Title: METHOD OF IDENTIFYING COMPOUNDS THAT INHIBIT FERTILIZATION

Abstract: A method of identifying compounds that inhibit fertilization is provided. The method can include selecting compounds that bind to equatorin protein. Two types of equatorin protein, a long form and a short form, can be present in the tests. The amino acid sequence of mouse equatorin from positions 101 to 146 including the 138th O-glycosylated threonine residue contains an epitope recognized by anti-equatorin antibody MN9 that has an effect of inhibiting fertilization. In addition, the MN9 antibody also binds to human sperm. Compounds that bind to the epitope can inhibit fertilization. Both forms of mouse equatorin can be used as well as human equatorin to identify compounds that inhibit fertilization.
Designated States (unless otherwise indicated for every kind of regional protection available):

ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR),
OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))
— with sequence listing part of description (Rule 5.2(a))
Method Of Identifying Compounds That Inhibit Fertilization

BACKGROUND OF THE INVENTION

[0002] It is to be understood that the numbers appearing in brackets ([]) throughout this application refer to the numbers that correspond to the References appearing at the end of this section.

[0003] Among the few molecules known to be vital for sperm-egg fusion are sperm Izumol [1] and egg CD9 [2-4]. Izumol is a type 1 transmembrane protein localized to the acrosome before the acrosome reaction, and it relocates onto the sperm surface after the acrosome reaction [I]. The details of the molecular mechanisms involved in this process remain unclear. A tetraspanin molecule, CD9 is expressed on the oolemma, but the nature of the CD9-sperm ligand interaction remains unclear. Several other gamete fusion candidate molecules have been identified; however, gene deletion studies have shown that they are not essential in sperm-egg fusion, although their roles may be substituted or bypassed by other proteins. These molecules include ADAM1, 2, and 3 - also known as fertilin-α, fertilin-β, and cyritestin, respectively [5-8] - in addition to CRISPl (DE) [9] and CD46 [10]. Other candidate molecules required for sperm-egg fusion have been reported, and their functions have been studied by specific antibody inhibition assays. These include equatorin (EQT) - also known as MN9 antigen [11, 12] - SPESPl (ESP) [13, 14], SPACA4 (SAMP14) [15], SPACAl (SAMP32) [16], and SPACA3 (SLLPl) [17]. Thus, the molecular mechanisms underlying sperm-egg fusion remain an open question.

[0004] Some of the major difficulties in analyzing the molecular mechanisms underlying sperm-egg fusion include the biochemical nature and localization of the sperm proteins. In fact,
it has been shown that sperm glycoproteins have unique carbohydrate chains and show continuous modifications after spermiation until the sperm-egg interaction [18-22]. In addition, the localization of some sperm proteins changes during the acrosome reaction, as seen with equatorin [23], Izumol [1] and SPACA4 [15]; these molecules are translocated from the acrosomal matrix to the cell surface. These modifications are thought to be important steps, priming sperm molecules for the sperm-egg interaction.

[0005] Equatorin is a widely distributed acrosomal protein in mammalian sperm. The present inventors previously reported that the MN9 antigen equatorin was widely distributed in mammals, including humans, and showed a strong affinity for the equatorial region of the acrosome [24]; thus, the MN9 antigen was renamed equatorin. Functionally, the anti-equatorin antibody MN9 inhibits the release of cortical granules without inhibiting zona penetration and sperm-egg binding, suggesting that it inhibits sperm-egg fusion or an early stage of egg activation [H]. The MN9 antibody inhibits sperm-egg interaction not only in vitro but also in vivo [12]. During the acrosome reaction, equatorin translocates to the plasma membrane, covering the equatorial segment as seen with immunogold staining [23]. The plasma membrane over the equatorial segment is known to fuse with the plasma membrane of egg microvilli [25-28].

[0006] Based on these finding, the present inventors determined that the equatorin gene needed to be identified and the biochemical nature and localization of the equatorin protein needed to be clarified. In particular, the nature of the epitope region of the MN9 antibody (MN9 epitope) needed to be understood, to determine whether this region is involved in the sperm-egg interaction.

REFERENCES

2. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S,

SUMMARY OF THE PRESENT INVENTION

The present invention relates to a method of identifying compounds that inhibit fertilization. The method can comprise selecting compounds that bind to equatorin protein. Two types of equatorin protein, a long form and a short form, can be present in the testis. The amino acid sequence of mouse equatorin from positions 101 to 146 including the 138th O-glycosylated threonine residue contains an epitope recognized by anti-equatorin antibody MN9 that has an effect of inhibiting fertilization. In addition, the MN9 antibody also binds to human sperm. Compounds that bind to the epitope can inhibit fertilization. In the identification method of the present invention, both forms of mouse equatorin can be used as
well as human equatorin to identify compounds that inhibit fertilization.

[0008] A feature of the present invention is to provide a method of identifying a compound that can inhibit fertilization. The method can comprise selecting a compound that binds to a region of mouse equatorin that contains an O-glycosylated threonine residue located at position 138 of the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 3, or a region of human equatorin that contains an O-glycosylated threonine residue located at position 136 of the amino acid sequence of SEQ ID NO: 5. The region of mouse equatorin can be a region comprising the amino acid sequence from position 101 to position 146 in the amino acid sequence of SEQ ID NO: 3 or SEQ ID NO: 4 of mouse equatorin, and the region of human equatorin can be a region comprising the amino acid sequence from position 92 to position 144 in the amino acid sequence of SEQ ID NO: 5 of human equatorin.

[0009] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are intended to provide a further explanation of the present invention, as claimed.

[0010] The accompanying drawings, which are incorporated in and constitute a part of this application, illustrate some of the embodiments of the present invention and together with the description, serve to explain the principles of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. IA. Distribution of equatorin in various tissues. Western blot (12.5% gel) with MN9 antibody.

[0012] FIG. IB. Purification for LC-MS/MS analysis and in-gel detection of equatorin. Immunoprecipitation (IP) with MN9 antibody. Separation by 10% gel SDS-PAGE.

[0013] FIG. 2. Amino acid sequence of equatorin identified by LC-MS/MS and alignment of human and mouse equatorin.

[0014] FIG. 3A. Expression of equatorin and verification study using recombinant protein
in HEK293T cells. Expression of mRNA in various tissues by RT-PCR.

[0015] FIG 3B. Western blot analysis with the MN9 antibody indicating detection of recombinant equatorin.

[0016] FIG. 3C. Images showing distribution of equatorin in the testis and cauda epididymidis, obtained using HF microscopy with EQ70-83 antibody and MN9 antibody.

[0017] FIG. 4A. Immunostaining of MN9 antibody-analyses of phosphorylation and glycosylation status of equatorin

[0019] FIG. 4C. Western blot analysis of glycosylation status by the effect of O-glycosylation inhibitor Benzyl-α-GalNAc on MN9 epitope using EQT(L)-EGFP expressed in HEK293T cells; immunostaining with MN9 antibody (top panel); EQ70-83 antibody (middle panel); immunostained bands were analyzed with densitometry and shown in bar graph (bottom panel).

[0020] FIG. 5A. Orientation of the equatorin epitope on HEK293T cell plasma membrane.

[0021] FIG. 5B. Partial deletion of EGFP-tagged equatorin EQT(L)-EGFP; e.g., Δ21-50 indicates deletion of 21-50 amino acid sequence. Western blot (12.5% gel) by MN9 antibody (upper panel) and anti-GFP antibody (lower panel; positive control).

[0022] FIG. 5C. Single amino acid substitution mutants of EGFP-tagged equatorin, e.g., T128A indicates the substitution of 128th aa T (threonine) to A (alanine). Western blot (12.5% gel) with MN9 antibody (upper panel) and EQ70-83 antibody (lower panel; positive control).

[0023] FIG. 6 A and B. Localization of equatorin in mature sperm by immunogold electron microscopy using MN9 antibody.

[0024] FIG 7. Schematic drawing of sperm head to show the localization of equatorin in acrosome.

[0025] FIG. 8A Western blot analysis with MN9 antibody to detect solubilization,
focusing of cauda sperm equatorin from 40-50 kDa to 40 kDa for LC-MS/MS.

[0026] FIG. 8B. Sample preparation diagram

[0027] FIG. 9A. Western blot (12.5% gel) analysis with EQ70-83 antibody.

[0028] FIG. 9B. HF microscopy of cauda epididymal sperm with EQ70-83 and MN9 antibodies.

DETAILED DESCRIPTION OF THE PRESENT INVENTION

[0030] Abbreviations used: aa, amino acid(s); Benzyl-α-GalNAc, benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside; CIAP, calf intestinal alkaline phosphatase; EQT, equatorin; Gapdh, glyceraldehyde-3-phosphate dehydrogenase; HF, indirect immunofluorescence; IRES, internal ribosome entry site; LC-MS/MS, liquid chromatography tandem mass spectrometry.

[0031] The present invention relates to a method of identifying compounds that inhibit fertilization. The method can comprise selecting compounds that bind to equatorin protein. Equatorin is a widely distributed acrosomal protein in mammalian sperm. The present inventors have cloned mouse equatorin gene and found that two types of equatorin protein, a long form (SEQ ID NO: 3) and a short form (SEQ ID: 2), are present in the testis. The amino acid sequence of mouse equatorin (SEQ ID NO: 2 or SEQ ID NO: 3) from positions 101 to 146 including the 138th O-glycosylated threonine residue contains an epitope recognized by anti-equatorin antibody MN9 that has an effect of inhibiting fertilization. In addition, the present inventors found that MN9 antibody also binds to human sperm by using Western blot and Indirect immunofluorescence analysis, which indicates that MN9 antibody binds to human equatorin (SEQ ID NO:5). As such, compounds that bind to the epitope can inhibit fertilization. In the identification method of the present invention, both forms of mouse
equatorin can be used as well as human equatorin.

[0032] Equatorin (MN9 antigenic molecule) is a widely distributed acrosomal protein in mammalian sperm. Some amount of equatorin translocates to the plasma membrane covering the equatorial region during the acrosome reaction. From studies of both in vitro and in vivo fertilization inhibition using the MN9 antibody, equatorin has been suggested to be involved in fusion with the oolemma. In this study we cloned equatorin and found it to be a highly O-glycosylated protein using mass spectrometry and carbohydrate staining. Equatorin is a sperm-specific type 1 transmembrane protein, and glycosidase treatment and recombinant protein assays verified that it is an N,O-sialoglycoprotein. In addition, the gamete interaction-related domain recognized by the MN9 antibody is post-translationally modified. The modified domain was identified near threonine 138, which was most likely to be O-glycosylated when analyzed by amino acid substitution, dephosphorylation and (9-glycosylation inhibitor assays. Immunogold electron microscopy localized the equatorin N-terminus, where the MN9 epitope is present, on the acrosomal membrane facing the acrosomal lumen. These biochemical properties and the localization of equatorin are important for further analysis of the translocation mechanism leading to gamete interaction.

[0033] The method of identifying a compound that inhibits fertilization can comprise selecting a compound that binds to a region of mouse equatorin that contains an O-glycosylated threonine residue located at position 138 of the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 3, or a region of human equatorin that contains an O-glycosylated threonine residue located at position 136 of the amino acid sequence of SEQ ID NO: 5. The region of mouse equatorin can be a region comprising the amino acid sequence from position 101 to position 146 in the amino acid sequence of SEQ ID NO: 3 or SEQ ID NO: 4 of mouse equatorin. The region of human equatorin can be a region comprising the amino acid sequence from position 92 to position 144 in the amino acid sequence of SEQ ID NO: 5 of human equatorin. The method of identifying a compound that inhibits fertilization can
comprise: (1) contacting mouse equatorin or human equatorin with a test compound; (2) detecting binding of an antibody that recognizes said region to the mouse equatorin or the human equatorin; and (3) selecting a compound that reduces the binding compared to binding of the antibody to mouse equatorin or human equatorin without contacting with a test compound. The antibody can have an effect of inhibiting fertilization. The antibody can be an antibody that recognizes the region of mouse equatorin. The mouse equatorin or the human equatorin can be expressed in cultured cells. The mouse equatorin can be a partial peptide of mouse equatorin that comprises sequential amino acid residues from position 101 to position 146 of the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 3 and contains an O-glycosylated threonine residue located at position 138 of the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 3. The human equatorin can be a partial peptide of human equatorin that comprises sequential amino acid residues from position 92 to position 144 of the amino acid sequence of SEQ ID NO: 5 and contains an O-glycosylated threonine residue located at position 136 of the amino acid sequence of SEQ ID NO: 5. The method can further comprise contacting a selected compound with male germ cells, detecting fertilization between the male germ cells and female germ cells, and selecting a compound that inhibits the fertilization.

The present inventors cloned the equatorin gene and found it to encode a highly glycosylated protein, as shown in Figures 1-4. With regard to the biochemical nature of equatorin, since equatorin is a highly glycosylated sialoglycoprotein in mature sperm, it could not be detected by SYPRO Ruby (FIG. IB, lanes 3 and 4) or silver staining (data not shown). By contrast, the equatorin band became detectable by Pro-Q Emerald 300 staining (FIG. 2, lane 6), demonstrating sufficient staining intensity for its excision for LC-MS/MS analysis. This lack of detection of equatorin using traditional protein staining protocols is attributable to the abundant carbohydrates, including sialic acid moieties, that interfere with the staining of glycoproteins in these protocols. In fact, desialylated equatorin was detected by silver staining (data not shown). Other glycoproteins have also been reported to show poor detectability with
standard gel stains such as silver stain and Coomassie Brilliant Blue staining, including flagellasialin [40].

[0035] Based on sequence alignment analysis of equatorin homologues, the long form-specific region is highly conserved in mammals. No data are currently available to confirm that the long form is a precursor of the short form of equatorin. It is unclear why or how the long and short forms are present in the testis or which form is translated.

[0036] The results from the glycosylation study of equatorin, described below with reference to FIG. 4B, indicate that the asialylated form is estimated to be 27 kDa (FIG 4B), while the sialylated form is estimated to be at least 40 kDa (FIG. 1). Considering the fact that neuraminidase treatment reduced the relative molecular mass by roughly 13 kDa, equatorin is expected to be highly sialylated or polysialylated, although we cannot completely rule out the possibility that the reduction is due to either protein cleavage induced by loss of stability [41, 42] or intrinsic proteases activated by neuraminidase treatment.

[0037] With regard to the MN9 epitope, it is unlikely that it contains N-linked carbohydrate moieties, since the MN9 antibody still detected the equatorin molecule following PNGase treatment, (as described below with reference to FIG. 4B), which is known to release N-linked carbohydrates [43]. In addition, it is also unlikely that a neuraminic acid residue is essential for the MN9 epitope, since equatorin could be detected following neuraminidasetreatment (FIG 4B). Neuraminidase from Arthrobacter ureafaciens is known to release α2-(3,6,8)-linked neuraminic acid residues [44]. With regard to the possibility of phosphorylation, MN9 antigenicity of sperm equatorin remained even after CIAP treatment (FIG. 4A), indicating that the MN9 epitope is not phosphorylated. For possibility of O-glycosylation, the MN9 epitope was sensitive to the O-glycosylation inhibitor Benzyl-α-GalNAc (FIG. 4C), suggesting that O-glycosylation is involved in the MN9 epitope. In addition, the finding that MN9 antibody detectability was lost by the substitution of threonine 138 to alanine (FIG 5C) indicates that the MN9 epitope region is localized around
Taken together, these data strongly suggest that the MN9 epitope contains an O-glycosylation around threonine 138 or that the modification is at least necessary for the equatorin conformation that the MN9 antibody can recognize. It is noteworthy that the threonine corresponding to threonine 138 of mouse equatorin is well conserved in many mammals, including humans. In this context, further analyses are required to reveal the structure around threonine 138, including the glycan structure. With regard to the domain of equatorin responsible for sperm-egg interaction, the anti-EQ\textsubscript{70-83} peptide antibody did not inhibit sperm-egg interaction (data not shown), suggesting the importance of the MN9 epitope domain around threonine 138.

[0038] The results, described below, derived from the EGFP-tagged equatorin study in HEK293T cells (FIG. 5) and immunogold staining analysis (FIG 6) indicate that equatorin is predominantly present in the inner acrosome membrane, with the N-terminus facing the acrosomal lumen, as shown in FIG. 7. Before the acrosome reaction, equatorin was never found on the sperm plasma membrane, as previously reported [11, 12, 23]. During the acrosome reaction, some equatorin was released from the acrosome and reached the plasma membrane over the equatorial segment, where sperm-egg fusion takes place [11, 12, 23]. There appear to be no reports showing the detailed orientation of the acrosomal transmembrane protein that is translocated during the acrosome reaction. Some acrosomal proteins such as Izumol and SPACA4 have also been reported to translocate to the sperm cell surface.

[0039] In summary, equatorin is a 40-50 kDa type 1 transmembrane N,O-sialoglycoprotein, composed of a putative signal peptide region in the N-terminal 20 aa and a transmembrane region at residues 186-208. The gamete interaction-inhibiting epitope recognized by the MN9 antibody requires post-translational modification, most likely O-glycosylation on threonine 138. The evidence accumulated thus far suggests that the N-terminal side of equatorin bears the MN9 epitope and faces the acrosomal lumen (FIG. 7).
During the acrosome reaction, some equatorin on the acrosomal membranes translocates onto
the surface of the plasma membrane over the equatorial segment, and equatorin on the inner
acrosomal membrane becomes exposed. The domain of equatorin around threonine 138 that
reaches the equatorial segment can play a role in sperm-egg interaction.

[0040] The present invention will be further clarified by the following examples, which
are intended to be exemplary of the present invention.

Examples

Indirect immunofluorescence (IIF) image for human sperm

[0041] For HF with MN9 antibody, human ejaculated sperm were rinsed with culture
grade medium (commercially available) and treated with 0.1% Triton X-100 in phosphate
buffered saline (PBS) for 30 min. Then, the sperm were treated with MN9 antibody at a
dilution of 1/20,000 at 4°C overnight. After the treatment, the sperm were rinsed with PBS
several times and sequentially incubated with Alexa Fluor 488 goat anti-mouse IgG (H+L)
(0.5µg/ml) at room temperature for 1h. After rinsing with PBS, observation was performed
with Olympus BX50 microscope using oil-imersed UPlanApo 100 objective lens (Olympus
Co., Tokyo, Japan) equipped with an imaging system composed of appropriate filters for
fluorescence and a CCD camera RETIGA Exi FAST 1394 (Qimaging, Surrey, BC, Canada).
Acquisition and storage of the data were controlled by SlideBook 4 software (Intelligent
Imaging Innovations, Denver, CO, USA).

Western blot for human sperm

[0042] Human ejaculated sperm recovered by masturbation after three days abstinence
were rinsed with phosphate buffered saline (PBS) and homoginized in SDS sample buffer (50
mM Tris-HCl [pH 6.8], 2% SDS [w/v], 10% [v/v] glycerol, 0.002% [w/v] bromophenol blue).
After the samples were boiled at 98°C for 10 min just before loading, insoluble constituents were removed by centrifugation at 16,000 g for 10 min. The isolated supernatant (2.5x10⁶ sperm/lane) was loaded and separated in 12.5% gel by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separated proteins were blotted onto a polyvinylidene difluoride membrane (Millipore, Bedford, MA, USA). The membranes were soaked in 5% (w/v) skim milk in TBS-T (20 mM Tris-HCl [pH 7.6], 137 mM NaCl, 0.1% [w/v] Tween 20) for 60 min to suppress the background and treated with MN9 antibody (at a dilution of 1/4000) at room temperature for 60 min. After rinsing with TBS-T, the membrane was treated with horseradish peroxidase HRP conjugated sheep anti-mouse IgG antibody (at a dilution of 1/10000) for 60 min. After the membrane was rinsed with TBS-T, the reacted proteins were visualized using ECL Plus Western Blotting Detection System (GE Healthcare) and exposed to X-ray films.

MATERIALS AND METHODS

Animals and reagents

Male ICR mice (16 weeks old) were purchased from Charles River Japan (Yokohama, Japan) and kept in an air-conditioned room (12 hours light/dark cycles, 24°C) with free access to food and water. This study was conducted according to the guidelines for the care and use of laboratory animals of the Chiba University Graduate School of Medicine.

A monoclonal antibody, MN9 (IgG2a), which specifically recognizes equatorin, was produced in female BALB/c mice by immunizing them with cauda epididymal sperm from CD1 mice. Antibody production, purification, and characterization were previously reported [11, 12, 23, 24]. The EQ70s3 antibody is a specific antibody newly raised against 14-amino acids (aa) of equatorin from residue 70 to 83 as described below.

General chemicals and antibodies used were as follows: HRP-conjugated sheep anti-mouse IgG, HRP-conjugated donkey anti-rabbit IgG, PY20 mouse anti-phosphotyrosine
monoclonal antibody (GE Healthcare; Little Chalfont, Buckinghamshire, UK); Pro-Q Emerald 300 glycoprotein gel staining kit, SYPRO Ruby protein gel stain, rabbit anti-GFP antibody IgG fraction, Alexa Fluor 488 goat anti-mouse IgG, Alexa Fluor 546 goat anti-rabbit IgG, Alexa Fluor 555 donkey anti-mouse IgG, Alexa Fluor 568 goat anti-rabbit IgG (Invitrogen, Carlsbad, CA, USA); Hoechst 33258 and O-glycosylation inhibitor benzyl-2-acetamido-2-deoxy- α-D-galactopyranoside (Benzyl-α-GalNAc) [29] (Sigma Aldrich; St. Louis, MO, USA); and 5 and 10 nm colloidal gold-conjugated anti-mouse IgG (BBInternational, Cardiff, UK). Total RNA was extracted using an RNeasy protect Mini Kit (Qiagen Sciences, Germantown, MD, USA). We synthesized cDNA by oligo(dt) priming using a Transcriptor First Strand cDNA Synthesis Kit (Roche Diagnostics, Mannheim, Germany). PNGase F, Calf intestinal alkaline phosphatase (CIAP) (New England Biolabs, Beverly, MA, USA) and neuraminidase (Arthrobacter ureafaciens; Marukin Bio, Kyoto, Japan) were used according to the manufacturer's instructions.

Western blot analysis

[0046] Western blot analysis was used to examine the distribution of equatorin in various tissues and to verify the expression of recombinant equatorin protein in HEK293T cells, dephosphorylation, deglycosylation, and amino acid substitution assays. The samples for these experiments were extracted with SDS sample buffer (50 mM Tris-HCl [pH 6.8], 2% SDS, 100 μM DTT, 10% [v/v] glycerol, 0.002% [w/v] Bromophenol blue). The lysates were heated for 10 minutes at 98°C and centrifuged at 16,000 g for 10 minutes to remove insoluble material. The lysates were then separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and blotted onto a polyvinylidene difluoride membrane (PVDF; Millipore, Bedford, MA, USA). Western blot analysis was performed according to a standard protocol using TBS-T (20 mM Tris-HCl [pH 7.6], 137 mM NaCl, 0.1% [w/v] Tween 20) containing 5% (w/v) skimmed milk as a blocking solution and for antibody dilution. Antibody concentrations
used for Western blot analysis were as follows: MN9 antibody at 1:4,000 (ca. 0.1 µg/ml),
EQ\textsubscript{70-83} antibody at 0.3 µg/ml, anti-GFP antibody at 1 µg/ml, and HRP conjugated secondary
antibodies at 1:10,000. The blots were developed with ECL Plus Western Blotting Detection
Reagents (GE Healthcare) and exposed to X-ray film.

Sample preparation for mass spectrometry analysis

[0047] Sperm (1.3 x 10^9) were removed from cauda epididymides and washed twice in
phosphate buffered saline (PBS). The sperm were then suspended in 0.1% Triton X-100 in
PBS with Complete protease inhibitors (Roche Diagnostics) and kept on ice for 10 minutes,
then centrifuged at 290 g for 10 minutes. The precipitated sperm were extracted with
SDS-EDTA solution (75 mM NaCl, 1% SDS, 25 mM EDTA, [pH 6.0]) containing Complete
protease inhibitors and centrifuged at 16,000 g for 10 minutes to remove insoluble debris.
Liver was directly extracted with SDS-EDTA solution as a negative control. SDS-EDTA
solution extracts were precipitated with a 2D clean-up kit (GE Healthcare). The precipitated
proteins were resuspended in NP-40 lysis buffer (150 mM NaCl, 1% NP-40, 50 mM Tris-HCl
[pH 8.0]). The lysates were precleared with protein G sepharose (GE Healthcare) for an hour
at 4°C and incubated with 10 µg of MN9 antibody overnight at 4°C. Protein G sepharose
beads were added and incubated for an hour at 4°C. The beads were washed three times with
NP-40 lysis buffer and once with 50 mM Tris-HCl (pH 8.0). The beads were then suspended
in SDS sample buffer and heated for 5 minutes at 98°C to dissociate precipitates. After
separation by SDS-PAGE, samples were detected using Pro-Q Emerald 300, SYPRO Ruby,
and Western blot analysis with the MN9 antibody. The bands of interest were excised from a
Pro-Q Emerald 300-stained gel. In-gel trypsin digestion and LC-MS/MS analysis were
performed as previously reported [30].
Alignment analysis

A homologue search was done using the PSI-BLAST program [31], and sequence alignment was achieved using the T-Coffee server [32, 33]. The signal peptide region was predicted using the SignalIP3.0 server [34, 35]. The transmembrane domain was predicted using the TMHMM 2.0 server [36, 37].

Antibody production

Following the identification of equatorin as described in the Results section, an anti-equatorin polyclonal antibody was produced and termed the EQ70-83 antibody. Briefly, a rabbit was immunized with a synthetic 14-residue partial sequence of equatorin (GNYYKDIKQYVFTT (SEQ ID NO: 6)) conjugated to the keyhole limpet hemocyanin. The EQ70-83 antibody was then affinity purified using beads conjugated with the synthetic 14-residue peptide and adjusted to the final concentration of 1.2 mg/ml. Since the EQ70-83 and MN9 antibodies showed a similar staining pattern on Western blot and immunofluorescence (FIG. 9), the EQ70-83 antibody was considered to be verified as an anti-equatorin antibody and used in this study.

RT-PCR analysis

To examine the expression of equatorin mRNA in various tissues, RT-PCR was performed. The specific primer pairs used were as follows: Eqt-forward (5'-AATGCTGGGGATCTCGCTGATG-S' (SEQ ID NO: 7)) and Eqt-reverse (5'-ATTACTCGGTGATCTTGCCTGCATAC-S' (SEQ ID NO: 8)); Gapdh-forward (5'-ACCACAGTCCCATGCACATAC-S' (SEQ ID NO: 9)) and Gapdh-reverse (5'-TCCACCCACCTGCTGGCCTGTA-S' (SEQ ID NO: 10)) were used as controls. Nucleotides from 550 to 1011 of the equatorin long form were partially amplified. There were 25 cycles of amplification: denaturation for 30 seconds at 94°C, annealing for 30 seconds at 60°C, and
elongation for 30 seconds at 72°C.

Production of recombinant protein

[0051] HEK293T cells were purchased from the Riken Cell Bank (Japan) and cultured in Dulbecco's modified Eagle's medium with 10% fetal bovine serum, 100 units/ml penicillin, and 100 µg/ml streptomycin at 37°C with 5% CO₂ in air. Vectors were transfected using the FuGENE HD transfection reagent (Roche Diagnostics) as described in the manufacture's manual. Briefly, cells were cultured for 24 hours after transfection (48 hours for the amino acid substitution study to obtain a high concentration) and cells washed with PBS were solubilized in SDS sample buffer for Western blot analyses. The vector constructs are described in the vector construction section.

Indirect immunofluorescence (HF) microscopy for testes and epididymides

[0052] To examine the expression of equatorin in detail, HF microscopy was performed with the MN9 and EQ70-83 antibodies. Male ICR mice were anesthetized with Nembutal (Abbott Laboratories, Abbott Park, 140 IL, USA) and fixed with Bouin's solution by perfusion through the left ventricle. Testes and epididymides were removed and immersed in the same fixative for an hour. After being dehydrated in graded ethanol series and xylene, the samples were processed for paraffin embedding and sectioned at 2.5 µm thickness. The sections were deparaffinized and autoclaved for 5 minutes at 120°C to activate the antigenicity. After 30 minutes in 0.1% Triton X-100 in PBS, nonspecific antibody binding was suppressed by incubation in blocking buffer (PBS containing 5% normal goat serum and 3% bovine serum albumin) for 30 minutes at room temperature. The sections were then incubated overnight with MN9 antibody (1:20,000 dilution, ca. 0.02 µg/ml) and EQ70-83 antibody (0.6 µg/ml) at 4°C and rinsed in PBS. The sections were then incubated with Alexa Fluor 488 goat anti-mouse IgG (0.5 µg/ml), Alexa Fluor 546 goat anti-rabbit IgG (0.5 µg/ml) and Hoechst 33258 (5 µg/ml)
for one hour at room temperature. Observations were made using an Olympus BX50 (Olympus Co., Tokyo, Japan) microscope with a UPlanApo 40 x NA 0.85 dry objective lens equipped with an imaging system composed of appropriate filters for fluorescence and a RETIGA Exi FAST 1394 CCD camera (Qimaging, Surrey, BC, Canada). Data acquisition and storage were controlled with SlideBook 4 software (Intelligent Imaging Innovations, Denver, CO, USA).

Dephosphorylation of equatorin by calf intestinal alkaline phosphatase (CIAP)

[0053] Sperm removed from cauda epididymides were washed with PBS, extracted with SDS sample buffer, subjected to SDS-PAGE and blotted onto a PVDF membrane. The PVDF membrane was incubated in NEB buffer 3 (100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl, 2 mM DTT [pH 7.9], EDTA-free Complete mini protease inhibitors) with CIAP (20 U/ml) for one hour at 37°C, and the membrane was then subjected to immunostaining with the MN9 antibody to check the phosphorylation status of MN9 epitope or with the PY20 anti-phosphotyrosine antibody (0.1 µg/ml) as a control to confirm dephosphorylation by CIAP treatment. Control (non-dephosphorylated) samples were incubated without CIAP. TBS-T containing 1% (w/v) bovine serum albumin was used for blocking solution.

PNGase F and Neuraminidase treatment

[0054] Glycosidase treatments were performed basically according to the manufacturer's instructions (New England Biolabs) with slight modification: neuraminidase was simultaneously added to the PNGase F treatment protocol. Sperm were removed from cauda epididymides (5 x 10⁵ sperm suspended in 5 µl PBS/tube), washed with PBS, denatured and solubilized by adding 1 µl denaturing buffer (5% SDS, 0.4 M DTT) and heated for 10 minutes at 98°C. The samples were then neutralized by adding 2 µl of G7 buffer (0.5 M sodium phosphate, pH 7.5) and 2 µl of 10% NP-40 and centrifuged at 16,000g to remove insoluble
materials. Protease activity in the recovered supernatant was suppressed by adding Complete protease inhibitors and 1 µg/ml of pepstatin (Roche Diagnostics). PNGase F (125 U) or neuraminidase from *Arthrobacter ureafaciens* (0.05 U), or both were added to the supernatant and incubated for 12 hours at 37°C. The samples were then mixed with equal volumes of SDS sample buffer and subjected to Western blot analysis. The control samples were incubated without these glycosidases.

Inhibition of O-glycosylation on equatorin by Benzyl-α-GalNAc

[0055] HEK293T cells were supplemented with 0, 2 and 4 mM Benzyl-α-GalNAc prior to transfection of the pKSCX-Eqt(L)-EGFP vector. The cells were cultured for at least 24 hours in the presence of Benzyl-α-GalNAc, then solubilized in SDS sample buffer and subjected to Western blot analyses. Densitometry analysis of the immunoblots was done using ImageJ software (http://rsb.info.nih.gov/ij/index.html). The relative ratio of the immunostaining intensity of the MN9 antibody to that of the EQ_{70-83} antibody (MNWEQ_{70-83}) at 0 mM Benzyl-α-GalNAc was regarded as 1. The relative ratios of MN9/EQ_{70-83} at 2 and 4 mM Benzyl-α-GalNAc were then calculated. The results are shown in a bar graph. The vector construct is described in the vector construction section.

Determination of the orientation of the equatorin epitope region in the HEK293T cell plasma membrane

[0056] In order to identify the MN9 epitope, the orientation of equatorin in the cell membrane was examined in HEK293T cells. Cells were cultured on a glass bottom dish (AGC Techno Glass Co., Ltd. Chiba, Japan) precoated with polyethylenimine (Sigma Aldrich) and transfected with a C-terminally EGFP-tagged equatorin vector termed pKSCX-Eqt(L)-EGFP. The cells were cultured at least 24 hours after the transfection and washed once with PBS. Thereafter, cells were fixed with 4% paraformaldehyde (PFA) in PBS for 30 minutes. After
washing twice in PBS, cells were incubated in PBS or permeabilized with 0.1% Triton X-100 for 10 minutes and then incubated with the MN9 antibody (1:40,000 dilution, ca. 0.01 µg/ml), the EQ-p83 antibody (0.24 µg/ml), or an anti-GFP antibody (2 µg/ml) for one hour at room temperature and rinsed with PBS. Cells were then incubated with Alexa Fluor 555 donkey anti-mouse IgG (0.5 µg/ml) or Alexa Fluor 568 goat anti-rabbit IgG (0.5 µg/ml) and Hoechst 33258 (5 µg/ml) in PBS for one hour at room temperature. Cells were analyzed using an Olympus IX 71 (Olympus) microscope with a UPLSAPO 60 x NA 1.2 water immersion objective lens equipped with a CSU-XI confocal scanner (Yokogawa Electric Corporation, Tokyo, Japan). 3D projection images were captured using a QuantEM 512SC CCD camera (Photometries, Tucson, AZ, USA) controlled by SlideBook 4 software.

Immunogold electron microscopy

[0057] After washing twice in TYH (Toyoda, Yoshida and Hoshi) medium [38], cauda epididymal sperm were frozen once at -80°C and thawed before applying the primary antibody to permeabilize the membrane. The MN9 antibody was applied to the sperm for one hour. The sperm were then incubated in a solution of colloidal gold-conjugated anti-mouse IgG (ca. 1 µg/ml) for one hour. After rinsing in the medium, sperm were fixed in 1% glutaraldehyde and postfixed in 2% osmium tetroxide solution. The fixed sperm were embedded in 2% agar, routinely dehydrated in an ethanol series and embedded in Epon 812 (TAAB Laboratories Equipment, Berks, UK). Ultrathin sections were routinely made using an ultramicrotome (Ultracut E; Reichert-Jung, Wien, Austria) and stained with lead and uranyl acetate for observation with a transmission electron microscope (JEM-1200 EX; JEOL, Tokyo, Japan).

Vector construction for mouse recombinant equatorin

[0058] The FANTOM FLS clone (ID: 1700028B15 relevant to cloned mouse equatorin long form) was purchased from DNAFORM (Kanagawa, Japan). The equatorin long form was
inserted into pET-23a (Novagen, Madison, WI, USA) in frame with a C-terminal 6xHis-tag, designated as pET-23a-Eqt(L)-His, and used for *E. coli* protein expression. The pET-23a-Eqt(L)-His vector was digested with BamHI and BpulO2I. Fragments were blunt-ended by the Bunting high (Toyobo co., Ltd., Osaka, Japan) and ligated into pKSCX-IRES-EGFP, which digested with EcoRV and treated with CIAP. This plasmid was named pKSCX-Eqt(L)-His and used for mammalian cell culture. An EGFP-tagged equatorin protein expression vector pKSCX-Eqt(L)-EGFP was created by deleting the His-tag and IRES with an inverse PCR mutagenesis method using the KOD Plus mutagenesis kit (Toyobo) starting from pKSCX-Eqt(L)-His according to the manufacturer’s instructions using the appropriate primers (Table 1). Vectors for the equatorin short form and equatorin mutant protein expression (partial deletion and single amino acid substitution) were also created using PCR-based mutagenesis (Table 1). All vectors were verified by DNA sequencing.
Table 1. Primer pairs used in PCR mutagenesis for vector construction.

<table>
<thead>
<tr>
<th>product</th>
<th>Template vector</th>
<th>Product</th>
<th>pmers</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>pKSCX-Eqt-EGFP</td>
<td>pKSCX-Eqt-His</td>
<td>Forward</td>
<td>5'-CCCGGCCGTGGAGTATTACCTGGGTATCC-3'</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5'-TGAGATCCGGCTGTAACAAAGC-3'</td>
<td>12</td>
</tr>
<tr>
<td>pKSCX-Eqt</td>
<td>pKSCX-Eqt-His</td>
<td>Forward</td>
<td>5'-ATTAGCTGGTGATCTGGTTGAC-3'</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5'-ATAGCTGGTGATCTGGTTGAC-3'</td>
<td>14</td>
</tr>
<tr>
<td>Eqt short Eqt long</td>
<td></td>
<td>Forward</td>
<td>5'-GCTCCATCAAAGCATCTGTAACAGGC-3'</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5'-CTCGTGGGAGTGAAGGATAG-3'</td>
<td>16</td>
</tr>
<tr>
<td>Eqt Δ21-50</td>
<td>pKSCX-Eqt-EGFP</td>
<td>Forward</td>
<td>5'-GTTGCTTTACATAATGGGAAAGAG-3'</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5'-TAGACTGATAATGCTGGGAGAAACCC-3'</td>
<td>18</td>
</tr>
<tr>
<td>Eqt Δ31-100</td>
<td>pKSCX-Eqt-EGFP</td>
<td>Forward</td>
<td>5'-TTTGTGTAAGAAAGAATATAAACAC-3'</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5'-CACACCAGCCTCCTGACAAATG-3'</td>
<td>20</td>
</tr>
<tr>
<td>Eqt Δ31-146</td>
<td>pKSCX-Eqt-EGFP</td>
<td>Forward</td>
<td>5'-ACAGCAGTGACATGATGGAAGAG-3'</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5'-CACACCAGCCTCCTGACAAATG-3'</td>
<td>22</td>
</tr>
<tr>
<td>Eqt(T128A)</td>
<td>pKSCX-Eqt-EGFP</td>
<td>Forward</td>
<td>5'-GTCTGAAAGCTCAACCAATATTACC-3'</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5'-GGTATATTGGGGGTGAGGTTTACGAG-3'</td>
<td>24</td>
</tr>
<tr>
<td>Eqt(S129A)</td>
<td>pKSCX-Eqt-EGFP</td>
<td>Forward</td>
<td>5'-CTCTGAAAGCCCAATATTACC-3'</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5'-GGTATATTGGGGGTGAGGTTTACGAG-3'</td>
<td>26</td>
</tr>
<tr>
<td>Eqt(T130A)</td>
<td>pKSCX-Eqt-EGFP</td>
<td>Forward</td>
<td>5'-CTCTGTAACCCCAATATTACC-3'</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5'-GGTATATTGGGGGTGAGGTTTACGAG-3'</td>
<td>28</td>
</tr>
<tr>
<td>Eqt(T138A)</td>
<td>pKSCX-Eqt-EGFP</td>
<td>Forward</td>
<td>5'-CTGCAATTGGGAAATTTATTTATCGAGAG-3'</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5'-GCTTGTGAAAATTTATTTATTTATCGAGAG-3'</td>
<td>30</td>
</tr>
<tr>
<td>Eqt(S141A)</td>
<td>pKSCX-Eqt-EGFP</td>
<td>Forward</td>
<td>5'-GATTATGTAAGGAGTAAATATTATTATCGAGAG-3'</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>5'-GATTATGTAAGGAGTAAATATTATTATCGAGAG-3'</td>
<td>32</td>
</tr>
</tbody>
</table>

RESULTS

Distribution of equatorin in various tissues

[0059] In order to determine the distribution of equatorin in various tissues, Western blot analysis was performed with the MN9 antibody. Solubilized proteins (20 µg/lane) were loaded. Tissue samples present in each lane were as follows: lane 1, cerebrum; lane 2, cerebellum; lane 3, heart; lane 4, lung; lane 5, liver; lane 6, pancreas; lane 7, spleen; lane 8, kidney; lane 9, bladder; lane 10, large intestine; lane 11, small intestine; lane 12, testis; lane 13, caput epididymidis; lane 14, corpus epididymidis; lane 15, cauda epididymidis. Among the tissues examined, equatorin bands ranging from 40 to 65 kDa in testes, as shown in FIG. IA, lane 12, and epididymides, as shown in FIG. IA, lanes 13-15, were found. No bands were detected in
other tissues (FIG. IA, lanes 1-11). Since no bands were detected by the MN9 antibody in liver
samples (FIG. IA, lane 5), liver was used as a negative control for immunoprecipitation for
LC-MS/MS analysis.

Identification of equatorin and analysis of the amino acid sequence

Equatorin was purified by immunoprecipitation with the MN9 antibody. The same
amounts of immunoprecipitates were loaded in each lane for SYPRO Ruby and Pro-Q
Emerald 300 staining (lanes 3-6), while the 1/50 amount was loaded for Western blot (lanes 1
and 2). Tissue samples present in each lane were as follows: lanes 1, 3, and 5-liver (negative
control); and lanes 2, 4, 6-cauda epididymal sperm. Lanes 1 and 2 were loaded with Western
blot with MN9 antibody. In lanes 3 and 4, SYPRO Ruby staining was staining. In lanes 5 and
6, Pro-Q Emerald 300 staining was used. Equatorin focused on 40kDa (lanes 2 and 6).
Purified equatorin was identified as a 40 kDa band, as shown in FIG. IB and FIG. 8. It is
important to emphasize that equatorin, which was initially detected at 40 kDa by Western blot
analysis (FIG. IB, lane 2), could not be detected by conventional staining methods such as
silver stain (unpublished data) or SYPRO Ruby (FIG. IB, lane 4) but was detected by Pro-Q
Emerald 300 staining (FIG. IB, lane 6). No bands were detected in the control liver sample
(FIG. IB, lanes 1, 3 and 5).

The 40 kDa band expected to be equatorin was excised and subjected to
LC-MS/MS analysis. Mascot search results indicated a single significant candidate
4930579C15Rik. Based on the FANTOM (Functional Annotation of Mouse) full-length cDNA
database of RIKEN (http://fantom.gsc.riken.go.jp), primers were designed for validation of the
protein-coding region by sequencing cDNA prepared from the testes of an ICR mouse
(GenBank/EMBL/DDBJ accession number AB438105 for the long form and AB438106 for
the short form).

The data obtained were analyzed by amino acid sequence alignment for both
human and mouse, based on a homologue search and domain search. The resulting peptide sequences are shown in Figure 2. Identical sequences in the alignment are shown with asterisks. The peptide sequences detected by LC-MS/MS are shown in boldface letters. The 14-amino-acids sequence, boxed region, was used to raise EQ70-83 antibody. The putative signal peptide region is shaded and the putative transmembrane domain is underscored. The molecular weight predicted from the amino acid sequence was 33,042 Da for short form (296 aa) and 37,764 Da for long form of equatorin (337 aa). There was a putative signal peptide region at the N-terminus at residues 1-20, and a transmembrane region at residues 186-208.

[0063] Based on the amino acid sequence alignment, oligopeptides ranging from residue 70 to 83, a highly conserved region in both humans and mice, were used to raise a specific antibody termed EQ70,83, which was used for further experiments in this study.

Expression of equatorin mRNA in tissues

[0064] The expression of equatorin was investigated using recombinant protein in HEK293T cells. The mRNA expression of equatorin in various tissues was analyzed using RT-PCR. Interestingly, two bands, both long and short forms, were present in testes, as shown in FIG. 3A, lane 11. Tissue samples present in each lane were as follows: lane 1-cerebrum; lane 2- cerebellum; lane 3-heart; lane 4-lung; lane 5-liver; lane 6-spleen; lane 7-kidney; lane 8-, bladder; lane 9-large intestine; lane 10-small intestine; lane 11-testis; lane 12-caput epididymidis; lane 13-corpus epididymidis; lane 14-cauda epididymidis. No band was detected in other tissues, including epididymides (FIG. 3A, lanes 1-10 and 12-14).

Expression of recombinant equatorin in HEK293T cells: the verification study

[0065] Verification of equatorin by recombinant protein was conducted in HEK293T cells. In order to verify the identity of equatorin, equatorin expression vectors were developed for long, short, EGFP-tagged long and EGFP-tagged short forms and these equatorin vectors were
transfected into HEK293T cells and analyzed by Western blot (10% gel) using MN9 antibody. Same amounts of the cultured cell extracts were loaded in each lane. Expression vectors for short form (lane 1), long form (lane 2), EGFP-tagged short form (lane 3), and EGFP-tagged long form (lane 4). Short and long forms were found at 60-85 kDa (lanes 1 and 2), while EGFP-tagged short and long forms were found at 105 kDa (lanes 3 and 4). Both short and long forms were identified at 60 to 85 kDa (FIG. 3B, lanes 1 and 2), while both EGFP-tagged short and long forms were detected as much higher bands at approximately 105 kDa (FIG. 3B; lanes 3 and 4). Since the EGFP-tagged proteins were detected by the MN9 antibody at higher relative molecular mass bands than the untagged proteins, the cloned sequences were verified to be equatorin. The MN9 antibody did not 265 recognize equatorin proteins expressed in *E. coli* (data not shown).

Distribution of equatorin in testes and epididymides

[0066] We then determined the distribution of equatorin in detail using indirect immunofluorescence (HF) microscopy with EQ70-83 and MN9 antibodies. The epitopes of these antibodies are different: the EQ70-83 antibody recognizes a small peptide region from residue 70 to 83 of equatorin, while the MN9 antibody recognizes the antigenic region that undergoes post-translational modification (stated in the discussion). FIG 3C shows distribution of equatorin in the testis and cauda epididymidis using HF microscopy with EQ70-83 antibody and MN9 antibody. Images a-c of FIG. 3C show testis. Images d-f of FIG. 3C show cauda epididymidis. Images a and d show EQ70-83 antibody (represented in red when the figures are shown in color) as small dots dispersed in a circular fashion in image a and dispersed substantially around the asterisks in right and left edges of image d. Images b and e show MN9 antibody (represented in green when the images are shown in color) as small dots dispersed in a circular fashion in image b and substantially around the asterisks in image e. Images a, b, and c show counter staining with Hoechest 33258 (represented in blue when the
images are shown in color) as small dots dispersed proximate the outer edges of the images. Merged images of EQ70-83 antibody, MN9 antibody and differential interference contrast images are shown in FIG. 3C, images c and f. It should be noted that both EQ70-83 antibody and MN9 antibody recognize acrosomal regions in developing spermatids (s7 and s16) of the seminiferous tubule at stage VII (VII; a-c) and in epididymal sperm (asterisks; d-f), but these antibodies do not recognize epididymal epithelia (Ep; b-f). P: pachytene spermatocytes. s7 and s16: step 7 and step 16 spermatids, respectively. Bars = 50 µm. Western blot analysis with the MN9 antibody detected recombinant equatorin. Thus, in agreement with the results of the Western blot study (FIG. IA), HF microscopy showed that equatorin detected by the EQ70-83 and MN9 antibodies was present in both the testes and epididymides, showing the same staining pattern, but not in epididymal epithelial cells. The protein was sperm specific, including germ cells (FIG. 3C).

Phosphatase treatment of equatorin

[0067] Since it was found that the MN9 antibody did not recognize equatorin proteins expressed in E. coli during the verification studies, the MN9 epitope was thought to be post-translationally modified. The effect of dephosphorylation of the MN9 epitope was first examined using CIAP. FIG. 4A shows analysis of phosphorylation status of sperm equatorin by CIAP (phosphatase) treatment. Sperm proteins (12.5% gel SDS-PAGE; 5µg/lane) on PVDF membranes were treated without (-) and with (+)CIAP and immunostained with MN9 antibody (upper panel) or with PY20 anti-phosphotyrosine antibody (lower panel). PY20 anti-phosphotyrosine antibody was used to confirm dephosphorylation of sperm protein as control. Note that MN9 antigenicity remained after CIAP treatment (upper panel). The fact that immunostaining of MN9 antibody remained after CIAP treatment, while that of PY20 antibody decreased (FIG. 4A), suggests that the epitope of the MN9 antibody was not phosphorylated.
Evaluation of equatorin glycosylation by mobility shift assays

[0068] Since equatorin was detected by Pro-Q Emerald glycoprotein staining, cauda sperm extracts were treated with PNGase F and neuraminidase to determine whether equatorin was glycosylated and whether N-glycosylation or the sialic acid moiety was involved in the epitope region of the MN9 antibody. The enzymatically treated samples were subjected to Western blot analysis with the MN9 antibody (FIG. 4B). In lanes 1-4, equatorin in the cauda sperm extract analyzed by Western blot (15% gel) with MN9 antibody. The same amounts of PNGase F and neuraminidase treated samples were loaded in each lane: lane 1 - without glycosidase treatment; lane 2 - treatment with PNGase F only; lane 3 - treatment with neuraminidase only; lane 4 - treatment with PNGase F and neuraminidase. Mobility shifts were observed by both PNGase and neuraminidase treatment, but the MN9 antigenicity remained. PNGase F treatment reduced the molecular size of the two major bands of equatorin by approximately 2 kDa: the upper band went from 50 kDa to 48 kDa, and the lower band went from 40 kDa to 38 kDa (FIG. 4B, lanes 1 and 2). In addition, the MN9 antibody recognized only a single 27 kDa band after neuraminidase treatment (FIG. 4B, lanes 3 and 4). It is currently unclear whether this band is the long or short form. Thus, equatorin has an N-glycan with a sialylated 0-glycan; i.e., it is a 40-50 kDa N-Osialoglycoprotein. Interestingly, MN9 antigenicity was not eliminated by treatment with PNGase F and neuraminidase, suggesting that the MN9 epitope contains neither an N-linked carbohydrate nor a sialic acid moiety in the epitope region. In order to assess the involvement of O-glycosylation in MN9 antigenicity, recombinant equatorin was expressed in HEK293T cells in the presence of the (9-glycosylation inhibitor Benzyi- α-GalNAc. Same amounts of the cultured cell extracts were loaded in each lane and separated in 12.5% gel. The blots were immunostained with MN9 antibody (FIG. 4C top panel) and EQ_{288} antibody (FIG. 4C middle panel). The immunostained bands were analyzed with densitometry (see Materials and
Methods) and shown in bar graph (FIG 4C bottom panel). Numbers on the lanes indicate the concentration of Benzyl-α-GalNAc. Error bars indicate ± SD of three independent experiments. Relative MN9 antigenicity (MN9/EQ\textsubscript{70-83}) decreased as Benzyl-α-GalNAc concentration increased.

[0069] The relative ratio of MN9/EQ\textsubscript{70-83} decreased in a dose-dependent manner with increasing concentrations of the Benzyl-α-GalNAc inhibitor as shown in the bar graph (FIG. 4C), suggesting the involvement of (2-glycosylation in the MN9 epitope.

Determination of the orientation of the equatorin epitope region

[0070] C-terminally EGFP-tagged equatorin was transfected into HEK293T cells, and the transfected cells were examined by HF under antibody-non-permeabilized or antibody-permeabilized conditions. Images a-f of FIG. 5A depict results of monitoring by HF microscopy of EGFP-tagged equatorin. Images c-f of FIG. 5A depict results of 4% PFA fixation under non-permeabilized condition. Images g and h of FIG. 5A depict results of 4% PFA fixation under permeabilized condition. Hoechst 33258 counterstaining was used for the nucleus, and appear as ball-shaped figures in the images (represented in blue when the images are shown in color). Anti-EQ\textsubscript{70-83} antibody is shown in lighter shading dispersed around and partially within the ball-shaped figures in image a (represented in red when the figures are shown in color), MN9 antibody is shown in lighter shading dispersed around and partially within two of the ball-shaped figures in image c (represented in red when the figures are shown in color), and anti-GFP antibody is shown in lighter shading dispersed around and at the outer periphery of one of the ball-shaped figures in images e and g (represented in red when the figures are shown in color). C-terminally EGFP-tagged equatorin in transfected cells is shown in lighter shading dispersed around and partially within the ball shaped figures in images b, d, f, and h (shown in green when the figures are shown in color). Bar = 10 µm. Ab; antibody. Under non-permeabilized conditions, both the EQ\textsubscript{70-83} antibody and MN9 antibody
detected EGFP-tagged equatorin (FIG. 5A, a-d), while the anti-GFP antibody could not recognize EGFP-tagged equatorin (FIG. 5A, e and f). Under permeabilized conditions, the anti-GFP antibody detected EGFP-tagged equatorin (FIG 5A, g and h).

Determination of the amino acid residue bearing the post-translational modification essential for the MN9 epitope

[0071] The results in Figure 5A suggest that equatorin is a type 1 transmembrane protein, with the MN9 epitope localized on the N-terminal side facing the external surface (FIG. 5A). Therefore, to identify the exact amino acid position at which the post-translational modification essential for MN9 epitope occurs, a partial amino acid sequence (indicated by Δ) of equatorin was first deleted, the construct was transfected into HEK293T cells, and the immunostaining loss was evaluated using Western blot analysis (FIG 5B). The MN9 antibody detected EQT(L)Δ21-50-EGFP and EQT(L)Δ31-100-EGFP but could not detect EQT(L)Δ31-146-EGFP (FIG. 5B, upper panel). The positive control anti-GFP antibody detected all samples (FIG. 5B, lower panel). The GFP bands that ran lower than the MN9 band were degradation products (FIG. 5B); since GFP is highly resistant to proteases [39], the GFP itself maintained its antigenicity, while the equatorin portion of the EGFP-tagged equatorin protein was degraded, eliminating the MN9 antigenicity.

[0072] Based on the results in Figures 4 and 5B, it was hypothesized that O-glycosylation at amino acid residues from 101 to 146 was involved in the MN9 epitope. Since there were two serine and three threonine residues that were not detected by LC-MS/MS analysis in this region (FIG. 2), we analyzed serine and threonine single amino acid substitution mutant proteins by Western blot (FIG. 5C). The equatorins were intentionally overloaded to avoid the false negative signals due to the low concentration, but this concomitantly caused protein degradation, showing smeared bands. Same amounts of the cultured cell extracts were loaded in each lane in each experiment, for FIG 5B and FIG 5C. The MN9 antibody detected all
mutant proteins except the T138A mutant. This suggested that post-translational modification occurs on the threonine 138 and that this modification is involved in the MN9 epitope region.

Immunogold electron microscopy

Finally, the localization of equatorin was identified by immunogold electron microscopy using the MN9 antibody (FIG. 6A and FIG. 6B), preembedding method after freeze-thawing. FIG 6A depicts an image of the anterior acrosome region. The immunogold particles (5 nm gold arrowheads) are rich on the inner acrosomal membrane (IAM), facing the acrosome lumen (acrosomal lumen indicated by asterisks), but poor (no gold particles in this photograph) on the outer acrosomal membrane (OAM). The OAM is partially broken (double arrowheads) due to the freeze-thawing treatment in this photograph, which allowed penetration of immunogold particles to the acrosome membrane. The immunogold particles are never present on the plasma membrane (PM). FIG. 6B depicts an image of the posterior acrosome region (equatorial segment). The immunogold particles (10 nm gold) are present on both the IAM (arrowheads) and OAM (double arrowheads), where the particles appear to associate with electron-dense substances facing the narrowed internal lumen. Electron-dense perinuclear substances are found between the IAM and nucleus (N). Equatorin was found to be enriched on the inner acrosomal membrane but minimal on the outer acrosomal membrane; this was typically seen in the anterior acrosome region (FIG. 6A). In contrast, equatorin was enriched on both the inner and outer acrosomal membranes in the posterior acrosome region (equatorial segment) (FIG. 6B). Immunogold particles were never observed on the plasma membrane in intact sperm (FIG. 6A).

FIG. 7 shows a schematic drawing of sperm head to show the localization of equatorin in acrosome. The MN9 epitope is present on both the outer acrosomal membrane (OAM) and the inner acrosomal membrane (IAM). The boxed area of the equatorial segment (ES) is enlarged at the right side; the N-terminus of equatorin faces the acrosomal lumen.
before acrosome reaction (FIG. 6). AA, anterior acrosome; PM, plasma membrane.

[0075] FIG. 8A shows western blot analysis (10% gel) with MN9 antibody. Equatorin from cauda epididymal sperm had broad apparent molecular weight of 40-50 kDa (lane 1). Equatorin migrated to 40 kDa band after 0.1% Triton X-100 treatment (lane 2), although equatorin was not solubilized in 0.1% Triton X-100 (lane 3). After 0.1% Triton X-100 treatment, 40 kDa equatorin solubilized in SDS-EDTA buffer (lane 4). FIG. 8B shows a sample preparation diagram. Lane 1: whole sperm without treatment were directly solubilized in SDS sample buffer. Lane 2: whole sperm suspended in 0.1% Triton X-100 were solubilized in SDS sample buffer. Lane 3: supernatant after centrifugation of sperm suspension in 0.1% Triton X-100. Lane 4: supernatant after centrifugation of precipitate (lane 3 sample preparation) solubilized in SDS lysis solution. Triton X-100 treatment enabled 40-50 kDa equatorin to be focused as 40 kDa single band. This focusing facilitated the efficient purification of equatorin by immunoprecipitation.

[0076] To determine specificity of EQ_{70-83} antibody, Western blot analysis (12.5% gel) was conducted EQ_{70-83} antibody (FIG 9A). EQ70-83 antibody recognized the same bands that the MN9 antibody recognized (Figure 1A). FIG. 9B shows HF microscopy of cauda epididymal sperm with EQ_{70-83} and MN9 antibodies. Acrosome intact sperm are shown in images a, d and g. Acrosome reacted sperm are shown in images b, e and h. Triton X-100 permeabilized sperm are shown in c, f and i. EQ_{70-83} antibody is shown as the leaf-shaped figure in images b-c (represented in red when the figures are shown in color). MN9 antibody is shown as the leaf-shaped figure in images e-f (represented in green when the figures are shown in color). Merged images of EQ70-83 antibody, MN9 antibody and differential interference contrast images are shown in images g-i. Both EQ_{70-83} and MN9 antibodies recognized the equatorial segment of acrosome-reacted sperm and acrosomal membrane-permeabilized sperm, but did not recognize acrosomal membrane-intact sperm. Bar = 1 µm.
[0077] FIG. 10 shows western blot analysis for mouse and human sperm and images a and b show HF microscopy images for human sperm head without DIC (image a) and with DIC (image b).

[0078] Applicants specifically incorporate the entire contents of all cited references in this disclosure. Further, when an amount, concentration, or other value or parameter is given as either a range, preferred range, or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values recited when defining a range.

[0079] Other embodiments of the present invention will be apparent to those skilled in the art from consideration of the present specification and practice of the present invention disclosed herein. It is intended that the present specification and examples be considered as exemplary only with a true scope and spirit of the invention being indicated by the following claims and equivalents thereof.
WHAT IS CLAIMED IS:

1. A method of identifying a compound that inhibits fertilization, comprising selecting a compound that binds to a region of mouse equatorin that contains an O-glycosylated threonine residue located at position 138 of the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 3, or a region of human equatorin that contains an O-glycosylated threonine residue located at position 136 of the amino acid sequence of SEQ ID NO: 5.

2. The method according to claim 1, wherein said region of mouse equatorin is a region comprising the amino acid sequence from position 101 to position 146 in the amino acid sequence of SEQ ID NO: 3 or SEQ ID NO: 4 of mouse equatorin, and said region of human equatorin is a region comprising the amino acid sequence from position 92 to position 144 in the amino acid sequence of SEQ ID NO: 5 of human equatorin.

3. The method according to claim 1, wherein the method comprises the following steps:
 (1) contacting mouse equatorin or human equatorin with a test compound,
 (2) detecting binding of an antibody that recognizes said region to the mouse equatorin or the human equatorin, and
 (3) selecting a compound that reduces the binding compared to binding of the antibody to mouse equatorin or human equatorin without contacting with a test compound.

4. The method according to claim 3, wherein said antibody has an effect of inhibiting fertilization.

5. The method according to claim 3, wherein said antibody is an antibody that recognizes said region of mouse equatorin.

6. The method according to claim 3, wherein the mouse equatorin or the human equatorin
is expressed in cultured cells.

7. The method according to claim 3, wherein the mouse equatorin is a partial peptide of mouse equatorin that comprises sequential amino acid residues from position 101 to position 146 of the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 3 and contains an O-glycosylated threonine residue located at position 138 of the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 3.

8. The method according to claim 3, wherein the human equatorin is a partial peptide of human equatorin that comprises sequential amino acid residues from position 92 to position 144 of the amino acid sequence of SEQ ID NO: 5 and contains an O-glycosylated threonine residue located at position 136 of the amino acid sequence of SEQ ID NO: 5.

9. The method according to claim 3, wherein the method further comprises steps of contacting a selected compound with male germ cells, detecting fertilization between the male germ cells and female germ cells, and selecting a compound that inhibits the fertilization.
Figure 4

A. CIAP treatment

B. PNGase F

C. β-GalNAc

M₄ x 10⁻³

Relative Antibody

Densitometry (MN9/EO7.83)

0 0.5 1 1.5 2 2.5 3 3.5 4

0 1 2 4 mM
Figure 6

A

OAM

IAM

PM

50nm

B

OAM

Perinuclear substance

IAM

N

10nm
A - Cauda epididymal sperm
B - Lane 1 sample
 Triton X-100 0.1% final concentration
 16,000 g centrifugation
 Supernatant
 SDS lysis solution
 Lane 3 sample
 16,000 g centrifugation
 Supernatant
 SDS lysis solution
 Lane 4 sample

Figure 8
M \times 10^{-3}
1 2 3 4
116 97 66 45 31
Precipitate
Precipitate
Figure 10

WB

IIF

WB for human (1) and mouse (2) sperm.

IIF for human sperm head.
a. IIF image.
b. IIF+DIC images.
Green: Equatorin.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. G01N33/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELD(S) SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BIOSIS, MEDLINE, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

Date of the actual completion of the international search

12 May 2010

Date of mailing of the international search report

18/06/2010

Name and mailing address of the ISA/

European Patent Office, P B 5818 Patentlaan 2
NL- 2280 HV Rijswijk
Tel (+31-70) 340-2040, Fax (+31-70) 340-3016

Authorized officer

Moreno de Vega, C

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>