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130 18 10
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exponent mantissa after
(n) (m)

0 0 0 8
2 0 8 10
6 0 28 12
10 0 52 16
16 1 18 10
20 1 38 12
25 2 2 8
30 2 22 10
36 2 52 12
42 3 12 8
46 3 28 10
52 3 58 12
59 4 18 8
66 4 46 10
70 5 1 6
79 5 28 8
84 5 48 10
92 6 12 6
100 6 36 8
108 7 2 5
112 7 12 6
124 7 48 8
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METHODS OF AND APPARATUS FOR
APPROXIMATING A FUNCTION

BACKGROUND

The technology described herein relates to a method of
and apparatus for approximating a function that maps input
values to output values, particularly in the context of com-
puter graphics processing.

As is known in the art, graphics processing is normally
carried out by first dividing the output to be generated, such
as a frame to be displayed, into a number of similar basic
components (so-called “primitives™) to allow the graphics
processing operations to be more easily carried out. These
“primitives” are usually in the form of simple polygons,
such as triangles.

The graphics primitives are usually generated by the
applications program interface for the graphics processing
system, using the graphics drawing instructions (requests)
received from the application (e.g. game) that requires the
graphics output.

Each primitive is at this stage usually defined by and
represented as a set of vertices. Each vertex for a primitive
has associated with it a set of data (such as position, colour,
texture and other attributes data) representing the vertex.
This data is then used, e.g., when rasterising and rendering
the vertex (the primitive(s) to which the vertex relates) in
order to generate the desired output of the graphics process-
ing system.

Once primitives and their vertices have been generated
and defined, they can be processed by the graphics process-
ing system, in order, e.g., to display the frame.

This process basically involves determining which sam-
pling points of an array of sampling points covering the
output area to be processed are covered by a primitive, and
then determining the appearance each sampling point should
have (e.g. in terms of its colour, etc.) to represent the
primitive at that sampling point. These processes are com-
monly referred to as rasterising and rendering, respectively.

(In graphics literature, the term “rasterisation” is some-
times used to mean both primitive conversion to sample
positions and rendering. However, herein “rasterisation”
will be used to refer to converting primitive data to sampling
point addresses only.)

The rasterising process determines the sample positions
that should be used for a primitive (i.e. the (X, y) positions
of the sampling points to be used to represent the primitive
in the output, e.g. scene to be displayed). This is typically
done using the positions of the vertices of a primitive.

The rendering process then derives the data, such as red,
green and blue (RGB) colour values and an “Alpha” (trans-
parency) value, necessary to represent the primitive at the
sampling points (i.e. “shades” each sampling point). This
can involve, as is known in the art, applying textures,
blending sampling point data values, etc.

The data which is used to represent the primitive at the
sampling point may have one or more functions applied to
it, e.g. so as to apply gamma correction and/or to store the
data in a different (e.g. more efficient) format. However,
applying functions to inputted data can sometimes be com-
putationally expensive, particularly where division is to be
carried out in order to implement the function. For this
reason, it is known to apply approximations of functions to
inputted data which are computationally more efficient than
applying the true functions. However, an approximation of
a function can introduce errors between the data outputted
using the approximated function and data which would have
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been outputted had the true function been applied. Further-
more, further errors can be introduced if the inverse of the
approximation of the function is then later applied to the
outputted data so as to recover the inputted data. These
errors can be compounded if the approximation of the
function and then its inverse are repeatedly applied to the
data.

The Applicants, therefore, believe that there remains
scope for improved techniques for approximating functions
in, inter alia, the context of computer graphics processing.

BRIEF DESCRIPTION OF THE DRAWINGS

A number of embodiments of the technology described
herein will now be described by way of example only and
with reference to the accompanying drawings, in which:

FIG. 1 shows schematically a graphics processing pipe-
line that can be operated in the manner of the technology
described herein;

FIG. 2 shows a look-up table according to one embodi-
ment of the technology described herein;

FIG. 3 shows a true function and an approximation of that
function made in the manner of the technology described
herein; and

FIG. 4 shows a look-up table according to another
embodiment of the technology described herein.

Like reference numerals are used for like components
where appropriate in the drawings.

DETAILED DESCRIPTION

An embodiment of the technology described herein com-
prises a method of converting an input data value to an
output data value by approximating a function that maps
input values to output values, the method comprising:
deriving a first value from the input data value, wherein
the first value is within a predetermined first range of
values, the first range of values being quantised into a
first set of plural range sections, wherein each range
section of the first set of plural range sections com-
prises a first predetermined section end value;

converting the first value into a second value that is within
a predetermined second range of values, the second
range of values being quantised into a second set of
plural range sections, wherein each range section of the
second set of plural range sections comprises a second
predetermined section end value, wherein each range
section of the second set of plural range sections
corresponds to a range section of the first set of plural
range sections such that there are respective pairs of
corresponding first and second range sections, wherein
each pair of corresponding first and second range
sections is associated with a gradient, the gradient for
each pair of corresponding first and second range
sections approximating the gradient of the function for
that pair of corresponding first and second range sec-
tions, wherein the step of converting the first value into
the second value comprises:

determining a first predetermined section end value for a

first range section of the first set of plural range sections
within which the first value lies,

identifying a second predetermined section end value for

a second range section of the second set of plural range
sections that corresponds to the first range section,
identifying the gradient associated with the pair of cor-

responding first and second range sections, and
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converting the first value into the second value using the
first section end value, the second section end value and
the gradient; and

deriving the output data value from the second value.

Another embodiment of the technology described herein
comprises a processing system comprising:

a data processor comprising processing circuitry, the
processing circuitry being configured to perform a
method of converting an input data value to an output
data value by approximating a function that maps input
values to output values, the method comprising:

deriving a first value from an input data value to be
converted to an output data value, wherein the first
value is within a predetermined first range of values,
the first range of values being quantised into a first set
of plural range sections, wherein each range section of
the first set of plural range sections comprises a first
predetermined section end value;

converting the first value into a second value that is within
a predetermined second range of values, the second
range of values being quantised into a second set of
plural range sections, wherein each range section of the
second set of plural range sections comprises a second
predetermined section end value, wherein each range
section of the second set of plural range sections
corresponds to a range section of the first set of plural
range sections such that there are respective pairs of
corresponding first and second range sections, wherein
each pair of corresponding first and second range
sections is associated with a gradient, the gradient for
each pair of corresponding first and second range
sections approximating the gradient of the function for
that pair of corresponding first and second range sec-
tions, wherein the step of converting the first value into
the second value comprises:

determining a first predetermined section end value for a
first range section of the first set of plural range sections
within which the first value lies,

identifying a second predetermined section end value for
a second range section of the second set of plural range
sections that corresponds to the first range section,

identifying the gradient associated with the pair of cor-
responding first and second range sections, and

converting the first value into the second value using the
first section end value, the second section end value and
the gradient; and

deriving the output data value from the second value.

The technology described herein relates to approximating
a function that maps input values to output values. In the
technology described herein, the function is approximated
using first and second predetermined ranges of values which
are quantised into plural corresponding pairs of range sec-
tions, a predetermined gradient for each pair of range
sections, and predetermined section end values for each pair
of range sections. Thus, predetermined sets of values (e.g.
section end values and gradients) are provided for approxi-
mating a function, and a computer such as a data processor
can accordingly be optimised to apply the approximation of
the function using the predetermined sets of values. The
Applicants have therefore identified a way in which an
approximation of a function can be optimized, e.g. in terms
of computational efficiency and/or error, when approximat-
ing a function.

The method of the technology described herein may be
performed as part of any suitable computer implemented
process in which a function is to be approximated. However,
in an embodiment, the method of the technology described
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herein is performed as part of a graphics processing opera-
tion and/or is performed by a (e.g. tile-based) graphics
processing system.

Accordingly, the input data value and/or output data value
may be generated as a result of, and/or may later be used in,
a graphics processing operation (e.g. a rendering or shading
operation) and/or may be generated by, and/or later used by,
a (e.g. tile-based) graphics processing system. In particular,
the input data value and/or output data value in an embodi-
ment represents a colour value generated by, and/or later to
be used in, a graphics processing operation (e.g. a rendering
or shading operation) and/or represents a colour value
generated by, and/or later used by, a (e.g. tile-based) graph-
ics processing system. The data processor referred to above
may therefore operate as a read in unit or write out unit of
a (e.g. tile based) graphics processing system, and the input
data value and/or output data value may be stored in a buffer
(such as a tile butfer or a texture buffer) or external memory
of or for the (e.g. tile based) graphics processing system.

Thus, another embodiment of the technology described
herein comprises a method of operating a graphics process-
ing system that comprises:

a graphics processing pipeline comprising:

a plurality of processing stages, including at least a
rasteriser that rasterises input primitives to generate
graphics fragments to be processed, each graphics
fragment having one or more sampling points associ-
ated with it, and a renderer that processes fragments
generated by the rasteriser to generate rendered frag-
ment data;

a buffer configured to store rendered fragment data locally
to the graphics processing pipeline prior to that data
being written out to an external memory, the buffer
comprising an allocated amount of memory for use as
the buffer; and

a write out stage configured to write data stored in the
buffer to an external memory;

the method comprising the write out stage, when writing
data from the buffer to the external memory, converting
input data values stored in the buffer into output data
values to be stored in the external memory by approxi-
mating a function that maps input values to output
values, the method of converting the input data values
to the output data values comprising for each input data
value in the buffer to be converted to an output data
value:

deriving a first value from the input data value in the
buffer, wherein the first value is within a predetermined
first range of values, the first range of values being
quantised into a first set of plural range sections,
wherein each range section of the first set of plural
range sections comprises a first predetermined section
end value;

converting the first value into a second value that is within
a predetermined second range of values, the second
range of values being quantised into a second set of
plural range sections, wherein each range section of the
second set of plural range sections comprises a second
predetermined section end value, wherein each range
section of the second set of plural range sections
corresponds to a range section of the first set of plural
range sections such that there are respective pairs of
corresponding first and second range sections, wherein
each pair of corresponding first and second range
sections is associated with a gradient, the gradient for
each pair of corresponding first and second range
sections approximating the gradient of the function for
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that pair of corresponding first and second range sec-
tions, wherein the step of converting the first value into
the second value comprises:

determining a first predetermined section end value for a
first range section of the first set of plural range sections
within which the first value lies,

identifying a second predetermined section end value for
a second range section of the second set of plural range
sections that corresponds to the first range section,

identifying the gradient associated with the pair of cor-
responding first and second range sections, and

converting the first value into the second value using the
first section end value, the second section end value and
the gradient; and

deriving the output data value from the second value; and

writing the output data value to the external memory.

Another embodiment of the technology described herein

comprises a graphics processing system comprising:

a graphics processing pipeline comprising:

a plurality of processing stages, including at least a
rasteriser that rasterises input primitives to generate
graphics fragments to be processed, each graphics
fragment having one or more sampling points associ-
ated with it, and a renderer that processes fragments
generated by the rasteriser to generate rendered frag-
ment data;

a buffer configured to store rendered fragment data locally
to the graphics processing pipeline prior to that data
being written out to an external memory, the buffer
comprising an allocated amount of memory for use as
the buffer;

a write out stage configured to write data stored in the
buffer to an external memory;

wherein the write out stage is configured to, when writing
data from the buffer to the external memory, convert
input data values stored in the buffer into output data
values to be stored in the external memory by approxi-
mating a function that maps input values to output
values, the converting the input data values to the
output data values comprising for each input value data
in the buffer to be converted to an output data value:

deriving a first value from the input data value in the
buffer, wherein the first value is within a predetermined
first range of values, the first range of values being
quantised into a first set of plural range sections,
wherein each range section of the first set of plural
range sections comprises a first predetermined section
end value;

converting the first value into a second value that is within
a predetermined second range of values, the second
range of values being quantised into a second set of
plural range sections, wherein each range section of the
second set of plural range sections comprises a second
predetermined section end value, wherein each range
section of the second set of plural range sections
corresponds to a range section of the first set of plural
range sections such that there are respective pairs of
corresponding first and second range sections, wherein
each pair of corresponding first and second range
sections is associated with a gradient, the gradient for
each pair of corresponding first and second range
sections approximating the gradient of the function for
that pair of corresponding first and second range sec-
tions, wherein the step of converting the first value into
the second value comprises:
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6

determining a first predetermined section end value for a
first range section of the first set of plural range sections
within which the first value lies,

identifying a second predetermined section end value for
a second range section of the second set of plural range
sections that corresponds to the first range section,

identifying the gradient associated with the pair of cor-
responding first and second range sections, and

converting the first value into the second value using the
first section end value, the second section end value and
the gradient; and

deriving the output data value from the second value; and

writing the output data value to the external memory.

In an embodiment, the graphics processing system is a
tile-based graphics processing system and/or the buffer is a
tile buffer.

Another embodiment of the technology described herein
comprises a method of operating a graphics processing
system that comprises:

a graphics processing pipeline comprising:

a plurality of processing stages, including at least a
rasteriser that rasterises input primitives to generate
graphics fragments to be processed, each graphics
fragment having one or more sampling points associ-
ated with it, and a renderer that processes fragments
generated by the rasteriser to generate rendered frag-
ment data;

a buffer configured to store data locally to the graphics
processing pipeline prior to that data being used by the
graphics processing pipeline; and

a read in stage configured to read data into the buffer from
an external memory;

the method comprising the read in stage, when reading
data from the external memory to the buffer, converting
input data values stored in the external memory into
output data values to be stored in the buffer by approxi-
mating a function that maps input values to output
values, the method of converting the input data values
to the output data values comprising for each input data
value in the external memory to be converted to an
output data value:

deriving a first value from the input data value in the
external memory, wherein the first value is within a
predetermined first range of values, the first range of
values being quantised into a first set of plural range
sections, wherein each range section of the first set of
plural range sections comprises a first predetermined
section end value;

converting the first value into a second value that is within
a predetermined second range of values, the second
range of values being quantised into a second set of
plural range sections, wherein each range section of the
second set of plural range sections comprises a second
predetermined section end value, wherein each range
section of the second set of plural range sections
corresponds to a range section of the first set of plural
range sections such that there are respective pairs of
corresponding first and second range sections, wherein
each pair of corresponding first and second range
sections is associated with a gradient, the gradient for
each pair of corresponding first and second range
sections approximating the gradient of the function for
that pair of corresponding first and second range sec-
tions, wherein the step of converting the first value into
the second value comprises:
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determining a first predetermined section end value for a
first range section of the first set of plural range sections
within which the first value lies,

identifying a second predetermined section end value for
a second range section of the second set of plural range
sections that corresponds to the first range section,

identifying the gradient associated with the pair of cor-
responding first and second range sections, and

converting the first value into the second value using the
first section end value, the second section end value and
the gradient; and

deriving the output data value from the second value; and

writing the output data value to the buffer.

Another embodiment of the technology described herein

comprises a graphics processing system comprising:

a graphics processing pipeline comprising:

a plurality of processing stages, including at least a
rasteriser that rasterises input primitives to generate
graphics fragments to be processed, each graphics
fragment having one or more sampling points associ-
ated with it, and a renderer that processes fragments
generated by the rasteriser to generate rendered frag-
ment data;

a buffer configured to store data locally to the graphics
processing pipeline prior to that data being used by the
graphics processing pipeline; and

a read in stage configured to read data into the buffer from
an external memory;

wherein the read in stage is configured to, when reading
data from the external memory to the buffer, convert
input data values stored in the external memory into
output data values to be stored in the buffer by approxi-
mating a function that maps input values to output
values, the method of converting the input data values
to the output data values comprising for each input data
value in the external memory to be converted to an
output data value:

deriving a first value from the input data value in the
external memory, wherein the first value is within a
predetermined first range of values, the first range of
values being quantised into a first set of plural range
sections, wherein each range section of the first set of
plural range sections comprises a first predetermined
section end value;

converting the first value into a second value that is within
a predetermined second range of values, the second
range of values being quantised into a second set of
plural range sections, wherein each range section of the
second set of plural range sections comprises a second
predetermined section end value, wherein each range
section of the second set of plural range sections
corresponds to a range section of the first set of plural
range sections such that there are respective pairs of
corresponding first and second range sections, wherein
each pair of corresponding first and second range
sections is associated with a gradient, the gradient for
each pair of corresponding first and second range
sections approximating the gradient of the function for
that pair of corresponding first and second range sec-
tions, wherein the step of converting the first value into
the second value comprises:

determining a first predetermined section end value for a
first range section of the first set of plural range sections
within which the first value lies,

identifying a second predetermined section end value for
a second range section of the second set of plural range
sections that corresponds to the first range section,

20

25

30

35

40

45

50

55

60

65

8

identifying the gradient associated with the pair of cor-
responding first and second range sections, and

converting the first value into the second value using the
first section end value, the second section end value and
the gradient; and

deriving the output data value from the second value; and

writing the output data value to the buffer.

In an embodiment, the graphics processing system is a
tile-based graphics processing system and/or the buffer is a
texture buffer.

The technology described herein can be used for any
suitable and desired form of data, e.g. input data values and
output data values. In an embodiment it is used for convert-
ing data values in a floating point format into data values a
non-floating point format (or vice-versa). In this case the
input data values will be in floating point format, and the
output data values will be in an alternative format (or
vice-versa). This may be particularly useful for graphics data
that is typically processed in floating point format, such as
high dynamic range colour data, but which it may be desired
to process or store in non-floating point format.

The floating point format may be binaryl6, binary32,
binary64, etc. As is known in the art, for example, the
binary16 format comprises 1 sign bit, 5 exponent bits, and
10 mantissa bits, with the mantissa having an implicit
leading 1. The base for the exponent in binary16 format is
2, and the exponent value is offset by 15.

In the technology described herein, the function that is
being approximated maps input values to output values. The
input values and/or output values that are mapped using the
function may be the input data values and/or output data
values referred to above, which are in an embodiment stored
in a buffer and/or in external memory. However, in an
embodiment, the input values and/or output values are
intermediate input values and/or intermediate output values
derived or derivable from the, e.g. stored, input data values
and/or output data values.

Whatever the original format of the input data values, in
embodiments, the section end values for the first range
sections in which the first value may lie are each represented
by one or more integers. The section end values are in an
embodiment represented by a given (and in an embodiment
the same) number of bits for each section end value.

Similarly, in embodiments, the section end values for the
corresponding second range sections are each represented by
one or more integers. Again, the section end values are in an
embodiment represented by a given (and in an embodiment
the same) number of bits for each section end value.

Constraining the section end values to be integers (e.g.
having a limited number of bits) in this way reduces the
number of bits needed to process (e.g. store, perform inter-
polations using, etc.) the section end values.

Similarly, in embodiments, the corresponding gradients
for pairs of first and second range sections are each repre-
sented by one or more integers. The gradients are again in an
embodiment represented by a given (and in an embodiment
the same) number of bits for each gradient. Again, con-
straining the gradients to be integers (e.g. having a limited
number of bits) reduces the number of bits needed to process
(e.g. store, perform interpolations using, etc.) the gradients.

In an embodiment, the gradient values are all take from
(are constrained to be from) a predetermined set of permitted
or allowed gradient values. In an embodiment, the gradients
are selected from the set {3, 4, 5}*2"n, where n is a positive
integer. These embodiments are particularly advantageous in
that division by 2, 3 and 5 and their multiples can be made
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relatively computationally less expensive, for example,
using a bit shift for division by 2 and dedicated divide by 3
and divide by 5 circuits.

In an embodiment, each input value is in a first range, in
an embodiment 1.0-256.0. Thus, in embodiments in which
the input value is the input data value, each input data value
is in an embodiment in the range 1.0-256.0. Similarly, in
embodiments in which the input value is an intermediate
input value that is derived or derivable from the input data
value, the intermediate input value is in an embodiment in
the range 1.0-256.0.

In an embodiment, as discussed above, the input data
value is in floating point format. In these embodiments, the
input value is in an embodiment an intermediate input value
derived or derivable from the input data value. In these
embodiments, one way to derive the intermediate input
value is to consider certain bits of the floating point repre-
sentation and/or ignore certain other bits of the floating point
representation. For example, the intermediate input value
may be derived by considering a number of the least
significant bits of the exponent (e.g. the 3 least significant
bits of the exponent) of the floating point representation
and/or ignoring a number of the most significant bits of the
exponent (e.g. the 2 most significant bits of the exponent
(where the data input value is in binaryl6 format)) of the
floating point representation. As will be appreciated, con-
sidering only the 3 least significant bits of the exponent
means that there are only 8 (i.e. 2°) possible different values
for the exponent. Where the base for the exponent is 2 and
there is a implicit leading 1 for the mantissa, this means that
the range of intermediate input values derivable from the
input data values is limited to the range 1 to 256 (i.e. 1x2°
to 1x2%).

The first value may be derived from the input data value
as desired. In some embodiments, the first value is the input
data value. In these embodiments, deriving the first value
from the input data value simply comprises reading the input
value for use as the first value. However, in embodiments,
the input data value is processed so as to derive the first
value. In some embodiments, this may be achieved by first
deriving the intermediate input value from the input data
value, and then deriving the first value from the intermediate
input value. In other embodiments, this may be achieved by
deriving the first value without deriving the intermediate
input value and/or directly from the input data value.

In embodiments, the input value (i.e. either the data input
value or intermediate input value) is processed so as to
derive the first value by offsetting and/or scaling the input
value to give the first value.

As discussed above, in an embodiment, the input value is
in a first range, in an embodiment 1.0-256.0. In an embodi-
ment, the first value is in a second range (different to the first
range), in an embodiment 16-4096. In an embodiment, the
input value (v) may be scaled by 16 to give a first value (v"),
in an embodiment such that:

v'=vx16

In these embodiments, the section end values for the first
range sections in which the first value (v') may lie are then
integers represented by 12 bits.

In embodiments in which the input values are intermedi-
ate input values that are derived or derivable from a floating
point format, the floating point representation may be pro-
cessed so as to (e.g. directly) derive the first value by reading
particular bits of the floating point representation (e.g. so as
to implicitly cause an offset and/or scaling). In these
embodiments, the intermediate input value may not actually
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be derived from the floating point format, although the
intermediate input values are in an embodiment still deriv-
able from a floating point format.

In an embodiment, a selected number (e.g. some (but not
all)) of the bits of the floating point representation are read
and used to derive the first value. These embodiments are
particularly advantageous in that the first value can be (e.g.
directly) derived by reading (some or all of) the bits of the
floating point format.

In an embodiment, a selected number of the least signifi-
cant bits of the exponent of the floating point representation
(e.g. the least significant 3 bits of the exponent) and a
selected number of the most significant bits of the mantissa
of the floating point representation (e.g. the most significant
6 bits of the mantissa) are read and used to derive the first
value.

In these embodiments, the first value may comprise an
exponent part (n) and a mantissa part (m), in an embodiment
such that the intermediate input value v would be given by:

v=[1+m/64]2"

Where the 3 least significant bits of the exponent of the
floating point representation are used, the exponent part of
the first value is in an embodiment in the range 0-7. Where
the 6 most significant bits of the mantissa of the floating
point representation are used the mantissa part of the first
value is in an embodiment in the range 0-63.

Similarly, in an embodiment, the section end values for
the first range sections in which the first value (v') may lie
are represented by an exponent (n) and mantissa (m), in an
embodiment such that:

v=[1+m/64]2"

In these embodiments, the section end values for the first
range sections in which the first value (v') may lie are in an
embodiment represented by two integers, one integer (e.g. of
3 bits) to represent the exponent (n) and one integer (e.g. of
6 bits) to represent the mantissa (m) (i.e. 9 bits in total in this
example). This allows relatively fewer bits to be used to
process (e.g. store, perform interpolations using, etc.) the
section end values for the first range sections.

In an embodiment in which the section end values for the
first range sections are represented by an exponent and
mantissa, the gradients are (only) selected from a predeter-
mined set of gradients, in an embodiment the set {5, 6, 8, 10,
12, 16}, and (the same) gradient values are reused for
different exponent values. Thus, in an embodiment, the
gradient of a function over a large dynamic range can be
represented by an integer that is represented by 3 bits. Thus,
fewer bits are required to process (e.g. store, perform
interpolations using, etc.) the gradients in these embodi-
ments when compared to embodiments in which gradients
are not reused for different exponents.

The output data value, intermediate output value, and/or
second value may similarly have any desired and suitable
format.

In some embodiments, the output data value is the second
value. In these embodiments, deriving the output data value
from the second value comprises reading the second value
for use as the output data value. However, in embodiments,
the second value is processed so as to derive the output data
value. In some embodiments, this may be achieved by first
deriving the intermediate output value from the second
value, and then deriving the output data value from the
intermediate output value. In other embodiments, this may
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be achieved by deriving the output data value without
deriving the intermediate output value and/or directly from
the second value.

In embodiments, the second value is processed so as to
derive the output value (i.e. either the intermediate output
value or output data value) by offsetting and/or scaling the
second value to give the output value.

In an embodiment, the second value is in a third range, in
an embodiment 128-256, and the output value is in a fourth
range (different to the third range), in an embodiment
1.0-2.0. Thus, in embodiments in which the output value is
the output data value, each output data value is in an
embodiment in the range 1.0-2.0. Similarly, in embodiments
in which the output value is an intermediate output value that
is derivable from the output data value, the intermediate
output value is in an embodiment in the range 1.0-2.0.

In an embodiment, the second value (u') may be scaled by
128 to give the output value (u), in an embodiment such that:

u=u"/128

In these embodiments, the section end values for the
second range sections are then integers represented by 8 bits.
In another embodiment, the second value is in the range
0-128 and the output value is in the range 1.0-2.0. In this
embodiment, the second value (u') may be scaled by 128 and
offset by 1 to give the output value (u) using the equation:

u=(u/128)+1

In some of these embodiments, the section end values for
the second range sections are then integers represented by 7
bits. Thus, fewer bits are required to process (e.g. store,
perform interpolations using, etc.) the section end values for
the second range sections in this embodiment when com-
pared to the embodiment in which no offsetting occurs.

As discussed above, in an embodiment, the output data
value is in the range 1.0-2.0. This output data value is in an
embodiment stored, e.g. in external memory, in a storage
format. The storage format can take any desired and suitable
form. However, in an embodiment, the storage format is
considered to have an implied 1 and so only the fraction part
of the output data value is stored. In an embodiment, 13 bits
of the fraction part (e.g. the 13 most significant bits of the
fraction part) are stored.

In an embodiment, the storage format has one or more
sign bits (e.g. the sign bit of the floating point representation
of the input data value), one or more scale bits (e.g. the 2
most significant bits of the exponent of the floating point
representation of the input data value (in an embodiment the
bits which were not considered when deriving the first
value)), and one or more fraction bits (e.g. 13 bits of the
fraction part of the output data value). The sign bits and scale
bits can be copied across from the floating point represen-
tation of the input data value to the output data value format.

In some embodiments, and depending on the particular
function being approximated, the input data value, interme-
diate input value, first value, first range of values, section
end values for the first range sections, etc. correspondingly
and/or respectively have the properties described herein of
the output data value, intermediate output value, second
value, second range of values, section end values for the
second range sections, etc. (and vice versa).

In an embodiment, the sections within the first and/or
second set of plural range sections are contiguous. In other
words, the upper section end value of a given range section
is the same as the lower section end value of the next higher
range section, and so on. Similarly, the lower section end
value of a given range section is the same as the upper
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section end value of next lower range section, and so on.
This can allow, for example, for the function to be suitably
approximated for all values across a given range of input
values and their corresponding output values.

The first predetermined section end value which is deter-
mined for the first range section of the first set of plural range
sections within which the first value lies can be determined
in any desired and suitable way.

However, in an embodiment, the first predetermined sec-
tion end value is determined by comparison of the first value
with one or more first predetermined section end values of
a set of first predetermined section end values which respec-
tively correspond to each of the sections of the first set of
plural range sections. In an embodiment, the set of first
predetermined section end values are stored in a look-up
table. The look-up table may be stored in memory and/or
may be accessed using a set of logical operations and/or
nested set of comparators.

The look-up table in an embodiment associates each first
predetermined section end value of the set of first predeter-
mined section end values with corresponding second pre-
determined section end values of a set of second predeter-
mined section end values, with each second predetermined
section end values corresponding respectively to the sections
of the second set of plural range sections. In these embodi-
ments, identifying a second predetermined section end value
for the second range section that corresponds to the first
range section in an embodiment comprises using the look-up
table.

The look-up table in an embodiment also associates each
first predetermined section end value of the set of first
predetermined section end values and/or each second pre-
determined section end value of the set of second predeter-
mined section end values with a corresponding gradient. In
these embodiments, identifying the gradient associated with
the pair of corresponding first and second range sections in
an embodiment comprises using the look-up table.

In embodiments in which the first section end values are
(each) represented by a mantissa and an exponent, both the
mantissa and the exponent may be stored in the look-up table
and may be used to look-up the corresponding second
section end value and/or gradient. This allows the same
exponent but different mantissas to be used to look up
different second section end value and/or gradients, and/or
allows the same mantissa but different exponents to be used
to look up different second section end value and/or gradi-
ents. This can, for example, allow reuse of section end
values and/or gradients and/or reduce the range of section
end values and/or gradients that need to be stored, thereby
reducing the number of bits needed to store section end
values and/or gradients.

In the technology described herein, once the first and
second predetermined end values and the gradient have been
identified, they are then used to generate the second value.
This can be done in any desired and suitable way.

In some embodiments, the gradient is defined as being the
change in output value for a given change in input value
(output/input gradient). In other embodiments, the gradient
may be defined as being the change in input value for a given
change in output value (input/output gradient).

Where the gradient is defined as the change in output
value for a given change in input value (i.e. is an output/
input gradient), the second value may be generated by a
calculation involving taking the difference between a value
based on first value and a value based on first section end
value, multiplying by a value based on the gradient, and
adding to (if lower section end values are used) or subtract-
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ing from (if upper section end values are used) a value based
on the second section end value.

Where the first value is a scaled version of the input value
and/or the output value is a scaled version of the second
value, then the calculation may involve suitable multiplica-
tions and/or divisions to take account of the scaling.

For example, where the input value (u) is scaled by 128
to give the first value (u') and the second value (v') is scaled
by 16 to give the output value (v), the second value (v') may
be generated as follows:

v'={[('-second section end value)*gradient*16]/
128} +first section end value

Similarly, where the input value (u) is scaled by 128 to
give the first value (u') and the second value (V') is scaled by
64 to give the output value (v), the second value (v') may be
generated as follows:

v'={[('-second section end value)*gradient*64]/
128} +first section end value

In embodiments in which the first value, second value,
and/or a section end value is represented by a mantissa and
an exponent, the parameters used in the above equations
may be the corresponding mantissas for those values.

Where the gradient is defined as the change in input value
for a given change in output value (input/output gradient),
the second value may be generated by a calculation involv-
ing taking the difference between a value based on first value
and a value based on first section end value, dividing by a
value based on the gradient, and adding to (if lower section
end values are used) or subtracting from (if upper section
end values are used) a value based on the second section end
value.

Where the first value is a scaled version of the input value
and/or the output value is a scaled version of the second
value, then the calculation may involve suitable multiplica-
tions and/or divisions to take account of the scaling.

For example, where the input value (v) is scaled by 16 to
give the first value (v') and the second value (') is scaled by
128 to give the output value (u), the second value (u') may
be generated as follows:

w'={[(v'-first section end value)*128]/[gradient*
16]}+second section end value

Similarly, where the input value (v) is scaled by 64 to give
the first value (v') and the second value (u') is scaled by 128
to give the output value (u), the second value (u') may be
generated as follows:

w'={[(v'-first section end value)*128]/[gradient*
64]}+second section end value

In embodiments in which the first value, second value,
and/or a section end value is represented by a mantissa and
an exponent, the parameters used in the above equations
may be the corresponding mantissas for those values.

Although the technology described herein has been
described above primarily with reference to the processing
of a particular input data value, as will be appreciated by
those skilled in the art, this operation is in an embodiment
performed for and in respect of plural input data values (and
in an embodiment each input data value) to which the
conversion is to be applied.

The function that is being approximated in the technology
described herein can be any desired and suitable function. In
some embodiments, the function is used to apply or remove
gamma correction from a set of input (colour) values and/or
to change (increase or decrease) the dynamic range of a set
of input (colour) values.
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In embodiments, the function which is being approxi-
mated is a storage function S(v). In other embodiments, the
function which is being approximated is a retrieval function
R(u). The retrieval function R(u) is in an embodiment the
inverse of the storage function S(v), such that S(v)=u and
Ru)=v.

In embodiments, the function is monotonic. In other
words, for each input value, the function generates a unique
output value. This can ensure, for example, that the function
can be suitably inverted and applied to the output value so
as to recover a value which is identical or similar to the input
value.

In embodiments, the function is a power law function, for
example having the form R(u)=kv”, where p and k are
constants. In an embodiment, the function is given by
R(u)=u®. In embodiments, the power law function is used as
a retrieval function.

In other embodiments, the function is an inverse power
law function, for example having the form S(v)=1/kxv'?,
where p and k are constants. In an embodiment, the function
is given by S(v)=v'®. In embodiments, the inverse power
law function is used as a storage function.

In some embodiments, the method of the technology
described herein is applied so as to approximate the storage
function to store an “output data value” and then is later
suitably modified (inverted) and applied so as to approxi-
mate the retrieval function, with the stored output data value
being used as an “input data value” in the method. This may
done, for example, when writing colour values from a (e.g.
tile) buffer to an external memory and then later reading
those same colour values back into the graphics processing
pipeline for further processing.

In these embodiments, the processes used when approxi-
mating the storage function to: i) derive the output data value
from the second value, ii) convert the first value into the
second value, and iii) derive the first value from the input
data value, are inverted and are used to approximate the
retrieval function.

The process of approximating the storage function and
then the retrieval function may be repeated plural times,
each time suitably modifying (inverting) and applying the
method of the technology described herein, with the output
data value being used as an “input data value” in the method.

Similarly, in some embodiments, the method of the tech-
nology described herein is also or instead applied so as to
approximate the retrieval function to read out an “output
data value” and then is later suitably modified (inverted) and
applied so as to approximate the storage function, with the
output data value being used as an “input data value” in the
method. This may done, for example, when reading colour
values into the graphics processing pipeline for processing
and then later writing those same colour values from a (e.g.
tile) buffer to an external memory (e.g. when the colour
values remain unchanged by the graphics processing opera-
tion).

In these embodiments, the processes used when approxi-
mating the retrieval function to: i) derive the output data
value from the second value, ii) convert the first value into
the second value, and iii) derive the first value from the input
data value, are inverted and are used to approximate the
storage function.

The process of approximating the retrieval function and
then the storage function may be repeated plural times, each
time suitably moditying (inverting) and applying the method
of the technology described herein, with the output data
value being used as an “input data value” in the method.
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The technology described herein can be used for all forms
of input and output that a graphics processing pipeline may
be used to process and/or generate, such as frames for
display, render-to-texture outputs, etc.

In some embodiments, the graphics processing pipeline
comprises, and/or is in communication with, one or more
memories and/or memory devices that store the data
described herein, such as the input data values, output data
values, predetermined sets of values etc., and/or store soft-
ware for performing the processes described herein. The
graphics processing pipeline may also be in communication
with a host microprocessor, and/or with a display for dis-
playing images based on the data generated by the graphics
processor.

In an embodiment, the various functions of the technol-
ogy described herein are carried out on a single graphics
processing platform that generates and outputs the rendered
fragment data that is, e.g., written to a frame buffer for a
display device.

The technology described herein can be implemented in
any suitable system, such as a suitably configured micro-
processor based system. In an embodiment, the technology
described herein is implemented in a computer and/or
micro-processor based system.

The various functions of the technology described herein
can be carried out in any desired and suitable manner. For
example, the functions of the technology described herein
can be implemented in hardware or software, as desired.
Thus, for example, the various functional elements of the
technology described herein may comprise a suitable pro-
cessor or processors, controller or controllers, functional
units, circuitry, processing logic, microprocessor arrange-
ments, etc., that are operable to perform the various func-
tions, etc., such as appropriately configured dedicated hard-
ware elements or processing circuitry, and/or programmable
hardware elements or processing circuitry that can be pro-
grammed to operate in the desired manner.

It should also be noted here that, as will be appreciated by
those skilled in the art, the various functions, etc., of the
technology described herein may be duplicated and/or car-
ried out in parallel on a given processor. Equally, the various
processing stages may share processing circuitry, if desired.

The technology described herein is applicable to any form
or configuration of graphics processing pipeline and to all
forms of rendering, such as immediate mode rendering,
deferred mode rendering, tile-based rendering, etc. It is
particularly applicable to graphics renderers that use
deferred mode rendering and in particular to tile-based
renderers.

Thus the technology described herein extends to a graph-
ics processor and to a graphics processing platform includ-
ing the apparatus of or operated in accordance with any one
or more of the embodiments of the technology described
herein described herein. Subject to any hardware necessary
to carry out the specific functions discussed above, such a
graphics processor can otherwise include any one or more or
all of the usual functional units, etc., that graphics processors
include.

It will also be appreciated by those skilled in the art that
all of the described embodiments of the technology
described herein can, and in an embodiment do, include, as
appropriate, any one or more or all of the optional features
described herein.

The methods in accordance with the technology described
herein may be implemented at least partially using software
e.g. computer programs. Thus, embodiments of the technol-
ogy described herein comprise computer software specifi-
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cally adapted to carry out the methods herein described
when installed on a data processor, a computer program
element comprising computer software code portions for
performing the methods herein described when the program
element is run on a data processor, and a computer program
comprising software code adapted to perform all the steps of
a method or of the methods herein described when the
program is run on a data processing system. The data
processor may be a microprocessor system, a programmable
FPGA (field programmable gate array), etc.

The technology described herein also extends to a com-
puter software carrier comprising such software which when
used to operate a graphics processor, renderer or micropro-
cessor system comprising a data processor causes in con-
junction with said data processor said processor, renderer or
system to carry out the steps of the methods of the technol-
ogy described herein. Such a computer software carrier
could be a physical storage medium such as a ROM chip,
RAM, flash memory, CD ROM or disk.

It will further be appreciated that not all steps of the
methods of the technology described herein need be carried
out by computer software and thus embodiments of the
technology described herein comprise computer software
and such software installed on a computer software carrier
for carrying out at least one of the steps of the methods set
out herein.

The technology described herein may accordingly suit-
ably be embodied as a computer program product for use
with a computer system. Such an implementation may
comprise a series of computer readable instructions fixed on
a tangible medium, such as a non-transitory computer read-
able medium, for example, diskette, CD-ROM, ROM,
RAM, flash memory or hard disk. The series of computer
readable instructions embodies all or part of the function-
ality previously described herein.

Those skilled in the art will appreciate that such computer
readable instructions can be written in a number of pro-
gramming languages for use with many computer architec-
tures or operating systems. Further, such instructions may be
stored using any memory technology, present or future,
including but not limited to, semiconductor, magnetic, or
optical, or transmitted using any communications technol-
ogy, present or future, including but not limited to optical,
infrared, or microwave. It is contemplated that such a
computer program product may be distributed as a remov-
able medium with accompanying printed or electronic docu-
mentation, for example, shrink-wrapped software, pre-
loaded with a computer system, for example, on a system
ROM or fixed disk, or distributed from a server or electronic
bulletin board over a network, for example, the Internet or
World Wide Web.

A number of embodiments of the technology described
herein will now be described in the context of the processing
of computer graphics.

FIG. 1 shows a graphics processor 3 according to one
embodiment of the technology described herein. The graph-
ics processor 3 shown in FIG. 1 is a tile-based graphics
processing pipeline and will thus, as is known in the art,
produce tiles of a render output data array, such as an output
frame to be generated.

As is known in the art, in tile-based rendering, rather than
the entire render output, e.g., frame, effectively being pro-
cessed in one go as in immediate mode rendering, the render
output, e.g., frame to be displayed, is divided into a plurality
of smaller sub-regions, usually referred to as “tiles”. Each
tile (sub-region) is rendered separately (typically one-after-
another), and the rendered tiles (sub-regions) are then
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recombined to provide the complete render output, e.g.,
frame for display. In such arrangements, the render output is
typically divided into regularly-sized and shaped sub-re-
gions (tiles) (which are usually, e.g., squares or rectangles),
but this is not essential.

The render output data array may, as is known in the art,
typically be an output frame intended for display on a
display device, such as a screen or printer, but may also, for
example, comprise intermediate data intended for use in
later rendering passes (also known as a “render to texture”
output), etc.

FIG. 1 shows the main elements and pipeline stages of the
graphics processing pipeline 3 that are relevant to the
operation of the present embodiment. As will be appreciated
by those skilled in the art there may be other elements of the
graphics processing pipeline that are not illustrated in FIG.
1. It should also be noted here that FIG. 1 is only schematic,
and that, for example, in practice the shown functional units
and pipeline stages may share significant hardware circuits,
even though they are shown schematically as separate stages
in FIG. 1. It will also be appreciated that each of the stages,
elements and units, etc., of the graphics processing pipeline
as shown in FIG. 1 may be implemented as desired and will
accordingly comprise, e.g., appropriate circuitry and/or pro-
cessing logic, etc., for performing the necessary operation
and functions.

FIG. 1 shows schematically the pipeline stages after the
graphics primitives (polygons) 20 for input to the rasterisa-
tion process have been generated. Thus, at this point the
graphics data (the vertex data) has undergone fragment
frontend operations 28, such as transformation and lighting
operations (not shown), and a primitive set-up stage (not
shown) to set-up the primitives to be rendered, in response
to the commands and vertex data provided to the graphics
processor, as is known in the art.

As shown in FIG. 1, this part of the graphics processing
pipeline 3 includes a number of stages, including a rasteri-
sation stage 23, an early Z (depth) and stencil test stage 24,
a fragment shading stage 26, a late Z (depth) and stencil test
stage 27, a blending stage 29, a tile buffer 30 and a
downsampling and write out (multisample resolve) stage 31.

The rasterisation stage 23 of the graphics processing
pipeline 3 operates, as is known in the art, to rasterise the
primitives making up the render output (e.g. the image to be
displayed) into individual graphics fragments for process-
ing. To do this, the rasteriser 23 receives graphics primitives
20 for rendering, rasterises the primitives to sampling points
and generates graphics fragments having appropriate posi-
tions (representing appropriate sampling positions) for ren-
dering the primitives.

The fragments generated by the rasteriser are then sent
onwards to the rest of the pipeline for processing.

The early Z/stencil stage 24 performs, is known in the art,
a Z (depth) test on fragments it receives from the rasteriser
23, to see if any fragments can be discarded (culled) at this
stage. To do this, it compares the depth values of (associated
with) fragments issuing from the rasteriser 23 with the depth
values of fragments that have already been rendered (these
depth values are stored in a depth (Z) buffer that is stored in
the tile buffer 30) to determine whether the new fragments
will be occluded by fragments that have already been
rendered (or not). At the same time, an early stencil test is
carried out.

Fragments that pass the fragment early Z and stencil test
stage 24 are then sent to the fragment shading stage 26. The
fragment shading stage 26 performs the appropriate frag-
ment processing operations on the fragments that pass the
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early Z and stencil tests, so as to process the fragments to
generate the appropriate rendered fragment data, as is known
in the art.

This fragment processing may include any suitable and
desired fragment shading processes, such as executing frag-
ment shader programs on the fragments, applying textures to
the fragments, applying fogging or other operations to the
fragments, etc., to generate the appropriate fragment data, as
is known in the art. The textures may be stored in external
memory 34, and may be read from the external memory 34
into a texture buffer 36 that is accessible to the fragment
shader 26. In the present embodiment, the fragment shading
stage 26 is in the form of a shader pipeline (a programmable
fragment shader), but other arrangements, such as the use
also or instead of fixed function fragment shading units
would be possible, if desired.

There is then a “late” fragment Z and stencil test stage 27,
which carries out, inter alia, an end of pipeline depth test on
the shaded fragments to determine whether a rendered
fragment will actually be seen in the final image. This depth
test uses the Z-buffer value for the fragment’s position stored
in the Z-buffer in the tile buffer 30 to determine whether the
fragment data for the new fragments should replace the
fragment data of the fragments that have already been
rendered, by, as is known in the art, comparing the depth
values of (associated with) fragments issuing from the
fragment shading stage 26 with the depth values of frag-
ments that have already been rendered (as stored in the depth
buffer). This late fragment depth and stencil test stage 27
also carries out any necessary “late” alpha and/or stencil
tests on the fragments.

The fragments that pass the late fragment test stage 27 are
then subjected to, if required, any necessary blending opera-
tions with fragments already stored in the tile buffer 30 in the
blender 29. Any other remaining operations necessary on the
fragments, such as dither, etc. (not shown) are also carried
out at this stage.

Finally, the (blended) output fragment data (values) are
written to a colour buffer in the tile buffer 30 from where
they can, for example, be output to a frame buffer for
display. The depth value for an output fragment is also
written appropriately to a Z-buffer within the tile buffer 30.
(The colour buffer and Z-buffer will store, as is known in the
art, an appropriate colour, etc., or Z-value, respectively, for
each sampling point that the buffers represent (in essence for
each sampling point of a tile that is being processed).) The
colour buffer and Z-buffer store, as is known in the art, an
array of fragment data that represents part of the render
output (e.g. image to be displayed).

In the present embodiment, the tile buffer 30 comprises an
allocated portion of RAM that is located on (local to) the
graphics processing pipeline (on-chip).

The, e.g. colour, data from the tile buffer 30 is input to a
write out unit 31, and thence output (written back) to an
output buffer, such as a frame buffer of a display device (not
shown). (The display device could comprise, e.g., a display
comprising an array of pixels, such as a computer monitor
or a printer.)

Once a tile of the render output has been processed and its
data exported to external memory (e.g. to a frame buffer (not
shown) in the main memory 34) for storage, the next tile is
then processed, and so on, until sufficient tiles have been
processed to generate the entire render output (e.g. frame
(image) to be displayed).

Other arrangements for the graphics processing pipeline 3
would, of course, be possible.
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The above describes certain features of the operation of
the graphics processing system shown in FIG. 1. Further
features of the operation of the graphics processing system
shown in FIG. 1 in accordance with embodiments of the
technology described herein will now be described.

An embodiment of the technology described herein, in
which the colour data which is stored in the tile buffer 30 is
stored in floating point format is written out to main memory
34 using the process of the technology described herein will
be described as an example of the operation of the graphics
processing pipeline in the manner of the technology
described herein.

In this embodiment, the colour data is stored as input data
values in binary16 format. As is known in the art, binary16
format has 1 sign 1, 5 exponent bits, and 10 mantissa bits.
Thus, the binary16 format is:

TABLE 1

20

Since the range of input values in this embodiment is
given by 1.0=v<256.0, the first predetermined range in this
embodiment is 16.0=v'<4096.

Similarly, each output value u is mapped to a second
predetermined range of values u' by scaling the output value
u by 128 using the following equation:

u'=ux128

Since the range of output values in this embodiment is
given by 1.0=u<2.0, the second predetermined range in this
embodiment is 128.0=u'<256.

In this embodiment, the first and second predetermined
ranges are then respectively quantised into contiguous range
sections. For example, the first predetermined range is

Sign Exponent Mantissa

15 14 13 12 11 10 9 8 7 6 5 4 3 2

The exponent is offset by 15, and the base for the
exponent is 2. Thus, the position of the floating point is
determined by subtracting 15 from the exponent. The man-
tissa has an implicit leading 1.

In this embodiment, when the colour data which is stored
in the tile buffer 30 is exported to main memory 34 by the
write out unit 31, each input data value is used to derive an
input value v. In this embodiment, input values are derived
from the floating point representations of the input data
value by considering only the 3 least significant bits of the
exponent (i.e. bits 10-12). Thus, the range of input values is
given by 1.0=v<256.0.

An approximation of a storage function S(v) is then
applied to the input value by the write out unit 31 to give an
output value u. The storage function which is approximated
in this embodiment is the monotonic power-law function:

S)=v8=y

Since the range of input values is given by 1.0=v<256.0,
the range of output values is given by 1.0=u<2.0.

The output value u is then stored as an output data value
in main memory 34. In this embodiment, the storage format
for the output data value comprises the sign bit of the
floating point representation (i.e. bit 15) of the input data
value, 2 scale bits which correspond to the 2 most significant
bits of the exponent (i.e. bits 13-14) of the input data value,
and 13 fraction bits from the output value of u (i.e. it is
implicit that u is in the range 1 to 2, and so only bits which
represent the fraction are stored). Thus, the storage format is:

25
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45
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quantised into a set of first range sections {16-18, 18-23,
23-29 2112-2432, 2432-3584 and 3584-4096} as
indicated by column 2 of the table shown in FIG. 2, and the
second predetermined range is quantised into a set of second
range sections {128-130, 130-134, 134-138 236-240,
240-252 and 252-256} as indicated by column 1 of the table
shown in FIG. 2.

It should be noted that the end values for the range

sections are integers. Constraining the section end values in
this way reduces the number of bits needed to represent and
store the section end values in the look-up table and can
increase the computational efficiency of calculations made
using those values.

Each first range section in the set of first range sections
corresponds to a second range section in the set of second
range sections such that there are pairs of corresponding first
and second range sections for approximating the function. In
this embodiment, as indicated by the table, the range section
16-18 of the set of first range sections corresponds to the
range section 128-130 of the set of second range sections,
the range section 18-23 of the set of first range sections
corresponds to the range section 130-134 of the set of second
range sections, and so on.

Each pair of first and second corresponding range sections
is also associated with a gradient. The gradient for each pair

Sign Scale Fraction

15 14 13 12 11 10 9 & 7 6 5 4 3 2

1 0

In one embodiment, the approximation of the storage
function makes use of the look-up table shown in FIG. 2.
This look-up table is derived in the following way.

Firstly, the input values and output values are mapped into
predetermined ranges. In this embodiment, each input value
v is mapped to a first predetermined range of values v' by
scaling the input value v by 16 using the following equation:

v'=vx16

60
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of first and second corresponding range sections approxi-
mates the gradient of the storage function for that pair of
corresponding first and second range sections. In this
embodiment, as indicated by the table, the set of gradients
are {8, 10, 12 640, 768, 1024}, with the gradient 8
being associated with the pair of corresponding ranges 16-18
and 128-130, the gradient 10 being associated with the pair
of corresponding ranges 18-23 and 130-134, and so on.
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It will be noted that the gradients for the pairs of first and
second corresponding range sections are also integers. As
mentioned above, constraining the gradients in this way
reduces the number of bits needed to represent and store the
gradients in the look-up table and can increase the compu-
tational efficiency of calculations made using those gradi-
ents. It will also be noted that the gradients for the pairs of
first and second corresponding range sections are selected
from the set {3, 4, 5}2n, where n is a positive integer.
Further constraining the gradients in this way allows divi-
sions using the gradients to be implemented efficiently using
bit shifts (for division by 2) and two dedicated division
circuits (for division by 3 and 5).

Use of the table in FIG. 2 to approximate the storage
function will now be described.

An input data value in floating point format in the tile
buffer 30 is read into the write out unit 31. For example, the 20
floating point representation for the decimal number 4.25 is:

22

The write out unit 31 then derives a first value v' from the
input value v using the following equation:

v'=vx16

For example, where v is 4.25 (binary 100.01), v' is 68
(binary 1000100). This can be carried out in binary by
shifting the radix or binary point 4 places to the right.

The first value v' is then used to determine a first range
section end value. This is achieved by identifying the range
section in the look-up table within which the first value v'
lies. The look-up table may be implemented using a set of
logical operations or a nested set of comparators.

In this embodiment, the lower end value for the identified
range section is used as the first range section end value. For
example, where v' is 68 (binary 1000100), the determined
first range section is 66-86 and the indentified first range
section end value is 66 (binary 1000010).

The second range section end value which corresponds to
the first range section end value is then identified using the

Sign Exponent Mantissa

The write out unit 31 derives an input value v from the 3¢
floating point representation of the input data value. If the
decimal value derivable from the floating point representa-
tion is inside the range 1 to 256, the input value is the
decimal value derivable from the floating point representa- 55
tion of the input data value. However, if the decimal value
derivable from the floating point representation of the input
data value is outside the range 1 to 256, then the input data
value is scaled by 256° to give an intermediate input value, 2
where s in a positive integer. A simple way to implement this
scaling is by only considering the lowest 3 bits of the
exponent of the input data value. For example, the floating
point representation for the decimal number 1088 may be
scaled by 256", to give an intermediate input value v of 4.25. 4
However, the floating point representation for the decimal

number 1088 is:

look-up table. The gradient which corresponds to the pair of
first and second corresponding range sections is also iden-
tified using the look-up table. For example, where the first
range section is 66-86, the indentified second range section
end value is 153 (binary 10011001) and the indentified
gradient is 32.

The first value v' is then converted to a second value u'
using the following equation:

w'={[(v'-first section end value)*128]/[gradient*
16]}+second section end value

For example, where v' is 68 (binary 1000100), the first
section end value is 66 (binary 1000010), the second range
section end value is 153 (binary 10011001) and the gradient
is 32, u' is 153.5 (binary 10011001.1).

The write out unit 31 then derives an output value u from
the second value u' using the following:

u=u"/128

Sign Exponent Mantissa

0 1 1 0 0 1 o o0 o0 1 0 0 0 O

Since the representations for 4.25 and 1088 have the same 55
mantissa and the same lowest 3 bits of exponent, 1088 can
be processed to produce the output data value in the same
way as 4.25 without any need to carry out any explicit
scaling. Thus, the input value v for both 4.25 and 1088, is 60
4.25. In order to preserve the difference in the scaling
between these input data values, the 2 most significant bits
of the exponent of the floating point representation of the 6
input data values can be copied across to the storage format

for the output data value.

For example, where u' is 153.5 (binary 10011001.1), u is
1.19921875 (binary 1.00110011). This can be carried out in
binary by shifting the radix or binary point 7 places to the
left.

The output value u is then written out to external memory
34 in a storage format as an output data value. As discussed
above, the sign bit and scale bits are copied across from the
floating point representation of the input data value, and only
the fraction part of u is stored. Thus, when the input data
value is 4.25, the storage format for the output data value is:
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Sign Scale Fraction

Similarly, when the input data value is 1088, the storage
format for the output data value is:

Sign Scale Fraction

0 1 1 0 0 1 1 0o o0 1 1 0 0 O

As will be appreciated, the above process is repeated for
each input data value to which the conversion is to be
applied. Once the conversion has been applied to the input
data values to produce output data values, the output data
values are stored in external memory 34. The output data
values may later be used, for example, by the fragment
shader 26 of the graphics processing pipeline 3 as texture
data.

FIG. 3 shows how the true storage function compares to
the approximated function over the whole range of input
values v. As can be seen from FIG. 3, the approximated
function closely follows the true storage function.

In another embodiment, the approximation of the storage
function makes use of the look-up table shown in FIG. 4.
This look-up table is derived from the look-up table in FIG.
2 in the following way.

Firstly, the first predetermined range of values v' and input
values are represented in exponent n and mantissa m form.
The input values v are then given by:

v=[1+m/64]2"

As will be explained in more detail below, both the
exponent n and mantissa m of v are used to look up values
in the look-up table. However, the mantissa m of v' is used
to calculate the second value from the first value, but the
exponent n of v' is not. Instead, the gradients in the table are
suitably scaled by the exponent n of v' such that the gradients
can be used with the mantissa m of v' alone.

20
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Thus, as will be appreciated, the gradient g' in FIG. 4 can
be derived from the gradient g in FIG. 2 as follows:

g'=g/2"

It should again be noted that the gradients are, advanta-
geously, still integers and are still selected from the set {3,
4,5}2". Furthermore, the use of exponent and mantissa form
means that only 6 gradient values {5, 6, 8, 10, 12, 16} are
needed (with those gradients being re-used for different
exponents), and so only 3 bits are needed to represent the
gradients in this embodiment.

As will be appreciated, each floating point representation
for the input data values can be directly mapped to an
exponent n for v' by considering the 3 least significant bits
of the exponent of the floating point representation, and to
a mantissa m for v' by considering the 6 most significant bits
of the exponent of the floating point representation.

In some embodiments, e.g. where the exponent of the
floating point representation for the input data values is
subjected to an offset, the 3 least significant bits of the
exponent of the floating point representation for v may need
an offset applied to them. In this embodiment, the offset
which is applied to the exponent of the floating point
representation is —15 and so the offset applied to the 3 least
significant bits of the exponent for v is +1.

For example, the floating point representation for the
input data value 4.25 is:

Sign

Exponent Mantissa

0 0 0 1 0 o 0 1 o0 0 0 0 O 0

55

The 3 least significant bits of the exponent (001 or
decimal 1) give an exponent n of 2 (i.e. 1+1), and the 6 most
significant bits of the mantissa (000100) give a mantissa m
of 4.

Similarly, the floating point representation for the input
data value 1088 is:

Sign

Exponent Mantissa




US 9,489,344 B2

25

Again, the 3 least significant bits of the exponent (001 or
decimal 1) give an exponent n of 2 (i.e. 1+1), and the 6 most
significant bits of the mantissa (000100) give a mantissa m
of 4.

The second predetermined range is also offset such that
the initial range section end value in the look-up table is
zero. This means that only 7 bits are needed to store the
section end values for the second predetermined range in the
FIG. 4 look-up table (whereas 8 bits are needed in the FIG.
2 look-up table). As will be appreciated, each output value
u is now mapped to the second predetermined range of
values u' using the following equation:

u'=(u-1)x128

Furthermore, as will be appreciated, the first predeter-
mined range is also (implicitly) scaled and offset such that
only 12 bits (i.e. 3 bits for the exponent and 6 bits for the
mantissa) are needed to store the section end values for the

26
gradient is 8, u'is 25.5 (binary 11001.1). As discussed above,
an intermediate output value u can be derived from the
second value u' using the following:

5 u=(u"/128)+1

For example, where u' is 25.5 (binary 11001.1), u is
1.19921875 (binary 1.00110011).

However, in this embodiment, the fraction part of u can be
derived directly from u' by shifting the radix or binary point
of u' 7 places to the left to give an output data value. The
output data value can then written out to external memory 34
in a storage format directly from u'. As discussed above, the
sign bit and scale bits are also copied across from the
floating point representation of the input data value.

Thus, when the input data value is 4.25, the storage format
for the output data value is:

Sign

Scale Fraction

0

1 0 0 0 1 1 o o0 1 1 0 0 0 O 0

first predetermined range in the FIG. 4 look-up table
(whereas 12 bits are needed in the FIG. 2 look-up table).

25
Similarly, when the input data value is 1088, the storage
format for the output data value is:

Sign

Scale Fraction

0

1 1 0 0 1 1 o o0 1 1 0 0 0 O 0

Use of the table in FIG. 4 to approximate the storage
function will now be described.

An input data value in floating point format in the tile
buffer 30 is read into the write out unit 31. The write out unit
31 then derives an exponent n and a mantissa m for a first
value v' for the input data value in the manner discussed
above. For example, for the input data value 4.25, the
exponent n for v' is 2 and the mantissa m for v' is 4. (As will
be appreciated, the write out unit 31 implicitly processes an
intermediate input value v in the range 1 to 256 from the
floating point representation by only considering the lowest
3 bits of the exponent of the floating point representation).

The exponent n and mantissa m for the first value v' are
then used to determine a first (mantissa) range section end
value. For example, where the exponent for v' is 2 and the
mantissa for v' is 4 (binary 100), the determined first
(mantissa) range section is 2-22 and the indentified first
(mantissa) range section end value is 2 (binary 10).

The second range section end value which corresponds to
the first (mantissa) range section end value is then identified
using the look-up table. The gradient which corresponds to
the pair of first and second corresponding range sections is
also identified using the look-up table. For example, where
the first (mantissa) range section is 2-22, the indentified
second range section end value is 25 (binary 11001) and the
indentified gradient is 8.

The first value V' is then converted to a second value o'
using the following equation:

w'={[(v'-first section end value)*128]/[gradient*
64]}+second section end value

For example, where the mantissa for v' is 4 (binary 100),
the first (mantissa) section end value is 2 (binary 10), the
second range section end value is 25 (binary 11001) and the

For some input values it is necessary to interpolate over
a power of two boundary, i.e. within a range section where
the exponent for v' increases by 1. This is dealt with in the
following way.

The exponent n for the first value v' can be derived
directly from the 3 least significant bits of the exponent of
the data input value. For example, where the input data value
is 4.0625, the 3 least significant bits of the exponent of the
data input value are 001 (decimal 1), and this gives an
exponent n for the first value v' of 1 (this is 1 less than the
value which would normally be derived for the exponent n
for the first value v' using the method discussed above).

The mantissa m for the first value v' can be derived by
multiplying the 6 most significant bits of the mantissa of the
input data value by 2 and then adding 64 (the maximum
mantissa value) (an alternative approach would be to add 32
and then multiply by 2). For example, where the input data
value is 4.0625, the 6 most significant bits of the mantissa
are 000001 (decimal 1), and so the mantissa m for the first
value v' is 66.

The values for the exponent n and mantissa m for the first
value v' can then be used to look-up values in the manner
discussed above. For example, where the exponent n for the
first value V' is 1 and the mantissa m for the first value v' is
66, the first section end value is 38, the gradient is 12, and
the second section end value is 20. The looked-up values can
then be used to derive the second value u', and then the
output data value, in the manner discussed above.

As will be appreciated, the above process is repeated for
each input data value to which the conversion is to be
applied. Once the conversion has been applied to the input
data values to produce output data values, the output data
values are stored in external memory 34. The output data
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values may later be used, for example, by the fragment
shader 26 of the graphics processing pipeline 3 as texture
data.

The above describes embodiments in which colour values
are stored. Embodiments of the technology described herein 3
in which colour values are retrieved from storage will now
be described.

In one embodiment, when input data values which are
stored in the main memory 34 are read into the texture buffer
36 by the read in unit 38, an approximation of a retrieval
function R(u) is used to give output data values for tempo-
rary storage in the texture buffer 36. The retrieval function
which is approximated in this embodiment is:

R(uw)=u®

As will be appreciated, R(u) is the inverse of S(v)
discussed above. Thus, the tables shown in FIGS. 2 and 4
can also be used to approximate the retrieval function.

Use of the table in FIG. 2 to approximate the retrieval
function will now be described.

A input data value in the main memory 34 is read into the
read in unit 38. The input data value has the storage format:

20

28
range section is 153-158, the indentified second range sec-
tion end value is 66 (binary 1000010) and the indentified
gradient is 32.
The first value u' is then converted to a second value v'
using the following:

v'={[(u'-first section end value)*gradient*16]/128}+
second section end value

For example, where u' is 153.5 (binary 10011001.1), the
first section end value is 153 (binary 10011001), the second
range section end value is 66 (binary 1000010) and the
gradient is 32, v' is 68 (binary 1000100).

The read in unit 38 derives an output value v from the
second value v' using the following:

v=v716
For example, where v' is 68 (binary 1000100), v is 4.25
(binary 100.01). This can be carried out in binary by shifting
the radix or binary point 4 places to the left.
The output value v is then written to the texture buffer 36
in as an output data value floating point format. The read in
unit 38 also copies across the sign bit of the input data value

Sign Scale Fraction

15 14 13 12 11 10 9 8 7 6 5 4 3 2

30
The read in unit 38 derives the input value u from the

storage format by assuming that the fraction has a leading 1.
For example, the input value 1.19921875 would be derived
from the following storage format:

to the sign bit of the floating point format of the output data
value, and copies across the scale bits of the input data value
to the two most significant bits of the floating point format
of the output data value.

Sign Scale Fraction

0 1 0 0 0 1 1 0o o0 1 1 0 0 O

40
The read in unit 38 then derives a first value u' from the
input value u using the following:

u'=ux128

In the above example, where v is 4.25 (binary 100.01), the
sign bit of the input data value is 0 and the scale bits of the
of the input data value are 10, the floating point represen-
tation for the output data value in binaryl6 is:

Sign

Exponent Mantissa

0 0 0 1 0 o 0 1 o0 0 0 0 O 0

For example, where uis 1.19921875 (binary 1.00110011),
u' is 153.5 (binary 10011001.1). This can be carried out in
binary by shifting the radix or binary point 7 places to the

right. 55

The first value u' is then used to determine a first range
section end value. This is achieved by identifying the range
section in the look-up table within which the first value u'
lies. For example, where u' is 153.5, the determined first
range section is 153-158 and the indentified first range
section end value is 153 (binary 10011001).

The second range section end value which corresponds to
the first range section end value is then identified using the
look-up table. The gradient which corresponds to the pair of
first and second corresponding range sections is also iden-
tified using the look-up table. For example, where the first

60
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As will be appreciated, the above process is repeated for
each input data value to which the conversion is to be
applied. Once the conversion has been applied to the input
data values to produce output data values, the output data
values are stored in the texture buffer 36. The output data
values may then be used, for example, by the fragment
shader 26 of the graphics processing pipeline 3 as texture
data.

In another embodiment, the approximation of the retrieval
function makes use of the look-up table shown in FIG. 4.
Use of the table in FIG. 4 to approximate the storage
function will now be described.

An input data value in the main memory 34 is read into

the read in unit 38. As discussed above, the input data value
has the format:
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Sign Scale Fraction
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
An intermediate input value u can be derived from the
storage format by assuming that the fraction has a leading 1.
For example, the intermediate input value 1.19921875
would be derived from the following storage format:
Sign Scale Fraction
0 1 o 0 0 1 1 0 0 1 1 0 0 0 0

A first value u' can be derived from the intermediate input
value u using the following:

u'=(u-1)x128

For example, where uis 1.19921875 (binary 1.00110011),
u'is, u' is 25.5 (binary 11001.1). This can be carried out in
binary by ignoring the leading 1 and shifting the radix or
binary point 7 places to the right.

However, the first value u' can be derived directly from
the fraction part of the input data value by taking the 6 most
significant bits of the fraction part of the input data value to
be the integer part of the first value u' and the remaining bits
of the fraction part of the input data value to be the fraction
part of the first value u'.

The first value u' is then used to determine a first range
section end value. This is achieved by identifying the range
section in the look-up table within which the first value u'
lies. For example, where u' is 25.5 (binary 11001.1), the
determined first range section is 25-30 and the indentified
first range section end value is 25 (binary 11001).

The exponent and mantissa for the second range section
end value which corresponds to the first range section end
value are then identified using the look-up table. The gra-
dient which corresponds to the pair of first and second
corresponding range sections is also identified using the
look-up table. For example, where the first range section is
25.5 (binary 11001.1), the indentified exponent for the
second range section end value is 2, the mantissa for the
second range section end value is 2 (binary 10), and the
indentified gradient is 8.

The first value u' is then converted to a second value V'
using the following:

v'={[(u'-first section end value)*gradient*64]/128 }+
second section end value

For example, where u' is 25.5 (binary 11001.1), the first
section end value is 25 (binary 11001), the second (mantissa)
range section end value is 2 (binary 10) and the gradient is
8, v' is 4 (binary 100).

An intermediate output value v can be derived from the
second value v' using the following:

v={1+m/64]2"

For example, where the mantissa m is 4 (binary 100) and
the exponent n is 2, v is 4.25 (binary 100.01). However,

20

25

30

40

45

50

55

performing this calculation is not necessary in order to write
an output data value to the texture buffer 36 in floating point
format.

Instead, the read in unit 38 can produce the 3 least
significant bits of the exponent of the floating point repre-
sentation of the output data value from the exponent n by
subtracting 1 from the exponent n. For example, where the
exponent is 2 (binary 10), the 3 least significant bits of the
exponent for the floating point representation would be 001
(i.e. decimal 1).

The read in unit can also produce a mantissa for the
floating point representation of the output data value from
the value v' by deriving a 6 bit binary representation for the
integer part of v', and then using those 6 bits as the most
significant 6 bits of the mantissa for the floating point
representation of the output data value. In the above
example, where V' is 4, the 6-bit representation would be
000100, and so the most significant 6 bits of the mantissa for
the floating point representation of the output data value
would be 000100.

The most significant fraction bits for v' can also be
included so as to fill the remaining part of the mantissa for
the floating point representation of the output data value. In
this embodiment, this would involve using the 4 most
significant bits of the fraction part of v' as the 4 least
significant bits of the mantissa for the floating point repre-
sentation of the output data value. In the above example,
where V' is 4, the 4 most significant bits of the fraction part
of v are 0000 (i.e. there is no fractional part to v'), and so
the least significant 4 bits of the mantissa for the floating
point representation of the output data value would be 0000.

The read in unit also copies across the sign bit of the
stored value to the sign bit of the floating point format, and
copies across the scale bits of the stored value to the two
most significant bits of the floating point format.

Thus, in the above example where the mantissa of v' is 4
(giving a floating point mantissa of 0001000000), the scale
bits of the input data value are 10 and the exponent of v' is
2 (giving a floating point exponent of 10001), and the sign
bit of the input data value is 0, the floating point format of
the output data value in binary16 is:

Sign

Exponent Mantissa

0

0 0 0 1 0 o 0 1 o0 0 0 0 O 0




US 9,489,344 B2

31

As discussed above, for some input values it is necessary
to interpolate over a power of two boundary, i.e. within a
range section where the exponent for v' increases by 1. This
is dealt with in the following way.

The first value u' is used to look-up an exponent and a
mantissa for the second section end value, together with a
gradient, in the manner discussed above. For example,
where the first value u' is 24.66, the exponent is 1, the
mantissa for the second section end value is 38, and the
gradient is 12. These looked-up values are then used to
derive a mantissa m for the second value v' in the manner
discussed above. In the present example, the mantissa m for
the second value v' is 66.

The 6 most significant bits of the mantissa of the output
data value are then derived from the mantissa m for the
second value v' by subtracting 64 (i.e. the maximum man-
tissa value) and then dividing by 2 (an alternative approach
would be to divide by 2 and then subtract 32). In this
example, the mantissa m for the second value v' is 66 and so
the 6 most significant bits of the mantissa of the output data
value are 000001 (decimal 1).

The 3 least significant bits of the exponent of the data
output value can be derived directly from the looked-up
exponent n. For example, where the looked-up exponent is
decimal 1, the 3 least significant bits of the exponent of the
data output value are 001 (this is 1 more than the value
which would normally be derived from the exponent n using
the method discussed above).

As will be appreciated, the above process is repeated for
each input data value to which the conversion is to be
applied. Once the conversion has been applied to the input
data values to produce output data values, the output data
values are stored in the texture buffer 36. The output values
may then be used, for example, by the fragment shader 26
of the graphics processing pipeline 3 as texture data.

As will be appreciated from the above, the technology
described herein in its embodiments at least can provide a
system that can approximate a function in an extremely
efficient manner.

This is achieved in the embodiments of the technology
described herein at least by using first and second predeter-
mined ranges of values which are quantised into plural
corresponding pairs of range sections, a predetermined gra-
dient for each pair of range sections, and predetermined
section end values for each pair of range sections.

The foregoing detailed description has been presented for
the purposes of illustration and description. It is not intended
to be exhaustive or to limit the invention to the precise form
disclosed. Many modifications and variations are possible in
the light of the above teaching. The described embodiments
were chosen in order to best explain the principles of the
technology and its practical application, to thereby enable
others skilled in the art to best utilise the technology in
various embodiments and with various modifications as are
suited to the particular use contemplated. It is intended that
the scope be defined by the claims appended hereto.

What is claimed is:

1. A processor-implemented method of converting an
input graphics data value to an output graphics data value by
approximating a function that maps input values to output
values, the processor comprising processing circuitry
including a bit shift circuit, a dedicated divide by 3 circuit,
and a dedicated divide by 5 circuit, the method comprising:

deriving a first value from the input graphics data value,

wherein the first value is within a predetermined first
range of values, the first range of values being quan-
tised into a first set of plural range sections, wherein
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each range section of the first set of plural range
sections comprises a first predetermined section end
value; and

converting the first value into a second value that is within
a predetermined second range of values, the second
range of values being quantised into a second set of
plural range sections, wherein each range section of the
second set of plural range sections comprises a second
predetermined section end value, wherein each range
section of the second set of plural range sections
corresponds to a range section of the first set of plural
range sections such that there are respective pairs of
corresponding first and second range sections, wherein
each pair of corresponding first and second range
sections is associated with a gradient, the gradient for
each pair of corresponding first and second range
sections approximating the gradient of the function for
that pair of corresponding first and second range sec-
tions, wherein the gradients for the pairs of correspond-
ing first and second range sections are gradient values
selected from the set consisting of: 3*2"n; 4*2"n; and
5*2"n; where n is a non-negative integer, wherein the
step of converting the first value into the second value
comprises:

determining by reference to a look-up table that is stored
in memory or that is accessed using a set of logical
operations or nested set of comparators a first prede-
termined section end value for a first range section of
the first set of plural range sections within which the
first value lies,

identifying by reference to the look-up table a second
predetermined section end value for a second range
section of the second set of plural range sections that
corresponds to the first range section,

identifying by reference to the look-up table the gradient
associated with the pair of corresponding first and
second range sections, and

converting the first value into the second value using the
first section end value, the second section end value and
the gradient, wherein using the gradient comprises
using the bit shift circuit when dividing by 2, the
dedicated divide by 3 circuit when dividing by 3, and
the dedicated divide by 5 circuit when dividing by 5;

the method further comprising:

deriving the output graphics data value from the second
value; and

providing a graphics output for display based on the
output graphics data value.

2. The processor-implemented method of claim 1, com-

prising:

reading the input graphics data value from a buffer of a
graphics processing system, and storing the output
graphics data value in external memory; or

reading the input graphics data value from external
memory, and storing the output graphics data value in
a buffer of a graphics processing system.

3. The processor-implemented method of claim 1,

wherein:

the input graphics data value is stored in a floating point
format having a sign bit, a plurality of exponent bits,
and a plurality of mantissa bits, and deriving the first
value from the input graphics data value comprises
reading some but not all of the bits of the mantissa of
the input graphics data value and some but not all of the
bits of the exponent of the input graphics data value; or

the input graphics data value is stored in a format having
a sign bit, one or more scale bits, and a plurality of
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fraction bits, and deriving the first value from the input
graphics data value comprises reading the fraction bits
of the input graphics data value.

4. The processor-implemented method of claim 1,

wherein:

the output graphics data value is stored in a format having
a sign bit, one or more scale bits, and a plurality of
fraction bits, and deriving the output graphics data
value from the second value comprises deriving the

plural range sections; the second predetermined section
end values of the second set of plural range sections;
and the gradients for the pairs of corresponding first
and second range sections; are represented by integer

34

section of the first set of plural range sections com-
prises a first predetermined section end value; and
convert the first value into a second value that is within a
predetermined second range of values, the second
range of values being quantised into a second set of
plural range sections, wherein each range section of the
second set of plural range sections comprises a second
predetermined section end value, wherein each range
section of the second set of plural range sections

fraction bits of the output graphics data value from the 10 corresponds to a range section of the first set of plural
second value; or range sections such that there are respective pairs of
the output graphics data value is stored in a floating point corresponding first and second range sections, wherein
format having a sign bit, a plurality of exponent bits, each pair of corresponding first and second range
and a plurality of mantissa bits, and deriving the output sections is associated with a gradient, the gradient for
graphics data value from the second value comprises 15 each pair of corresponding first and second range
deriving some but not all of the exponent bits of the sections approximating the gradient of the function for
output graphics data value from the second value and that pair of corresponding first and second range sec-
deriving the mantissa bits of the output graphics data tions, wherein the gradients for the pairs of correspond-
value from the second value. ing first and second range sections are gradient values
5. The processor-implemented method of claim 1, 20 selected from the set consisting of: 3*2"n; 4*2"n; and
wherein: 5*2"n; where n is a non-negative integer, wherein to
the input graphics data value is stored in a floating point convert the first value into the second value the pro-
format having a sign bit, a plurality of exponent bits, cessing circuitry:
and a plurality of mantissa bits, the output graphics data determines by reference to a look-up table that is stored in
value is stored in a format having a sign bit, one or 25 memory or that is accessed using a set of logical
more scale bits, and a plurality of fraction bits, and the operations or nested set of comparators a first prede-
method comprises copying the sign bit of the input termined section end value for a first range section of
graphics data value to the sign bit of the output graphics the first set of plural range sections within which the
data value, and copying some but not all of the bits of first value lies,
the exponent of the input graphics data value to the 30  identifies by reference to the look-up table a second
scale bit or bits of the output graphics data value; or predetermined section end value for a second range
the input graphics data value is stored in a format having section of the second set of plural range sections that
a sign bit, one or more scale bits, and a plurality of corresponds to the first range section,
fraction bits, the output graphics data value is stored in identifies by reference to the look-up table the gradient
a floating point format having a sign bit, a plurality of 35 associated with the pair of corresponding first and
exponent bits, and a plurality of mantissa bits, and the second range sections, and
method comprises copying the sign bit of the input converts the first value into the second value using the first
graphics data value to the sign bit of the output graphics section end value, the second section end value and the
data value, and copying the scale bit or bits of the input gradient, wherein using the gradient comprises the
graphics data value to some but not all of the bits of the 40 processing circuitry using the bit shift circuit when
exponent of the output graphics data value. dividing by 2, the dedicated divide by 3 circuit when
6. The processor-implemented method of claim 1, dividing by 3, and the dedicated divide by 5 circuit
wherein: when dividing by 5;
at least one selected from the group consisting of: the first the processing circuitry being further configured to:
predetermined section end values of the first set of 45  derive the output graphics data value from the second

value; and

provide a graphics output for display based on the output
graphics data value.

9. The graphics processing system of claim 8, wherein the

values. 50
7. The processor-implemented method of claim 1,
wherein converting the first value into the second value
comprises interpolating using the first section end value, the
second section end value and the gradient.

data processor is configured to:
read the input graphics data value from a buffer of the
graphics processing system, and store the output graph-
ics data value in external memory; or
read the input graphics data value from external memory,

8. A graphics processing system comprising: 55 and store the output graphics data value in a buffer of

a data processor comprising processing circuitry includ- the graphics processing system.
ing a bit shift circuit, a dedicated divide by 3 circuit, 10. The graphics processing system of claim 8, wherein:
and a dedicated divide by 5 circuit, the processing the input graphics data value is stored in a floating point
circuitry being configured to convert an input graphics format having a sign bit, a plurality of exponent bits,
data value to an output graphics data value by approxi- 60 and a plurality of mantissa bits, and to derive the first
mating a function that maps input values to output value from the input graphics data value the processing
values, the processing circuitry being configured to: circuitry reads some but not all of the bits of the

derive a first value from an input graphics data value to be mantissa of the input graphics data value and some but
converted to an output graphics data value, wherein the not all of the bits of the exponent of the input graphics
first value is within a predetermined first range of 65 data value; or

values, the first range of values being quantised into a
first set of plural range sections, wherein each range

the input graphics data value is stored in a format having
a sign bit, one or more scale bits, and a plurality of



US 9,489,344 B2

35

fraction bits, and to derive the first value from the input
graphics data value the processing circuitry reads the
fraction bits of the input graphics data value.

11. The graphics processing system of claim 8, wherein:

the output graphics data value is stored in a format having
a sign bit, one or more scale bits, and a plurality of
fraction bits, and to derive the output graphics data
value from the second value the processing circuitry
derives the fraction bits of the output graphics data
value from the second value; or

the output graphics data value is stored in a floating point

format having a sign bit, a plurality of exponent bits,
and a plurality of mantissa bits, and to derive the output
graphics data value from the second value the process-
ing circuitry derives some but not all of the exponent
bits of the output graphics data value from the second
value and derives the mantissa bits of the output
graphics data value from the second value.

12. The graphics processing system of claim 8, wherein:

the input graphics data value is stored in a floating point

format having a sign bit, a plurality of exponent bits,
and a plurality of mantissa bits, the output graphics data
value is stored in a format having a sign bit, one or
more scale bits, and a plurality of fraction bits, and the
processing circuitry is configured to copy the sign bit of
the input graphics data value to the sign bit of the
output graphics data value, and copy some but not all
of the bits of the exponent of the input graphics data
value to the scale bit or bits of the output graphics data
value; or

the input graphics data value is stored in a format having

a sign bit, one or more scale bits, and a plurality of
fraction bits, the output graphics data value is stored in
a floating point format having a sign bit, a plurality of
exponent bits, and a plurality of mantissa bits, and the
processing circuitry is configured to copy the sign bit of
the input graphics data value to the sign bit of the
output graphics data value, and copy the scale bit or bits
of the input graphics data value to some but not all of
the bits of the exponent of the output graphics data
value.

13. The graphics processing system of claim 8, wherein:

at least one selected from the group consisting of: the first

predetermined section end values of the first set of
plural range sections; the second predetermined section
end values of the second set of plural range sections;
and the gradients for the pairs of corresponding first
and second range sections; are represented by integer
values.

14. The graphics processing system of claim 8, wherein to
convert the first value into the second value the processing
circuitry interpolates using the first section end value, the
second section end value and the gradient.

15. A computer readable non-transitory storage medium
storing computer software code which when executing on a
processor performs a method of converting an input graphics
data value to an output graphics data value by approximating
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a function that maps input values to output values, the

processor comprising processing circuitry including a bit

shift circuit, a dedicated divide by 3 circuit, and a dedicated

divide by 5 circuit, the method comprising:

deriving a first value from the input graphics data value,
wherein the first value is within a predetermined first
range of values, the first range of values being quan-
tised into a first set of plural range sections, wherein
each range section of the first set of plural range
sections comprises a first predetermined section end
value; and

converting the first value into a second value that is within
a predetermined second range of values, the second
range of values being quantised into a second set of
plural range sections, wherein each range section of the
second set of plural range sections comprises a second
predetermined section end value, wherein each range
section of the second set of plural range sections
corresponds to a range section of the first set of plural
range sections such that there are respective pairs of
corresponding first and second range sections, wherein
each pair of corresponding first and second range
sections is associated with a gradient, the gradient for
each pair of corresponding first and second range
sections approximating the gradient of the function for
that pair of corresponding first and second range sec-
tions, wherein the gradients for the pairs of correspond-
ing first and second range sections are gradient values
selected from the set consisting of: 3*2"n; 4*2"n; and
5*2"n; where n is a non-negative integer, wherein the
step of converting the first value into the second value
comprises:

determining by reference to a look-up table that is stored
in memory or that is accessed using a set of logical
operations or nested set of comparators a first prede-
termined section end value for a first range section of
the first set of plural range sections within which the
first value lies,

identifying by reference to the look-up table a second
predetermined section end value for a second range
section of the second set of plural range sections that
corresponds to the first range section,

identifying by reference to the look-up table the gradient
associated with the pair of corresponding first and
second range sections, and

converting the first value into the second value using the
first section end value, the second section end value and
the gradient, wherein using the gradient comprises
using the bit shift circuit when dividing by 2, the
dedicated divide by 3 circuit when dividing by 3, and
the dedicated divide by 5 circuit when dividing by 5;

the method further comprising:

deriving the output graphics data value from the second
value; and

providing a graphics output for display based on the
output graphics data value.

#* #* #* #* #*



