a (e.g. tile-based) graphics 
processing System. 

Accordingly, the input data value and/or output data value 
may be generated as a result of, and/or may later be used in, 
a graphics processing operation (e.g. a rendering or shading 
operation) and/or may be generated by, and/or later used by, 
a (e.g. tile-based) graphics processing system. In particular, 
the input data value and/or output data value in an embodi 
ment represents a colour value generated by, and/or later to 
be used in, a graphics processing operation (e.g. a rendering 
or shading operation) and/or represents a colour value 
generated by, and/or later used by, a (e.g. tile-based) graph 
ics processing system. The data processor referred to above 
may therefore operate as a read in unit or write out unit of 
a (e.g. tile based) graphics processing system, and the input 
data value and/or output data value may be stored in a buffer 
(such as a tile buffer or a texture buffer) or external memory 
of or for the (e.g. tile based) graphics processing system. 

Thus, another embodiment of the technology described 
herein comprises a method of operating a graphics process 
ing system that comprises: 

a graphics processing pipeline comprising: 
a plurality of processing stages, including at least a 

rasteriser that rasterises input primitives to generate 
graphics fragments to be processed, each graphics 
fragment having one or more sampling points associ 
ated with it, and a renderer that processes fragments 
generated by the rasteriser to generate rendered frag 
ment data; 

a buffer configured to store rendered fragment data locally 
to the graphics processing pipeline prior to that data 
being written out to an external memory, the buffer 
comprising an allocated amount of memory for use as 
the buffer; and 

a write out stage configured to write data stored in the 
buffer to an external memory; 

the method comprising the write out stage, when writing 
data from the buffer to the external memory, converting 
input data values stored in the buffer into output data 
values to be stored in the external memory by approxi 
mating a function that maps input values to output 
values, the method of converting the input data values 
to the output data values comprising for each input data 
value in the buffer to be converted to an output data 
value: 

deriving a first value from the input data value in the 
buffer, wherein the first value is within a predetermined 
first range of values, the first range of values being 
quantised into a first set of plural range sections, 
wherein each range section of the first set of plural 
range sections comprises a first predetermined section 
end value; 

converting the first value into a second value that is within 
a predetermined second range of values, the second 
range of values being quantised into a second set of 
plural range sections, wherein each range section of the 
second set of plural range sections comprises a second 
predetermined section end value, wherein each range 
section of the second set of plural range sections 
corresponds to a range section of the first set of plural 
range sections such that there are respective pairs of 
corresponding first and second range sections, wherein 
each pair of corresponding first and second range 
sections is associated with a gradient, the gradient for 
each pair of corresponding first and second range 
sections approximating the gradient of the function for 
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that pair of corresponding first and second range sec 
tions, wherein the step of converting the first value into 
the second value comprises: 

determining a first predetermined section end value for a 
first range section of the first set of plural range sections 
within which the first value lies, 

identifying a second predetermined section end value for 
a second range section of the second set of plural range 
sections that corresponds to the first range section, 

identifying the gradient associated with the pair of cor 
responding first and second range sections, and 

converting the first value into the second value using the 
first section end value, the second section end value and 
the gradient; and 

deriving the output data value from the second value; and 
writing the output data value to the external memory. 
Another embodiment of the technology described herein 

comprises a graphics processing System comprising: 
a graphics processing pipeline comprising: 
a plurality of processing stages, including at least a 

rasteriser that rasterises input primitives to generate 
graphics fragments to be processed, each graphics 
fragment having one or more sampling points associ 
ated with it, and a renderer that processes fragments 
generated by the rasteriser to generate rendered frag 
ment data; 

a buffer configured to store rendered fragment data locally 
to the graphics processing pipeline prior to that data 
being written out to an external memory, the buffer 
comprising an allocated amount of memory for use as 
the buffer; 

a write out stage configured to write data stored in the 
buffer to an external memory; 

wherein the write out stage is configured to, when writing 
data from the buffer to the external memory, convert 
input data values stored in the buffer into output data 
values to be stored in the external memory by approxi 
mating a function that maps input values to output 
values, the converting the input data values to the 
output data values comprising for each input value data 
in the buffer to be converted to an output data value: 

deriving a first value from the input data value in the 
buffer, wherein the first value is within a predetermined 
first range of values, the first range of values being 
quantised into a first set of plural range sections, 
wherein each range section of the first set of plural 
range sections comprises a first predetermined section 
end value; 

converting the first value into a second value that is within 
a predetermined second range of values, the second 
range of values being quantised into a second set of 
plural range sections, wherein each range section of the 
second set of plural range sections comprises a second 
predetermined section end value, wherein each range 
section of the second set of plural range sections 
corresponds to a range section of the first set of plural 
range sections such that there are respective pairs of 
corresponding first and second range sections, wherein 
each pair of corresponding first and second range 
sections is associated with a gradient, the gradient for 
each pair of corresponding first and second range 
sections approximating the gradient of the function for 
that pair of corresponding first and second range sec 
tions, wherein the step of converting the first value into 
the second value comprises: 
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6 
determining a first predetermined section end value for a 

first range section of the first set of plural range sections 
within which the first value lies, 

identifying a second predetermined section end value for 
a second range section of the second set of plural range 
sections that corresponds to the first range section, 

identifying the gradient associated with the pair of cor 
responding first and second range sections, and 

converting the first value into the second value using the 
first section end value, the second section end value and 
the gradient; and 

deriving the output data value from the second value; and 
writing the output data value to the external memory. 
In an embodiment, the graphics processing system is a 

tile-based graphics processing system and/or the buffer is a 
tile buffer. 

Another embodiment of the technology described herein 
comprises a method of operating a graphics processing 
system that comprises: 

a graphics processing pipeline comprising: 
a plurality of processing stages, including at least a 

rasteriser that rasterises input primitives to generate 
graphics fragments to be processed, each graphics 
fragment having one or more sampling points associ 
ated with it, and a renderer that processes fragments 
generated by the rasteriser to generate rendered frag 
ment data; 

a buffer configured to store data locally to the graphics 
processing pipeline prior to that data being used by the 
graphics processing pipeline; and 

a read in stage configured to read data into the buffer from 
an external memory; 

the method comprising the read in stage, when reading 
data from the external memory to the buffer, converting 
input data values stored in the external memory into 
output data values to be stored in the buffer by approxi 
mating a function that maps input values to output 
values, the method of converting the input data values 
to the output data values comprising for each input data 
value in the external memory to be converted to an 
output data value: 

deriving a first value from the input data value in the 
external memory, wherein the first value is within a 
predetermined first range of values, the first range of 
values being quantised into a first set of plural range 
sections, wherein each range section of the first set of 
plural range sections comprises a first predetermined 
section end value; 

converting the first value into a second value that is within 
a predetermined second range of values, the second 
range of values being quantised into a second set of 
plural range sections, wherein each range section of the 
second set of plural range sections comprises a second 
predetermined section end value, wherein each range 
section of the second set of plural range sections 
corresponds to a range section of the first set of plural 
range sections such that there are respective pairs of 
corresponding first and second range sections, wherein 
each pair of corresponding first and second range 
sections is associated with a gradient, the gradient for 
each pair of corresponding first and second range 
sections approximating the gradient of the function for 
that pair of corresponding first and second range sec 
tions, wherein the step of converting the first value into 
the second value comprises: 
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determining a first predetermined section end value for a 
first range section of the first set of plural range sections 
within which the first value lies, 

identifying a second predetermined section end value for 
a second range section of the second set of plural range 5 
sections that corresponds to the first range section, 

identifying the gradient associated with the pair of cor 
responding first and second range sections, and 

converting the first value into the second value using the 
first section end value, the second section end value and 
the gradient; and 

deriving the output data value from the second value; and 
writing the output data value to the buffer. 
Another embodiment of the technology described herein 

10 

comprises a graphics processing System comprising: 15 
a graphics processing pipeline comprising: 
a plurality of processing stages, including at least a 

rasteriser that rasterises input primitives to generate 
graphics fragments to be processed, each graphics 
fragment having one or more sampling points associ 
ated with it, and a renderer that processes fragments 
generated by the rasteriser to generate rendered frag 
ment data; 

a buffer configured to store data locally to the graphics 
processing pipeline prior to that data being used by the 
graphics processing pipeline; and 

a read in stage configured to read data into the buffer from 
an external memory; 

wherein the read in stage is configured to, when reading 
data from the external memory to the buffer, convert 
input data values stored in the external memory into 
output data values to be stored in the buffer by approxi 
mating a function that maps input values to output 
values, the method of converting the input data values 
to the output data values comprising for each input data 
value in the external memory to be converted to an 
output data value: 

deriving a first value from the input data value in the 
external memory, wherein the first value is within a 
predetermined first range of values, the first range of 
values being quantised into a first set of plural range 
sections, wherein each range section of the first set of 
plural range sections comprises a first predetermined 
section end value; 

converting the first value into a second value that is within 45 
a predetermined second range of values, the second 
range of values being quantised into a second set of 
plural range sections, wherein each range section of the 
second set of plural range sections comprises a second 
predetermined section end value, wherein each range 
section of the second set of plural range sections 
corresponds to a range section of the first set of plural 
range sections such that there are respective pairs of 
corresponding first and second range sections, wherein 
each pair of corresponding first and second range 
sections is associated with a gradient, the gradient for 
each pair of corresponding first and second range 
sections approximating the gradient of the function for 
that pair of corresponding first and second range sec 
tions, wherein the step of converting the first value into 
the second value comprises: 

determining a first predetermined section end value for a 
first range section of the first set of plural range sections 
within which the first value lies, 

identifying a second predetermined section end value for 
a second range section of the second set of plural range 
sections that corresponds to the first range section, 
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8 
identifying the gradient associated with the pair of cor 

responding first and second range sections, and 
converting the first value into the second value using the 

first section end value, the second section end value and 
the gradient; and 

deriving the output data value from the second value; and 
writing the output data value to the buffer. 
In an embodiment, the graphics processing system is a 

tile-based graphics processing system and/or the buffer is a 
texture buffer. 
The technology described herein can be used for any 

Suitable and desired form of data, e.g. input data values and 
output data values. In an embodiment it is used for convert 
ing data values in a floating point format into data values a 
non-floating point format (or Vice-versa). In this case the 
input data values will be in floating point format, and the 
output data values will be in an alternative format (or 
Vice-versa). This may be particularly useful for graphics data 
that is typically processed in floating point format, such as 
high dynamic range colour data, but which it may be desired 
to process or store in non-floating point format. 
The floating point format may be binary 16, binary32, 

binary64, etc. AS is known in the art, for example, the 
binary 16 format comprises 1 sign bit, 5 exponent bits, and 
10 mantissa bits, with the mantissa having an implicit 
leading 1. The base for the exponent in binary 16 format is 
2, and the exponent value is offset by 15. 

In the technology described herein, the function that is 
being approximated maps input values to output values. The 
input values and/or output values that are mapped using the 
function may be the input data values and/or output data 
values referred to above, which are in an embodiment stored 
in a buffer and/or in external memory. However, in an 
embodiment, the input values and/or output values are 
intermediate input values and/or intermediate output values 
derived or derivable from the, e.g. stored, input data values 
and/or output data values. 

Whatever the original format of the input data values, in 
embodiments, the section end values for the first range 
sections in which the first value may lie are each represented 
by one or more integers. The section end values are in an 
embodiment represented by a given (and in an embodiment 
the same) number of bits for each section end value. 

Similarly, in embodiments, the section end values for the 
corresponding second range sections are each represented by 
one or more integers. Again, the section end values are in an 
embodiment represented by a given (and in an embodiment 
the same) number of bits for each section end value. 

Constraining the section end values to be integers (e.g. 
having a limited number of bits) in this way reduces the 
number of bits needed to process (e.g. store, perform inter 
polations using, etc.) the section end values. 

Similarly, in embodiments, the corresponding gradients 
for pairs of first and second range sections are each repre 
sented by one or more integers. The gradients are again in an 
embodiment represented by a given (and in an embodiment 
the same) number of bits for each gradient. Again, con 
straining the gradients to be integers (e.g. having a limited 
number of bits) reduces the number of bits needed to process 
(e.g. Store, perform interpolations using, etc.) the gradients. 

In an embodiment, the gradient values are all take from 
(are constrained to be from) a predetermined set of permitted 
or allowed gradient values. In an embodiment, the gradients 
are selected from the set {3, 4, 5}*2n, where n is a positive 
integer. These embodiments are particularly advantageous in 
that division by 2, 3 and 5 and their multiples can be made 
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relatively computationally less expensive, for example, 
using a bit shift for division by 2 and dedicated divide by 3 
and divide by 5 circuits. 

In an embodiment, each input value is in a first range, in 
an embodiment 1.0-256.0. Thus, in embodiments in which 
the input value is the input data value, each input data value 
is in an embodiment in the range 1.0-256.0. Similarly, in 
embodiments in which the input value is an intermediate 
input value that is derived or derivable from the input data 
value, the intermediate input value is in an embodiment in 
the range 1.0-256.0. 

In an embodiment, as discussed above, the input data 
value is in floating point format. In these embodiments, the 
input value is in an embodiment an intermediate input value 
derived or derivable from the input data value. In these 
embodiments, one way to derive the intermediate input 
value is to consider certain bits of the floating point repre 
sentation and/or ignore certain other bits of the floating point 
representation. For example, the intermediate input value 
may be derived by considering a number of the least 
significant bits of the exponent (e.g. the 3 least significant 
bits of the exponent) of the floating point representation 
and/or ignoring a number of the most significant bits of the 
exponent (e.g. the 2 most significant bits of the exponent 
(where the data input value is in binary 16 format)) of the 
floating point representation. As will be appreciated, con 
sidering only the 3 least significant bits of the exponent 
means that there are only 8 (i.e. 2) possible different values 
for the exponent. Where the base for the exponent is 2 and 
there is a implicit leading 1 for the mantissa, this means that 
the range of intermediate input values derivable from the 
input data values is limited to the range 1 to 256 (i.e. 1x2' 
to 1x2). 

The first value may be derived from the input data value 
as desired. In some embodiments, the first value is the input 
data value. In these embodiments, deriving the first value 
from the input data value simply comprises reading the input 
value for use as the first value. However, in embodiments, 
the input data value is processed so as to derive the first 
value. In some embodiments, this may be achieved by first 
deriving the intermediate input value from the input data 
value, and then deriving the first value from the intermediate 
input value. In other embodiments, this may be achieved by 
deriving the first value without deriving the intermediate 
input value and/or directly from the input data value. 

In embodiments, the input value (i.e. either the data input 
value or intermediate input value) is processed so as to 
derive the first value by offsetting and/or scaling the input 
value to give the first value. 
As discussed above, in an embodiment, the input value is 

in a first range, in an embodiment 1.0-256.0. In an embodi 
ment, the first value is in a second range (different to the first 
range), in an embodiment 16-4096. In an embodiment, the 
input value (V) may be scaled by 16 to give a first value (v), 
in an embodiment such that: 

In these embodiments, the section end values for the first 
range sections in which the first value (v) may lie are then 
integers represented by 12 bits. 

In embodiments in which the input values are intermedi 
ate input values that are derived or derivable from a floating 
point format, the floating point representation may be pro 
cessed so as to (e.g. directly) derive the first value by reading 
particular bits of the floating point representation (e.g. So as 
to implicitly cause an offset and/or scaling). In these 
embodiments, the intermediate input value may not actually 
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10 
be derived from the floating point format, although the 
intermediate input values are in an embodiment still deriv 
able from a floating point format. 

In an embodiment, a selected number (e.g. Some (but not 
all) of the bits of the floating point representation are read 
and used to derive the first value. These embodiments are 
particularly advantageous in that the first value can be (e.g. 
directly) derived by reading (some or all of) the bits of the 
floating point format. 

In an embodiment, a selected number of the least signifi 
cant bits of the exponent of the floating point representation 
(e.g. the least significant 3 bits of the exponent) and a 
selected number of the most significant bits of the mantissa 
of the floating point representation (e.g. the most significant 
6 bits of the mantissa) are read and used to derive the first 
value. 

In these embodiments, the first value may comprise an 
exponent part (n) and a mantissa part (m), in an embodiment 
such that the intermediate input value V would be given by: 

Where the 3 least significant bits of the exponent of the 
floating point representation are used, the exponent part of 
the first value is in an embodiment in the range 0-7. Where 
the 6 most significant bits of the mantissa of the floating 
point representation are used the mantissa part of the first 
value is in an embodiment in the range 0-63. 

Similarly, in an embodiment, the section end values for 
the first range sections in which the first value (v) may lie 
are represented by an exponent (n) and mantissa (m), in an 
embodiment such that: 

In these embodiments, the section end values for the first 
range sections in which the first value (v) may lie are in an 
embodiment represented by two integers, one integer (e.g. of 
3 bits) to represent the exponent (n) and one integer (e.g. of 
6 bits) to represent the mantissa (m) (i.e.9 bits in total in this 
example). This allows relatively fewer bits to be used to 
process (e.g. Store, perform interpolations using, etc.) the 
section end values for the first range sections. 

In an embodiment in which the section end values for the 
first range sections are represented by an exponent and 
mantissa, the gradients are (only) selected from a predeter 
mined set of gradients, in an embodiment the set {5, 6, 8, 10, 
12, 16, and (the same) gradient values are reused for 
different exponent values. Thus, in an embodiment, the 
gradient of a function over a large dynamic range can be 
represented by an integer that is represented by 3 bits. Thus, 
fewer bits are required to process (e.g. store, perform 
interpolations using, etc.) the gradients in these embodi 
ments when compared to embodiments in which gradients 
are not reused for different exponents. 
The output data value, intermediate output value, and/or 

second value may similarly have any desired and Suitable 
format. 

In some embodiments, the output data value is the second 
value. In these embodiments, deriving the output data value 
from the second value comprises reading the second value 
for use as the output data value. However, in embodiments, 
the second value is processed so as to derive the output data 
value. In some embodiments, this may be achieved by first 
deriving the intermediate output value from the second 
value, and then deriving the output data value from the 
intermediate output value. In other embodiments, this may 
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be achieved by deriving the output data value without 
deriving the intermediate output value and/or directly from 
the second value. 

In embodiments, the second value is processed so as to 
derive the output value (i.e. either the intermediate output 
value or output data value) by offsetting and/or scaling the 
second value to give the output value. 

In an embodiment, the second value is in a third range, in 
an embodiment 128-256, and the output value is in a fourth 
range (different to the third range), in an embodiment 
1.0-2.0. Thus, in embodiments in which the output value is 
the output data value, each output data value is in an 
embodiment in the range 1.0-2.0. Similarly, in embodiments 
in which the output value is an intermediate output value that 
is derivable from the output data value, the intermediate 
output value is in an embodiment in the range 1.0-2.0. 

In an embodiment, the second value (u') may be scaled by 
128 to give the output value (u), in an embodiment such that: 

In these embodiments, the section end values for the 
second range sections are then integers represented by 8 bits. 

In another embodiment, the second value is in the range 
0-128 and the output value is in the range 1.0-2.0. In this 
embodiment, the second value (u') may be scaled by 128 and 
offset by 1 to give the output value (u) using the equation: 

In some of these embodiments, the section end values for 
the second range sections are then integers represented by 7 
bits. Thus, fewer bits are required to process (e.g. Store, 
perform interpolations using, etc.) the section end values for 
the second range sections in this embodiment when com 
pared to the embodiment in which no offsetting occurs. 
As discussed above, in an embodiment, the output data 

value is in the range 1.0-2.0. This output data value is in an 
embodiment stored, e.g. in external memory, in a storage 
format. The storage format can take any desired and Suitable 
form. However, in an embodiment, the storage format is 
considered to have an implied 1 and so only the fraction part 
of the output data value is stored. In an embodiment, 13 bits 
of the fraction part (e.g. the 13 most significant bits of the 
fraction part) are stored. 

In an embodiment, the storage format has one or more 
sign bits (e.g. the sign bit of the floating point representation 
of the input data value), one or more scale bits (e.g. the 2 
most significant bits of the exponent of the floating point 
representation of the input data value (in an embodiment the 
bits which were not considered when deriving the first 
value)), and one or more fraction bits (e.g. 13 bits of the 
fraction part of the output data value). The sign bits and scale 
bits can be copied across from the floating point represen 
tation of the input data value to the output data value format. 

In some embodiments, and depending on the particular 
function being approximated, the input data value, interme 
diate input value, first value, first range of values, section 
end values for the first range sections, etc. correspondingly 
and/or respectively have the properties described herein of 
the output data value, intermediate output value, second 
value, second range of values, section end values for the 
second range sections, etc. (and vice versa). 

In an embodiment, the sections within the first and/or 
second set of plural range sections are contiguous. In other 
words, the upper section end value of a given range section 
is the same as the lower section end value of the next higher 
range section, and so on. Similarly, the lower section end 
value of a given range section is the same as the upper 
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section end value of next lower range section, and so on. 
This can allow, for example, for the function to be suitably 
approximated for all values across a given range of input 
values and their corresponding output values. 
The first predetermined section end value which is deter 

mined for the first range section of the first set of plural range 
sections within which the first value lies can be determined 
in any desired and Suitable way. 

However, in an embodiment, the first predetermined sec 
tion end value is determined by comparison of the first value 
with one or more first predetermined section end values of 
a set of first predetermined section end values which respec 
tively correspond to each of the sections of the first set of 
plural range sections. In an embodiment, the set of first 
predetermined section end values are stored in a look-up 
table. The look-up table may be stored in memory and/or 
may be accessed using a set of logical operations and/or 
nested set of comparators. 
The look-up table in an embodiment associates each first 

predetermined section end value of the set of first predeter 
mined section end values with corresponding second pre 
determined section end values of a set of second predeter 
mined section end values, with each second predetermined 
section end values corresponding respectively to the sections 
of the second set of plural range sections. In these embodi 
ments, identifying a second predetermined section end value 
for the second range section that corresponds to the first 
range section in an embodiment comprises using the look-up 
table. 
The look-up table in an embodiment also associates each 

first predetermined section end value of the set of first 
predetermined section end values and/or each second pre 
determined section end value of the set of second predeter 
mined section end values with a corresponding gradient. In 
these embodiments, identifying the gradient associated with 
the pair of corresponding first and second range sections in 
an embodiment comprises using the look-up table. 

In embodiments in which the first section end values are 
(each) represented by a mantissa and an exponent, both the 
mantissa and the exponent may be stored in the look-up table 
and may be used to look-up the corresponding second 
section end value and/or gradient. This allows the same 
exponent but different mantissas to be used to look up 
different second section end value and/or gradients, and/or 
allows the same mantissa but different exponents to be used 
to look up different second section end value and/or gradi 
ents. This can, for example, allow reuse of section end 
values and/or gradients and/or reduce the range of section 
end values and/or gradients that need to be stored, thereby 
reducing the number of bits needed to store section end 
values and/or gradients. 

In the technology described herein, once the first and 
second predetermined end values and the gradient have been 
identified, they are then used to generate the second value. 
This can be done in any desired and Suitable way. 

In some embodiments, the gradient is defined as being the 
change in output value for a given change in input value 
(output/input gradient). In other embodiments, the gradient 
may be defined as being the change in input value for a given 
change in output value (input/output gradient). 
Where the gradient is defined as the change in output 

value for a given change in input value (i.e. is an output/ 
input gradient), the second value may be generated by a 
calculation involving taking the difference between a value 
based on first value and a value based on first section end 
value, multiplying by a value based on the gradient, and 
adding to (if lower section end values are used) or subtract 
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ing from (if upper section end values are used) a value based 
on the second section end value. 
Where the first value is a scaled version of the input value 

and/or the output value is a scaled version of the second 
value, then the calculation may involve Suitable multiplica 
tions and/or divisions to take account of the Scaling. 

For example, where the input value (u) is scaled by 128 
to give the first value (u') and the second value (v) is scaled 
by 16 to give the output value (V), the second value (v) may 
be generated as follows: 

v'={(u'-second section end value)* gradient 16/ 
128}+first section end value 

Similarly, where the input value (u) is scaled by 128 to 
give the first value (u') and the second value (v) is scaled by 
64 to give the output value (v), the second value (v) may be 
generated as follows: 

v'={(u'-second section end value)* gradient'64/ 
128}+first section end value 

In embodiments in which the first value, second value, 
and/or a section end value is represented by a mantissa and 
an exponent, the parameters used in the above equations 
may be the corresponding mantissas for those values. 
Where the gradient is defined as the change in input value 

for a given change in output value (input/output gradient), 
the second value may be generated by a calculation involv 
ing taking the difference between a value based on first value 
and a value based on first section end value, dividing by a 
value based on the gradient, and adding to (if lower section 
end values are used) or subtracting from (if upper section 
end values are used) a value based on the second section end 
value. 
Where the first value is a scaled version of the input value 

and/or the output value is a scaled version of the second 
value, then the calculation may involve Suitable multiplica 
tions and/or divisions to take account of the Scaling. 

For example, where the input value (V) is scaled by 16 to 
give the first value (v) and the second value (u') is scaled by 
128 to give the output value (u), the second value (u') may 
be generated as follows: 

u'={(v'-first section end value)*128/gradient 
16+second section end value 

Similarly, where the input value (V) is scaled by 64 to give 
the first value (v) and the second value (u') is scaled by 128 
to give the output value (u), the second value (u') may be 
generated as follows: 

u'={(v'-first section end value)*128/gradient 
64+second section end value 

In embodiments in which the first value, second value, 
and/or a section end value is represented by a mantissa and 
an exponent, the parameters used in the above equations 
may be the corresponding mantissas for those values. 

Although the technology described herein has been 
described above primarily with reference to the processing 
of a particular input data value, as will be appreciated by 
those skilled in the art, this operation is in an embodiment 
performed for and in respect of plural input data values (and 
in an embodiment each input data value) to which the 
conversion is to be applied. 
The function that is being approximated in the technology 

described herein can be any desired and suitable function. In 
Some embodiments, the function is used to apply or remove 
gamma correction from a set of input (colour) values and/or 
to change (increase or decrease) the dynamic range of a set 
of input (colour) values. 
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In embodiments, the function which is being approxi 

mated is a storage function S(V). In other embodiments, the 
function which is being approximated is a retrieval function 
R(u). The retrieval function R(u) is in an embodiment the 
inverse of the storage function S(v), such that S(v)=u and 
R(u)=V. 

In embodiments, the function is monotonic. In other 
words, for each input value, the function generates a unique 
output value. This can ensure, for example, that the function 
can be suitably inverted and applied to the output value so 
as to recover a value which is identical or similar to the input 
value. 

In embodiments, the function is a power law function, for 
example having the form R(u)=ku?, where p and k are 
constants. In an embodiment, the function is given by 
R(u)=u. In embodiments, the power law function is used as 
a retrieval function. 

In other embodiments, the function is an inverse power 
law function, for example having the form S(v)=1/kxv', 
where p and k are constants. In an embodiment, the function 
is given by S(v)=v'. In embodiments, the inverse power 
law function is used as a storage function. 

In some embodiments, the method of the technology 
described herein is applied so as to approximate the storage 
function to store an “output data value' and then is later 
Suitably modified (inverted) and applied so as to approxi 
mate the retrieval function, with the stored output data value 
being used as an "input data value' in the method. This may 
done, for example, when writing colour values from a (e.g. 
tile) buffer to an external memory and then later reading 
those same colour values back into the graphics processing 
pipeline for further processing. 

In these embodiments, the processes used when approxi 
mating the storage function to: i) derive the output data value 
from the second value, ii) convert the first value into the 
second value, and iii) derive the first value from the input 
data value, are inverted and are used to approximate the 
retrieval function. 
The process of approximating the storage function and 

then the retrieval function may be repeated plural times, 
each time Suitably modifying (inverting) and applying the 
method of the technology described herein, with the output 
data value being used as an "input data value' in the method. 

Similarly, in some embodiments, the method of the tech 
nology described herein is also or instead applied so as to 
approximate the retrieval function to read out an "output 
data value” and then is later suitably modified (inverted) and 
applied so as to approximate the storage function, with the 
output data value being used as an "input data value' in the 
method. This may done, for example, when reading colour 
values into the graphics processing pipeline for processing 
and then later writing those same colour values from a (e.g. 
tile) buffer to an external memory (e.g. when the colour 
values remain unchanged by the graphics processing opera 
tion). 

In these embodiments, the processes used when approxi 
mating the retrieval function to: i) derive the output data 
value from the second value, ii) convert the first value into 
the second value, and iii) derive the first value from the input 
data value, are inverted and are used to approximate the 
storage function. 
The process of approximating the retrieval function and 

then the storage function may be repeated plural times, each 
time Suitably modifying (inverting) and applying the method 
of the technology described herein, with the output data 
value being used as an "input data value' in the method. 
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The technology described herein can be used for all forms 
of input and output that a graphics processing pipeline may 
be used to process and/or generate, such as frames for 
display, render-to-texture outputs, etc. 

In some embodiments, the graphics processing pipeline 
comprises, and/or is in communication with, one or more 
memories and/or memory devices that store the data 
described herein, Such as the input data values, output data 
values, predetermined sets of values etc., and/or store soft 
ware for performing the processes described herein. The 
graphics processing pipeline may also be in communication 
with a host microprocessor, and/or with a display for dis 
playing images based on the data generated by the graphics 
processor. 

In an embodiment, the various functions of the technol 
ogy described herein are carried out on a single graphics 
processing platform that generates and outputs the rendered 
fragment data that is, e.g., written to a frame buffer for a 
display device. 
The technology described herein can be implemented in 

any suitable system, Such as a suitably configured micro 
processor based system. In an embodiment, the technology 
described herein is implemented in a computer and/or 
micro-processor based system. 
The various functions of the technology described herein 

can be carried out in any desired and Suitable manner. For 
example, the functions of the technology described herein 
can be implemented in hardware or software, as desired. 
Thus, for example, the various functional elements of the 
technology described herein may comprise a Suitable pro 
cessor or processors, controller or controllers, functional 
units, circuitry, processing logic, microprocessor arrange 
ments, etc., that are operable to perform the various func 
tions, etc., such as appropriately configured dedicated hard 
ware elements or processing circuitry, and/or programmable 
hardware elements or processing circuitry that can be pro 
grammed to operate in the desired manner. 

It should also be noted here that, as will be appreciated by 
those skilled in the art, the various functions, etc., of the 
technology described herein may be duplicated and/or car 
ried out in parallel on a given processor. Equally, the various 
processing stages may share processing circuitry, if desired. 
The technology described herein is applicable to any form 

or configuration of graphics processing pipeline and to all 
forms of rendering. Such as immediate mode rendering, 
deferred mode rendering, tile-based rendering, etc. It is 
particularly applicable to graphics renderers that use 
deferred mode rendering and in particular to tile-based 
renderers. 

Thus the technology described herein extends to a graph 
ics processor and to a graphics processing platform includ 
ing the apparatus of or operated in accordance with any one 
or more of the embodiments of the technology described 
herein described herein. Subject to any hardware necessary 
to carry out the specific functions discussed above, such a 
graphics processor can otherwise include any one or more or 
all of the usual functional units, etc., that graphics processors 
include. 

It will also be appreciated by those skilled in the art that 
all of the described embodiments of the technology 
described herein can, and in an embodiment do, include, as 
appropriate, any one or more or all of the optional features 
described herein. 
The methods in accordance with the technology described 

herein may be implemented at least partially using Software 
e.g. computer programs. Thus, embodiments of the technol 
ogy described herein comprise computer Software specifi 
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16 
cally adapted to carry out the methods herein described 
when installed on a data processor, a computer program 
element comprising computer Software code portions for 
performing the methods herein described when the program 
element is run on a data processor, and a computer program 
comprising Software code adapted to perform all the steps of 
a method or of the methods herein described when the 
program is run on a data processing system. The data 
processor may be a microprocessor System, a programmable 
FPGA (field programmable gate array), etc. 
The technology described herein also extends to a com 

puter Software carrier comprising Such software which when 
used to operate a graphics processor, renderer or micropro 
cessor system comprising a data processor causes in con 
junction with said data processor said processor, renderer or 
system to carry out the steps of the methods of the technol 
ogy described herein. Such a computer software carrier 
could be a physical storage medium Such as a ROM chip, 
RAM, flash memory, CD ROM or disk. 

It will further be appreciated that not all steps of the 
methods of the technology described herein need be carried 
out by computer software and thus embodiments of the 
technology described herein comprise computer software 
and Such software installed on a computer Software carrier 
for carrying out at least one of the steps of the methods set 
out herein. 
The technology described herein may accordingly suit 

ably be embodied as a computer program product for use 
with a computer system. Such an implementation may 
comprise a series of computer readable instructions fixed on 
a tangible medium, Such as a non-transitory computer read 
able medium, for example, diskette, CD-ROM, ROM, 
RAM, flash memory or hard disk. The series of computer 
readable instructions embodies all or part of the function 
ality previously described herein. 

Those skilled in the art will appreciate that such computer 
readable instructions can be written in a number of pro 
gramming languages for use with many computer architec 
tures or operating systems. Further, such instructions may be 
stored using any memory technology, present or future, 
including but not limited to, semiconductor, magnetic, or 
optical, or transmitted using any communications technol 
ogy, present or future, including but not limited to optical, 
infrared, or microwave. It is contemplated that such a 
computer program product may be distributed as a remov 
able medium with accompanying printed or electronic docu 
mentation, for example, shrink-wrapped software, pre 
loaded with a computer system, for example, on a system 
ROM or fixed disk, or distributed from a server or electronic 
bulletin board over a network, for example, the Internet or 
World Wide Web. 
A number of embodiments of the technology described 

herein will now be described in the context of the processing 
of computer graphics. 

FIG. 1 shows a graphics processor 3 according to one 
embodiment of the technology described herein. The graph 
ics processor 3 shown in FIG. 1 is a tile-based graphics 
processing pipeline and will thus, as is known in the art, 
produce tiles of a render output data array, Such as an output 
frame to be generated. 
As is known in the art, in tile-based rendering, rather than 

the entire render output, e.g., frame, effectively being pro 
cessed in one go as in immediate mode rendering, the render 
output, e.g., frame to be displayed, is divided into a plurality 
of smaller sub-regions, usually referred to as “tiles'. Each 
tile (Sub-region) is rendered separately (typically one-after 
another), and the rendered tiles (Sub-regions) are then 
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recombined to provide the complete render output, e.g., 
frame for display. In Such arrangements, the render output is 
typically divided into regularly-sized and shaped sub-re 
gions (tiles) (which are usually, e.g., squares or rectangles), 
but this is not essential. 

The render output data array may, as is known in the art, 
typically be an output frame intended for display on a 
display device. Such as a screen or printer, but may also, for 
example, comprise intermediate data intended for use in 
later rendering passes (also known as a "render to texture' 
output), etc. 

FIG. 1 shows the main elements and pipeline stages of the 
graphics processing pipeline 3 that are relevant to the 
operation of the present embodiment. As will be appreciated 
by those skilled in the art there may be other elements of the 
graphics processing pipeline that are not illustrated in FIG. 
1. It should also be noted here that FIG. 1 is only schematic, 
and that, for example, in practice the shown functional units 
and pipeline stages may share significant hardware circuits, 
even though they are shown schematically as separate stages 
in FIG. 1. It will also be appreciated that each of the stages, 
elements and units, etc., of the graphics processing pipeline 
as shown in FIG. 1 may be implemented as desired and will 
accordingly comprise, e.g., appropriate circuitry and/or pro 
cessing logic, etc., for performing the necessary operation 
and functions. 

FIG. 1 shows schematically the pipeline stages after the 
graphics primitives (polygons) 20 for input to the rasterisa 
tion process have been generated. Thus, at this point the 
graphics data (the vertex data) has undergone fragment 
frontend operations 28, Such as transformation and lighting 
operations (not shown), and a primitive set-up stage (not 
shown) to set-up the primitives to be rendered, in response 
to the commands and vertex data provided to the graphics 
processor, as is known in the art. 
As shown in FIG. 1, this part of the graphics processing 

pipeline 3 includes a number of stages, including a rasteri 
sation stage 23, an early Z (depth) and stencil test stage 24, 
a fragment shading stage 26, a late Z (depth) and stencil test 
stage 27, a blending stage 29, a tile buffer 30 and a 
downsampling and write out (multisample resolve) stage 31. 
The rasterisation stage 23 of the graphics processing 

pipeline 3 operates, as is known in the art, to rasterise the 
primitives making up the render output (e.g. the image to be 
displayed) into individual graphics fragments for process 
ing. To do this, the rasteriser 23 receives graphics primitives 
20 for rendering, rasterises the primitives to sampling points 
and generates graphics fragments having appropriate posi 
tions (representing appropriate sampling positions) for ren 
dering the primitives. 
The fragments generated by the rasteriser are then sent 

onwards to the rest of the pipeline for processing. 
The early Z/stencil stage 24 performs, is known in the art, 

a Z (depth) test on fragments it receives from the rasteriser 
23, to see if any fragments can be discarded (culled) at this 
stage. To do this, it compares the depth values of (associated 
with) fragments issuing from the rasteriser 23 with the depth 
values of fragments that have already been rendered (these 
depth values are stored in a depth (Z) buffer that is stored in 
the tile buffer 30) to determine whether the new fragments 
will be occluded by fragments that have already been 
rendered (or not). At the same time, an early stencil test is 
carried out. 

Fragments that pass the fragment early Z and stencil test 
stage 24 are then sent to the fragment shading stage 26. The 
fragment shading stage 26 performs the appropriate frag 
ment processing operations on the fragments that pass the 
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early Z and stencil tests, so as to process the fragments to 
generate the appropriate rendered fragment data, as is known 
in the art. 

This fragment processing may include any suitable and 
desired fragment shading processes, such as executing frag 
ment shader programs on the fragments, applying textures to 
the fragments, applying fogging or other operations to the 
fragments, etc., to generate the appropriate fragment data, as 
is known in the art. The textures may be stored in external 
memory 34, and may be read from the external memory 34 
into a texture buffer 36 that is accessible to the fragment 
shader 26. In the present embodiment, the fragment shading 
stage 26 is in the form of a shader pipeline (a programmable 
fragment shader), but other arrangements, such as the use 
also or instead of fixed function fragment shading units 
would be possible, if desired. 

There is then a “late' fragment Z and stencil test stage 27, 
which carries out, interalia, an end of pipeline depth test on 
the shaded fragments to determine whether a rendered 
fragment will actually be seen in the final image. This depth 
test uses the Z-buffer value for the fragments position stored 
in the Z-buffer in the tile buffer 30 to determine whether the 
fragment data for the new fragments should replace the 
fragment data of the fragments that have already been 
rendered, by, as is known in the art, comparing the depth 
values of (associated with) fragments issuing from the 
fragment shading stage 26 with the depth values of frag 
ments that have already been rendered (as stored in the depth 
buffer). This late fragment depth and stencil test stage 27 
also carries out any necessary “late alpha and/or stencil 
tests on the fragments. 
The fragments that pass the late fragment test stage 27 are 

then Subjected to, if required, any necessary blending opera 
tions with fragments already stored in the tile buffer 30 in the 
blender 29. Any other remaining operations necessary on the 
fragments, such as dither, etc. (not shown) are also carried 
out at this stage. 

Finally, the (blended) output fragment data (values) are 
written to a colour buffer in the tile buffer 30 from where 
they can, for example, be output to a frame buffer for 
display. The depth value for an output fragment is also 
written appropriately to a Z-buffer within the tile buffer 30. 
(The colour buffer and Z-buffer will store, as is known in the 
art, an appropriate colour, etc., or Z-value, respectively, for 
each sampling point that the buffers represent (in essence for 
each sampling point of a tile that is being processed).) The 
colour buffer and Z-buffer store, as is known in the art, an 
array of fragment data that represents part of the render 
output (e.g. image to be displayed). 

In the present embodiment, the tile buffer 30 comprises an 
allocated portion of RAM that is located on (local to) the 
graphics processing pipeline (on-chip). 

The, e.g. colour, data from the tile buffer 30 is input to a 
write out unit 31, and thence output (written back) to an 
output buffer, such as a frame buffer of a display device (not 
shown). (The display device could comprise, e.g., a display 
comprising an array of pixels, such as a computer monitor 
or a printer.) 
Once a tile of the render output has been processed and its 

data exported to external memory (e.g. to a frame buffer (not 
shown) in the main memory 34) for storage, the next tile is 
then processed, and so on, until Sufficient tiles have been 
processed to generate the entire render output (e.g. frame 
(image) to be displayed). 

Other arrangements for the graphics processing pipeline 3 
would, of course, be possible. 
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The above describes certain features of the operation of 
the graphics processing system shown in FIG. 1. Further 
features of the operation of the graphics processing system 
shown in FIG. 1 in accordance with embodiments of the 
technology described herein will now be described. 5 
An embodiment of the technology described herein, in 

which the colour data which is stored in the tile buffer 30 is 
stored in floating point format is written out to main memory 
34 using the process of the technology described herein will 
be described as an example of the operation of the graphics 
processing pipeline in the manner of the technology 
described herein. 

In this embodiment, the colour data is stored as input data 
values in binary 16 format. As is known in the art, binary 16 
format has 1 sign 1, 5 exponent bits, and 10 mantissa bits. 15 
Thus, the binary 16 format is: 

10 

TABLE 1. 

Sign Exponent Mantissa 

1S 14 13 12 11 1 O 9 8 7 6 5 4 3 2 

The exponent is offset by 15, and the base for the 
exponent is 2. Thus, the position of the floating point is 
determined by subtracting 15 from the exponent. The man 
tissa has an implicit leading 1. 

In this embodiment, when the colour data which is stored 
in the tile buffer 30 is exported to main memory 34 by the 
write out unit 31, each input data value is used to derive an 
input value V. In this embodiment, input values are derived 
from the floating point representations of the input data 
value by considering only the 3 least significant bits of the 
exponent (i.e. bits 10-12). Thus, the range of input values is 
given by 1.0<v<256.0. 
An approximation of a storage function S(v) is then 

applied to the input value by the write out unit 31 to give an 
output value u. The storage function which is approximated 
in this embodiment is the monotonic power-law function: 

25 

30 

35 

S(v)=y'8=u 40 

Since the range of input values is given by 1.0sv<256.0, 
the range of output values is given by 1.0su<2.0. 

The output value u is then stored as an output data value 
in main memory 34. In this embodiment, the storage format 
for the output data value comprises the sign bit of the 
floating point representation (i.e. bit 15) of the input data 
value, 2 scale bits which correspond to the 2 most significant 
bits of the exponent (i.e. bits 13-14) of the input data value, 
and 13 fraction bits from the output value of u (i.e. it is 
implicit that u is in the range 1 to 2, and so only bits which 
represent the fraction are stored). Thus, the storage format is: 

45 

50 

Sign Scale Fraction 

15 14 13 12 11 1 O 9 8 7 6 5 4 3 2 

In one embodiment, the approximation of the storage 
function makes use of the look-up table shown in FIG. 2. 
This look-up table is derived in the following way. 

Firstly, the input values and output values are mapped into 
predetermined ranges. In this embodiment, each input value 
V is mapped to a first predetermined range of values v' by 
scaling the input value V by 16 using the following equation: 65 

60 

20 
Since the range of input values in this embodiment is 

given by 1.0sv<256.0, the first predetermined range in this 
embodiment is 16.0sv'<4096. 

Similarly, each output value u is mapped to a second 
predetermined range of values u' by Scaling the output value 
u by 128 using the following equation: 

Since the range of output values in this embodiment is 
given by 1.0su<2.0, the second predetermined range in this 
embodiment is 128.0su'<256. 

In this embodiment, the first and second predetermined 
ranges are then respectively quantised into contiguous range 
sections. For example, the first predetermined range is 

quantised into a set of first range sections 16-18, 18-23, 
23-29 . . . . . . 2112-2432, 2432-3584 and 3584-4096 as 
indicated by column 2 of the table shown in FIG. 2, and the 
second predetermined range is quantised into a set of second 
range sections {128-130, 130-134, 134-138 . . . . . . 236-240, 
240-252 and 252-256} as indicated by column 1 of the table 
shown in FIG. 2. 

It should be noted that the end values for the range 
sections are integers. Constraining the section end values in 
this way reduces the number of bits needed to represent and 
store the section end values in the look-up table and can 
increase the computational efficiency of calculations made 
using those values. 

Each first range section in the set of first range sections 
corresponds to a second range section in the set of second 
range sections such that there are pairs of corresponding first 
and second range sections for approximating the function. In 
this embodiment, as indicated by the table, the range section 
16-18 of the set of first range sections corresponds to the 
range section 128-130 of the set of second range sections, 
the range section 18-23 of the set of first range sections 
corresponds to the range section 130-134 of the set of second 
range sections, and so on. 

Each pair of first and second corresponding range sections 
is also associated with a gradient. The gradient for each pair 

of first and second corresponding range sections approxi 
mates the gradient of the storage function for that pair of 
corresponding first and second range sections. In this 
embodiment, as indicated by the table, the set of gradients 
are 8, 10, 12 . . . . . . 640, 768, 1024}, with the gradient 8 
being associated with the pair of corresponding ranges 16-18 
and 128-130, the gradient 10 being associated with the pair 
of corresponding ranges 18-23 and 130-134, and so on. 
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It will be noted that the gradients for the pairs of first and 
second corresponding range sections are also integers. As 
mentioned above, constraining the gradients in this way 
reduces the number of bits needed to represent and store the 
gradients in the look-up table and can increase the compu 
tational efficiency of calculations made using those gradi 
ents. It will also be noted that the gradients for the pairs of 
first and second corresponding range sections are selected 
from the set {3, 4, 5}2n, where n is a positive integer. 10 
Further constraining the gradients in this way allows divi 
sions using the gradients to be implemented efficiently using 
bit shifts (for division by 2) and two dedicated division 
circuits (for division by 3 and 5). 15 
Use of the table in FIG. 2 to approximate the storage 

function will now be described. 

An input data value in floating point format in the tile 
buffer 30 is read into the write out unit 31. For example, the 20 
floating point representation for the decimal number 4.25 is: 

Sign Exponent Mantissa 

The write out unit 31 derives an input value v from the 30 
floating point representation of the input data value. If the 
decimal value derivable from the floating point representa 
tion is inside the range 1 to 256, the input value is the 
decimal value derivable from the floating point representa- as 
tion of the input data value. However, if the decimal value 
derivable from the floating point representation of the input 
data value is outside the range 1 to 256, then the input data 
value is scaled by 256 to give an intermediate input value, 40 
where S in a positive integer. A simple way to implement this 
scaling is by only considering the lowest 3 bits of the 
exponent of the input data value. For example, the floating 
point representation for the decimal number 1088 may be 
scaled by 256', to give an intermediate input value v of 4.25. 45 
However, the floating point representation for the decimal 
number 1088 is: 

Sign Exponent Mantissa 

O 1 1 O O 1 O O O 1 O O O O 

Since the representations for 4.25 and 1088 have the same 55 
mantissa and the same lowest 3 bits of exponent, 1088 can 
be processed to produce the output data value in the same 
way as 4.25 without any need to carry out any explicit 
scaling. Thus, the input value v for both 4.25 and 1088, is 
4.25. In order to preserve the difference in the scaling 

60 

between these input data values, the 2 most significant bits 
of the exponent of the floating point representation of the 65 
input data values can be copied across to the storage format 
for the output data value. 

22 
The write out unit 31 then derives a first value v' from the 

input value v using the following equation: 
'=''x16 

For example, where v is 4.25 (binary 100.01), v' is 68 
(binary 1000100). This can be carried out in binary by 
shifting the radix or binary point 4 places to the right. 
The first value v' is then used to determine a first range 

section end value. This is achieved by identifying the range 
section in the look-up table within which the first value v' 
lies. The look-up table may be implemented using a set of 
logical operations or a nested set of comparators. 

In this embodiment, the lower end value for the identified 
range section is used as the first range section end value. For 
example, where v' is 68 (binary 1000100), the determined 
first range section is 66-86 and the indentified first range 
section end value is 66 (binary 1000010). 
The second range section end value which corresponds to 

the first range section end value is then identified using the 

look-up table. The gradient which corresponds to the pair of 
first and second corresponding range sections is also iden 
tified using the look-up table. For example, where the first 
range section is 66-86, the indentified second range section 
end value is 153 (binary 10011001) and the indentified 
gradient is 32. 
The first value v' is then converted to a second value u" 

using the following equation: 
u'={(v'-first section end value)* 128/gradient 

16+second section end value 
For example, where v' is 68 (binary 1000100), the first 

section end value is 66 (binary 1000010), the second range 
section end value is 153 (binary 10011001) and the gradient 
is 32, u' is 153.5 (binary 10011001.1). 
The write out unit 31 then derives an output value u from 

the second value u' using the following: 
at =1/128 

For example, where u' is 153.5 (binary 10011001.1), u is 
1.19921875 (binary 1.00110011). This can be carried out in 
binary by shifting the radix or binary point 7 places to the 
left. 

The output value u is then written out to external memory 
34 in a storage format as an output data value. As discussed 
above, the sign bit and scale bits are copied across from the 
floating point representation of the input data value, and only 
the fraction part of u is stored. Thus, when the input data 
value is 4.25, the storage format for the output data value is: 
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Sign Scale Fraction 

Similarly, when the input data value is 1088, the storage 
format for the output data value is: 

Sign Scale Fraction 

O 1 1 O O 1 1 O O 1 1 O O O 

As will be appreciated, the above process is repeated for 
each input data value to which the conversion is to be 
applied. Once the conversion has been applied to the input 
data values to produce output data values, the output data 
values are stored in external memory 34. The output data 
values may later be used, for example, by the fragment 
shader 26 of the graphics processing pipeline 3 as texture 
data. 

FIG. 3 shows how the true storage function compares to 
the approximated function over the whole range of input 
values V. As can be seen from FIG. 3, the approximated 
function closely follows the true storage function. 

In another embodiment, the approximation of the storage 
function makes use of the look-up table shown in FIG. 4. 
This look-up table is derived from the look-up table in FIG. 
2 in the following way. 

Firstly, the first predetermined range of values vand input 
values are represented in exponent n and mantissa m form. 
The input values V are then given by: 

As will be explained in more detail below, both the 
exponent n and mantissa m of V are used to look up values 
in the look-up table. However, the mantissam of v' is used 
to calculate the second value from the first value, but the 
exponent n of v is not. Instead, the gradients in the table are 
suitably scaled by the exponent n of v' such that the gradients 
can be used with the mantissam of v' alone. 
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Thus, as will be appreciated, the gradient g in FIG. 4 can 
be derived from the gradient g in FIG. 2 as follows: 

It should again be noted that the gradients are, advanta 
geously, still integers and are still selected from the set {3, 
4, 5}2". Furthermore, the use of exponent and mantissa form 
means that only 6 gradient values {5, 6, 8, 10, 12, 16} are 
needed (with those gradients being re-used for different 
exponents), and so only 3 bits are needed to represent the 
gradients in this embodiment. 
As will be appreciated, each floating point representation 

for the input data values can be directly mapped to an 
exponent n for v' by considering the 3 least significant bits 
of the exponent of the floating point representation, and to 
a mantissam for v' by considering the 6 most significant bits 
of the exponent of the floating point representation. 

In some embodiments, e.g. where the exponent of the 
floating point representation for the input data values is 
subjected to an offset, the 3 least significant bits of the 
exponent of the floating point representation for V may need 
an offset applied to them. In this embodiment, the offset 
which is applied to the exponent of the floating point 
representation is -15 and so the offset applied to the 3 least 
significant bits of the exponent for V is +1. 

For example, the floating point representation for the 
input data value 4.25 is: 

Exponent Mantissa 

O O O 1 O O O 1 O O O O O O 

The 3 least significant bits of the exponent (001 or 
decimal 1) give an exponent n of 2 (i.e. 1+1), and the 6 most 
significant bits of the mantissa (000100) give a mantissa m 
of 4. 

Similarly, the floating point representation for the input 
data value 1088 is: 

Exponent Mantissa 
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Again, the 3 least significant bits of the exponent (001 or 
decimal 1) give an exponent n of 2 (i.e. 1+1), and the 6 most 
significant bits of the mantissa (000100) give a mantissa m 
of 4. 
The second predetermined range is also offset Such that 

the initial range section end value in the look-up table is 
Zero. This means that only 7 bits are needed to store the 
section end values for the second predetermined range in the 
FIG. 4 look-up table (whereas 8 bits are needed in the FIG. 
2 look-up table). As will be appreciated, each output value 
u is now mapped to the second predetermined range of 
values u' using the following equation: 

Furthermore, as will be appreciated, the first predeter 
mined range is also (implicitly) scaled and offset such that 
only 12 bits (i.e. 3 bits for the exponent and 6 bits for the 
mantissa) are needed to store the section end values for the 

Sign 

O 

first predetermined range in the FIG. 4 look-up table 
(whereas 12 bits are needed in the FIG. 2 look-up table). 

Sign 

O 

Use of the table in FIG. 4 to approximate the storage 
function will now be described. 
An input data value in floating point format in the tile 

buffer 30 is read into the write out unit 31. The write out unit 
31 then derives an exponent n and a mantissa m for a first 
value v' for the input data value in the manner discussed 
above. For example, for the input data value 4.25, the 
exponent n for v is 2 and the mantissam for v' is 4. (As will 
be appreciated, the write out unit 31 implicitly processes an 
intermediate input value V in the range 1 to 256 from the 
floating point representation by only considering the lowest 
3 bits of the exponent of the floating point representation). 
The exponent n and mantissa m for the first value v' are 

then used to determine a first (mantissa) range section end 
value. For example, where the exponent for v' is 2 and the 
mantissa for v' is 4 (binary 100), the determined first 
(mantissa) range section is 2-22 and the indentified first 
(mantissa) range section end value is 2 (binary 10). 
The second range section end value which corresponds to 

the first (mantissa) range section end value is then identified 
using the look-up table. The gradient which corresponds to 
the pair of first and second corresponding range sections is 
also identified using the look-up table. For example, where 
the first (mantissa) range section is 2-22, the indentified 
second range section end value is 25 (binary 11001) and the 
indentified gradient is 8. 
The first value v' is then converted to a second value u" 

using the following equation: 
u'={(v'-first section end value)*128/gradient 

64+second section end value 

For example, where the mantissa for v' is 4 (binary 100), 
the first (mantissa) section end value is 2 (binary 10), the 
second range section end value is 25 (binary 11001) and the 

26 
gradient is 8, u' is 25.5 (binary 11001.1). As discussed above, 
an intermediate output value u can be derived from the 
second value u' using the following: 

For example, where u' is 25.5 (binary 11001.1), u is 
1.19921875 (binary 1.00110011). 
However, in this embodiment, the fraction part of u can be 

derived directly from u' by shifting the radix or binary point 
of u' 7 places to the left to give an output data value. The 
output data value can then written out to external memory 34 
in a storage format directly from u'. As discussed above, the 
sign bit and Scale bits are also copied across from the 
floating point representation of the input data value. 

10 

15 

Thus, when the input data value is 4.25, the storage format 
for the output data value is: 

Scale Fraction 

1 O O O 1 1 O O 1 1 O O O O O 

25 

Similarly, when the input data value is 1088, the storage 
format for the output data value is: 

Scale Fraction 

1 1 O O 1 1 O O 1 1 O O O O O 

For Some input values it is necessary to interpolate over 
a power of two boundary, i.e. within a range section where 
the exponent for v' increases by 1. This is dealt with in the 
following way. 
The exponent n for the first value v' can be derived 

directly from the 3 least significant bits of the exponent of 
the data input value. For example, where the input data value 
is 4.0625, the 3 least significant bits of the exponent of the 
data input value are 001 (decimal 1), and this gives an 
exponent n for the first value v' of 1 (this is 1 less than the 
value which would normally be derived for the exponent in 
for the first value v' using the method discussed above). 
The mantissa m for the first value v' can be derived by 

multiplying the 6 most significant bits of the mantissa of the 
input data value by 2 and then adding 64 (the maximum 
mantissa value) (an alternative approach would be to add 32 
and then multiply by 2). For example, where the input data 
value is 4.0625, the 6 most significant bits of the mantissa 
are 000001 (decimal 1), and so the mantissam for the first 
value v' is 66. 
The values for the exponent n and mantissam for the first 

value v' can then be used to look-up values in the manner 
discussed above. For example, where the exponent n for the 
first value v' is 1 and the mantissam for the first value v' is 
66, the first section end value is 38, the gradient is 12, and 
the second section end value is 20. The looked-up values can 
then be used to derive the second value u', and then the 
output data value, in the manner discussed above. 
As will be appreciated, the above process is repeated for 

each input data value to which the conversion is to be 
applied. Once the conversion has been applied to the input 
data values to produce output data values, the output data 
values are stored in external memory 34. The output data 
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values may later be used, for example, by the fragment 
shader 26 of the graphics processing pipeline 3 as texture 
data. 
The above describes embodiments in which colour values 

are stored. Embodiments of the technology described herein 5 
in which colour values are retrieved from storage will now 
be described. 

In one embodiment, when input data values which are 
stored in the main memory 34 are read into the texture buffer 
36 by the read in unit 38, an approximation of a retrieval 
function R(u) is used to give output data values for tempo 
rary storage in the texture buffer 36. The retrieval function 
which is approximated in this embodiment is: 

10 

As will be appreciated, R(u) is the inverse of S(v) 
discussed above. Thus, the tables shown in FIGS. 2 and 4 
can also be used to approximate the retrieval function. 
Use of the table in FIG. 2 to approximate the retrieval 

function will now be described. 
A input data value in the main memory 34 is read into the 

read in unit 38. The input data value has the storage format: 

Sign Scale Fraction 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

30 
The read in unit 38 derives the input value u from the 

storage format by assuming that the fraction has a leading 1. 
For example, the input value 1.19921875 would be derived 
from the following storage format: 

Sign Scale Fraction 

O 1 O O O 1 1 O O 1 1 O O O 

40 

The read in unit 38 then derives a first value u' from the 
input value u using the following: 

Sign 

For example, where u is 1.19921875 (binary 1.00110011), 
u' is 153.5 (binary 10011001.1). This can be carried out in 
binary by shifting the radix or binary point 7 places to the 
right. 55 

The first value u' is then used to determine a first range 
section end value. This is achieved by identifying the range 
section in the look-up table within which the first value u" 
lies. For example, where u' is 153.5, the determined first 
range section is 153-158 and the indentified first range 
section end value is 153 (binary 10011001). 
The second range section end value which corresponds to 

the first range section end value is then identified using the 
look-up table. The gradient which corresponds to the pair of 65 
first and second corresponding range sections is also iden 
tified using the look-up table. For example, where the first 

28 
range section is 153-158, the indentified second range sec 
tion end value is 66 (binary 1000010) and the indentified 
gradient is 32. 
The first value u' is then converted to a second value v' 

using the following: 

v'={(u'-first section end value)* gradient 16/128}+ 
second section end value 

For example, where u' is 153.5 (binary 10011001.1), the 
first section end value is 153 (binary 10011001), the second 
range section end value is 66 (binary 1000010) and the 
gradient is 32, v' is 68 (binary 1000100). 
The read in unit 38 derives an output value V from the 

second value v' using the following: 

For example, where v' is 68 (binary 1000100), v is 4.25 
(binary 100.01). This can be carried out in binary by shifting 
the radix or binary point 4 places to the left. 
The output value v is then written to the texture buffer 36 

in as an output data value floating point format. The read in 
unit 38 also copies across the sign bit of the input data value 

to the sign bit of the floating point format of the output data 
value, and copies across the scale bits of the input data value 
to the two most significant bits of the floating point format 
of the output data value. 

In the above example, where v is 4.25 (binary 100.01), the 
sign bit of the input data value is 0 and the scale bits of the 
of the input data value are 10, the floating point represen 
tation for the output data value in binary 16 is: 

Exponent Mantissa 

O O O 1 O O O 1 O O O O O O 

As will be appreciated, the above process is repeated for 
each input data value to which the conversion is to be 
applied. Once the conversion has been applied to the input 
data values to produce output data values, the output data 
values are stored in the texture buffer 36. The output data 
values may then be used, for example, by the fragment 
shader 26 of the graphics processing pipeline 3 as texture 
data. 

In another embodiment, the approximation of the retrieval 
function makes use of the look-up table shown in FIG. 4. 
Use of the table in FIG. 4 to approximate the storage 
function will now be described. 

An input data value in the main memory 34 is read into 
the read in unit 38. As discussed above, the input data value 
has the format: 
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Sign Scale Fraction 

15 14 13 12 11 

An intermediate input value u can be derived from the 
storage format by assuming that the fraction has a leading 1. 
For example, the intermediate input value 1.19921875 
would be derived from the following storage format: 

Sign Scale Fraction 

O 1 O O O 1 1 O O 1 1 O O O 

A first value u' can be derived from the intermediate input 
value u using the following: 

For example, where u is 1.19921875 (binary 1.00110011), 
u' is, u' is 25.5 (binary 11001.1). This can be carried out in 
binary by ignoring the leading 1 and shifting the radix or 
binary point 7 places to the right. 

However, the first value u' can be derived directly from 
the fraction part of the input data value by taking the 6 most 
significant bits of the fraction part of the input data value to 
be the integer part of the first value u' and the remaining bits 
of the fraction part of the input data value to be the fraction 
part of the first value u'. 
The first value u' is then used to determine a first range 

section end value. This is achieved by identifying the range 
section in the look-up table within which the first value u" 
lies. For example, where u' is 25.5 (binary 11001.1), the 
determined first range section is 25-30 and the indentified 
first range section end value is 25 (binary 11001). 
The exponent and mantissa for the second range section 

end value which corresponds to the first range section end 
value are then identified using the look-up table. The gra 
dient which corresponds to the pair of first and second 
corresponding range sections is also identified using the 
look-up table. For example, where the first range section is 
25.5 (binary 11001.1), the indentified exponent for the 
second range section end value is 2, the mantissa for the 
second range section end value is 2 (binary 10), and the 
indentified gradient is 8. 
The first value u' is then converted to a second value v' 

using the following: 
v'={(u'-first section end value)*gradient 64/128}+ 

Second section end value 

For example, where u' is 25.5 (binary 11001.1), the first 
section end value is 25 (binary 11001), the second (mantissa) 
range section end value is 2 (binary 10) and the gradient is 
8, v' is 4 (binary 100). 
An intermediate output value V can be derived from the 

second value v' using the following: 

For example, where the mantissam is 4 (binary 100) and 
the exponent n is 2, v is 4.25 (binary 100.01). However, 
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performing this calculation is not necessary in order to write 
an output data value to the texture buffer 36 in floating point 
format. 

Instead, the read in unit 38 can produce the 3 least 
significant bits of the exponent of the floating point repre 
sentation of the output data value from the exponent n by 
Subtracting 1 from the exponent n. For example, where the 
exponent is 2 (binary 10), the 3 least significant bits of the 
exponent for the floating point representation would be 001 
(i.e. decimal 1). 
The read in unit can also produce a mantissa for the 

floating point representation of the output data value from 
the value v' by deriving a 6 bit binary representation for the 
integer part of v', and then using those 6 bits as the most 
significant 6 bits of the mantissa for the floating point 
representation of the output data value. In the above 
example, where v' is 4, the 6-bit representation would be 
000 100, and so the most significant 6 bits of the mantissa for 
the floating point representation of the output data value 
would be OOO100. 
The most significant fraction bits for v' can also be 

included so as to fill the remaining part of the mantissa for 
the floating point representation of the output data value. In 
this embodiment, this would involve using the 4 most 
significant bits of the fraction part of v as the 4 least 
significant bits of the mantissa for the floating point repre 
sentation of the output data value. In the above example, 
where v' is 4, the 4 most significant bits of the fraction part 
of v are 0000 (i.e. there is no fractional part to v"), and so 
the least significant 4 bits of the mantissa for the floating 
point representation of the output data value would be 0000. 
The read in unit also copies across the sign bit of the 

stored value to the sign bit of the floating point format, and 
copies across the scale bits of the stored value to the two 
most significant bits of the floating point format. 

Thus, in the above example where the mantissa of v is 4 
(giving a floating point mantissa of 0001000000), the scale 
bits of the input data value are 10 and the exponent of v' is 
2 (giving a floating point exponent of 10001), and the sign 
bit of the input data value is 0, the floating point format of 
the output data value in binary 16 is: 

Exponent Mantissa 

O O O 1 O O O 1 O O O O O O 
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As discussed above, for some input values it is necessary 
to interpolate over a power of two boundary, i.e. within a 
range section where the exponent for v' increases by 1. This 
is dealt with in the following way. 
The first value u' is used to look-up an exponent and a 

mantissa for the second section end value, together with a 
gradient, in the manner discussed above. For example, 
where the first value u' is 24.66, the exponent is 1, the 
mantissa for the second section end value is 38, and the 
gradient is 12. These looked-up values are then used to 
derive a mantissa m for the second value v' in the manner 
discussed above. In the present example, the mantissam for 
the second value v' is 66. 

The 6 most significant bits of the mantissa of the output 
data value are then derived from the mantissa m for the 
second value v' by Subtracting 64 (i.e. the maximum man 
tissa value) and then dividing by 2 (an alternative approach 
would be to divide by 2 and then subtract 32). In this 
example, the mantissam for the second value v' is 66 and so 
the 6 most significant bits of the mantissa of the output data 
value are 000001 (decimal 1). 

The 3 least significant bits of the exponent of the data 
output value can be derived directly from the looked-up 
exponent n. For example, where the looked-up exponent is 
decimal 1, the 3 least significant bits of the exponent of the 
data output value are 001 (this is 1 more than the value 
which would normally be derived from the exponent n using 
the method discussed above). 
As will be appreciated, the above process is repeated for 

each input data value to which the conversion is to be 
applied. Once the conversion has been applied to the input 
data values to produce output data values, the output data 
values are stored in the texture buffer 36. The output values 
may then be used, for example, by the fragment shader 26 
of the graphics processing pipeline 3 as texture data. 
As will be appreciated from the above, the technology 

described herein in its embodiments at least can provide a 
system that can approximate a function in an extremely 
efficient manner. 

This is achieved in the embodiments of the technology 
described herein at least by using first and second predeter 
mined ranges of values which are quantised into plural 
corresponding pairs of range sections, a predetermined gra 
dient for each pair of range sections, and predetermined 
section end values for each pair of range sections. 
The foregoing detailed description has been presented for 

the purposes of illustration and description. It is not intended 
to be exhaustive or to limit the invention to the precise form 
disclosed. Many modifications and variations are possible in 
the light of the above teaching. The described embodiments 
were chosen in order to best explain the principles of the 
technology and its practical application, to thereby enable 
others skilled in the art to best utilise the technology in 
various embodiments and with various modifications as are 
Suited to the particular use contemplated. It is intended that 
the scope be defined by the claims appended hereto. 
What is claimed is: 
1. A processor-implemented method of converting an 

input graphics data value to an output graphics data value by 
approximating a function that maps input values to output 
values, the processor comprising processing circuitry 
including a bit shift circuit, a dedicated divide by 3 circuit, 
and a dedicated divide by 5 circuit, the method comprising: 

deriving a first value from the input graphics data value, 
wherein the first value is within a predetermined first 
range of values, the first range of values being quan 
tised into a first set of plural range sections, wherein 
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each range section of the first set of plural range 
sections comprises a first predetermined section end 
value; and 

converting the first value into a second value that is within 
a predetermined second range of values, the second 
range of values being quantised into a second set of 
plural range sections, wherein each range section of the 
second set of plural range sections comprises a second 
predetermined section end value, wherein each range 
section of the second set of plural range sections 
corresponds to a range section of the first set of plural 
range sections such that there are respective pairs of 
corresponding first and second range sections, wherein 
each pair of corresponding first and second range 
sections is associated with a gradient, the gradient for 
each pair of corresponding first and second range 
sections approximating the gradient of the function for 
that pair of corresponding first and second range sec 
tions, wherein the gradients for the pairs of correspond 
ing first and second range sections are gradient values 
selected from the set consisting of: 3*2n; 42n; and 
5*2n; where n is a non-negative integer, wherein the 
step of converting the first value into the second value 
comprises: 

determining by reference to a look-up table that is stored 
in memory or that is accessed using a set of logical 
operations or nested set of comparators a first prede 
termined section end value for a first range section of 
the first set of plural range sections within which the 
first value lies, 

identifying by reference to the look-up table a second 
predetermined section end value for a second range 
section of the second set of plural range sections that 
corresponds to the first range section, 

identifying by reference to the look-up table the gradient 
associated with the pair of corresponding first and 
second range sections, and 

converting the first value into the second value using the 
first section end value, the second section end value and 
the gradient, wherein using the gradient comprises 
using the bit shift circuit when dividing by 2, the 
dedicated divide by 3 circuit when dividing by 3, and 
the dedicated divide by 5 circuit when dividing by 5: 

the method further comprising: 
deriving the output graphics data value from the second 

value; and 
providing a graphics output for display based on the 

output graphics data value. 
2. The processor-implemented method of claim 1, com 

prising: 
reading the input graphics data value from a buffer of a 

graphics processing system, and storing the output 
graphics data value in external memory; or 

reading the input graphics data value from external 
memory, and storing the output graphics data value in 
a buffer of a graphics processing system. 

3. The processor-implemented method of claim 1, 
wherein: 

the input graphics data value is stored in a floating point 
format having a sign bit, a plurality of exponent bits, 
and a plurality of mantissa bits, and deriving the first 
value from the input graphics data value comprises 
reading some but not all of the bits of the mantissa of 
the input graphics data value and some but not all of the 
bits of the exponent of the input graphics data value; or 

the input graphics data value is stored in a format having 
a sign bit, one or more scale bits, and a plurality of 
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fraction bits, and deriving the first value from the input 
graphics data value comprises reading the fraction bits 
of the input graphics data value. 

4. The processor-implemented method of claim 1, 
wherein: 

the output graphics data value is stored in a format having 
a sign bit, one or more scale bits, and a plurality of 
fraction bits, and deriving the output graphics data 
value from the second value comprises deriving the 
fraction bits of the output graphics data value from the 
second value; or 

the output graphics data value is stored in a floating point 
format having a sign bit, a plurality of exponent bits, 
and a plurality of mantissa bits, and deriving the output 
graphics data value from the second value comprises 
deriving some but not all of the exponent bits of the 
output graphics data value from the second value and 
deriving the mantissa bits of the output graphics data 
value from the second value. 

5. The processor-implemented method of claim 1, 
wherein: 

the input graphics data value is stored in a floating point 
format having a sign bit, a plurality of exponent bits, 
and a plurality of mantissa bits, the output graphics data 
value is stored in a format having a sign bit, one or 
more scale bits, and a plurality of fraction bits, and the 
method comprises copying the sign bit of the input 
graphics data value to the sign bit of the output graphics 
data value, and copying some but not all of the bits of 
the exponent of the input graphics data value to the 
Scale bit or bits of the output graphics data value; or 

the input graphics data value is stored in a format having 
a sign bit, one or more scale bits, and a plurality of 
fraction bits, the output graphics data value is stored in 
a floating point format having a sign bit, a plurality of 
exponent bits, and a plurality of mantissa bits, and the 
method comprises copying the sign bit of the input 
graphics data value to the sign bit of the output graphics 
data value, and copying the scale bit orbits of the input 
graphics data value to some but not all of the bits of the 
exponent of the output graphics data value. 

6. The processor-implemented method of claim 1, 
wherein: 

at least one selected from the group consisting of the first 
predetermined section end values of the first set of 
plural range sections; the second predetermined section 
end values of the second set of plural range sections; 
and the gradients for the pairs of corresponding first 
and second range sections; are represented by integer 
values. 

7. The processor-implemented method of claim 1, 
wherein converting the first value into the second value 
comprises interpolating using the first section end value, the 
second section end value and the gradient. 

8. A graphics processing system comprising: 
a data processor comprising processing circuitry includ 

ing a bit shift circuit, a dedicated divide by 3 circuit, 
and a dedicated divide by 5 circuit, the processing 
circuitry being configured to convert an input graphics 
data value to an output graphics data value by approxi 
mating a function that maps input values to output 
values, the processing circuitry being configured to: 

derive a first value from an input graphics data value to be 
converted to an output graphics data value, wherein the 
first value is within a predetermined first range of 
values, the first range of values being quantised into a 
first set of plural range sections, wherein each range 
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section of the first set of plural range sections com 
prises a first predetermined section end value; and 

convert the first value into a second value that is within a 
predetermined second range of values, the second 
range of values being quantised into a second set of 
plural range sections, wherein each range section of the 
second set of plural range sections comprises a second 
predetermined section end value, wherein each range 
section of the second set of plural range sections 
corresponds to a range section of the first set of plural 
range sections such that there are respective pairs of 
corresponding first and second range sections, wherein 
each pair of corresponding first and second range 
sections is associated with a gradient, the gradient for 
each pair of corresponding first and second range 
sections approximating the gradient of the function for 
that pair of corresponding first and second range sec 
tions, wherein the gradients for the pairs of correspond 
ing first and second range sections are gradient values 
selected from the set consisting of: 3*2n; 42n; and 
52n; where n is a non-negative integer, wherein to 
convert the first value into the second value the pro 
cessing circuitry: 

determines by reference to a look-up table that is stored in 
memory or that is accessed using a set of logical 
operations or nested set of comparators a first prede 
termined section end value for a first range section of 
the first set of plural range sections within which the 
first value lies, 

identifies by reference to the look-up table a second 
predetermined section end value for a second range 
section of the second set of plural range sections that 
corresponds to the first range section, 

identifies by reference to the look-up table the gradient 
associated with the pair of corresponding first and 
second range sections, and 

converts the first value into the second value using the first 
section end value, the second section end value and the 
gradient, wherein using the gradient comprises the 
processing circuitry using the bit shift circuit when 
dividing by 2, the dedicated divide by 3 circuit when 
dividing by 3, and the dedicated divide by 5 circuit 
when dividing by 5: 

the processing circuitry being further configured to: 
derive the output graphics data value from the second 

value; and 
provide a graphics output for display based on the output 

graphics data value. 
9. The graphics processing system of claim 8, wherein the 

50 data processor is configured to: 
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read the input graphics data value from a buffer of the 
graphics processing system, and store the output graph 
ics data value in external memory; or 

read the input graphics data value from external memory, 
and store the output graphics data value in a buffer of 
the graphics processing system. 

10. The graphics processing system of claim 8, wherein: 
the input graphics data value is stored in a floating point 

format having a sign bit, a plurality of exponent bits, 
and a plurality of mantissa bits, and to derive the first 
value from the input graphics data value the processing 
circuitry reads some but not all of the bits of the 
mantissa of the input graphics data value and some but 
not all of the bits of the exponent of the input graphics 
data value; or 

the input graphics data value is stored in a format having 
a sign bit, one or more scale bits, and a plurality of 
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fraction bits, and to derive the first value from the input 
graphics data value the processing circuitry reads the 
fraction bits of the input graphics data value. 

11. The graphics processing system of claim 8, wherein: 
the output graphics data value is stored in a format having 5 

a sign bit, one or more scale bits, and a plurality of 
fraction bits, and to derive the output graphics data 
Value from the second value the processing circuitry 
derives the fraction bits of the output graphics data 
value from the second value; or 10 

the output graphics data value is stored in a floating point 
format having a sign bit, a plurality of exponent bits, 
and a plurality of mantissa bits, and to derive the output 
graphics data value from the second value the process 
ing circuitry derives some but not all of the exponent 15 
bits of the output graphics data value from the second 
value and derives the mantissa bits of the output 
graphics data value from the second value. 

12. The graphics processing system of claim 8, wherein: 
the input graphics data value is stored in a floating point 20 

format having a sign bit, a plurality of exponent bits, 
and a plurality of mantissa bits, the output graphics data 
Value is stored in a format having a sign bit, one or 
more scale bits, and a plurality of fraction bits, and the 
processing circuitry is configured to copy the sign bit of 25 
the input graphics data value to the sign bit of the 
output graphics data value, and copy some but not all 
of the bits of the exponent of the input graphics data 
value to the scale bit or bits of the output graphics data 
value; or 30 

the input graphics data value is stored in a format having 
a sign bit, one or more scale bits, and a plurality of 
fraction bits, the output graphics data value is stored in 
a floating point format having a sign bit, a plurality of 
exponent bits, and a plurality of mantissa bits, and the 35 
processing circuitry is configured to copy the sign bit of 
the input graphics data value to the sign bit of the 
output graphics data value, and copy the scale bit orbits 
of the input graphics data value to some but not all of 
the bits of the exponent of the output graphics data 40 
value. 

13. The graphics processing system of claim 8, wherein: 
at least one selected from the group consisting of the first 

predetermined section end values of the first set of 
plural range sections; the second predetermined section 45 
end values of the second set of plural range sections; 
and the gradients for the pairs of corresponding first 
and second range sections; are represented by integer 
values. 

14. The graphics processing system of claim 8, wherein to 50 
convert the first value into the second value the processing 
circuitry interpolates using the first section end value, the 
Second section end value and the gradient. 

15. A computer readable non-transitory storage medium 
storing computer software code which when executing on a 55 
processor performs a method of converting an input graphics 
data value to an output graphics data value by approximating 

36 
a function that maps input values to output values, the 
processor comprising processing circuitry including a bit 
shift circuit, a dedicated divide by 3 circuit, and a dedicated 
divide by 5 circuit, the method comprising: 

deriving a first value from the input graphics data value, 
wherein the first value is within a predetermined first 
range of values, the first range of values being quan 
tised into a first set of plural range sections, wherein 
each range section of the first set of plural range 
Sections comprises a first predetermined section end 
value; and 

converting the first value into a second value that is within 
a predetermined second range of values, the second 
range of values being quantised into a second set of 
plural range sections, wherein each range section of the 
second set of plural range sections comprises a second 
predetermined section end value, wherein each range 
section of the second set of plural range sections 
corresponds to a range section of the first set of plural 
range sections such that there are respective pairs of 
corresponding first and second range sections, wherein 
each pair of corresponding first and second range 
sections is associated with a gradient, the gradient for 
each pair of corresponding first and second range 
Sections approximating the gradient of the function for 
that pair of corresponding first and second range sec 
tions, wherein the gradients for the pairs of correspond 
ing first and second range sections are gradient values 
selected from the set consisting of: 3*2n; 4*2n; and 
5*2n; where n is a non-negative integer, wherein the 
step of converting the first value into the second value 
comprises: 

determining by reference to a look-up table that is stored 
in memory or that is accessed using a set of logical 
operations or nested set of comparators a first prede 
termined section end value for a first range section of 
the first set of plural range sections within which the 
first value lies, 

identifying by reference to the look-up table a second 
predetermined section end value for a second range 
section of the second set of plural range sections that 
corresponds to the first range section, 

identifying by reference to the look-up table the gradient 
associated with the pair of corresponding first and 
second range sections, and 

converting the first value into the second value using the 
first section end value, the second section end value and 
the gradient, wherein using the gradient comprises 
using the bit shift circuit when dividing by 2, the 
dedicated divide by 3 circuit when dividing by 3, and 
the dedicated divide by 5 circuit when dividing by 5: 

the method further comprising: 
deriving the output graphics data value from the second 

value; and 
providing a graphics output for display based on the 

output graphics data value. 


