发明名称
用于制造主要由含9％～12％铬的马氏体钢组成的蒸汽发生器管壁的方法

摘要
本发明涉及一种用于制造主要由含9％～12％铬的马氏体钢组成的蒸汽发生器管壁的方法，其中管壁由管－板条－管组合形成并且由平面的管壁面板、弯曲的管壁面板、过渡管壁面板和拐角弯曲部中的至少一种的多个管壁组成部件组装而成，并设计成在管壁区域上具有分别构成为通口的容纳元件。在所述管壁区域处管通过管壁，并且管壁面板在周边具有纵向板条－板条面板接缝和横向圆周焊接－面板接缝，该方法包括以下步骤：在车间，通过焊接相应的部件，制造主要由含9％～12％铬的马氏体钢组成的并且在确定的位置处由不需热处理的材料组成的管壁组成部件；利用第一加热设备在车间中对管壁组成部件进行回火热处理；利用焊缝在装配地点使管壁组成部件在其圆形焊缝－面板接缝处连接；利用第二加热设备在装配地点对在管壁组成部件的圆形焊缝－面板接缝处的焊缝进行回火热处理；利用焊缝在装配地点使管壁组成部件在它的板条－板条面板接缝处连接，而对这些焊接进行后面的回火热处理；引导所制的管通过管壁的各自的容纳元件，并且在装配地点利用焊缝连接该管与容纳元件连接，而对这些焊缝进行后面的回火热处理。
1. 一种用于制造主要由含 9-12% 铬的马氏体钢组成的蒸汽发生器管壁的方法，其中管壁 (1) 由管-板条-管组合形成并且由平面的管壁面板 (2)、弯曲的管壁面板 (2.1)、过渡管壁面板 (2.2) 和拐角弯曲部 (28) 中的至少一种的多个管壁组成部件组装而成，并设计成在管壁区域 (26) 上具有分别构成为通口 (20) 的容纳元件 (13, 22)，在所述管壁区域上管 (14) 穿过管壁 (1)，并且管壁面板 (2, 2.1, 2.2) 在其周边上在纵向侧具有板条-板条-面板接缝 (6) 以及在横向侧具有圆形焊缝-面板接缝 (7)，该方法包括以下步骤，

a) 在车间中，通过利用焊缝 (8) 将管 (3, 3.1)、板条 (4) 和半板条 (5) 以及利用焊缝 (15) 将容纳元件 (13, 22) 连接成管壁面板 (2, 2.1, 2.2)，并且通过利用焊缝 (30) 将拐角弯曲部 (28) 与连接板条 (29) 连接，制造所述平面的管壁面板 (2) 和/或弯曲的管壁面板 (2.1) 和/或过渡管壁面板 (2.2) 和/或拐角弯曲部 (28)，其中过渡管壁面板 (2.2) 构造成具有成形件 (24)，所述成形件在过渡部 (32) 处通过焊缝 (25) 与倾斜和垂直布置的管 (3, 3.1) 的端部相连接，而且

中间的管 (3) 和板条 (4) 由含 9-12% 铬的马氏体钢组成，并且在管壁面板 (2, 2.1, 2.2) 的两侧分别最靠外的管 (3.1) 由含 9-12% 铬的马氏体钢或者不需热处理的材料组成，设置在板条-板条-面板接缝 (6) 处的半板条 (5) 由不需热处理的材料或含 9-12% 铬的马氏体钢组成，沿两个板条-板条-面板接缝 (6) 在所述半板条上施加一由不需回火热处理的材料组成的缓冲部 (21)，所述容纳元件 (13, 22) 由不需热处理的材料组成，

具有连接板条 (29) 的拐角弯曲部 (28) 由不需热处理的材料组成，

其中，所述成形件 (24) 由含 9-12% 铬的马氏体钢或者由不需热处理的材料组成，
b) 在车间中利用第一加热设备对所制造的管壁面板（2, 2.1, 2.2）的焊缝（8, 15, 21, 25）进行回火热处理，

c) 在装配地点，利用焊缝（9, 9.1）在使用填充板（27）的情况下使所述平面的管壁面板（2）和/或弯曲的管壁面板（2.1）和/或过渡管壁面板（2.2）和/或拐角弯曲部（28）在其圆形焊缝-面板接缝（7）处连接，所述填充板（27）由含9-12%铬的马氏体钢组成，

d) 在装配地点，利用设置在焊缝（9, 9.1）的区域中以及在两侧设置在管壁面板（2, 2.1, 2.2）上的第二加热设备（10）对管壁面板（2, 2.1, 2.2）和/或拐角弯曲部（28）的圆形焊缝-面板接缝（7）处的焊缝（9, 9.1）进行回火热处理，

e) 在装配地点，利用焊缝（12）将所述平面的管壁面板（2）和/或弯曲的管壁面板（2.1）和/或过渡管壁面板（2.2）和/或拐角弯曲部（28）在它们的板条-板条-面板接缝（6）处连接，而不对这些焊缝（12）进行后续的回火热处理，

f) 将带有套管的套管（17）制备的管（14）引导穿过管壁（1）的相应的容纳元件（13, 22），其中，由不需热处理的材料制备的套管（17）分别设置在管壁（1）的通口区域中并与管（14）连接，并且在装配地点利用焊缝（16）使套管（17）与容纳元件（13, 22）连接，而不对这些焊缝（16）进行后续的回火热处理。

2. 根据权利要求1的方法，其特征在于，拐角弯曲部（28）被构造成单弯曲部或双弯曲部。

3. 根据权利要求1的方法，其特征在于，附加于步骤a），一管壁面板（2, 2.1, 2.2）的板条（4）中的至少一个在其长度范围的一个部分区域上并且从板条（4）的一个端部或者从板条（4）的两个端部出发具有在所述板条（4）的纵向上的形成的装配缝（18），所述装配缝用于补偿尺寸不精确性，并且在所述装配缝（18）的区域中，用由不需进行后热处理的材料组成的板条（4.1）替代由含9-12%铬的马氏体钢组成的板条（4.1）。

4. 根据权利要求3的方法，其特征在于，附加于权利要求1的
步骤 c），在管壁面板（2, 2.1, 2.2）处的尺寸不精确性的补偿之后，在装配地点利用焊缝（23）封闭装配缝（18）。

5. 根据权利要求 4 的方法，其特征在于，附加于权利要求 1 的步骤 d），对在管壁面板（2, 2.1, 2.2）的装配缝（18）处的焊缝（23）的回火热处理在装配地点利用第二加热设备（10）进行，所述第二加热设备设置在所述焊缝（23）的区域内并在两侧设置在所述管壁面板（2, 2.1, 2.2）上。

6. 根据权利要求 3 的方法，其特征在于，所述板条（4.1）的长度等于所述装配缝（18）的长度加上 10-100mm 的余量（X）。

7. 根据权利要求 1 的方法，其特征在于，一管壁面板（2, 2.1, 2.2）的个别或全部管（3, 3.1）在它们的圆形焊缝-面板接缝（7）处构造有由不必热处理的材料组成的管延伸部（19）。

8. 根据权利要求 7 的方法，其特征在于，与装配缝（18）直接相邻的管（3, 3.1）构造成具有管延伸部（19），并且所述管延伸部（19）的长度等于板条（4.1）的长度。

9. 根据权利要求 1 的方法，其特征在于，所述容纳元件构造成填充板（22），并且所述填充板封闭在具有管通口的管壁区域（26）中通过至少一个管（3, 3.1）的向外弯曲形成的开口，其中，填充板（22）利用焊缝（15）与包围露出的开口的管（3, 3.1）和/或板条（4, 4.1）和/或半板条（5）连接。

10. 根据权利要求 1 或 9 的方法，其特征在于，所述容纳元件构造成套管（13），并且所述套管设置在板条（4）之内或两个半板条（5）之内或者在填充板（22）之内并与其焊接。

11. 根据权利要求 1 的方法，其特征在于，附加于步骤 d），在与第二加热设备（10）相邻的区域中装入附加的第三加热设备（11）以生成辅助热，所述第二加热设备（10）设置在焊缝（9, 9.1）的区域内并且在两侧设置在管壁面板（2, 2.1, 2.2）上。

12. 根据权利要求 1 的方法，其特征在于，当使用由含 9-12％铬的马氏体钢组成的半板条（5）时，相邻接的管（3.1）也由含 9-12％
铬的马氏体钢组成。

13. 根据权利要求 1 或 5 或 11 的方法，其特征在于，在所述回火热处理期间，通过利用液压或机械辅助结构实现的自重的力转向来消除管壁面板（2, 2.1, 2.2）的退火区域的力。

14. 根据权利要求 1 或 3 的方法，其特征在于，所述板条（4, 4.1）和半板条（5）在它们的与管相邻接的侧面（3）上构成有分别最高为 2mm 的自然轧制边缘。

15. 根据权利要求 1 或 3 的方法，其特征在于，板条（4, 4.1）和半板条（5）的与管相邻接的侧面（31）在圆形焊缝-面板接缝（7）的区域中构成为具有用于双斜边坡口焊接的倒角。

16. 根据权利要求 1 或 4 的方法，其特征在于，在填充板（27）和/或装配缝（18）处利用 WIG 方法形成构造成填充焊接部的焊缝（9.1, 23）。

17. 根据权利要求 1 或 3 的方法，其特征在于，在利用焊缝（8）在车间中将板条（4, 4.1）和半板条（5）与管（3, 3.1）连接之前，对这些结构进行预热，并接着利用 UP 焊接法形成焊缝（8）。

18. 根据权利要求 1 的方法，其特征在于，附加于步骤 a），在管壁面板（2, 2.1, 2.2）的制造过程中，对还未完成的管壁面板（2, 2.1, 2.2）的部分或区段进行中间退火。

19. 根据权利要求 1 的方法，其特征在于，主要由含 9-12%铬的马氏体钢组成的附加焊合部件的、适于在装配地点处焊合构件的装配焊接的连接位置，车间中构成具有由不需热处理的材料组成的镀层和/或由不需热处理的材料组成的锻造或轧制半成品和/或由不需热处理的焊接材料组成的覆盖涂料，接着，在对所述焊合部件实施步骤 b）之前，在车间中将所述焊合部件焊接到管壁面板（2, 2.1, 2.2）上。

20. 根据前述权利要求中任一项的方法，其特征在于，对于由含 9-12%铬的马氏体钢组成的管（3, 3.1）、板条（4）、成形件（24）和填充板（27）相互之间的焊接使用相同类型的焊接添加材料。
21. 根据前述权利要求中任一项的方法，其特征在于，对于由不需热处理的材料组成的管（3.1）、板条（4.1）、半板条（5）、套管（13）、填充板（22）、拐角弯曲部（28）、在拐角弯曲部（28）上的连接板条（29）以及缓冲部（21）相互之间的焊接使用相同类型的焊接添加材料。

22. 根据前述权利要求中任一项的方法，其特征在于，对于由含9-12%铬的马氏体钢组成的管（3.1）、板条（4）、或板条（5）和/或或半板条（5）和/或成形件（24）和/或填充板（27）与不需热处理的材料组成的管（3.1）和/或板条（4.1）和/或半板条（5）和/或套管（13）和/或填充板（22）和/或拐角弯曲部（28）和/或在拐角弯曲部（28）上的连接板条（29）和/或缓冲部（21）的焊接使用不需要后热处理的焊接添加材料。

23. 根据前述权利要求中任一项的方法，其特征在于，将材料X10CrWMoVNb9-2用作所述含9-12%铬的马氏体钢。

24. 根据前述权利要求中任一项的方法，其特征在于，将NiCr23Co12Mo mod或NiCr23Co12Mo用作所述不需热处理的材料。

25. 根据权利要求1的方法，其特征在于，根据步骤a），为了制造弯曲的管壁面板（2.1），半板条（5）和分别最靠外侧的管（3.1）由不需热处理的材料组成。

26. 根据权利要求1的方法，其特征在于，为了制造倾斜布管的管壁（1），使用平面的管壁面板（2）和弯曲的管壁面板（2.1）或者使用平面的管壁面板（2）和拐角弯曲部（28）。

27. 根据权利要求1的方法，其特征在于，为了制造垂直布管的管壁（1），使用平面的管壁面板（2）。

28. 根据权利要求1的方法，其特征在于，为了制造倾斜和垂直布管的管壁（1）使用平面的管壁面板（2）、弯曲的管壁面板（2.1）和过渡管壁面板（2.2），或者使用平面的管壁面板（2）和过渡管壁面板（2.2）和拐角弯曲壁（28）。

29. 根据权利要求1的方法，其特征在于，回火热处理在
740-780℃的温度下进行。

30. 根据权利要求1的方法，其特征在于，回火热处理在2分钟/mm壁厚的时间间隔上进行，但是至少进行60分钟。
用于制造主要由含 9-12%铬的马氏体钢组成的蒸汽发生器管壁的方法

技术领域

本发明涉及一种制造主要由含 9-12%铬的马氏体钢组成的蒸汽发生器管壁的方法。

背景技术

管壁主要用于利用矿物燃料加热的发电设备的蒸汽发生器。这里，管壁围绕在大多数情况下为矩形的燃烧室以及布置在其上的气道，在该气道中布置有通常由盘管形成的加热表面。由焊接的管-板条-管组合形成的管壁的各个管在其中运送利用矿物燃料的燃烧加热的工作介质，并且将该工作介质传递至进一步的处理。在已知的焊接管壁的情况下，通常使用材料 16Mo3、13CrMo4-5 以及 7CrMoVTiB10-10（T24）和 ASME（美国机械工程师协会）批准的材料 T23。通常，在管壁的焊接制造或处理之后，这些材料不需要热处理。

希望实现具有较高的尤其有助于减小大气中的 CO₂ 排放的效率的蒸汽生成，作为多个措施之一，这导致增加蒸汽发生器的蒸汽参数提高。由于先前使用的材料不能满足更高的要求，为了获得或实现较高的蒸汽参数，即蒸汽工作介质的较高压力和温度，需要使用例如材料 X10CrWMoVNb9-2(T92)的含 9-12%铬的马氏体钢作为管壁材料。在每种情况下，这种新材料的钢在焊接加工之后总是需要热处理。在管壁的制造期间，在车间以及在工地或在装配期间都需要大量的焊接加工。具体来说，与车间和工地相关的这些加工包括：

车间：包括所有焊接部件的管壁面板的制造和完成，壁开口和弯出部的制造以及用于在倾斜卷绕部内的管壁拐角的壁弯曲部和拐角弯曲部的制造，从倾斜管到竖直管的过渡区的制造。
装配：片段和面板接缝、包括所有必需的填充和密封焊接的圆形焊缝/周边焊缝（Rundnaht）处的压力部件装配接缝、开槽板条（装配缝）处的接缝和在壁通口的区域内套筒和套管上的密封焊接部的焊接，壁上的焊合部件的完成。

发明内容

本发明的目的是，提出一种制造主要由含9-12%铬的马氏体钢组成的蒸汽发生器管壁的方法，其中该制造以高效和实用的方式进行。特别地，本发明的目的特别是提出一种在车间和施工现场制造主要由含9-12%铬的马氏体钢组成的蒸汽发生器管壁的方法，该方法由以下限制条件限定：

- 使施工现场处的焊接工作和热处理最少，
- 在没有后续热处理的情况下，施工现场处的结构上必需的焊接的设计规划，
- 在使用优化的局部热处理策略的情况下，施工现场处的结构上必需的焊接的设计规划。

上述目的由根据本申请的权利要求1的特征的方法实现。从属权利要求中记载了本申请的有利实施例。通过本发明的解决方案，实现了一种制造主要由含9-12%铬的马氏体钢组成的蒸汽发生器管壁的方法，该方法具有以下优点：

- 能够高效地和实际可行地制造主要由含9-12%铬的马氏体钢组成的管壁，
- 通过实现较高的蒸汽参数提高蒸汽发生器的效率，
- 通过提高蒸汽发生器的效率减少了向大气中的CO₂排放。

在本发明的有利的实施例中，拐角弯曲部被实现为单弯弧或双弯弧。这个措施使得在拐角弯曲部与两个相邻的相互成直角的管壁的管壁面板的装配期间拐角弯曲部可进行简单的适配和连接。

本发明的一个有利的实施例还提出，附加于方法步骤a），管壁面板的板条中的至少一个在其长度范围的一个部分区域上具有从板条
的一端或者从板条的两端开始在所述板条的纵向方向上细长地构成的\n装配缝，该装配缝用于补偿尺寸误差，并且在所述装配缝的区域中，\n用由不必进行回火热处理和后热处理的材料组成的板条替代原含\n9-12%铬的马氏体钢组成的板条。通过此措施，一方面在施工现场可\n以明显更容易地补偿在管壁面板处的管分布的结构不精确性，这是因\n为具有装配缝的管壁面板的管分布可被非常容易地调整/匹配，即可能\n没有相互对齐的相邻接管壁面板的管可以通过使用装配缝间隙进行调\n整，从而在调整之后，管直接彼此相对并且相互对齐。另一方面，已\n配合的管壁面板的已有装配缝然后可在装配地点被焊死（封焊）。通\n过有利地利用由将不需要热处理的材料制成的并且具有槽的板条，不\n必需在焊接之后进行回火热处理。但是，对于非常窄的板条有利的是，\n可对装配缝与相邻管的填充焊接的区域进行回火热处理，这是因为不\n需热处理的板条和应热处理的相邻管都收到焊接温度的作用。在另一\n个有利的实施例中，设有装配缝的板条的长度等于所述装配缝的长度\n加上 10-100mm 的余量（X）。由此确保了稍后的装配缝的焊接在由\n不需热处理的材料制成的板条的区域中进行。

有利地，管壁面板的个别或全部管在其圆形焊缝面板接缝处形成\n一由不必热处理的材料制成的管延伸部。通过该措施可以实现，在例\n如板条中的紧邻管延伸部的装配缝的在装配地点处的焊接之后，不必\n需在管延伸部上进行事后的回火热处理。管延伸部可以有利地直接与\n管装配缝相邻设置，并且具有带有装配缝的板条的长度。

在本发明的一个有利的实施例中，用于容纳穿透管壁的管的容纳\n元件被构造成填充板，并且所述填充板封闭两个管和/或板条和/或半\n板条之间的开口，所述开口通过至少一个管的弯出部在具有管穿透部\n的管壁区域中形成，其中填充板与该管和/或板条和/或半板条焊接。\n本发明的另一个有利实施例提出，该容纳元件被构造成套管，并且设\n置在板条内部或两个半板条内部或者填充板内部，并与其焊接。当在\n板条中存在足够的用于安装和焊接套管的空间时，优选使用套管。因\n此，尤其当在板条的区域中通过管壁的盘管的管的通口由于空间的原
因而难以实现或者过窄时，使用填充板。通过此措施，从制造的角度出发，可实现用于设置在蒸汽发生器管壁中的盘管的管的、穿过管壁的易于形成通口。

在本发明的另一个有利实施例中，附加于本发明的步骤 d），在与焊缝和在两侧安装在管壁面板上的加热设备的区域相邻的区域中装入附加的加热设备。借助于这些附加的加热设备生成辅助热，以用于减小在回火处理期间出现的温度梯度以及由于温度差导致的应力。

在本发明的另一有用实施例中，当使用由含 9-12%铬的马氏体钢制成的、带有由不必热处理的材料制成的覆盖填料的半板条时，与该半板条相邻接的管也由相同材料制成，因为这从焊接和热处理角度考虑是合理的。

本发明的另一有用实施例提出在所述回火处理期间，通过利用液压或机械辅助结构实现的自重的力偏转来消除管壁面板的回火区域的力。由此可实现最优的热处理。

有利的是，使板条和半板条在其与管相邻接的侧面上形成最大分别为 2mm 的自然轧制边缘。这用作使用在减少焊接应力方面被优化的焊接参数的基础。另外有利地，与板条和半板条管相邻接的侧面上形有用于双斜坡坡口焊接的倒角。通过此措施，在此区域可实现管-板条连接的完全连接，即在板条的整个壁厚度上的焊接，从而减小应力集中效果。

本发明的另一个有利的实施例提出，回火热处理在 740-780°C 的温度下进行，并且在本发明的还另一个有利的实施例中，回火热处理在 2 分钟/mm 壁厚的时间段上进行，但是至少进行 60 分钟。这样，可确保对将被处理的组件进行无缺陷的回火热处理或回火。

本发明的另一个有利的实施例提出，主要由含 9-12%铬的马氏体钢制成的附加的焊合部件（例如焊装侧板）的装配焊接连接位置在车间中形成为具有由不必热处理的材料组成的镀层和/或由不必热处理的材料组成的铸造或轧制半成品和/或由不必热处理的焊料组成的缓冲件，然后，在车间中将该焊合部件焊接到管壁面板上，并且与管壁
面板一起在加热设备中进行回火热处理。通过此措施实现了，在管壁
上存在具有焊合表面的焊合部位，在施工现场可将部件焊接在其上，
而不必对焊缝热处理。

附图说明

下文，将借助于附图和描述来更详细地说明本发明的实施例。在
附图中：

图 1 是蒸汽发生器管壁的平面管壁面板的示意图，该管壁面板已在
车间中制造出，

图 2 示出图 1 中的局部剖面 A-A 的剖视图，

图 3 类似于图 1，但是示出在板条中具有装配缝的可选实现方案，

图 4 类似于图 1，但是示出具有装入管壁面板的套管的可选实现
方案，和在填充板中具有开口以布置在管壁中的盘管的管穿过的可
选择方案，

图 5 类似于图 2，但是示出在半板条上具有缓冲件的可选实现实
方案，

图 6 类似于图 1，在平面图中示意性地示出管壁面板的端部弯曲
成拐角，

图 7 在俯视图中示意性地示出平面管壁面板的连接部分的棱角，

图 8 类似于图 1，但是在俯视图中示意性地示出从管壁的倾斜管
到竖直管的过渡件，

图 9 在俯视图中示意性地示出管壁面板的在其圆形焊缝-面板接
缝处的装配侧的连接，从而在该图的上部部分中，示出管壁面板的焊
接，并且在该图的下部部分中，示出利用局部使用的并且局部作用的
加热设备对焊缝进行的回火热处理，

图 10 示出图 9 的局部剖面 B-B 的横剖视图，

图 11 在俯视图中示意性地示出管壁面板与其的板条-板条-面板
接缝的装配地点连接，

图 12 示出图 11 的细部 ‘E’ 的纵向剖视图，
图 13 示出图 11 的局部剖面 C-C 的横剖视图，
图 14 示出图 4 的局部剖面 D-D 的横剖视图，
图 15 示出图 4 的局部剖面 I-I 的横剖视图，
图 16 示意性地示出板条或半板条（用于管-板条连接）的侧视图，
图 17 示出图 16 的剖面 F-F 的横剖视图，
图 18 示出图 4 的剖面 G-G 的横剖视图，
图 19 示出图 4 的剖面 H-H 的横剖视图。

具体实施方式

根据本发明制造的管壁 1 主要用于利用矿物燃料加热的发电设备
的未示出的蒸汽发生器中。这里，管壁 1 包围在大多数情况下为矩形
或方形的燃烧室，以及布置在其上并且在内部通常设置有由盘管形成的
的加热表面的气道。这意味着通常作为管壁的四个侧壁包围蒸汽发生
器的气道和/或燃烧室。由焊接的管-板条-管组合形成的管壁 1 的各管
在其中引导利用矿物燃料的燃烧加热的工作介质，并且将该工作介质
传送至另外的处理过程。根据蒸汽发生器的结构形式不同，管壁 1 可
被垂直地或倾斜地布管，或者可由倾斜和垂直管道的组合形成，即，
在管壁 1 中各管倾斜地或者说成一定角度地或者垂直地延伸。这又意
味着根据蒸汽发生器或管壁 1 的结构形式不同，可以存在包括平面的
管壁面板 2、弯曲管壁面板 2.1、过渡管壁面板 2.2 和拐角弯管 28 的管
壁组件部件的不同组装。在仅倾斜布管的管壁 1 中，在从倾斜布管的
管壁区域到垂直布管的管壁区域的过渡部处的过渡管壁面板 2.2 被省
去，而在仅垂直布管的管壁 1 的情况下，在管壁 1 的拐角处的管弯曲
部也被省去。

图 1 示出在车间中完成的平面的管壁面板 2，其中需要多个这样
的管壁面板 2 来制造未示出的蒸汽发生器的管壁 1，因为在施工现场、
即在装配期间，管壁面板 2 在它们的板条-板条和圆形焊缝-面板接缝 6、
7 处焊接在一起，所述各接缝形成管壁面板 2 的四周边缘。平面的管
壁面板 2 既可用于垂直布管的管壁 1，也可以用于倾斜布管的管壁 1,
并且如图 1 所示，它可构造成矩形或根据需要构造成梯形或其它形状。其由多个管 3、3.1 和布置在管 3、3.1 之间的板条 4 形成，以及在管壁面板 2 的板条-板条-面板接缝 6（即，沿管 3、3.1 的纵向轴线或者平行于该纵向轴线延伸的面板接缝或外边缘）处分别构成为具有半板条 5。中间的管 3 和板条 4 由含 9-12%铬的马氏体钢制成，优选地由材料 X10CrWMoVNb9-2(T92) 制成，平面的管壁面板 2 的两侧的分别最靠外侧的管 3.1 由含 9-12%铬的马氏体钢制成，或者由不需热处理的材料制成。半板条 5 由不需热处理的材料制成或者由含 9-12%铬的马氏体钢制成，其中对于后一种材料，将由不需热处理的材料制成的缓冲件 21 施加到半板条 5 的纵向侧上（见图 5）。因此，根据本发明，管壁面板 2 沿板条-板条-面板接缝 6 由不需热处理的材料构成。管壁面板 2 的所有管 3、3.1、板条 4 以及半板条 5 在车间中利用焊缝 8 连接成管壁面板 2，其中焊缝 8 可构造成如图 2 所示的角焊部，或者也可以构造成其它的方式（双斜边坡口焊缝）。为了将车间焊缝 8 和以后在装配地点施加的焊缝 9 和 12（见图 9 和 11）施加在板条-板条-和圆形焊缝-面板接缝 6、7 处，在管 3、3.1、板条 4 和半板条 5 的端面上设置相应的倒角。对于例如利用涂覆焊接施加的缓冲件 21，根据图 5，倒角可在将缓冲件施加在半板条 5 的纵向侧上时一起形成。管壁 1 中的例如用于燃烧器口、检查门等可能是必需的壁开口或弯曲部在各管壁面板 2 的制造期间被加以考虑，但是未在图 1 中示出。

对于不需热处理的材料的利用或使用，所要求或所指的是在将其与待连接的构件焊接之后不需要回火热处理或后热处理的材料。

对于用于管壁面板 2 的管 3.1 和半板条 5 的材料的选择这样进行，即，当半板条 5 由含 9-12%铬的马氏体钢制成时，相邻接的管 3.1 优选地由相同材料制成。当半板条 5 由不需热处理的材料制成时，如果半板条 5 足够长并且半板条 5 和管 3.1 之间的焊缝 8 的影响较为轻微，则相邻接的管 3.1 可优选地由含 9-12%铬的马氏体钢制成。对于半板条 5 很短并且由此半板条 5 和管 3.1 之间的焊缝 8 的影响很大情况，相邻接的管 3.1 优选地也由不需热处理的材料构成。
对于蒸汽发生器具有倾斜布管或具有倾斜和垂直布管的管壁 1 的情况，倾斜布管的管壁 1 需要其端部根据图 6 弯曲并由此形成管壁 1 的拐角的管壁面板 2.1。为了制造管壁面板 2.1，使用已如上所述地制造的平面的管壁面板 2，并且该平面的管壁面板在其端部利用相应的弯曲工具弯曲，从而管壁面板 2.1 的端部成形为拐角。这里优选这样来进行，即，使管 3、3.1 以及板条 4 和半板条 5 在管壁面板 2.1 的弯曲侧的端部具有至少一个短的直区域，即一确定的侧边长度 Z1，因此管和板条端部没有终止于该管弯曲部。管出口处的直区域简化了在施工现场后圆弧焊缝 - 面板接缝 7 的连接。侧边长度 Z1 可以从 0.3米到数米。另外，对于弯曲的管壁面板 2.1，除了由不需热处理的材料制成的半板条 5 之外，还使用粘靠在其上的优选也由不需热处理的材料制成的管 3.1。这样简化了在装配地点处的板条 - 板条 - 面板接缝 6 上的焊接处理。

作为使用在其端部弯曲的管壁面板 2.1 以形成管壁 1 的可替代方案，可使用平面的管壁面板 2，在施工现场装配管壁 1 时该平面管壁面板 2 在管壁 1 的拐角处理与拐角弯曲部 28 连接。为此，与管壁面板 2 在时间上并行地，根据图 7 的拐角弯曲部 28 在车间中优选地单独地制作或者作为双拐角弯曲部制造，其中每个（双）拐角弯曲部 28 都具有连接板条 29，以便以后在装配地点与相邻接的（双）拐角弯曲部 28 连接（对应于管 3 和板条 4 的连接），其中连接板条 29 通过焊缝 30 与该（双）拐角弯曲部 28 连接。单或双拐角弯曲部 28 和焊接到其上以形成管 - 板条 - 管连接的连接板条 29 由不需热处理的材料制成。这使得可利用焊接在装配地点处实现管壁面板 2 与弯角弯曲部 28 以及连接板条 29 的连接，而无需事后对拐角弯曲部 28 和连接板条 29 进行回火热处理。是弯曲的管壁面板 2 还是平面的管壁面板 2 与弯角弯曲部 28 相结合地使用的决定必须或者可从商业和构造的角度考虑。尽管使用弯曲的管壁面板 2.1 已证明是较为经济的，但是平面的管壁面板 2 结合弯角弯曲部 28 的使用在管壁 1 的拐角区域的尺寸不精确性的补偿方面是有利的。对于弯曲的管壁面板 2.1，弯角弯曲部 28 在其端部具有
至少一个短的直区域，即一确定的侧边长度 Z_2，其中侧边长度 Z_2 至少应为拐角弯管的直径（通常在 30-50mm 之间）的一倍。

另外，对于具有倾斜和垂直布管的蒸汽发生器，需要根据图 8 的过渡管壁面板 2.2，其实现了不同地布管的管壁 1 之间的所述过渡部 32。为此，将两个根据尺寸要求制造的或裁切的平面的管壁面板 2 这样组装起来，即，将两个管壁面板 2 的管 3、3.1、板条 4 和半板条 5 的端部在过渡区域 32 中利用成形件 24 和焊缝 25 相连接，其中成形件 24 也相互焊接。如从图 8 中可见，管壁面板 2、2.1、2.2 的几何形式并不局限于矩形的构型（如图 1、3 和 4 所示），而是可与管壁 1 的结构要求相匹配。另外，与垂直布管的管壁 1 相比，倾斜布管的管壁 1 的管间距（Rohrteilung）可不同，从而例如，在管壁 1 的垂直布管的部分中的两个管 3、3.1 在倾斜布管的部分中布置一个管 3、3.1。

为了在装配地点处在以后组装或焊接的管壁面板 2、2.1、2.2 的圆型焊缝-面板接缝 7 时能够补偿在管壁面板 2、2.1、2.2 处的间距差方面的尺寸不精确性，以及为了能够补偿在施工现场的局部热处理中出现的热膨胀，在管壁面板 2、2.1、2.2 的板条 4 中的至少一个上，可在其纵向范围的区域上并且从板条 4 的一个端部或者板条 4 的两个端部出发设置一具有确定的长度（例如 0.3-10m）和确定的缝宽度（例如，3-6mm）的、沿板条 4 的纵向形成形成一个细长装配缝 18。图 3 出示仅从板条 4 的一个端部、即从两个圆型焊缝-面板接缝 7 之一出发的装配缝 18。这里，由含 9-12%钨的马氏体钢制成的板条 4 在装配缝 18 的区域中被由不需热处理的材料制成的板条 4.1 替换，其中，板条 4.1 的长度可对应于装配缝 18 的长度加上 10-100mm 的余量 X。通过使用由不需热处理的材料制成的板条 4.1, 可在进行调整和在装配地点焊接管壁面板 2、2.1、2.2 之后利用焊缝 23 封闭或填充装配缝 18，而不必事后对此焊缝 23 进行热处理。图 11 出示多个焊接在一起的管壁面板 2、2.1、2.2，它们形成有多个这样的装配缝 18。例如，每三个、两个或每个板条 4 可构造为具有一装配缝 19 并从而具有一板条 4.1。另外图 11 作为示例示出这样的管壁面板 2、2.1、2.2，所述管壁表面
在相应的管壁表面 2、2.1、2.2 的板条 4 的两端，即在两个圆形焊缝-面板接缝 7 处具有装配缝 18，从而具有板条 4.1。

尤其对于窄板条 4.1，以后在装配地点处利用焊缝 23 对装配缝 18 进行的封闭导致，接下来必须对与板条 4.1 相邻接并由含 9-12% 铬的马氏体钢制成的管 3、3.1 进行热处理。在装配缝 18 或板条 4.1 的区域中分别相邻接的管 3、3.1 根据图 12 用不需热处理的材料加长，由此这种可能需要的热处理可以避免。这意味着在装配缝 18 或板条 14 的区域中，由含 9-12% 铬的马氏体钢制成的管 3、3.1 的端部用由不需热处理的材料制成的管延伸部 19 代替。这里，管延伸部 19 的长度优选与板条 4.1 的长度相匹配。

在蒸汽发生管壁 1 的区域 26 上，根据图 4、14 和 15 设置在管壁 1 内部的并且未显示出的盘管或者加热面的管 14 通过或穿过管壁 1，在管面板 2、2.1、2.2 内部设置有容纳元件以容纳和引导管 14 通过，容纳元件分别具有适合于管 14 穿过的通口 20 并且由不需热处理的材料制成。填充板 22 或套管 13 可用作容纳元件。通常，当管 3、3.1 之间的板条 4 或两个半板条 5 的宽度足以容纳套管 13 并且能够利用焊缝 15 将其焊接到板条 4 或半板条 5 中时，使用套管 13（见图 14）。在板条 4 过窄的情况下，例如一管 3、3.1 从面板的平面中弯曲出来，并且所形成的自由空间由填充板 22 填充且利用焊缝 15 与相邻接的管 3、3.1 和/或板条 4 和/或半板条 5 焊接在一起（见图 4 和 15）。根据管壁 1 上的管 14 包括其套管 17 通过管壁 1 的区域 26 的几何布置，管壁面板 2、2.1、2.2 可不具有、具有一个或多个带有管通口的区域 26。通常，通过管壁 1 的管 14 之间的距离对应于管壁 1 中的管间距的数倍，即管通口在结构上是相同的。另外，还可将用于容纳管 14 的套管 13 附加地装入设置成容纳元件的填充板 22，并且利用焊缝 15 将它们相互连接。这里，见图 14，套管 13 不再设置在板条 4 中，而是布置在填充板 12 中（见括号中的 22）。

在车间中（车间侧）制造或完成管壁面板 2、2.1、2.2 之后，在下一个方法步骤中，同样在车间中，在未表示出的第一加热设备中对
全部管壁面板 2、2.1、2.2 的焊缝 8、15、21 和 25 进行回火热处理。通常使用由于管壁面板 2、2.1、2.2 的尺寸与此匹配的炉作为第一加热设备，在该炉中管壁面板 2、2.1、2.2 被单独或多个同时热处理。因此，根据本发明确保，施加到管壁面板上的焊缝的大部分在车间中就已经被回火热处理，因而这意味着，在装配侧在施工现场不再需要额外的费用。上文列举了对于热处理的所有可能的管壁面板和所有可能的焊缝。如上所述，根据蒸汽发生器以及由此还有管壁 1 的构型不同，可以只使用一种形式的管壁面板及其焊缝。在第一加热设备中对焊缝 8、15、21 和 25 的回火热处理有利地在 740－780℃的温度下执行，并且更为有利地在 2 分钟/mm 壁厚的时间间隔上执行，但至少执行 60 分钟。

在该方法步骤完成之后，将管壁面板 2、2.1、2.2 运送至用于竖立待建造的示出的蒸汽发生器的管壁 1 的施工现场。为此，在下一个方法步骤中，在施工现场，即在装配侧利用焊缝 9 将管壁面板 2、2.1、2.2 连接在其圆形焊缝-面板接缝 7 上（图 9、10 和 12 出示两个管壁面板 2、2.1、2.2 的连接）。为了施加圆形焊缝 9，根据图 12，板条 4、4.1 和半板条 5 在车间被构造成稍短于管 3、3.1，从而在管 3、3.1 上形成制成圆形焊缝 9 的自由空间。在施加圆形焊缝 9 之后，将填充板 27 装入该自由空间，并且利用焊缝 9.1 使其与管 3、3.1 和板条 4、4.1 以及半板条 5 连接。如果代替弯曲管壁面板 2.1，在倾斜布管的管壁 1 中使用拐角弯曲部 28，以形成拐角，则现在拐角弯曲部 28 包括其连接板条 29 通过焊缝 9、9.1 与平面的管壁面板 2.1 连接。

接着该方法步骤之后，下一个方法步骤在施工现场进行，其中利用第二加热设备 10 对焊缝 9、9.1 进行回火热处理，该第二加热设备位于焊缝 9、9.1 的区域内，即在局部，并且在两侧设置在管壁面板 2、2.1、2.2 上，为此见图 9 和 10 的下部区域。根据需要预先确定回火或退火区域的大小以及各单个回火参数，即精确地限定热量输入区域以及加热和冷却梯度。取决于结构和几何条件，可在与第二加热设备 10 相邻的区域中装入附加的第三加热设备 11，以产生辅助热，以便减小
温度梯度以及由温度差导致的应力。第二以及第三加热设备 10、11 可以是在几何结构上匹配的电阻加热退火盒，其在必要时还可以在封闭装配缝 18 之后覆盖焊缝 23 的区域并由此对其进热处理。用于热处理的退火区域可在管壁面板的整个宽度上或者在面板宽度的确定区域上或者在各单个圆形焊缝区域或各单个装配缝区域上延伸。如在车间中对焊缝 8、15、21 和 25 中的回火热处理一样，这里，回火热处理也有利地在 740°-780°C 的温度下执行，并且另外有利地在 2 分钟/mm 壁厚的时间间隔上执行，但至少执行 60 分钟。

在对焊缝 9、9.1 以及必要时还有 23 进行施工现场的回火热处理之后，在下一个步骤中，管壁面板 2、2.1、2.2（图 11 和 13 示出多个管壁面板 2.2，2.1、2.2 的连接）利用焊缝 12 在其板条-板条-面板接缝 6 处连接成完整的管壁 1。由于管壁面板 2、2.1、2.2 的各组成部件的根据本发明的结构，不需要焊缝 12 的回火热处理。

在装配地点对管壁 1 进行装配之后，将设置在管壁 1 内部的并且未示出的盘管的管 14 可穿过设置在管壁 1 中的容纳元件，如套管 13 或填充板 22，并根据图 14 或 15 利用焊接与所述容纳元件连接。为此，将所制备的管 14 导入套管 13 或填充板 22，从而套管 13 或填充板 22 与套管 17 形成一连接部位，该管 14 由不需热处理的材料制成，并且具有或在管壁 1 的通口区域中具有与管 14 焊接的套管 17 或由此被制备。随后，这两个套管 13 和 17 或填充板 22 和套管 17 在装配地点处利用焊缝 16 连接。由于连接部位的根据本发明的构型，不需要对焊缝 16 进行事后的回火热处理。

为了在施工现场获得这样的可能性，即将相应必须的构件焊接到蒸汽发生器的管壁 1 上而不必接着进行回火热处理，可采取相应的措施。为此，由主要由含 9%-12% 铬的马氏体钢制成的未示出的焊装部件、例如焊装侧板的装配焊接连接部位，即在施工现场焊装其它构件的连接位置，在车间内造成具有由不需热处理的材料制成的镀层和/或由不需热处理的材料制成的锻造或轧制的半成品和/或由不需热处理的焊接材料制成的覆盖填料 (Auffütterung)，焊装部件接着在车间中焊
接到管壁面板 2.2、1.2 及，接着在第一加热设备中被回火热处理。

根据图 16 和 18，板条 4、4.1 和半板条 5 的与管相邻接的侧面 31 形成有分别最大为 2mm 的自然轧制边缘（见图 18）。这用于限制管 3.1 与板条 4、4.1 或半板条 5 之间的焊接残留间隙，并且作为应用于减小焊接应力方面得到优化的焊接参数的基础。另外，根据图 16、
17 和 19，与管相邻接的板条 4、4.1 和半板条 5 的侧面 31 在界面焊缝
- 面板接缝 7 的局部热处理的区域中构成具有用于双斜边坡口焊接
的倒角，从而在车间中，管-板条连接可作为完整连接实现。用于双斜
边坡口焊接的倒角的区域 Y 可在 20-200mm 之间。

对于由含 9-12%铬的马氏体钢制成的管 3、3.1，板条 4、半板条
5，成形件 24 和填充板 27 优选使用材料 X10CrWMoVNb9-2（T92）。
可选地，使用材料 VM12-SHC（Vallourec-Mannesmann 公司的内部
标签）。合金 617（NiCr23Co12Mo）和合金 617mod.（NiCr23Co12Mo
mod.）优选地用于管壁面板 2、2.1、2.2 的由不需热处理的材料制成的
构件。可选地，也可将相应的耐热的奥氏体材料用于容纳元件 13、
22。

在装配侧的界面焊缝-面板接缝 7 的区域中的填充焊焊接部（焊缝
9.1）和在装配缝 18 的区域中的填充焊接部（焊缝 23）优选地通过
WIG 方式实现。

为了减小应力和变形（Verwerfung），可对机械地并在车间中完
成的管 3、3.1 与板条 4、4.1 和半板条 5 的 UP 焊接连接部进行预热。

为了避免在车间中制造和处理管壁面板 2、2.1、2.2 时出现裂纹，
在管壁面板 2、2.1、2.2 接下来的最终热处理完成之前可进行中间退火。

为了在回火热处理期间从管壁面板 2、2.1、2.2 的退火区域卸去力，
可分别针对应用场合利用液压或机械辅助结构进行其自重的力偏
转。

对于由含 9-12%铬的马氏体钢制成的管 3、3.1，板条 4、半板条
5，成形件 24 和填充板 27 的彼此之间的焊接，优选使用相同类型的焊
接添加（填充）材料（Schweißzusatzwerkstoff）。
对于由不需热处理的材料制成的管 3.1、板条 4.1、半板条 5、套管 13、填充板 22、拐角弯曲部 28、拐角弯曲部 28 上的连接板条 29 以及缓冲部 21 的彼此之间的焊接，优选使用相同类型的焊接填充材料。

对于由含 9-12%铬的马氏体钢制成的管 3.1、板条 4、半板条 5、成形件 24 和填充板 27 与由不需要热处理的材料制成的管 3.1 和/或板条 4.1 和/或半板条 5 和/或套管 13 和/或填充板 22 和/或拐角弯曲部 28 和/或拐角弯曲部 28 上的连接板条 29 和/或缓冲部 21 的焊接优选使用由不需热处理的材料制成的焊接填充材料。
附图标记列表
1 管壁
2 管壁面板
2.1 管壁面板
2.2 管壁面板
3 管
3.1 管
4 板条
4.1 板条
5 半板条
6 板条-板条-面板接缝
7 圆形焊缝-面板接缝
8 焊缝，车间中
9 焊缝，装配地点
9.1 焊缝，装配地点
10 第二加热设备
11 第三加热设备
12 焊缝，在装配地点
13 套管
14 盘管的管
15 焊缝，车间中
16 焊缝，装配地点
17 套管
18 装配缝
19 管延伸部
20 通口
21 缓冲部
22 在管通口处的填充板
23 焊缝，装配地点（封闭装配缝）
24 成形件
25 焊缝，车间中
26 具有管通口的管壁区域
27 圆形焊缝-面板接缝处的填充板
28 拐角弯曲部
29 拐角弯曲部处的连接板条
30 焊缝，车间中
31 板条和半板条的与管相邻接的侧面
32 管壁的倾斜和垂直分别的管之间的过渡部
图 3
图11
图12
图13
图14
图15