

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2341860 C 2008/12/23

(11)(21) **2 341 860**

(12) **BREVET CANADIEN
CANADIAN PATENT**

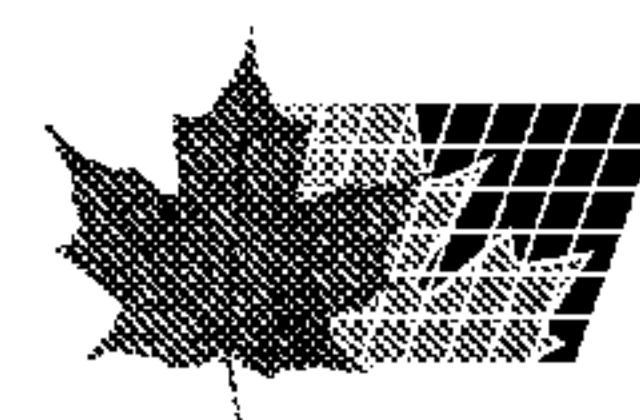
(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 1999/08/25
(87) Date publication PCT/PCT Publication Date: 2000/03/09
(45) Date de délivrance/Issue Date: 2008/12/23
(85) Entrée phase nationale/National Entry: 2001/02/27
(86) N° demande PCT/PCT Application No.: GB 1999/002807
(87) N° publication PCT/PCT Publication No.: 2000/012449
(30) Priorité/Priority: 1998/08/28 (GB9818701.6)

(51) Cl.Int./Int.Cl. *C07F 17/02*(2006.01),
C07B 53/00(2006.01)

(72) Inventeurs/Inventors:
KNOCHEL, PAUL, DE;
DUEBNER, FRANK, DE

(73) Propriétaire/Owner:
AVECIA LIMITED, GB


(74) Agent: SMART & BIGGAR

(54) Titre : REACTIONS DE SUBSTITUTION D'UN COMPOSE ALLYLIQUE ENANTIOSELECTIF CATALYSE PAR LE
CUIVRE

(54) Title: COPPER-CATALYZED ENANTIOSELECTIVE ALLYLIC SUBSTITUTION REACTIONS

(57) Abrégé/Abstract:

An allylic compound is reacted with an organozinc compound $Zn(R^6)_2$ to eliminate a group (the leaving group) from the allylic compound and to add a group from the organozinc compound to it in the presence of a copper salt catalyst and a chiral organic ligand for the copper.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ :	A1	(11) International Publication Number:	WO 00/12449
C07B 53/00, C07F 17/02		(43) International Publication Date:	9 March 2000 (09.03.00)

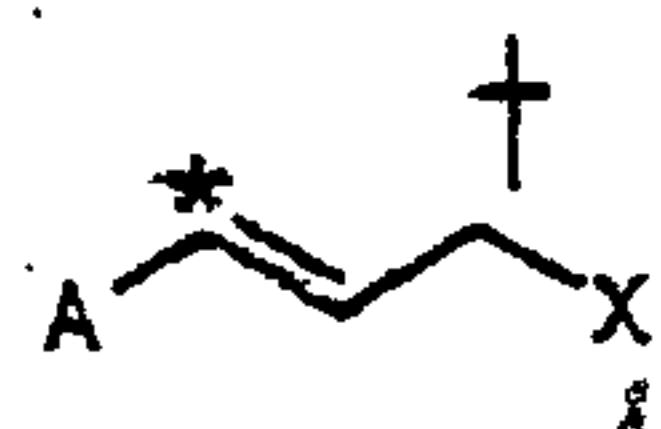
(21) International Application Number:	PCT/GB99/02807		
(22) International Filing Date:	25 August 1999 (25.08.99)		
(30) Priority Data:	9818701.6	28 August 1998 (28.08.98)	GB
(71) Applicant (for all designated States except US):	AVECIA LIMITED [GB/GB]; Hexagon House, Blackley, Manchester M9 8ZS (GB).		
(72) Inventors; and			
(75) Inventors/Applicants (for US only):	KNOCHEL, Paul [FR/DE]; Wangener Strasse 3, D-81475 München (DE). DUEBNER, Frank [DE/DE]; Leonhardstrasse 14, D-61169 Friedberg (DE).		
(74) Agents:	LOCKE, Timothy, John; Intellectual Property Group, A vecia Limited, Belasis Avenue, P.O. Box 2, Billingham TS23 1YN (GB) et al.		
(81) Designated States:	AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).		
Published	With international search report.		

(54) Title: COPPER-CATALYZED ENANTIOSELECTIVE ALLYLIC SUBSTITUTION REACTIONS

(57) Abstract

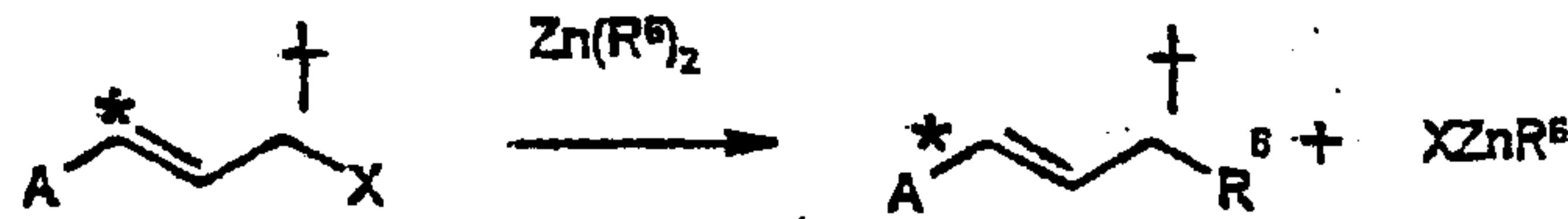
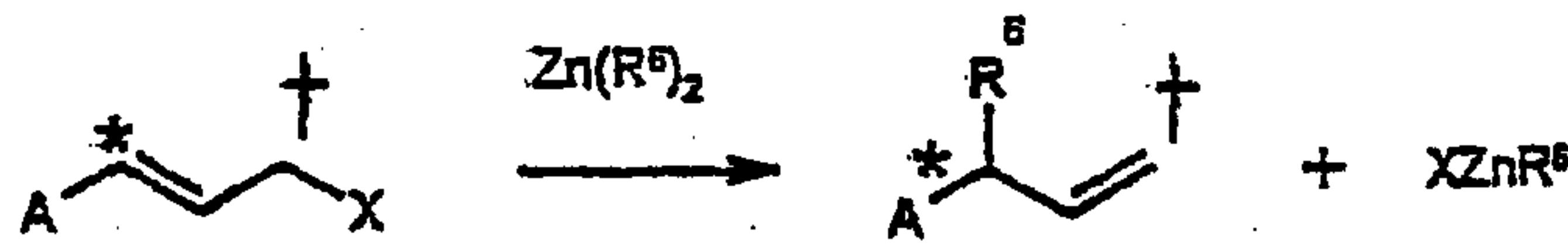
An allylic compound is reacted with an organozinc compound $Zn(R^6)_2$ to eliminate a group (the leaving group) from the allylic compound and to add a group from the organozinc compound to it in the presence of a copper salt catalyst and a chiral organic ligand for the copper.

79806-29

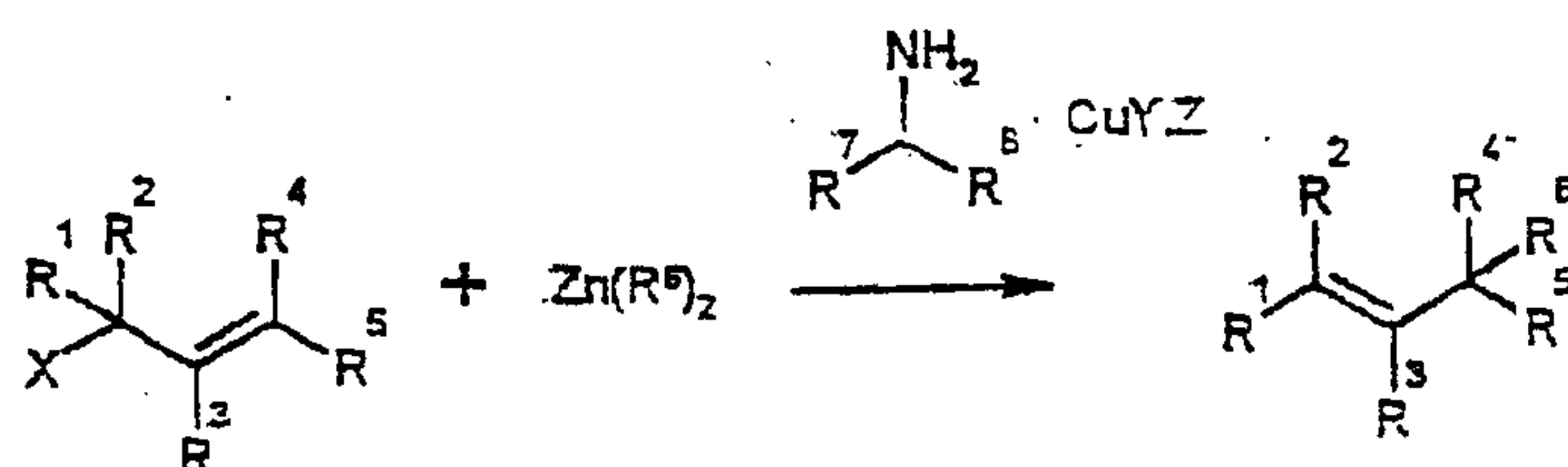

1

COPPER-CATALYZED ENANTIOSELECTIVE ALLYLIC SUBSTITUTION
REACTIONS

This invention relates to selective synthesis and catalysts therefor.



According to the invention an allylic compound is reacted with an organozinc compound $Zn(R^6)_2$ to eliminate a group (the leaving group) from the allylic compound and to add a group from the organozinc compound to it in the presence of a copper salt catalyst and a chiral organic ligand for the copper. Preferably the ligand is a primary or secondary amine in which the nitrogen atom is directly linked to the chiral centre.

The allylic compound is suitably of formula

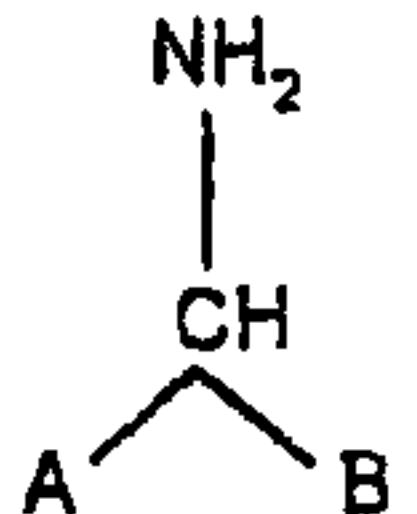

where X is the leaving group for example a chlorine atom and in which A is hydrogen or an alkyl or aryl group, preferably having 1-20 carbon atoms or 6-20 carbon atoms, respectively. If substitution occurs at the carbon atom marked * a chiral centre may be formed. This process is known as $Sn2'$ substitution; an alternative substitution at the carbon atom marked + may occur in which case there may be no chiral centre, this process is known as $Sn2$ substitution.

The reactions are shown as follows:

where R^6 is a group from the organozinc compound. Surprisingly, in this process the former reaction is generally favoured and is influenced by the leaving group, ligands and solvents as shown below, tetrahydofuran being a particularly favourable solvent. The process is normally chemoselective for $Sn2'$ substitution and/or stereoselective.

In a preferred form of the invention the reaction is as shown below:-

R^1 - R^6 are alkyl, alkenyl, alkynyl, aryl, aralkyl or heterocyclyl groups optionally substituted by for example halogen, alkoxy, aryloxy, acyloxy, nitro, amide, acetamide, carboxylate, cyano, acetal, sulphide, sulphonate, sulfone, sulfoxide, phosphite, phosphonate, phosphine groups, each preferably having at most 20 and preferably less than 10 carbon atoms, or R^1 to R^5 may be H, R^7 is an aryl for example a phenyl or ferrocenyl or

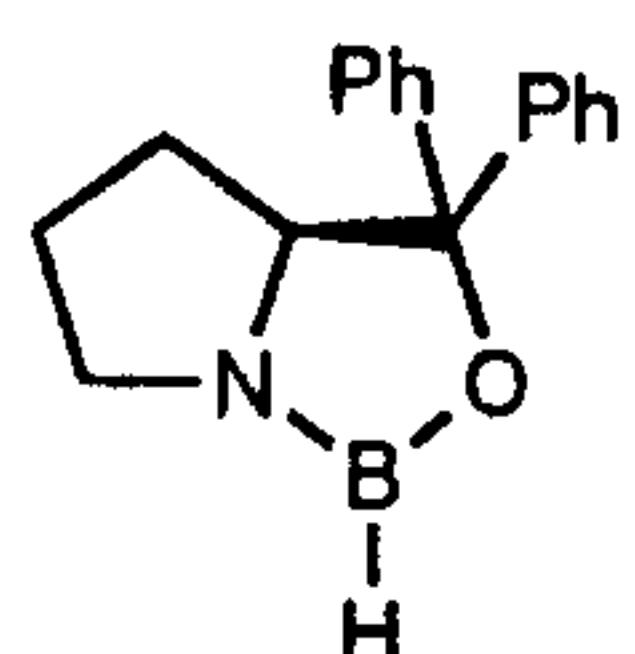

79806-29

substituted aryl or ferrocenyl group of which the substituents may be for example 1-aminobenzyl, 1-amino-2-naphthylmethyl, 1-amino-(4-tert-butylphenyl)methyl, trimethylsilyl, phosphite, phosphine, alkyl, alkoxy, thiophosphonate, amino and/or halogen (eg Cl or Br) atoms and R⁸ is an alkyl or aryl, preferably a methyl, ethyl, propyl, 5 tert-butyl, phenyl or naphthyl for example 2-naphthyl group which may be substituted for example by nitro, alkoxy, alkyl and/or haloalkyl group. X is halogen, OR⁹, OCOR⁹, OCO₂R⁹, OSO₂R⁹, OCS₂R⁹, CH(OR¹⁰)₂, OPO(OR⁹)₂, SOR⁹, or SO₂R⁹ where R⁹ and R¹⁰ are optionally substituted C₁-C₁₀ alkyl or aryl, of which the substituents may be 10 halogen, nitro, methoxy, trifluoromethoxy, methyl, ethyl, tert butyl or sulphonate groups e.g. methyl, ethyl, trifluoromethyl, phenyl, tosyl, p-bromophenyl, p-nitrophenyl, p-methoxyphenyl, or R⁷ and R⁸ may together form a 5 or 6 membered carbocyclic or heterocyclic ring providing that a carbon atom to which the nitrogen is attached is chiral. For example R⁷ and R⁸ together may be 1-indane, bornylamine or 2-cyclohexylamine. Y is halogen, carboxylate for example, acetate, acetoacetate, cyanide, or thiocyanate and 15 Z is an ether or thioether for example dimethylsulfide, tetrahydrofuran or diethylether. Preferably R¹-R² and R³ and one of R⁴ or R⁵ are H and the other one of R⁴ or R⁵ is aryl, for example phenyl, 4-chlorophenyl or 4-trifluoromethyl phenyl or is a trialkyl (e.g. tri-isopropyl) silyl oxymethyl groups R⁶ is alkyl, tri-alkyl (e.g. trimethyl) silyl methyl, phenyl or 20 2,2-dimethylbut-3-enyl. R⁷ is ferrocenyl, R⁸ is naphthyl, X is chloride, Y is chloride or bromide and Z is dimethylsulfide. R⁵ is preferably phenyl and R⁶ is preferably neopentyl. The substituents of R⁷ preferably have at most 10 carbon atoms in total and those of R⁸ preferably at most 8 carbon atoms in total. Alkanes, cyclo alkanes and/or aromatic solvents for example toluene may be present.

Preferred solvents are ethers for example diethylether, 1,4-dioxane, 25 tertbutylmethylether and especially tetrahydrofuran. Preferred temperatures are -120°C to 25°C more preferably -100°C to 20°C and especially -90°C to -50°C.

Preferred concentrations of catalyst are 0.1 atom% to 20 atom%, especially 0.5 atom% to 5 atom% expressed as copper atoms based on moles of the allylic compound.

30 The ratio of copper atoms to the amine ligand molecules is suitably 1:10 to 2:1. Compounds for formula


in which A is a ferrocenyl or substituted ferrocenyl group and B is a group R⁸ other than a methyl or phenyl group are believed to be novel. The groups A and B should be 35 different in order to obtain stereospecificity. B is preferably a 2-naphthyl group.

Example 1**Preparation of (R)-(1-amino-2-naphthylmethyl) ferrocene****Step 1**

Ferrocene (4.5 g, 24 mmol) and aluminium trichloride (3.5 g, 26 mmol) were combined in dry dichloromethane (100 ml) at 0°C under argon. To the greenish suspension was added a solution of 2-naphthoyl chloride (5.0 g, 26 mmol) in dichloromethane (20 ml) at 0°C over a period of 20 min to obtain a dark purple solution. The reaction was stirred for 2h at room temperature and then quenched by careful addition of saturated aqueous ammonium chloride solution (100 ml). The organic layer was separated, washed with sat. aqueous sodium bicarbonate solution (2 x 30 ml), dried (MgSO_4) and concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel using 1 : 1 pentane: diethyl ether by volume as eluent to give the ketone (5.6 g, 69%) as a red solid.

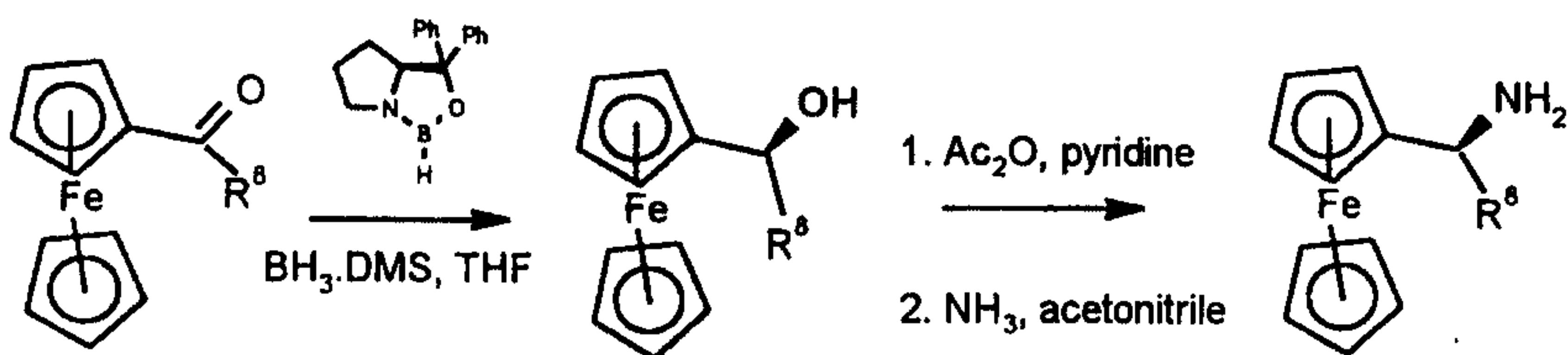
Step 2

The ferrocenyl ketone (4.5 g, 13.2 mmol) and borane dimethyl sulfide complex (1.4 ml, 14 mmol) were added simultaneously over a period of 30 minutes to a solution of the CBS catalyst (0.70 g, 2.5 mmol) in THF (80 ml) at 0°C under argon. CBS catalyst is

The catalyst is prepared from 1,1-diphenyl pyrrolidine methanol and borane (see *Synlett* 1993, 929)

After stirring for an additional 30 min the mixture was quenched with aq. ammonium chloride solution (70 ml). The organic layer was separated, dried (MgSO_4) and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using 1: 1 pentane : ether as eluent affording the desired alcohol (4.0 g, 89%) as an orange solid.

Step 3

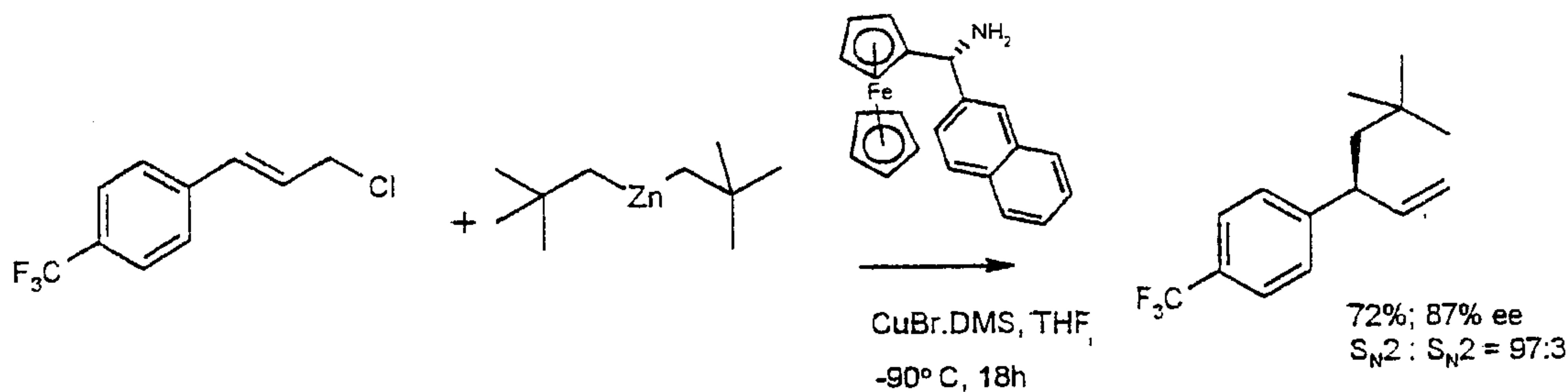

The ferrocenyl alcohol (4.0 g, 11.6 mmol) was dissolved in dry pyridine (30 ml) and acetic anhydride (20 ml) at room temperature. After stirring for 18h at room temperature all volatiles were removed under high vacuum at 50°C furnishing the pure acetylated alcohol (4.5 g, 100 %) as a red glue, that smoothly crystallised on standing to a red solid.

The acetylated alcohol (3.0 g, 8 mmol) was dissolved in acetonitrile (200 ml) and 37% aqueous ammonia solution (40 ml). After stirring for 24h at room temperature the mixture was poured into 10% aqueous hydrochloric acid (200 ml). The resulting precipitate was removed by filtration and washed with ether (4 x 20 ml). The residue was

dissolved in 20% aqueous sodium hydroxide solution (200 ml) and the desired product re-extracted with ether (5 x 50 ml). After drying ($MgSO_4$), the solvent was removed under reduced pressure and the pure (R)-(1-amino-2-naphthylmethyl) ferrocene (1.8 g, 66%) was obtained as an orange solid.

5 The corresponding compounds in which the naphthyl group is replaced by phenyl, o-tolyl, 1-naphthyl, 2-naphthyl, methyl, cyclohexyl, o-biphenyl, p-biphenyl, phenanthrenyl, o-bromophenyl and p-butylphenyl were prepared similarly. Compounds in which the ferrocenyl is symmetrically 1,1' disubstituted with 1-aminobenzyl, 1-amino-2-naphthylmethyl, 1-amino-(4-tert-butylphenyl)methyl, or 2-substituted with trimethylsilyl 10 were prepared using the method given in example 1 except that two mole equivalents of aluminium chloride and acylchloride were used in step 1, two mole equivalents borane dimethylsulfide and 30 mol% CBS catalyst were used in step 2, and two mole equivalents acetic anhydride, pyridine and ammonia were used in step 3. The enantiomeric excess was in each case greater than 99%.

15 The reaction is illustrated below. The reaction was also carried out with the compounds indicated below, the % figures indicating the stated yields of pure material based on starting material,


	$R^8 = Ph$	$R^8 = Ph;$	$R^8 = Ph;$
20	$R^8 = o\text{-Tolyl}$	$R^8 = o\text{-Tolyl};$	$R^8 = o\text{-Tolyl};$
	$R^8 = 1\text{-Naphth}$	$R^8 = 1\text{-Naphth};$	$R^8 = 1\text{-Naphth};$
	$R^8 = 2\text{-Naphth}$	$R^8 = 2\text{-Naphth};$	$R^8 = 2\text{-Naphth};$
	$R^8 = Methyl$	$R^8 = Methyl$	$R^8 = Methyl$
	$R^8 = Cyclohexyl$	$R^8 = Cyclohexyl;$	$R^8 = Cyclohexyl;$
25	$R^8 = 2\text{-Biphenyl}$	$R^8 = 2\text{-Biphenyl}$	$R^8 = 2\text{-Biphenyl}$
	$R^8 = 4\text{-Biphenyl}$	$R^8 = 4\text{-Biphenyl}$	$R^8 = 4\text{-Biphenyl}$
	$R^8 = phenanthrenyl$	$R^8 = phenanthrenyl$	$R^8 = phenanthrenyl$
	$R^8 = 2\text{-bromophenyl}$	$R^8 = 2\text{-bromophenyl}$	$R^8 = 2\text{-bromophenyl}$
	$R^8 = 4\text{-bromophenyl}$	$R^8 = 4\text{-bromophenyl}$	$R^8 = 4\text{-bromophenyl}$
30	DMS is dimethyl sulphide and THF is tetrahydrofuran.		

Example 2

Enantioselective allylation. Preparation of (+)-(S)-5,5-dimethyl-3(4-trifluoromethylphenyl)-1-hexene

This reaction is shown below

79806-29

The chiral organic ligand R^7 =ferrocenyl, R^8 =2-naphthyl (70 mg, 0.2 mmol) and CuBr.Me₂S (3 mg, 0.02 mmol) were dissolved in THF (5 ml) yielding a clear solution. After cooling to -90°C, neo-Pent₂Zn (0.3 ml, 2.4 mmol) and 4-trifluoromethylcinnamyl chloride were added successively. The reaction mixture was stirred for 18h at -90°C and was worked up. The crude residue obtained after evaporation of the solvents was purified by flash-chromatography (ether : pentane 1 : 50) leading to the desired product (370 mg, 72% yield: S_{N2}'/S_{N2} ratio : 97 : 3). The enantiomeric excess of the chiral product was determined by gas chromatography to be 87% using a Chiraldex™ capillary column.

Use of different substituents R^7 and R^8 in asymmetric allylation reaction

The following Table 1 shows the use of different chiral organic ligands (lig*) R^7 and R^8 as indicated in table 1, in the reaction of cinnamyl chloride with di-neopentyl zinc at -50°C. The chiral organic ligands were prepared according to the methods in example 1 and are of the (R) configuration. The experimental conditions are analogous to those in Example 2 above.

Table 1

Entry	R^7	R^8	Yield (%)	$S_{N2}' : S_{N2}$	ee
1	Ferrocenyl	Phenyl	73	95 : 5	32%
2	Ferrocenyl	o-Tolyl	79	96 : 4	16%
3	Ferrocenyl	1-Naphthyl	72	93 : 7	33%
4	Ferrocenyl	2-Naphthyl	77	95 : 5	42%
5	Ferrocenyl	Methyl	74	88 : 12	7%
6	Ferrocenyl	Cyclohexyl	74	92 : 8	15% ¹
7	Ferrocenyl	o-Biphenyl	n.d.	92 : 8	4%
8	Ferrocenyl	p-Biphenyl	84	97 : 3	38%
9	Ferrocenyl	Phenanthrenyl	69	98 : 2	61%
10	Ferrocenyl	2-Naphthyl	75	97 : 3	67%
11	Ferrocenyl	o-Bromophenyl	67	96 : 4	38%
12	Ferrocenyl	p-Butylphenyl	69	96 : 4	56%

Entry	R^7	R^8	Yield (%)	$S_{N}2' : S_{N}2$	ee
13			68	99 : 1	51%
14			68	97 : 3	52%
15			69	96 : 4	45%
16			66	98 : 2	11%
17	phenyl	methyl	>95	94 : 6	44%
18	2-naphthyl	methyl	>95	95 : 5	42%
19	1-naphthyl	methyl	>95	95 : 5	52%
20	$R^7+R^8 =$ (R)-2-bornyl		80%	86 : 14	18%
21	$R^7+R^8 =$ (R)-1-indanyl		>95%	93 : 7	16%
22	$R^7+R^8 =$ (S)- trans-2- cyclohexylamine		70%	>99 : 1	0%
23	(S)-2- aminobenzyl	phenyl	70%	>99 : 1	0%

Entry 1-8: Ratio CuBr Me₂S/Lig*/Substrate = 1/1/20. Entry 9 - 23:1/10/100

¹ Opposite stereoisomer in excess

Use of different substrates for the substitution

The following Tables 2 and 3 show the use of different allyl reagents R^1 and R^2 and

5 (except in entry 13 of Table 3) $R^3 = H$, R^4 and R^5 as indicated in the tables, in the reaction with di-neopentyl zinc using the chiral ligand R^7 =ferrocenyl, R^8 =2-naphthyl of the (R) configuration. The experimental conditions are analogous to those in Example 2 above.

Reactions run at -50°C

Table 2

Entry	R ⁴	R ⁵	Yield (%)	S _N 2' : S _N 2	ee
1	H	phenyl	75	97 : 3	67%
2	phenyl	H	50	96 : 4	22%
3	H	2-trifluoromethyl phenyl	55	80 : 20	- ¹
4	H	4-trifluoromethyl phenyl)	70	98 : 2	74%
5	H	1-naphthyl	74	97 : 3	58%
6	H	cyclohexyl	70	(78 : 22)	59%
7	H	phenylmethyl	50	18 : 82	4%
8	CH ₂ OMe	H	67	>99 : 1	2%
9	CH ₂ OAc	H	74	> 99 : 1	14%
10	CH ₂ OSiBuMe ₂	H	30	> 99 : 1	29%
11	CH ₂ OSi(iPr) ₃	H	53	>99 : 1	47%
12	H	CH ₂ Osi(iPr) ₃	55	>99 : 1	38%
13	CH ₂ OSiPh ₂ tBu	H	70	>99 : 1	12%

¹ Separation of enantiomers was not possible.

Reactions run at -90°C

5

Table 3

Entry	R ⁴	R ⁵	R ³	Yield (%)	S _N 2' : S _N 2	ee
1	H	phenyl	H	68	95 : 5	82%
2	H	4-trifluoromethyl phenyl	H	72	97 : 3	87%
3	H	1-naphthyl	H	65	94 : 6	71%
4	H	2-naphthyl	H	60	91 : 9	70%
5	H	cyclohexyl	H	67	98 : 2	76%
6	H	3-thienyl	H	70	94 : 6	63%
7	CH ₂ OSi(iPr) ₃	H	H	45	>99 : 1	64%
8	H	4-isopropylphenyl	H	70	90 : 10	76%
9	H	4-chlorophenyl	H	71	96 : 4	79%
10	H	3-chlorophenyl	H	72	97 : 3	70%
11	H	3,4-dichlorophenyl	H	68	96 : 4	22%
12	H	1-cyclopentenyl	H	63	64 : 36	60%
13	phenyl	H	-CO ₂ Et	71	87 : 13	12%

Use of different diorganozincs at - 50°C

The following Table 4 shows the use of different organozinc reagents $Zn(R^6)_2$, in the reaction with trans-cinnamyl chloride using the chiral ligand R^7 =ferrocenyl, R^8 =2-naphthyl of the (R) configuration. The experimental conditions are analogous to those in Example

5 2 above.

Table 4

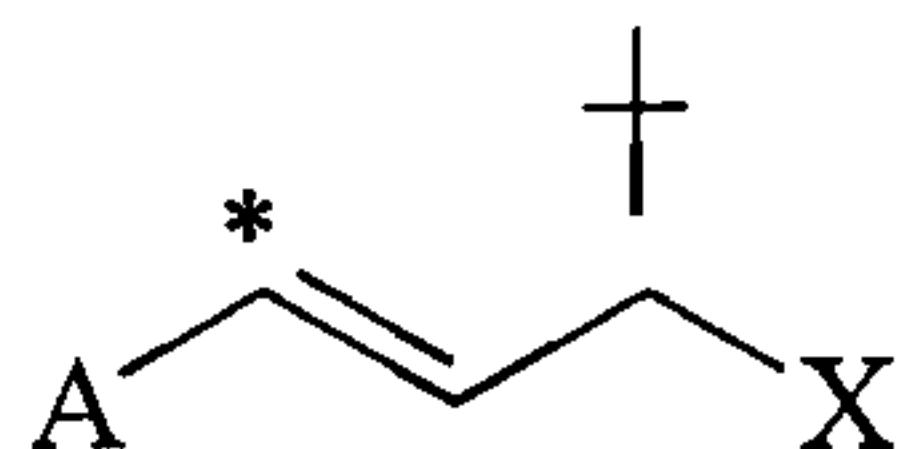
Entry	R^6	Yield (%)	$S_{N2'} : S_{N2}$	ee
1	Methyl	90	98 : 2	10%
2	Ethyl	88	98 : 2	10%
3	<i>iso</i> Propyl	87	98 : 2	29%
4	<i>iso</i> Butyl	69	98 : 2	45%
5	Pentyl	88	98 : 2	26%
6	<i>neo</i> Pentyl	75	97 : 3	67%
7	1R-(+)-Pinane	65	97 : 3	41%
8	1S-(-)-Pinane	60	98 : 2	37%
9	PhMe ₂ SiCH ₂	50	90 : 10	42%
10	Me ₃ SiCH ₂	52	94 : 6	67%
11	Me ₂ PhCCH ₂	¹ ..	68 : 32	25%
12	Me ₂ PhSi(CH ₂) ₂	78	98 : 2	15%
13	H ₂ C=CH ₂ C(CH ₃) ₂ CH ₂	65	95 : 5	79% ²

¹ Reaction worked up before completion. ² Reaction done at -85°C

10

15

98TJL01S - MS - 23 August 1999


79806-29

CLAIMS:

1. A process in which an allylic compound is reacted stereospecifically with an organozinc compound to eliminate a leaving group from the allylic compound and to add a group 5 from the organozinc compound to it in the presence of a copper salt catalyst and a chiral organic ligand for the copper.

2. A process according to claim 1, wherein the allylic compound is of formula

10

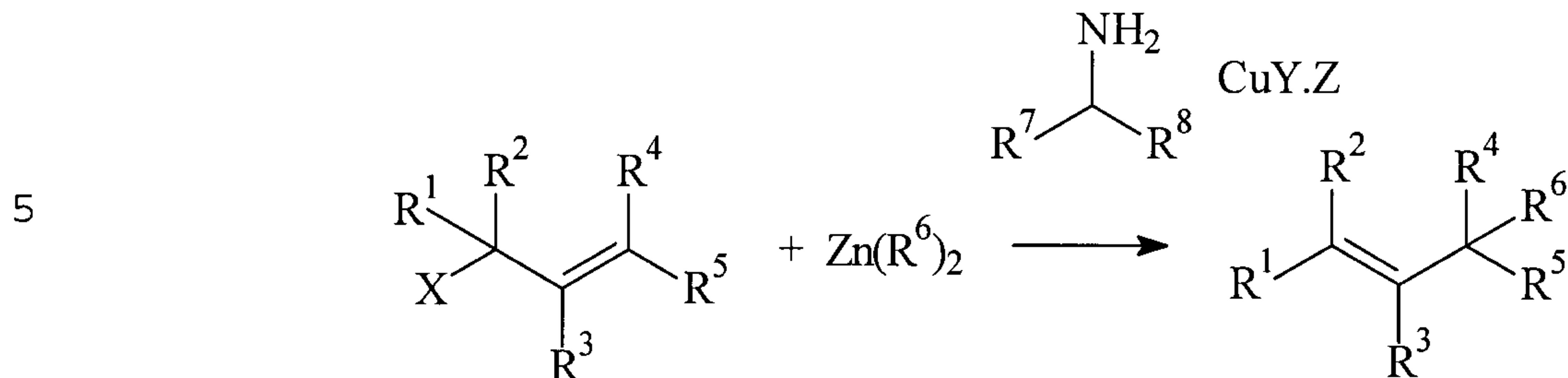
wherein

X is the leaving group,

15 A is hydrogen, a C₁-C₂₀ alkyl group or a C₆-C₂₀ aryl group,

* identifies a carbon atom at which a chiral center may be formed, and

20 + identifies a carbon atom at which alternative substitution may occur which does not lead to the formation of a chiral center.


3. A process as claimed in claim 2, wherein X is a chlorine atom.

4. A process according to claim 1, 2 or 3, wherein S_N2' substitution giving a chiral centre occurs.

79806-29

10

5. A process according to claim 1, wherein the reaction is as follows:

R^1 - R^6 are optionally substituted alkyl, alkenyl, alkynyl, aryl, aralkyl or heterocyclyl groups, or R^1 to R^5 may be H,

10 R^7 is an optionally substituted aryl or ferrocenyl group,

R^8 is an optionally substituted alkyl or aryl group,

15 X is halogen, OR^9 , OCOR^9 , OCO_2R^9 , OSO_2R^9 , OCS_2R^9 $\text{CH}(\text{OR}^{10})_2$, $\text{OPO}(\text{OR}^9)_2$, SOR^9 , or SO_2R^9 in which R^9 and R^{10} are optionally substituted $\text{C}_1\text{-C}_{10}$ alkyl or aryl,

Y is halogen, carboxylate, cyanide, or thiocyanate, and

Z is an ether or thioether.

20 6. A process according to claim 5, wherein the optional substituents in R^1 - R^6 are halogen, alkoxy, aryloxy, acyloxy, nitro, amide, acetamide, carboxylate, cyano, acetal, sulphide, sulphonate, sulfone, sulfoxide, phosphite, phosphonate, and phosphine groups.

25 7. A process according to claim 6, wherein each of the alkyl, alkenyl, alkynyl, aryl, aralkyl, heterocyclyl, alkoxy, aryloxy, acyloxy, amide, acetal, sulfone, sulfoxide,

79806-29

11

phosphite and phosphonate groups of $R^1 - R^6$ have at most 20 carbon atoms.

8. A process according to claim 6, wherein each of the alkyl, alkenyl, alkynyl, aryl, aralkyl, heterocyclyl, 5 alkoxy, aryloxy, acyloxy, amide, acetal, sulfone, sulfoxide, phosphite and phosphonate groups of $R^1 - R^6$ have at most 10 carbon atoms.

9. A process according to any one of claims 5 to 8, wherein R^1 , R^2 , R^3 and one of R^4 and R^5 are hydrogen, and in 10 which the other of R^4 and R^5 is a phenyl, 4-chlorophenyl, 4-trifluoromethylphenyl, or trialkylsilyloxymethyl group.

10. A process according to any one of claims 5 to 9 in which R^5 is a phenyl group and R^6 is a neopentyl group.

11. A process according to any one of claims 5 to 8, 15 wherein R^1 , R^2 , R^3 and one of R^4 and R^5 are hydrogen the other of R^4 and R^5 is an aryl or trialkylsilyloxymethyl group, R^6 is an alkyl group, R^7 is a ferrocenyl group, and R^8 is an aryl group.

12. A process according to any one of claims 5 to 10, 20 wherein R^7 is phenyl.

13. A process according to any one of claims 5 to 10, wherein R^8 is an aryl group substituted by a halogen or haloalkyl group.

14. A process according to any one of claims 5 to 10, 25 wherein R^8 is a phenyl group.

15. A process according to any one of claims 5 to 10, wherein R^8 is a naphthyl or substituted naphthyl group.

79806-29

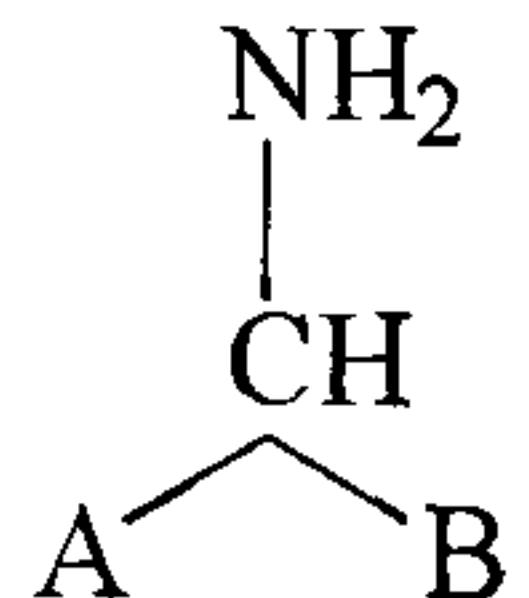
12

16. A process according to any one of claims 5 to 10, wherein R⁷ is a ferrocenyl or substituted ferrocenyl group and R⁸ is a naphthyl or substituted naphthyl group.

17. A process according to any one of claims 5 to 16, 5 wherein X is chloride and Y is chloride or bromide.

18. A process according to any one of claims 1 to 17, wherein an alkane, cycloalkane and/or aromatic solvent is present.

19. A process according to any one of claims 1 to 17, 10 wherein an ether is present as a solvent.


20. A process according to claim 19, wherein the ether is diethylether, 1,4-dioxane, tertbutylmethylether, or tetrahydrofuran.

21. A process according to any one of claims 1 to 20, 15 which is carried out at a temperature of -90°C to -50°C.

22. A process according to any one of claims 1 to 21, wherein the concentration of the catalyst is in the range 0.5 to 5 atom%, expressed as copper atoms based on moles of the allylic compound.

20 23. A process according to any one of claims 1 to 22, wherein the ratio of copper atoms to the chiral organic ligand molecules is 1:10 to 2:1.

24. A compound of formula

in which A is a ferrocenyl group and B is C₆-C₂₀ aryl group other than a phenyl group.

79806-29

13

25. A compound according to claim 19, wherein B is a 2-naphthyl group.

26. A complex which comprises a compound as claimed in claim 24 or 25 and copper.

SMART & BIGGAR
OTTAWA, CANADA

PATENT AGENTS