

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2005-299039

(P2005-299039A)

(43) 公開日 平成17年10月27日(2005.10.27)

(51) Int.Cl.⁷

F 1

テーマコード (参考)

A41C 3/12

A 41 C 3/12

B

A41C 3/10

A 41 C 3/12

C

A41C 5/00

A 41 C 3/10

B

A 41 C 5/00

B

A 41 C 5/00

C

審査請求 未請求 請求項の数 24 O L 外国語出願 (全 26 頁)

(21) 出願番号

特願2004-119615 (P2004-119615)

(22) 出願日

平成16年4月14日 (2004.4.14)

(71) 出願人 504148479

レジーナ ミラクル インターナショナル
リミテッド

Regina Miracle International Limited

香港 クアイチュン ウォー イー ホッ
プ ロード 63 リージェント センタ
ー タワーエイ テンスフロア ユニッ
ツ 1007-1010

(74) 代理人 100060715

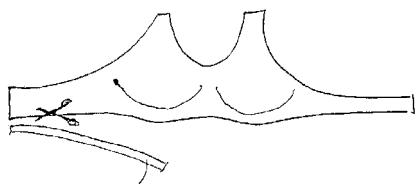
弁理士 松原 伸之

(74) 代理人 100070116

弁理士 村木 清司

(74) 代理人 100112209

弁理士 中山 健一


最終頁に続く

(54) 【発明の名称】 ブラジャー

(57) 【要約】 (修正有)

【課題】シームレスカップ構造を組入れたブラジャーに
関し、縫製工数を減らして製品コストの削減をはかる。【解決手段】それぞれが人のプレストを支えるため、カ
ップ形状の二つのプレストカップを含むブラジャーコア
を備えているブラジャー。各プレストカップは、チェス
トバンドに結合され、そのチェストバンドは、人のチェ
ストまわりに伸び、そして、クリップを取り付ける末端
部を有している。ファブリックの層は、ブラジャーコア
の各側に接着されている。その層は、連続的なシート
からなり、その輪郭にブラジャーコアが形成される。

【選択図】図14

【特許請求の範囲】**【請求項 1】**

プレストカップ構造であって、
プラジャーアセンブリに使用される凹形のカップフォームを画定するために、少なくとも成形されたフォーム材料の第一のシートと、前記第一のシートに積層され、かつ、前記第一のシートに接着される（直接か、あるいは、間接かのいずれか）フォーム材料の第二のシートとのコア
を備えている、プレストカップ構造。

【請求項 2】

前記第一のシートおよび第二のシートが、同一の広がりをもつ、請求項 1 記載のプレストカップ。 10

【請求項 3】

前記第二のシートが、予め画定されたカップ形状にカットされる薄く切られたフォームの部片である、請求項 1 記載のプレストカップ。

【請求項 4】

前記成形されたフォーム材料の第一のシートが、1 mm から 5 mm の厚さのフォーム材料のシートから形成されるオープンセルフォームである、請求項 1 記載のプレストカップ。

【請求項 5】

ワイヤ入り構造が、前記第一のシートおよび第二のシートの中間に供給される、請求項 1 記載のプレストカップ。 20

【請求項 6】

前記ワイヤ入り構造が、剛性の細長い部材（メタルか、あるいは、プラスチックかのいずれか）と、前記剛性の細長い部材の少なくとも一部分まわりにケーシングとを備える、請求項 5 記載のプレストカップ。

【請求項 7】

前記ケーシングが、ファブリック材料である、請求項 6 記載のプレストカップ。

【請求項 8】

前記ケーシングが、接着剤によって、前記第一のシートおよび第二のシートの対面する表面の一つ、あるいは、それぞれに接着される、請求項 6 記載のプレストカップ。 30

【請求項 9】

前記ケーシングが、管状ソックス形状体であり、その中に、前記剛性の細長い部材が位置され、そのソックス形状体が、密閉した両末端部を有している、請求項 6 記載のプレストカップ。

【請求項 10】

前記各カップの第一のシートが、フォーム材料の単一のシートから生成される、請求項 1 記載の二つのプレストカップ。

【請求項 11】

プレストカップを製造する方法であって、
少なくとも一つのカップ形状の成形面を含む成形機械の一つの型部分にフォーム材料のシートを配置するステップと、 40

前記一つの型部分に向ってもう一つの型部分を合わせることによって前記成形機械を閉鎖するステップであり、前記もう一つの型部分が、前記第一の記述した成形面に対してほぼ相補的な形状の成形面を有し、そして、それらの間に、前記シート材料が位置決めされる、閉鎖するステップと、

その互いに合わせることは、それによって、熱と共同して、前記シートに不变のカップ形状をもたらす成形力に前記フォーム施し、

フォーム材料の第二のシートを前記フォーム材料の第一の記述したシートの主要表面の一つに積層するステップと

を備えている、プレストカップ構造を製造する方法。 50

【請求項 12】

前記フォーム材料の第二のシートの前記第一の記述したシートへの前記積層は、前記第一のシートに近接して前記第二のシートを配置し、そして、前記第二のシートおよび前記第一のシートを互いに押圧する成形力を印加することによって達成され、そして、熱の印加および押圧の適切な滞留時間で、それによって、前記第一のシートおよび第二のシートを互いに接着する、請求項11記載の方法。

【請求項 13】

積層することが、前記第一の型半割りおよび第二の型半割りの使用によって達成される、請求項11記載の方法。

【請求項 14】

前記第一のシートおよび第二のシートを積層する前に、ワイヤ入り構造が、前記第一のシートおよび第二のシートの中間に供給される、請求項11記載の方法。

【請求項 15】

前記積層後、その第一のシートおよび第二のシートが、所望の周辺形状にトリミングされる、請求項11記載の方法。

【請求項 16】

ブラジャーを作る方法であって、

二つの予め形成した（シームレスが好ましい）プレストカップの形をとり、そして、ブラジャーコアを画定するために、各カップの下方領域において、各プレストカップをチェストバンドに固定するステップと、

ファブリックの二つのシートの間に前記二つのプレストカップと前記チェストバンドとをサンドイッチし、そして、そのファブリックを前記コアに接着するステップとを備えている、方法。

【請求項 17】

前記二つのシートのそれぞれが、接着剤によって、あるいは、接着成形によって前記ブラジャーコアの両側に固定される、請求項16記載の方法。

【請求項 18】

前記ファブリックシートの第一が、一つまたは前記第一の型部分の一つまたは複数の成形面に配置され、その後、前記ブラジャーコアが、前記ファブリックに配置され、その後、前記ファブリックシートの前記第二が、前記ブラジャーコア全体にわたり配置され、前記第一の成形部分のすべての層が、第二の成形部分によって互いに押圧され、前記コアと前記ファブリックシートとの間への熱の印加および／または接着剤により、その後、前記ファブリックを前記コアの外側表面に接着する、請求項16記載の方法。

【請求項 19】

前記ショルダーストラップおよび前記バッククラスプの前記接着が、超音波接合によって達成される、請求項16記載の方法。

【請求項 20】

前記チェストバンドおよび前記プレストカップそれぞれが固定される前記領域において、前記第一のシート、前記第二のシートおよび前記チェストバンドのオーバーラップする部分があり、それに沿って、それらの間のステッチが、カップをバンドに結合する、請求項16記載の方法。

【請求項 21】

ブラジャーであって、

それぞれが人のプレストを支えるために、カップ形状の二つのプレストカップを含むブラジャーコアであり、各プレストカップが、チェストバンドに結合され、前記チェストバンドが、人のチェストまわりに伸びることが可能であり、そして、クリップを固定する末端部を有している、ブラジャーコアと、

前記ブラジャーコアの各側に接着されるファブリックの層であり、前記層それぞれが、連続的なシートからなり、その輪郭にブラジャーコアが形成される、ファブリックの層とを備えている、ブラジャー。

10

20

30

40

50

【請求項 2 2】

前記ファブリックの層それぞれが、プラジャーコアと同一の広がりをもつ、請求項 2 1 記載の方法。

【請求項 2 3】

前記プラジャーが、その周辺において、超音波接合される、請求項 2 1 記載の方法。

【請求項 2 4】

請求項 1 6 記載の方法により作られる種類のプラジャー。

【発明の詳細な説明】**【技術分野】**

10

【0 0 0 1】

本発明は、プラジャーに関し、特に、シームレスプレストカップ構造を組み入れるプラジャーに関し、そのプラジャー全体は、プラジャーの様々なコンポーネントを互いに接合するステッチの量がごくわずかである。

【背景技術】**【0 0 0 2】**

brassieres (ブラジャー) (以下「 bra 」と称す) の構造の細部は、多年にわたって開発されてきた。構造の細部は、プラジャーを製造するのに利用されることが可能な新しい材料および新しいプロセスの導入と共に発展してきた。大部分の消費者製品と同様に、製造業者は、販売される商品のコストを削減することを目指して努力している。販売される商品のコストの削減は、より安価な材料の使用によってもたらされる。プラジャー・テクノロジーに関して、とはいえ、プラジャーのコストにおけるかなりの節約は、プラジャーを製造するのに必要とされる工数を削減することによって達成されることが可能である。市場で入手可能な多数のプラジャーは、カットされ、そして、接合される必要がある材料の複数のパネルを含んでいる。カッティングは、自動化されることが可能であるとはいえ、パネルを互いに縫い合わせることについては、これは、大部分、人によって行われる。プラジャーのプレストカップは、それぞれが互いに縫い合わされる必要がある複数のパネルから構成されることがあり、そのプレストカップ全体は、次に、チエストバンドに、そして、そのうえに、ショルダーストラップに縫い合わされる必要がある。プラジャーの材料の両エッジが擦り切れることを確実とするための周辺ステッチ、あるいは、かがり縫いは、さらに、プラジャーに追加される必要がある。そのようなことは、さらに、人によって行われる。

20

30

40

【0 0 0 3】

そのゆえに、プラジャーを製造するために、コスト全体の労働コンポーネントが、比較的高くなる場合があるということが分かる。

【発明の開示】**【発明が解決しようとする課題】****【0 0 0 4】**

従って、本発明の目的は、市場で入手可能なプラジャーの大部分と比べて、必要とされるステッチの量を減少するプラジャーを提供することである。さらに、本発明の目的は、少なくとも、有用な選択を人々に供給するシームレスプレストカップ構造を提供することである。

【0 0 0 5】

さらに、本発明の目的は、プラジャーを製造する労働内容を減少するか、あるいは、少なくとも有用な選択を人々に供給するために、シームレスプレストカップ構造およびそのような構造を組み入れる関連したプラジャーを製造する方法を提供することである。

【課題を解決するための手段】**【0 0 0 6】**

従って、本発明は、

プラジャーアセンブリに使用される凹形のカップフォームを画定するために、少なくと

50

も成形されたフォーム材料の第一のシートと、前記第一のシートに積層され、かつ、前記第一のシートに接着される（直接か、あるいは、間接かのいずれか）フォーム材料の第二のシートとのコア

を備えているプレストカップ構造にある。

【0007】

前記第一のシートおよび第二のシートが、同一の広がりをもつことが好ましい。

【0008】

前記第二のシートが、予め画定されたカップ形状にカットされる薄く切られたフォームの部片であることが好ましい。

【0009】

前記成形されたフォーム材料の第一のシートが、1mmから5mmの厚さのフォーム材料のシートから形成されるオープンセルフォームであることが好ましい。

【0010】

ワイヤ入り構造が、前記第一のシートおよび第二のシートの中間に供給されることが好ましい。

【0011】

前記ワイヤ入り構造が、剛性の細長い部材（メタルか、あるいは、プラスチックかのいずれか）と、前記剛性の細長い部材の少なくとも一部分まわりにケーシングとを備えることが好ましい。

【0012】

前記ケーシングが、ファブリック材料であることが好ましい。

【0013】

前記ケーシングが、接着剤によって、前記第一のシートおよび第二のシートの対面する表面の一つ、あるいは、それぞれに接着されることが好ましい。

【0014】

前記ケーシングが、管状ソックス形状体であり、その中に、前記剛性の細長い部材が位置されることが好ましく、そのソックス形状体は、密閉した両末端部を有している。

【0015】

前記フォーム材料の第一のシートが、フォーム材料のフラットなシートからカップ形に生成されることが好ましい。

【0016】

前記フォーム材料の第一のシートが、前記カップ構造の凹形の側にあることが好ましい。

【0017】

前記第二のシートが、前記カップ構造の凸形の側にあることが好ましい。

【0018】

前記第一のシートの前記オープンセルフォームが、ウレタンフォームであることが好ましい。

【0019】

前記ケーシングが、前記剛性の細長い部材を完全に包むことが好ましい。

【0020】

前記ケーシングが、前記第一のシートおよび第二のシートの中間に、その対面する表面の一つ、あるいは、それぞれに接着されることが好ましい。

【0021】

前記第一のシートおよび第二のシートが、熱定着によって互いに接着されることが好ましい。

【0022】

前記ソックス形状体が、ほっそりした細長いソックス形状体であることが好ましい。

【0023】

第二の態様において、本発明は、ここで前に記述されるような二つのプレストカップに

10

20

30

40

50

あり、前記各カップの第一のシートが、フォーム材料の単一のシートから生成されている。

【0024】

別の様において、本発明は、

少なくとも一つのカップ形状の成形面を含む成形機械の一つの型部分にフォーム材料のシートを配置するステップと、

前記一つの型部分に向ってもう一つの型部分を合わせることによって前記成形機械を閉鎖するステップであり、前記もう一つの型部分が、前記第一の記述した成形面に対してほぼ相補的な形状の成形面を有し、そして、それらの間に、前記シート材料が位置決めされ、閉鎖するステップと、

その互いに合わせることは、それによって、熱と共同して、前記シートに不变のカップ形状をもたらす成形力に前記フォーム施し、

フォーム材料の第二のシートを前記フォーム材料の第一の記述したシートの主要表面の一つに積層するステップと、

を備えているプレストカップ構造を製造する方法にある。

【0025】

前記第一のシートおよび第二のシートを積層する前に、ワイヤ入り構造が、前記第一のシートおよび第二のシートの中間に供給されることが好ましい。

【0026】

前記積層後、その第一のシートおよび第二のシートが、所望の周辺形状にトリミングされることが好ましい。

【0027】

前記フォーム材料の第一のシートの前記第一の記述したシートへの前記積層は、前記第一のシートに近接して前記第二のシートを配置し、そして、前記第二のシートおよび前記第一のシートを互いに押圧する成形力を印加することによって達成され、そして、熱の印加および押圧の適切な滞留時間で、それによって、前記第一のシートおよび第二のシートを互いに接着することが好ましい。

【0028】

積層することが、前記第一の型半割りおよび第二の型半割りの使用によって達成されることが好ましい。

【0029】

前記第一の型半割り、あるいは、第二の型半割りの前記もう一つが、前記積層するステップのために互いに合わされる前に、前記第二のシートが、前記第一の型半割り、あるいは、第二の型半割りの上に位置決めされる前記第一のシートに配置されることが好ましい。

【0030】

前記シートが、積層するために合わされる前に、前記ワイヤ入り構造が、前記第一のシートおよび第二のシートの一つに接着されることが好ましい。

【0031】

前記ワイヤ入り構造が、前記第一のシートの成形の後に前記第一のシートに接着されることが好ましい。

【0032】

前記ワイヤ入り構造が、前記積層するステップの間に前記第二のシートに接着されることが好ましい。

【0033】

前記型半割りそれぞれが、同時に二つのカップ形状への成形のために一対の相補的なカップ形状の成形レリーフを含むことが好ましい。

【0034】

前記第一のシートの単一が、前記第一の型半割りの両方のレリーフに広がるように、前記第一の型半割りに配置されることが好ましい。

10

20

30

40

50

【0035】

前記第二のシートの二つの個々が、前記第一のシートの前記二つのカップ形状の型のそれぞれに接着されることが好ましい。

【0036】

前記第一の型半割りの前記カップ形状の成形面が、凹形のカップ形状であり、前記もう一つの型半割りの前記成形面が、凸形のカップ形状であることが好ましい。

【0037】

前記第一の型半割りの前記カップ形状の成形面が、凸形のカップ形状であり、前記もう一つの型半割りの前記成形面が凹形のカップ形状であることが好ましい。

【0038】

10 プラジャーを作る方法が、

二つの予め形成した（シームレスが好ましい）プレストカップの形をとり、そして、プラジャーコアを画定するために、各カップの下方領域において、各プレストカップをチェストバンドに固定するステップと、

ファブリックの二つのシートの間に前記二つのプレストカップと前記チェストバンドとをサンドイッチし、そして、そのファブリックを前記コアに接着するステップとを備えている。

【0039】

前記二つのシートのそれぞれが、接着剤によって、あるいは、接着成形によって前記プラジャーコアの両側に固定されることが好ましい。

20 【0040】

前記ファブリックシートの第一が、一つのまたは前記第一の型部分の一つまたは複数の成形面に配置され、その後、前記プラジャーコアが、前記ファブリックに配置され、その後、前記ファブリックシートの前記第二が、前記プラジャーコア全体にわたり配置され、前記第一の成形部分のすべての層が、第二の成形部分によって互いに押圧され、前記コアと前記ファブリックシートとの間への熱の印加および／または接着剤により、その後、前記ファブリックを前記コアの外側表面に接着することが好ましい。

【0041】

前記ショルダーストラップおよび前記バッククラスプの前記接着が、超音波接合によって達成されることが好ましい。

30 【0042】

前記チェストバンドおよび前記プレストカップそれが固定される前記領域において、前記第一のシート、前記第二のシートおよび前記チェストバンドのオーバーラップする部分があり、それに沿って、それらの間のステッチが、カップをバンドに結合することが好ましい。

【0043】

前記シームレスプレストカップは、上文に記述されるような種類のものであることが好ましい。

【0044】

前記シームレスプレストカップが、上文に記述されるような方法により作られる種類のものであることが好ましい。

40 【0045】

前記ファブリック材料の前記第一のシートおよび第二のシートそれが、単一であることが好ましい。

【0046】

縫い目は、前記ショルダーストラップおよび前記バッククラスプが結合される領域を除いては、前記コアとファブリック材料の前記シートとの間に存在しないことが好ましい。

【0047】

縫い目は、前記コアと前記ファブリック材料のシートとの間に存在せず、そして、前記ショルダーストラップおよび前記バッククラスプは、接着によって結合されることが好ま

50

しい。

【0048】

さらに、別の態様において、本発明は、

それぞれが人のブレストを支えるために、カップ形状の二つのブレストカップを含むプラジャーコアであり、各ブレストカップが、チェストバンドに結合され、前記チェストバンドが、人のチェストまわりに伸びることが可能であり、そして、クリップを固定する末端部を有している、プラジャーコアと、

前記プラジャーコアの各側に接着されるファブリックの層であり、前記層それが、連続的なシートからなり、その輪郭にプラジャーコアが形成される、ファブリックの層とを備えているプラジャーにある。

【0049】

前記ファブリックの層それが、プラジャーコアと同一の広がりをもつことが好ましい。

【0050】

前記プラジャーが、その周辺において、超音波接合されることが好ましい。

【0051】

前記ファブリックの層それが、ポリエステルベース材料からなることが好ましい。

【0052】

前記ファブリックの層それが、前記コアに熱接着されることが好ましい。

【0053】

前記層それが、その周辺において、超音波接合されることが好ましい。

【0054】

前記ブレストカップが、上文に記述されるような種類のものであることが好ましい。

【0055】

前記ブレストカップが、前記チェストバンドに縫い合わされることが好ましい。

【0056】

プラジャーが、上文に記述されるような方法により作られることが好ましい。

【0057】

前記プラジャーが、前記プラジャーの主要本体に超音波により固定されるショルダーストラップ全体を含んでいることが好ましい。

【0058】

バッククラスプが、さらに、好ましくは超音波接合によって、前記チェストストラップの両末端部に結合されることが好ましい。

【0059】

別の態様において、本発明は、上文に記述されるような方法により作られる種類のプラジャーにある。

【0060】

本発明は、さらに、個々に、あるいは、集合的に、本出願の明細書に言及される、あるいは、示される PARTS、要素および構成、そして、前記 PARTS、要素、あるいは、構成の二つ以上のいくつかの組み合わせ、あるいは、すべての組み合わせにあると広く述べられることができ、かつ、本発明に関係する技術上周知の同等物を有する特定の完全体が、ここに述べられ、そのような周知の同等物は、個々に述べられているようにここに含まれていると考えられる。本発明を示すために、図面に、現在好ましい形態が示されている。とはいえ、本発明は、示される精密な構成に限定されるものではないということは理解される。

【0061】

本発明の好ましい実施例は、ここでは、添付の図面を参照として説明されている。

【発明を実施するため最良の形態】

【0062】

ブレストカップ構造

10

20

30

40

50

本発明のプレストカップ構造は、それぞれを三次元のカップ形状に形成されたフォーム材料の少なくとも第一の層と第二の層とによって画定されている。そのフォーム材料の第一の層および第二の層は、互いに接着され、そして、中間のワイヤ入りアセンブリを含むことができる。そのプレストカップ構造は、凹形の側と凸形の側とを有している。その凹形の側は、プレストカップ構造を組み入れるプラジャーを着用する人の皮膚にもっとも近接する側である。もっとも好ましい形態において、プレストカップ構造の凹形の側に供給されるフォームシート材料は、フォームのフラットな（ほぼ均一の厚さ）部片で作られている。この層に使用されるフォームは、ウレタンフォームであり、そして、ほぼ1mmから5mmの厚さであることが好ましい。プレストカップ構造のフォームの第二の層は、凸形の側に位置され、そして、フォーム材料の部片からカットされることが好ましい薄く切られたフォームの部片から供給されることが好ましい。とはいえる、このフォームの第二のシートは、別の方法として、また、フラットなシートで作られることがある。とはいえる、それが、コアの第一のシートを画定するフラットなシートで作られるフォームに結合される前に、既にその三次元の形状に画定されるという点で、薄く切られたフォーム部片からの供給には利点がある。

10

20

30

40

50

【0063】

プレストカップ構造が、ワイヤ入りプラジャーの製造に利用される場合、その場合、図3に示されるようなワイヤ入りアセンブリが、二つのフォームシートの中間に供給されることが可能である。

【0064】

ワイヤ入りアセンブリは、ワイヤ8を囲むワイヤケーシング7から構成されている。そのワイヤケーシングは、ポリエステルベースのコットン、ライクラ、スパンデックス、あるいは、ナイロンなどのファブリック材料で作られることが好ましく、そして、その中にワイヤが押し入れられる効果的なソックス形状体である。そのワイヤ8は、その末端部に、ドームなどのケーシングのファブリック材料を通って押し進むワイヤの可能性を防止、あるいは、減少する構成を有している。ワイヤは、さらに、両端において、鋭くない末端部をもたらすように曲げられるか、あるいは、形成されることがある。そのケーシングは、密閉した両端部を有し、そして、多少の隙間が、ケーシングを突き通すことなくケーシング内の動きのための多少の余地をワイヤに与えるために、ワイヤの両末端部とケーシングの密閉した両端部との間に設けられることがある。

【0065】

プレストカップ構造の製造は、ステッチが使用される必要がないようなものである。二つのミラーメージプレストカップフレリーフ5と周辺領域4とを含む図1に示されるような型半割り1が利用され、その上に、ほぼ均一の厚さのフォーム6の第一のシート6が配置されている。第一の型半割りのリベート5と周辺4に対してほぼ相補的なリベート面を含む第二の型半割り2は、フォームシート6と接触され、それによって、フォームシート6にカップ形状を画定するために、フォームシート6を第一の型半割り1に押圧する。熱を加えて、フォームシート6の不变の変形がもたらされることが可能である。フォームシート6は、一緒に配置される間、型半割り1、2の一つ、あるいは、二つによって、150秒の継続時間の間、ほぼ200°C - 210°Cの温度に施されることが好ましく、その後、型半割りは、分離され、そして、そのあと形成されたフォームシート6の主要表面の一つが、露呈される。そのフォームシート6は、形成後、第一の型半割り1内にある。そのシート6に形成されるカップ形状のそれぞれの頂部に配置されるのは、フォームの第二のシート11である。そのようなフォームの第二のシート11は、シート6に画定されるカップ形状と比べて、ほぼ同じか、あるいは、大きいサイズである。その第二のシートは、形成されたシート6の凸形の側に配置される。第二のシート11は、予め成形した形であることが好ましく、そして、予め定められた三次元湾曲における材料の部片からカットされた薄く切られたフォームの部片であることが好ましい。フォームの第二のシートは、別の方法として、フォームの平面なシートで作られ、そして、フォームの第一のシート6との結合前か、あるいは、間のいずれかに形成されることが好ましい。

【0066】

形成されたシート6の上に配置される薄く切られたフォーム11は、次に、第二の型半割りによって、第一のシートとの押圧に施される。再度、ほぼ200°C - 210°Cの温度および150秒の継続時間が、二つのシートに施され、それによって、二つのシートを互いに融合する。プレストカップ構造が、さらに、ワイヤ入りを含むことが望まれる場合、その場合、図3に示されるようなワイヤ入りアセンブリは、第二のシートの配置前に、第一のシート6と一つまたは複数の第二のシート11の中間に含まれることが可能である。図3のワイヤ入りアセンブリは、たとえば、それが三次元形状に形成された後、形成されたシート6の上に配置される。ワイヤ入りアセンブリは、たとえば、接着性材料を使用する接着によって、たとえば、第一のシート6に接着されることができる。ワイヤケーシングの一つの側には、層6に接着用膠がスプレーされることができ、そして、もう一つの側には、シート11の表面に接着用膠がスプレーされることができる。一つまたは複数の第二のシートが第一のシート6の頂部に配置されると、ワイヤ入りアセンブリは、二つのシートの間に取り付けられる。ワイヤ入りアセンブリは、カップ構造の底部湾曲の方に向ってなど適切な位置に配置される。

10

【0067】

二つのカップ構造が、それらの中間にワイヤ入りアセンブリの有無にかかわらず、互いに接着されるシート6と一つまたは複数のシート11とによって形成されると、その成形物は、型半割りから取り除かれ、そして、図9に示されるようなプレストカップ構造を画定するようにトリミングされる。これらは、型から取り除かれる材料をトリミングして、そして、好ましくは、カップの三次元カップ輪郭まわりにほぼ5mm - 6mmのマージンを残して形成される。

20

【0068】

好ましい形態において、各対の片方のカップ形状（左のカップと右のカップ）は、一つの成形物から形成され、別の方法として、独立した型が、その左のカップおよび右のカップのそれぞれを成形するのに使用されることがある。

【0069】

使用することができる薄く切られたフォームは、厚さが変えられることができ、その厚さは、両エッジの方に向って減少している。

30

【0070】

二つの型半割りが合わされるとき、わずかなギャップが、カップの型形状を画定する三次元成形面間にあり、それゆえ、第一のシート6および第二のシート11の材料は、少なくともカップ形状の中央において、完全には互いに押圧されない。カップ形状領域における第一の型半割りと第二の型半割りとの間のギャップは、変えられる。

【0071】

上記の組成に対する別の方法において、カップの形の凹形の側に薄く切られたフォーム層を含むことができる。

【0072】

40

プラジャー構造

上文に記述されるようなプレストカップ構造は、プラジャー構造全体に利用されることが可能である。もっとも好ましい形態において、そのプラジャーは、二つのプレストカップをチェストバンドコア12に結合して製造される。そのチェストバンドコア12は、各カップの周辺の部分に沿って縫い合わすことによってカップに結合される。そのコア自体は、ステッチライン21でインナゴア13に縫い付けられるストラップ領域から構成されている。これは、次に、縫い目22に沿ってプレストカップ構造に縫い付けられる。プレストカップ構造とチェストバンドコアとが互いに結合されて、プラジャーコアが画定される。

【0073】

50

図11を参照すると、フォーム領域である領域14が示されている。この領域14は、二つのプレストカップ間の領域において、完成したプラジャーに支えと剛性とをもたらす役割を果たす。

【0074】

上文に記述されるフォームプレストカップ構造から構成されるプラジャーコアは、チエストバンドコア12に結合され、そして、次に、図12に示されるような成形構成に配置される。ファブリック材料の第一の層16は、下方の型半割り1に配置される。このファブリック材料16は、完全にプラジャーコアの上に重なるように、プラジャーコアのサイズと比べて大きいサイズである。プラジャーコアは、次に、ファブリック材料16の上に配置され、そして、外側ファブリック材料の第二の層15は、プラジャーコアの上に配置される。第二の外側層15も、また、プラジャーコアの周辺サイズと比べて大きいサイズである。上方の型半割り2は、次に、外側ファブリックの層15、16とプラジャーコアとを互いに押圧するように結合される。外側ファブリック層15、16は、カップ形状の輪郭に従うように変形され、そして、150秒の継続時間、そして、200°C-210°Cの間の温度を加熱することによって、外側ファブリックシート15、16は、プレストカップ構造およびチエストバンドコアの両方において、プラジャーコアに接着される。ファブリック材料のシート15、16は、実質的に、それぞれが単一の材料のシートで作られ、そして、各外側層がプラジャーコアの上に重ねられるという事実によって、縫い目は、外側層15、16が結合されると、人には見えない。

【0075】

成形物は、次に、型半割りから取り除かれ、そして、図13に示されるような結果として生ずるプラジャーの前兆が存在する。二つの半割り1、2によって、図13に示されるようなプラジャーの前兆の領域において形成される周辺マージン17が、その後の成形状態において、実質的に互いに結合され、次に、トリミングされる必要がある。このトリミングは、たとえば、カッティング装置によって達成される。マージンの除去は、別の方法として、超音波カッティングおよび融合の組み合わされたステップによって達成される。超音波カッティングおよび融合ステップは、プラジャーからマージンを取り除き、そして、同時に、材料のあらゆる摩損を防止するようにプラジャーの周辺をシールする。超音波融合およびカッティングは、3mm設定に設定される超音波接合機械（ソノボンド機械などの）によって達成されることが可能である。成形されたプラジャーは、最終形状に融合およびカットするために融合ホールに配置される。その後、ストラップおよびフックパッドが、超音波ボンディングか、あるいは、ステッチのいずれかによって、融合およびカットされたプラジャーに追加されることが可能である。

【0076】

本発明のプラジャーは、実質的に、少なくとも目に見えるステッチなく作られることが可能である。そのプラジャーは、大いに耐久性があり、そして、ステッチの縫い目をほどき、あるいは、摩耗せることがある繰返しの洗濯および摩耗によって生ずる問題を排除する。少なくともフォーム材料の二つのシートから構成されるプラジャーカップ構造の使用により、洗濯後、プラジャーの形状をずっと維持させる。

【0077】

プラジャーの耐久性およびステッチがないことにより、プラジャーを貫通するワイヤからの皮膚アレルギー/摩耗および/またはステッチのゆるみが、回避されることが可能であることを意味する。プラジャー構造のサンドイッチ性質の故に、プラジャーの望ましくない変形は、有るか無しかである。カップ間へのワイヤアセンブリの位置決めは、それらがずっと固定され、そして、その位置決めが、ずっと制御され、それによって、スライドすることを防止することを確実にする。これにより、強い支えおよび身体に対するプラジャーのいっそう適合した合い具合へと導く。プレストカップ構造全体にわたりステッチが無いことによって、それは、プラジャーの輪郭線が、ましてやなおさら見えなくて、そして、プレストカーブが、十分に隠されることが可能であることを意味する。

【0078】

10

20

30

40

50

本発明は、その精神、あるいは、本質的な特性から逸脱することなく、他の特定の形態で実施されることができ、それゆえ、本発明の範囲を示すような前述の明細書ではなく、添付の特許請求の範囲を参照にすべきである。

【図面の簡単な説明】

【0079】

【図1】本発明のプレストカップおよび／またはブラジャーの製造のため型半割り（底部半割り）の斜視図である。

【図2】二つのミラーイメージプレストカップのための二つのコアコンポーネントを画定するために、二つの型半割りと、フォームシートの形成のためのその型半割り間に押圧される準備のできた中間フォームシートとを示す側面図である。

10

【図3】ワイヤ入りアセンブリを示している。

【図4】プレスト構造のコアに第二のコンポーネントを設けるために、フォーム材料の薄く切られたパネルの斜視図である。

【図5】図4の平面図である。

【図6】図4の側面図である。

【図7】図1の型半割りの斜視図であるが、その上に、コアの層の一つの成形したフォームシートが、支持され、そして、各カップの形状の頂部に、図3のワイヤ入りアセンブリが供給されている。

【図8】側面図における同じ型半割りを示し、そして、図4または図6の薄く切られたフォームの部片が、二つのカップ形状に以前に形成されたフォームシートの頂部に配置するように位置決めされている。

20

【図9】プレストカップ構造の二つのミラーイメージカップ形状のコアを示し、そして、それぞれのワイヤ入りアセンブリを見せかけで示している。

【図10】チェストバンドに結合される各プレストカップ構造を示している。

【図11】チェストバンドの平面図である。

【図12】ブラジャー コアをサンドイッチするために、図10に示されるようなブラジャー コアをファブリックの二つのシートで押圧する準備ができた二つの型半割りを示している。

【図13】サンドイッチするファブリックをブラジャー コアに結合する型半割りから取り除かれた後であるが、周辺トリミング、そして、密閉前の押圧されたブラジャーを示している。

30

【図14】本発明の周辺がトリミングされたブラジャーを示している。

【符号の説明】

【0080】

1 2 型半割り

1 下方の型半割り 2 上方の型半割り 第二の型半割り

4 周辺領域 5 二つのミラーイメージのプレストカッププレリーフ

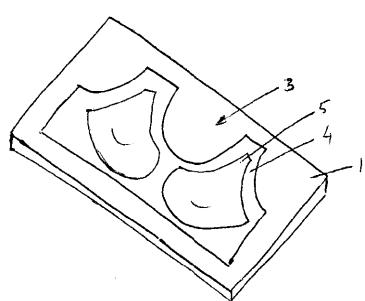
6 ほぼ均一の厚さのフォームの第一のシート

7 ワイヤケーシング 8 ワイヤ

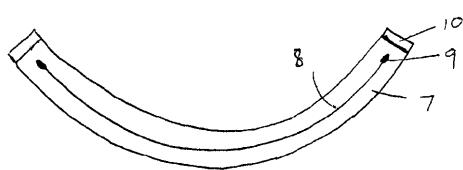
11 フォームの第二のシート 12 チェストバンドコア

40

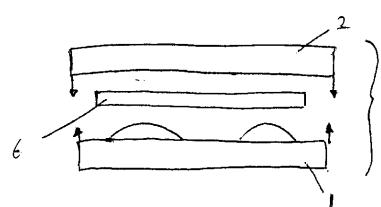
13 インナゴア 14 フォーム領域

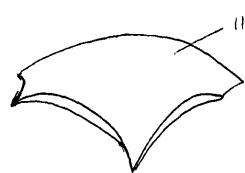

15 外側ファブリック材料の第二の層

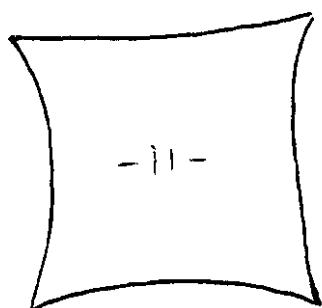
16 ファブリック材料の第一の層

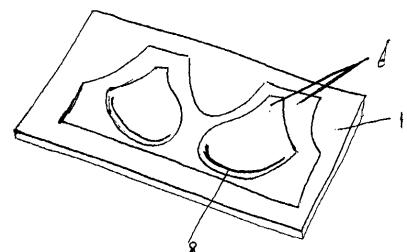

17 周辺マージン

20 ストラップ領域 21 ステッチライン 22 縫い目


【図1】


【図3】

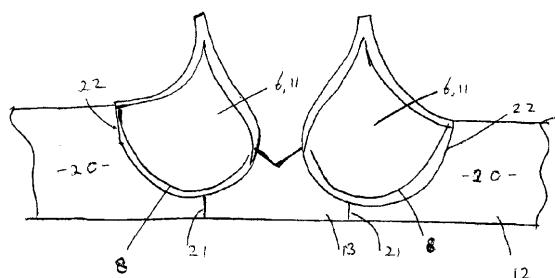

【図2】


【図4】

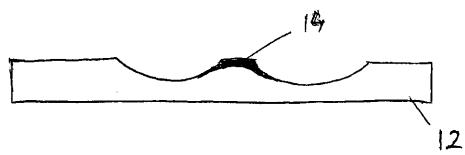
【図5】

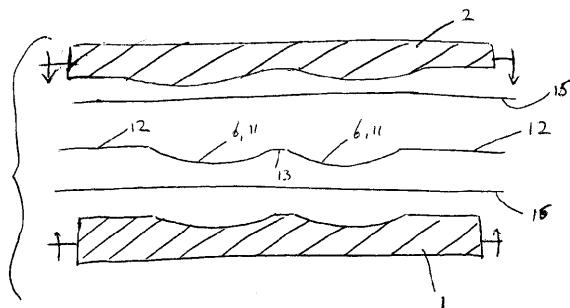
【図7】

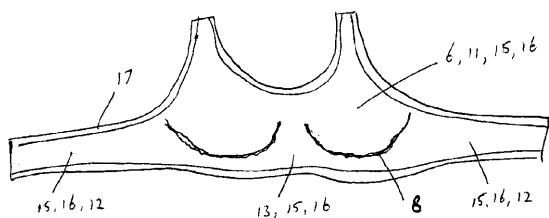
【図6】

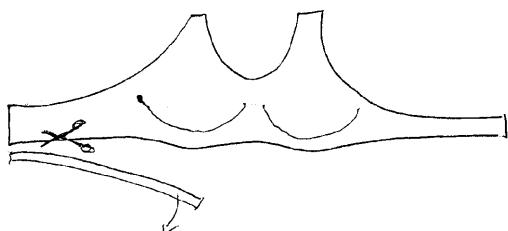


【図8】


【図 9】


【図 10】


【図 11】


【図 12】

【図 13】

【図 14】

フロントページの続き

(74)代理人 100095304

弁理士 橋本 千賀子

(74)代理人 100103643

弁理士 松嶋 さやか

(74)代理人 100120433

弁理士 高 部 育子

(72)発明者 セオン ルク

香港 クアイチュン ウォー イー ホップ ロード 63 リージェント センター タワーイ
イ テンスフロア ユニツツ 1007-1010

【外国語明細書】

TITLE OF INVENTION

A BRASSIERE

FIELD OF THE INVENTION

The present invention relates to brassieres and in particular to a brassiere which incorporates a seamless breast cup construction and wherein the entire brassiere includes a negligible amount of stitching joining various components of the brassiere together.

BACKGROUND TO THE INVENTION

Construction details of brassieres (hereinafter referred to as "bras") have been developed over many years. Construction details have evolved along with the introduction of new materials and new processes which can be utilised for the manufacturing of bras. As with most consumer products, manufacturers endeavour to reduce the cost of goods sold. A reduction in cost of goods sold can be brought about by the use of cheaper materials. For bra technology however, a significant saving in the cost of a bra can be achieved by eliminating the man-hours required to manufacture the bra. Many bras that are available on the market will include multiple panels of materials which need to be cut, and joined. Cutting can be automated, however when it comes to stitching the panels together, this will mostly be done by a person. The breast cup of a bra may consist of multiple panels which each need to be stitched together, the entire breast cup then needs to be stitched to the chest band and to the over the shoulder straps. Perimeter stitching or overlocking to ensure that the edges of the material of the bra do not fray also needs to be added to the bra. Such is also done by a person.

It can hence be seen that in order to manufacture a bra, the labour component of the overall cost can be relatively high.

Accordingly it is an object of the present invention to provide a bra which reduces the amount of stitching that is required compared to the majority of bras available on the market. It is also an object of the present invention to provide a seamless breast cup construction which will at least provide the public with a useful choice.

It is also an object of the present invention to provide a method of manufacturing a seamless breast cup construction and related bra incorporating such construction to reduce the labour content of manufacturing of the bra or to at least provide the public with a useful choice.

BRIEF DESCRIPTION OF THE INVENTION

Accordingly the present invention consists is a breast cup construction comprising,

a core of at least a first sheet of molded foam material and a second sheet of foam material laminated to said first sheet and adhered (whether directly or indirectly) to said first sheet to define a concave cup form for use in a bra assembly.

Preferably said first and second sheets are co-extensive.

Preferably said second sheet is a piece of skived foam cut to a predefined cup shape.

Preferably said first sheet of molded foam material is an open cell foam formed from a sheet of foam material of 1mm to 5mm thick.

Preferably an underwire structure is provided intermediate of said first she

et and said second sheet.

Preferably said underwire structure comprises a rigid elongate member (whether of metal or plastic) and a casing about at least part of said rigid elongate member.

Preferably said casing is of a fabric material.

Preferably said casing is adhered to one or each of the facing surfaces of said first and second sheet by an adhesive material.

Preferably said casing is a tubular sock within which said rigid elongate member is located, the sock having closed distal ends.

Preferably said first sheet of foam material is generated into a cup form from a flat sheet of foam material.

Preferably said first sheet of foam material is on the concave side of said cup construction.

Preferably said second sheet is on the convex side of said cup construction.

Preferably said open cell foam of said first sheet is a urethane foam.

Preferably said casing completely envelops said rigid elongate member.

Preferably said casing is adhered intermediate of said first and second sheets to one or each of the facing surfaces thereof.

Preferably said first and second sheets are adhered to each other by heat fusion.

Preferably said sock is a slender elongate sock.

In a second aspect the present invention consists in two breast cups as herein before described wherein said first sheets of each cup has been generated out of a single sheet of foam material.

In a further aspect the present invention consists in a method of manufacturing a breast cup construction comprising:

placing a sheet of foam material on one mold portion of a molding machine which includes at least one cup shaped molding surface,

closing said molding machine by bringing an other mold portion towards said one mold portion, said other mold portion having a substantially complementary shaped molding surface to said first mentioned molding surface and between which said sheet material is positioned,

wherein the bringing together thereby subjects said sheet of foam to a molding force which with the combination of heat, will provide a permanent cup shape to said sheet,

laminating a second sheet of foam material to one of the major surfaces of said first mentioned sheet of foam material.

Preferably prior to laminating of said first and second sheet, an underwire structure is provided intermediate of said first and second sheet

Preferably after said laminating the first and second sheets are trimmed to a desired perimeter shape.

Preferably said laminating of said second sheet of foam material to said first mentioned sheet is achieved by the placement of said second sheet adjacent said first sheet and applying a molding force pressing said second sheet and said first sheet together and with the application of heat and an appropriate dwell time of pressing thereby adhering said first and second sheets together.

Preferably laminating is achieved by the use of said first and second mold halves.

Preferably said second sheet is placed on said first sheet positioned on said first or second mold half prior to said other of said first or second mold hal

ves being brought together for said laminating step.

Preferably said underwire structure is adhered to one of said first and second sheets prior to said sheets being brought together for laminating.

Preferably said underwire structure is adhered to said first sheet subsequent to the molding of said first sheet.

Preferably said underwire structure is adhered to the second sheet during said laminating step.

Preferably said molding halves each include a pair of complementary cup shaped molding reliefs for the molding to two cup shapes simultaneously.

Preferably a single of said first sheets is placed on said first molding halves to extend over both reliefs of said first molding half.

Preferably two individual of said second sheets are adhered onto a respective of said two cup shapes molded of said first sheet.

Preferably said cup shaped molding surface of said first mold half is a concave cup shape, said molding surface of said other mold half is a convex cup shape.

Preferably said cup shaped molding surface of said first mold half is a convex cup shape, said molding surface of said other mold half is a concave cup shape.

A method of making a bra comprising

taking two preformed (preferably seamless) breast cups and affixing each breast cup to a chest band at the lower regions of each cup to define a bra core,

sandwiching said two breast cups and said chest band between two sheets of fabric, and adhering the fabric to said core.

Preferably each of said two sheets are affixed to opposite sides of said bra core by an adhesive, or by adhesive molding.

Preferably a first of said fabric sheets is placed on the molding surface(s) of a or said first mold portion, whereafter said bra core is placed onto said fabric, whereafter said second of said fabric sheets is placed over said bra core, wherein all layers on said first molding portion are pressed together by a second molding portion, the application of heat and/or adhesive between said core and said fabric sheets thereafter adhering said fabric to the outer surfaces of said core.

Preferably said adhesion of said shoulder straps and said back clasp is achieved by ultrasonic welding.

Preferably at said region where said chest band and each said breast cups are affixed, there is an overlapping of said first and second sheets and said chest band along which a stitching therebetween engages the cups to the band.

Preferably said seamless breast cups are of a kind as hereinbefore described.

Preferably said seamless breast cups are of a kind made according to the methods as hereinbefore described.

Preferably each said first and second sheets of fabric material are unitary.

Preferably no seams exist between said core and said sheets of fabric material save for at regions where said shoulder straps and said back clasp are engaged.

Preferably no seams exist between said core and said sheets of fabric material and said shoulder straps and said back clasp are engaged by adhesion.

In still a further aspect the present invention consists in a brassiere comprising;

a bra core which includes two breast cups of a cup shape to each support a breast of a person, each breast cup engaged to a chest band, said chest band able to extend about the chest of a person and having distal end fastening clips,

a layer of fabric adhered to each side of said bra core, each said layer being of a continuous sheet, formed to the contour the bra core.

Preferably each said layer of fabric is co-extensive with the bra core.

Preferably said bra is ultrasonically welded at its perimeter.

Preferably each said layer of fabric is of a polyester based material.

Preferably each said layer of fabric is heat adhered to said core.

Preferably each said layer is ultrasonically welded at its perimeter.

Preferably said breast cups are of a kind as hereinbefore described.

Preferably said breast cups are stitched to said chest band.

Preferably brassiere is made in accordance to the method as hereinbefore described.

Preferably said brassiere includes over the shoulder straps ultrasonically secured to the main body of said brassiere.

Preferably back clasps are engaged to the distal ends of said chest straps (preferably also by ultrasonic welding).

In a further aspect the present invention consist in a brassiere of a kind made according to the method as hereinbefore defined.

This invention may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, and any or all combinations of any two or more of said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which this invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth. For the purposes of illustrating the invention, there is shown in the drawing a form which is presently preferred. It is being understood however that this invention is not limited to the precise arrangements shown.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the present invention will now be described with reference to the accompanying figures.

Figure 1 is a perspective view of one half (bottom half) of a mold for the manufacture of the breast cup and/or the bra of the present invention,

Figure 2 is a side view illustrating two mold halves and an intermediate foam sheet ready to be pressed between the mold halves for the forming of the foam sheet to define two core components for two mirror image breast cups,

Figure 3 illustrates an underwire assembly,

Figure 4 is a perspective view of a skived panel of foam material to provide a second component to the core of a breast construction,

Figure 5 is a plan view of Figure 4,

Figure 6 is a side view of Figure 4,

Figure 7 is a perspective view of the mold half of Figure 1 but on which the shaped foam sheet of one of the layers of the core is supported and on top of each cup shape, there is provided the underwire assembly of Figure 3,

Figure 8 shows the same mold half in a side view and wherein the skived foam pieces of Figures 4-6 are positioned ready for placement on top of the foam sheet which has previously been formed into the two cup shapes,

Figure 9 illustrates two mirror image cup shaped cores of the breast cup construction and showing in phantom the underwire assembly of each,

Figure 10 illustrates each breast cup construction engaged to a chest band,

Figure 11 illustrates a plan view of a chest band,

Figure 12 illustrates the two mold halves ready for pressing the bra core as shown in Figure 10 with two sheets of fabric to sandwich the bra core,

Figure 13 illustrates a pressed bra after being removed from the mold halves having the sandwiching fabric engaged onto the bra core but prior to a perimeter trimming and sealing, and

Figure 14 illustrates a perimeter trimmed bra of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Breast Cup Construction

The breast cup construction of the present invention is defined by at least a first and second layer of foam material which have each been formed to a three dimensional cup shape. The first and second layer of foam material are adhered to each other and may include an intermediate underwire assembly. The breast cup construction will have a concave side and a convex side. The concave side is that side which will be proximate most to the skin of a person wearing the bra which incorporates the breast cup construction. In the most preferred form, the foam sheet material which is provided on the concave side of the breast cup construction is made from a flat (substantially uniform thickness) piece of foam. The foam that is used for this layer is preferably a urethane foam and of a thickness of approximately 1mm to 5mm. The second layer of foam of the breast cup construction is located on the convex side and is preferably provided from a piece of skived foam which has preferably been cut from a block of foam material. However this second sheet of foam may alternatively also be made from a flat sheet. However there is advantage to the provision of a skived foam piece, in that it already has its three dimensional form defined prior to it being engaged to the foam made from the flat sheet defining the first sheet of the core.

Should the breast cup construction be utilised for the manufacture of an underwire bra, then an underwire assembly as shown in Figure 3 can be provided intermediate of the two foam sheets.

The underwire assembly consists of a wire casing 7 which encloses a wire 8.

The wire casing is preferably made from a fabric material such as polyester based cotton, lycra, spandex or nylon and is effectively a sock into which the wire can be pushed. The wire 8 has at its distal end features which prevent or reduce the possibility of the wire pushing through the fabric material of the casing such as a dome. The wire may also be bent or formed at the ends to provide a less sharp distal end. The casing has sealed ends and some clearance may be provided between the distal ends of the wire and the sealed ends of the casing to provide the wire with some room for movement within the casing without piercing the casing.

The manufacture of the breast cup construction is such that no stitching is required to be used. A mold half 1 as shown in Figure 1 which includes two mirror image breast cup reliefs 5 and a perimeter region 4 is taken, onto which the first sheet of substantially uniform thickness foam 6 is placed. A second mold half 2 which includes substantially complimentary rebate surfaces to the rebate 5 and perimeter 4 of the first mold half will be brought into contact with the foam sheet 6 to thereby press the foam sheet 6 with the first mold half 1 to defi

ne cup shapes in the foam sheet 6. With the application of heat a permanent deformation of the foam sheet 6 can be provided. The foam sheet 6 is preferably subjected to a temperature of approximately 200 °C-210 °C for a duration of 150 seconds by one or both of the mold halves 1, 2 whilst placed together, whereafter the mold halves will be separated and one of the major surfaces of the then formed foam sheet 6 will be exposed. The foam sheet 6 may remain within this the first mold half 1, after forming. Placed on top of each of the cup shapes formed in the sheet 6 are second sheets of foam 11. Such second sheets of foam 11 are of a size which is substantially the same or larger than the cup shapes defined in the sheet 6. The second sheets are placed onto the convex side of the formed sheet 6. The second sheets 11 are preferably of a pre-shaped form and are preferably pieces of skived foam which have been cut from a block of material in a predetermined three dimensional curvature. The second sheets of foam may alternatively be made from a planar sheet of foam and formed either prior to or during its engagement with the first sheet of foam 6.

The skived foam 11, placed onto the formed sheet 6 is then subjected by the second mold half to a pressing with the first sheet. Again a temperature of approximately 200 °C-210 °C and dwell time of 150 seconds subjected to both sheets to thereby fuse both sheets together. Should it be desired that the breast cup construction also includes an underwire, then an underwire assembly as shown in Figure 3 can be included intermediate of the first sheet 6 and second sheet(s) 11, prior to the placement of the second sheet. The underwire assembly of Figure 3 is for example placed onto the formed sheet 6 after it is formed to its three dimensional shape. The underwire assembly may for example be adhered to the first sheet 6 by adhesion using for example an adhesive material. One side of the wire casing may be sprayed by glue for adhesion onto the layer 6 and the other side may be sprayed with a glue for adhesion onto a surface of the sheets 11. Once the second sheet(s) are placed on top of the first sheet 6, the underwire assembly becomes trapped between the two sheets. The underwire assembly is placed in an appropriate location such as towards the bottom curvature of the cup construction.

Once the two cup constructions are formed by the sheet 6 and sheet(s) 11 being adhered together with or without an underwire assembly intermediate thereof, the molding is removed from the mold halves and trimmed to define the breast cup constructions as shown in Figure 9. These are formed by the trimming of the material removed from mold and by preferably leaving a margin of approximately 5-6 mm around the three dimensional cup contour of the cup.

Whilst in the preferred form, each complimentary cup shape (left and right cup) are formed from one molding, alternatively separate molds may be used for molding each of the left and right cups.

The skived foam that may be used, preferably varies in thickness which decreases towards the edges.

When the two mold halves are brought together, a slight gap remains between the three dimensional molding surfaces which define the cup mold shape so the material of the first and second sheets 6, 11 is at least in the middle of the cup shape not completely pressed together. The gap between the first and second mold halves at the cup shape regions, does vary.

In an alternative to the above formation may include the skived foam layer being on the concave side of the cup form.

Bra Construction

The breast cup constructions as hereinbefore described can be utilised in an overall bra construction. In the most preferred form the bra is manufactured by engaging two breast cups to a chest band core 12. The chest band core 12 is engaged to the cups by stitching along part of the perimeter of each cup. The core itself consists of strap regions 20 which are sewn onto the inner gore 13 at stitch lines 21. This is then sewn to the breast cup constructions along seams 22. With the breast cup construction and the chest band core engaged together, a bra core is defined.

With reference to Figure 11, there is shown a region 14 which is a foam region. This region 14 serves to provide support and stiffness to the finished bra at the region between the two breast cups.

The bra core consisting of the foam breast cup construction hereinbefore described is engaged to the chest band core 12, and is then placed into a molding arrangement as shown in Figure 12. A first layer of fabric material 16 is placed onto the lower mold half 1. This fabric material 16 is of a size larger than the size of the bra core so as to completely overlie the bra core. The bra core is then placed onto the fabric material 16 and a second layer of outer fabric material 15 is placed onto the bra core. The second outer layer 15 is also of a size larger than the perimeter size of the bra core. The upper mold half 2 is then brought into engagement to press the layers of the outer fabric 15, 16 and the bra core together. The outer fabric layers 15 and 16 will be deformed to follow the contours of the cup shapes and with a dwell time of 150 seconds and a heating temperature of between 200 °C-210 °C, the outer fabric sheets 15, 16 become adhered to the bra core both at the breast cup constructions and at the chest band core. The sheets of fabric material 15, 16 are substantially each made of a single sheet of material and by the fact that each outer layer overlies the bra core, no seams will be visible to a person once the outer layers 15, 16 have been engaged.

The molding is then removed from the mold halves and the resultant bra precursor as shown in Figure 13 exists. A perimeter margin 17 formed at regions of the bra precursor as shown in Figure 13 by the two mold halves 1, 2 being substantially engaged together in the molding condition, then needs to be trimmed. This trimming is achieved for example by a cutting device. The removal of the margin may alternatively be achieved by a combined ultrasonic cutting and fusing step. The ultrasonic cutting and fusing step will remove the margin from the bra and simultaneously seal the perimeter of the bra to prevent any fraying of material. The ultrasonic fusing and cutting can be achieved by an ultrasonic bonding machine (such as a sonobond machine) set to a 3mm setting. The molded bra is placed into a fusing horn for fusing and cutting the final shape. Thereafter straps and hook pads can be added the fused and cut bra by either an ultrasonic bonding or by stitching.

The bra of the present invention can be made substantially at least without any visible stitching. The bra is much more durable and eliminates problems caused by repeated washing and wearing which can cause the seams of the stitching to become undone or fray. The use of the bra cup construction comprising of the at least two sheets of foam material makes the shape of the bra more sustainable after washing.

The durability of the bra and the lack of stitching means that skin allergies/abrasions from wires which would have penetrated through the bra, and/or loose

stitching can be avoided. Because of the sandwiching nature of the bra construction, little or no undesirable deformation of the bra occurs. The positioning of the wire assembly between the cups ensures that they are much more secured and its position is much more controlled and thereby prevents sliding. This leads to stronger support and more conformed fitting of the bra against the body. With the lack of stitching across the breast cup construction, it means the contour lines of the bra are much less visible and the breast curve can be well concealed.

The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof and accordingly reference should be made to the appended claims rather than the foregoing specification as indicating the scope of the invention.

CLAIMS

1. A breast cup construction comprising, a core of at least a first sheet of molded foam material and a second sheet of foam material laminated to said first sheet and adhered (whether directly or indirectly) to said first sheet to define a concave cup form for use in a bra assembly.
2. A breast cup as claimed in claim 1 wherein said first and second sheets are co extensive.
3. A breast cup as claimed in claim 1 wherein said second sheet is a piece of skived foam cut to a predefined cup shape.
4. A breast cup as claimed in claim 1 wherein said first sheet of molded foam material is an open cell foam formed from a sheet of foam material of 1mm to 5mm thick.
5. A breast cup as claimed in claim 1 wherein an underwire structure is provided intermediate of said first sheet and said second sheet.
6. A breast cup as claimed in claim 5 wherein said underwire structure comprises a rigid elongate member (whether of metal or plastic) and a casing about at least part of said rigid elongate member.
7. A breast cup as claimed in claim 6 wherein said casing is of a fabric material.
8. A breast cup as claimed in claim 6 wherein said casing is adhered to one or each of the facing surfaces of said first and second sheet by an adhesive material.
9. A breast cup as claimed in claim 6 wherein said casing is a tubular sock within which said rigid elongate member is located, the sock having closed distal ends.
10. Two breast cups as claimed in claim 1 wherein said first sheets of each cup has been generated out of a single sheet of foam material.
11. A method of manufacturing a breast cup construction comprising: placing a sheet of foam material on one mold portion of a molding machine which includes at least one cup shaped molding surface, closing said molding machine by bringing an other mold portion towards said one mold portion, said other mold portion having a substantially complementary shaped molding surface to said first mentioned molding surface and between which

said sheet material is positioned,

wherein the bringing together thereby subjects said sheet of foam to a molding force which with the combination of heat, will provide a permanent cup shape to said sheet,

laminating a second sheet of foam material to one of the major surfaces of said first mentioned sheet of foam material.

12. A method as claimed in claim 11 wherein said laminating of said second sheet of foam material to said first mentioned sheet is achieved by the placement of said second sheet adjacent said first sheet and applying a force pressing said second sheet and said first sheet together and with the application of heat and an appropriate dwell time of pressing thereby adhering said first and second sheets together.

13. A method as claimed in claim 11 wherein laminating is achieved by the use of said first and second mold halves.

14. A method as claimed in claim 11 wherein prior to laminating of said first and second sheet, an underwire structure is provided intermediate of said first and second sheet.

15. A method as claimed in claim 11 wherein after said laminating the first and second sheets are trimmed to a desired perimeter shape.

16. A method of making a bra comprising
taking two preformed (preferably seamless) breast cups and affixing each breast cup to a chest band at the lower regions of each cup to define a bra core,
sandwiching said two breast cups and said chest band between two sheets of fabric, and adhering the fabric to said core.

17. A method as claimed in claim 16 wherein each of said two sheets are affixed to opposite sides of said bra core by an adhesive, or by adhesive molding

18. A method as claimed in claim 16 wherein a first of said fabric sheets is placed on the molding surface(s) of a or said first mold portion, whereafter said bra core is placed onto said fabric, whereafter said second of said fabric sheets is placed over said bra core, wherein all layers on said first molding portion are pressed together by a second molding portion, the application of heat and/or adhesive between said core and said fabric sheets thereafter adhering said fabric to the outer surfaces of said core.

19. A method as claimed in claim 16 wherein adhesion of said shoulder straps and said back clasp is achieved by ultrasonic welding.

20. A method as claimed in claim 16 wherein at said region where said chest band and each said breast cups are affixed, there is an overlapping of said first and second sheets and said chest band along which a stitching therebetween engages the cups to the band.

21. A brassiere comprising;
a bra core which includes two breast cups of a cup shape to each support a breast of a person, each breast cup engaged to a chest band, said chest band able to extend about the chest of a person and having distal end fastening clips,
a layer of fabric adhered to each side of said bra core, each said layer being of a continuous sheet, formed to the contour the bra core.

22. A bra as claimed in claim 21 wherein each said layer of fabric is co-extensive with the bra core.

23. A bra as claimed in claim 21 wherein said bra is ultrasonically welded at its perimeter.

24. A brassiere of a kind made according to the method as claimed in claim 16.

1. ABSRACT

A brassiere comprising a bra core which includes two breast cups of a cup shape to each support a breast of a person. Each breast cup is engaged to a chest band wherein the chest band is able to extend about the chest of a person and has distal end fastening clips. A layer of fabric is adhered to each side of the bra core, the layer being of a continuous sheet, formed to the contour the bra core.

2. REPRESENTATIVE DRAWING

Fig. 1

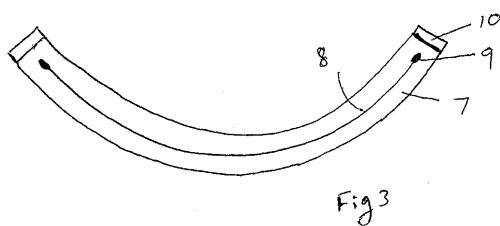
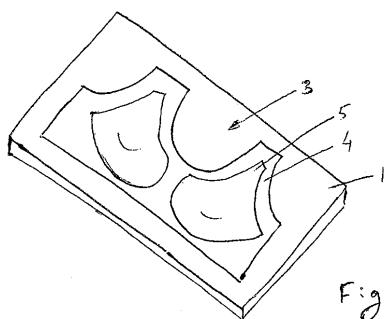



Fig.3

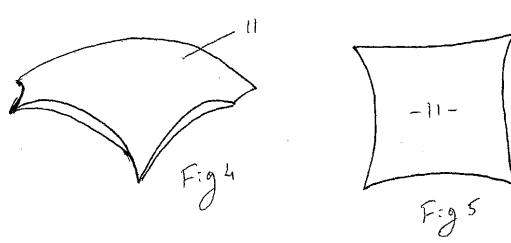
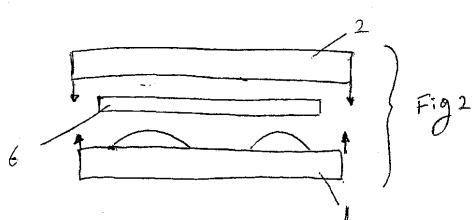



Fig.4

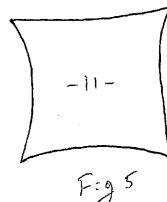


Fig.5

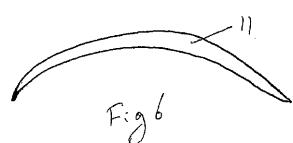
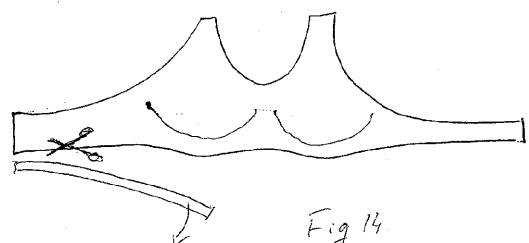
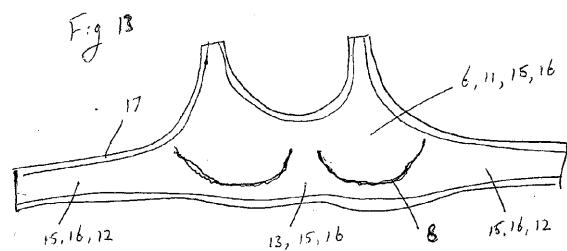
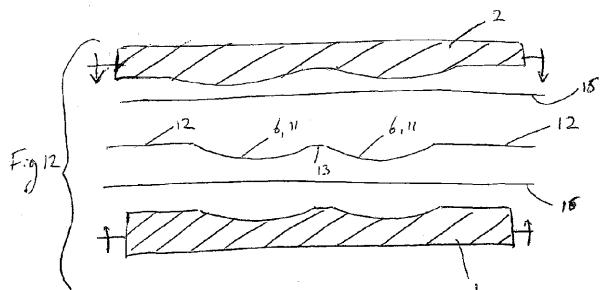
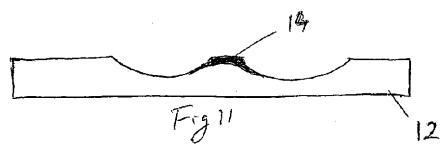
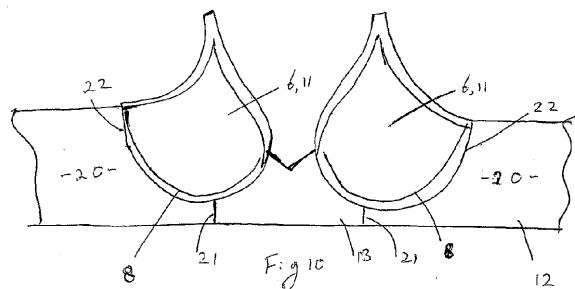
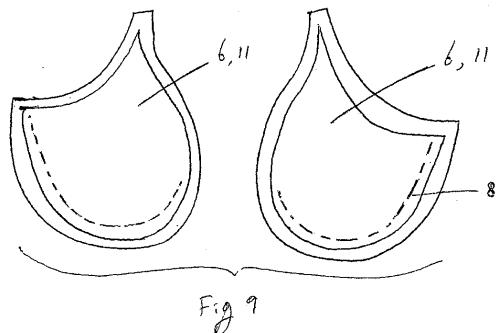
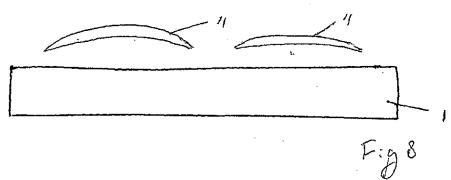
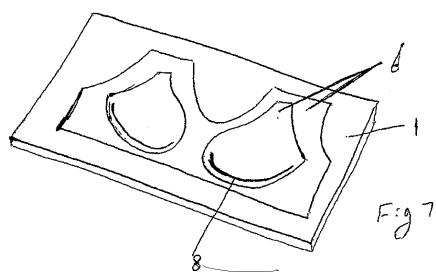










Fig.6

